JP2000258142A - Non-contact method for measuring surface shape - Google Patents

Non-contact method for measuring surface shape

Info

Publication number
JP2000258142A
JP2000258142A JP11064525A JP6452599A JP2000258142A JP 2000258142 A JP2000258142 A JP 2000258142A JP 11064525 A JP11064525 A JP 11064525A JP 6452599 A JP6452599 A JP 6452599A JP 2000258142 A JP2000258142 A JP 2000258142A
Authority
JP
Japan
Prior art keywords
interference
detector
interference fringes
light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11064525A
Other languages
Japanese (ja)
Other versions
JP3310945B2 (en
Inventor
Yojiro Iwamoto
洋次郎 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP06452599A priority Critical patent/JP3310945B2/en
Publication of JP2000258142A publication Critical patent/JP2000258142A/en
Application granted granted Critical
Publication of JP3310945B2 publication Critical patent/JP3310945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the surface shape of an object with high accuracy by scanning white light interference by calculating the peak position of the intensities of interference fringes at each measuring point by finding phases with respect to the intensities of interference fringes and correcting the calculated peak position. SOLUTION: While interference fringes are generated in the measuring range of a work W by producing white light interference by removing a filter 28 from a white light source (lamp) 21 and displacing a detector 20 in a direction Za the detector 20 is fixed to a prescribed position in the measuring range. Then single-wavelength interference is produced by putting the filter 28 on the lamp 21 and the intensities of interference fringes at each measuring point is measured and used as the intensities of interference fringes at initial detecting points. Then the intensities of interference fringes at three or more spots in the one-period range of the intensities of interference fringes are detected from the initial detecting points by minutely displacing a reference mirror 24 at every measuring point and the phases of the initial detecting points are found from the minutely displaced amount at every measuring point. Thereafter, interference fringe generating positions are detected by means of a length measuring instrument 30 at every measuring point by removing the filter 28 and displacing the detector 20 in the direction Za and the relative height between the measuring points is roughly calculated. Then the order of interference fringes corresponding to the relative height is found and the relative height between the measuring points is calculated from the order and the phases of the initial detecting points.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、白色干渉走査方式
による非接触表面形状測定方法の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a non-contact surface shape measuring method using a white interference scanning method.

【0002】[0002]

【従来の技術】ワークの表面形状(粗さやうねり等)を
非接触で測定する方法として、当出願人が特開平9−3
18329号公報「非接触表面形状測定方法及び装置」
及び特願平9−147244号公報「非接触表面形状測
定方法及びその装置」で開示しているものがある。これ
らは光源として白色光を用いているので、本明細書では
「白色干渉走査方式」という。この方法では、光源から
の光をワーク方向と参照ミラー方向とに分光させ、それ
らの反射光によって干渉縞を発生させるとともに、干渉
縞強度をCCDカメラで検出する。この強度は検出器内
の基準位置からのワークと参照ミラーとの距離の差によ
って変化するので、測定点ごとに、基準位置からワーク
までの距離又は参照ミラーまでの距離を相対的に変位さ
せ、強度が最大になるときのワークと参照ミラーとの距
離の差を測長機等で検出する。これによって、測定点間
ごとの高さ(測定方向の変位量を本明細書では「高さ」
ともいう)の差を検出しワーク表面形状を求めるもので
ある。白色光は干渉範囲が極めて狭いので精密な検出に
適している。
2. Description of the Related Art As a method for measuring the surface shape (roughness, waviness, etc.) of a work in a non-contact manner, the applicant of the present invention has disclosed a method disclosed in Japanese Patent Application Laid-Open No. Hei 9-3.
No. 18329, "Non-contact surface shape measuring method and apparatus"
And Japanese Patent Application No. 9-147244, entitled "Method and Apparatus for Non-Contact Surface Shape Measurement". Since these use white light as a light source, they are referred to herein as “white interference scanning method”. In this method, light from a light source is split into a work direction and a reference mirror direction, interference fringes are generated by the reflected light, and the interference fringe intensity is detected by a CCD camera. Since this intensity changes due to the difference in the distance between the work and the reference mirror from the reference position in the detector, the distance from the reference position to the work or the distance to the reference mirror is relatively displaced for each measurement point, The difference in the distance between the workpiece and the reference mirror when the strength is maximized is detected by a length measuring device or the like. Accordingly, the height between the measurement points (the displacement amount in the measurement direction is referred to as “height” in the present specification).
) Is detected to determine the workpiece surface shape. Since white light has an extremely narrow interference range, it is suitable for precise detection.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、白色干
渉走査方式では、検出器で検出される位置は必ずしも干
渉縞強度のピーク位置とならないため、誤差が発生する
という問題がある。これを説明したものが図7で、2箇
所の測定点についての干渉縞強度を表している。縦方向
が測定方向、横方向が干渉縞強度である。検出された値
は位置Dと位置Eとの高さの差Hdであるが、真の値は
干渉縞強度のピーク位置間距離Hoであるから、ピーク
位置からの距離δd、δeが測定誤差となる。
However, in the white light interference scanning method, the position detected by the detector is not necessarily the peak position of the interference fringe intensity, so that there is a problem that an error occurs. FIG. 7 illustrates the interference fringe intensity at two measurement points. The vertical direction is the measurement direction, and the horizontal direction is the interference fringe intensity. The detected value is the height difference Hd between the position D and the position E. Since the true value is the distance Ho between the peak positions of the interference fringe intensity, the distances δd and δe from the peak positions are the measurement errors and Become.

【0004】本発明はこのような事情に鑑みてなされた
もので、精度の高い白色干渉走査方式の測定方法を提供
することを目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a highly accurate white interference scanning type measuring method.

【0005】[0005]

【課題を解決するための手段】本発明は前記目的を達成
するために、各測定点の干渉縞強度について位相を求
め、それによって干渉縞強度のピーク位置を算出して補
正するようにした。位相を求めるには、特公昭51−1
9996号公報「波頭測定方法及び装置」等で開示され
ているように、単波長又はそれに近いもの(以下、本明
細書では単に「単波長」という)による干渉縞を発生さ
せる必要がある。そこで、「白色干渉走査方式」の検出
器に光源を白色光から単波長に切り換える機能を持たせ
る。また、微小の「走査」が必要となるのでそれができ
る機構を備える。
According to the present invention, in order to achieve the above object, the phase of the interference fringe intensity at each measurement point is obtained, and the peak position of the interference fringe intensity is calculated and corrected. To find the phase,
As disclosed in, for example, Japanese Patent Application Laid-Open No. 9996, entitled "Method and Apparatus for Wavefront Measurement", it is necessary to generate interference fringes with a single wavelength or a wavelength close thereto (hereinafter, simply referred to as "single wavelength" in the present specification). Therefore, a detector of the "white interference scanning system" is provided with a function of switching the light source from white light to a single wavelength. In addition, a mechanism that can perform minute “scanning” is required.

【0006】測定は次のように行う。 (1)光源を単波長に切り換える。 (2)検出器を測定範囲の所定の位置に固定して各測定
点の干渉縞強度を検出し、これを各測定点の初期検出点
の干渉縞強度として記憶する。 (3)検出器内部の基準位置からワークまでの距離と参
照ミラーまでの距離とを相対的に微小変位させて、ワー
クの各測定点ごとに、初期検出点から干渉縞強度の1周
期の範囲の3箇所以上について干渉縞強度を検出する。 (4)検出された3個以上の干渉縞強度と微小変位させ
た量とから、干渉縞強度がsin曲線であるとして各測
定点ごとに初期検出点の位相を算出する。 (5)光源を白色光に切り換える。 (6)検出器を測定方向に変位させ、各測定点ごとに干
渉縞が発生する位置を測長期等で検出して、これから各
測定点間の概略相対高さを算出する。 (7)概略相対高さに相当する干渉縞の次数を算出す
る。 (8)初期検出点の位相と干渉縞の次数とから、各測定
点間の相対高さを算出する。
The measurement is performed as follows. (1) Switch the light source to a single wavelength. (2) Fix the detector at a predetermined position in the measurement range, detect the interference fringe intensity at each measurement point, and store this as the interference fringe intensity at the initial detection point of each measurement point. (3) The distance from the reference position inside the detector to the work and the distance to the reference mirror are relatively slightly displaced, and for each measurement point of the work, the range of one cycle of the interference fringe intensity from the initial detection point. The interference fringe intensity is detected at three or more locations. (4) From the detected three or more interference fringe intensities and the amount of slight displacement, the phase of the initial detection point is calculated for each measurement point assuming that the interference fringe intensity is a sin curve. (5) Switch the light source to white light. (6) The detector is displaced in the measurement direction, the position where interference fringes are generated at each measurement point is detected by long-term measurement or the like, and the approximate relative height between the measurement points is calculated from this. (7) Calculate the order of interference fringes corresponding to the approximate relative height. (8) The relative height between each measurement point is calculated from the phase of the initial detection point and the order of the interference fringes.

【0007】[0007]

【発明の実施の形態】本発明に係る非接触表面形状測定
方法に用いる測定機構の好ましい実施の形態1を図1に
示す。図1に示す測定機構は、検出器20とその変位量
を検出する測長器30とから構成されている。検出器2
0は、白色光源であるランプ21、コリメートレンズ2
2、ハーフミラー23、参照ミラー24、圧電素子2
5、結像レンズ26、CCDカメラ27、フィルター2
8から構成されている。この場合、ランプ21、コリメ
ートレンズ22、ハーフミラー23、圧電素子25、結
像レンズ26、CCDカメラ27は検出器20の中で固
定されているが、参照ミラー24は圧電素子25によっ
て測定方向と直角な方向(Xa方向)に駆動され、フィ
ルター28は図示しない機構でUa方向に駆動される。
FIG. 1 shows a preferred embodiment 1 of a measuring mechanism used in a non-contact surface shape measuring method according to the present invention. The measuring mechanism shown in FIG. 1 includes a detector 20 and a length measuring device 30 for detecting a displacement amount thereof. Detector 2
0 is a lamp 21 as a white light source, a collimating lens 2
2, half mirror 23, reference mirror 24, piezoelectric element 2
5, imaging lens 26, CCD camera 27, filter 2
8. In this case, the lamp 21, the collimating lens 22, the half mirror 23, the piezoelectric element 25, the imaging lens 26, and the CCD camera 27 are fixed in the detector 20. The filter 28 is driven in a perpendicular direction (Xa direction), and the filter 28 is driven in the Ua direction by a mechanism (not shown).

【0008】検出器20による検出原理は次のとおり。
すなわち、ランプ21から出た光はコリメートレンズ2
2を介してハーフミラー23に入り、ハーフミラー23
で反射してワーク表面Waに向かう光とハーフミラー2
3を通過して参照ミラー24に向かう光に分けられる。
ワーク表面Wa向かった光はワーク表面Waで反射し今
度はハーフミラー23を通過して結像レンズ26を介し
CCDカメラ27に入る。また、ハーフミラー23を通
過して参照ミラー24に向かった光は参照ミラー24で
反射し、今度はハーフミラー23で反射して結像レンズ
26を介しCCDカメラ27に入る。この結果、検出器
内部の基準位置であるハーフミラー23からワーク表面
Waまでの距離Laと参照ミラー24までの距離Lbと
の差によって、干渉縞が発生する。
The principle of detection by the detector 20 is as follows.
That is, the light emitted from the lamp 21 is
2 and enters the half mirror 23 and the half mirror 23
Reflected by the mirror and heading toward the work surface Wa and the half mirror 2
The light is divided into light passing through 3 and traveling toward the reference mirror 24.
Light directed toward the work surface Wa is reflected by the work surface Wa, and then passes through the half mirror 23 and enters the CCD camera 27 via the imaging lens 26. The light that has passed through the half mirror 23 and travels toward the reference mirror 24 is reflected by the reference mirror 24, and then reflected by the half mirror 23 and enters the CCD camera 27 via the imaging lens 26. As a result, interference fringes occur due to the difference between the distance La from the half mirror 23, which is the reference position inside the detector, to the workpiece surface Wa, and the distance Lb to the reference mirror 24.

【0009】また、検出器20は測定方向(Za方向)
に可動自在になっており、その変位量が測長器30で検
出される。測長器30はレーザー式で検出器20の上端
に固着された反射ミラー29にレーザーを投射して変位
を検出する。
The detector 20 is in the measuring direction (Za direction).
The displacement amount is detected by the length measuring device 30. The length measuring device 30 detects the displacement by projecting a laser beam onto a reflecting mirror 29 fixed to the upper end of the detector 20 using a laser.

【0010】本発明に係る非接触表面形状測定方法に用
いる測定機構の実施の形態1はこのように構成され、図
2のフローチャートのようにしてワークの各測定点の高
さを検出する。 (1)光源からフィルター28を外し白色干渉状態にす
る(ステップS1)。 (2)検出器20をZa方向に変位させ、ワークの測定
範囲で干渉縞が発生することを確認する(ステップS
2)。 (3) 検出器20をワーク測定範囲の所定(略中間等)
の位置に移動し固定する(ステップS3)。 (4)光源にフィルター28を入れ単波長干渉状態にす
る(ステップS4)。
The first embodiment of the measuring mechanism used in the non-contact surface shape measuring method according to the present invention is configured as described above, and detects the height of each measuring point of the work as shown in the flowchart of FIG. (1) The filter 28 is removed from the light source to make a white interference state (step S1). (2) The detector 20 is displaced in the Za direction, and it is confirmed that interference fringes occur in the measurement range of the work (Step S)
2). (3) Set the detector 20 to the predetermined work measurement range (approximately at the middle, etc.)
(Step S3). (4) Put the filter 28 in the light source to make it a single-wavelength interference state (step S4).

【0011】(5)各測定点の干渉縞強度を検出すると
ともに、これを各測定点の初期検出点の干渉縞強度とし
て記憶する(ステップS5)。 この状態を図3に示す。図3では3箇所の測定点A、
B、Cのについて表している。光源が単波長であるので
干渉範囲が広く、同一位置で全測定点について干渉縞を
検出することができるとともに、干渉縞強度はほぼsi
n曲線になる。Ao、Bo、Coが初期検出点であり、
検出された干渉縞強度がIa、Ib、Icである。ま
た、後述する方法で求めた位相がθa、θb、θcであ
る。
(5) The interference fringe intensity at each measurement point is detected, and this is stored as the interference fringe intensity at the initial detection point of each measurement point (step S5). This state is shown in FIG. In FIG. 3, three measurement points A,
B and C are shown. Since the light source has a single wavelength, the interference range is wide, interference fringes can be detected at all measurement points at the same position, and the interference fringe intensity is almost si.
It becomes an n curve. Ao, Bo, Co are the initial detection points,
The detected interference fringe intensities are Ia, Ib, and Ic. The phases determined by a method described later are θa, θb, and θc.

【0012】(6)各測定点ごとに、圧電素子25によ
ってXa方向に参照ミラーを微小変位させ、初期検出点
から干渉縞強度の1周期の範囲の3箇所以上について干
渉縞強度を検出する(ステップS6)。 (7)干渉縞強度がsin曲線であるとして、検出され
た3個以上の干渉縞強度と微小変位させた量とから、各
測定点ごとに初期検出点の位相θを算出する(ステップ
S7)。 この場合、算出された位相θがπ(半周期)より大きい
場合は2π(1周期)を加算又は減算して、πより小さ
くなるようにする。
(6) At each measurement point, the reference mirror is minutely displaced in the Xa direction by the piezoelectric element 25, and the interference fringe intensity is detected at three or more locations within one cycle of the interference fringe intensity from the initial detection point ( Step S6). (7) Assuming that the interference fringe intensity is a sin curve, the phase θ of the initial detection point is calculated for each measurement point from the detected three or more interference fringe intensities and the amount of slight displacement (step S7). . In this case, when the calculated phase θ is larger than π (half cycle), 2π (one cycle) is added or subtracted so as to be smaller than π.

【0013】この状態を図4に示す。図4では図3で示
したもののうち測定点Aについて表している。ここでは
干渉縞の1周期(測定長さでは波長λの1/2、位相で
は2π)を4分割しπ/4間隔で4点A1、A2、A
3、A4の干渉縞強度I1、I2、I3、I4を検出
し、これからA0点の位相θaを算出する。
FIG. 4 shows this state. FIG. 4 shows the measurement point A among those shown in FIG. Here, one cycle of the interference fringes (1/2 of the wavelength λ in the measurement length, 2π in the phase) is divided into four, and four points A1, A2, A are provided at intervals of π / 4.
3, the interference fringe intensities I1, I2, I3, and I4 of A4 are detected, and the phase θa of the A0 point is calculated based on the detected intensity.

【0014】(8)光源からフィルター28を外し白色
干渉状態にする(ステップS8)。 (9)検出器20をZa方向に変位させて、各測定点ご
とに干渉縞が発生する位置を測長器30で検出し、これ
から各測定点間の概略相対高さKを算出して記憶する
(ステップS9)。 (10)概略相対高さKに相当する干渉縞の次数Nを次
のように算出する(ステップS10)。 N=K/(λ/2) この場合、余りがλ/4より小さいものは切り捨てる。 (11)各測定点の初期検出点の位相θと干渉縞の次数
Nとから、各測定点間の相対高さHを次のように算出す
る(ステップS11)。 H=(2πN−θ)λ/(4π)
(8) The filter 28 is removed from the light source to make a white interference state (step S8). (9) The detector 20 is displaced in the Za direction, the position where the interference fringe is generated at each measurement point is detected by the length measuring device 30, and the approximate relative height K between each measurement point is calculated and stored from this. (Step S9). (10) The order N of the interference fringes corresponding to the approximate relative height K is calculated as follows (step S10). N = K / (λ / 2) In this case, those whose remainder is smaller than λ / 4 are discarded. (11) The relative height H between the measurement points is calculated as follows from the phase θ of the initial detection point of each measurement point and the order N of the interference fringes (step S11). H = (2πN−θ) λ / (4π)

【0015】相対高さH算出方法の具体例を図5を用い
て説明する。図5では図3で示したもののうち測定点A
と測定点Bとの2点間の相対高さHaについて表してい
る。すなわち、初期検出点Aoの位相をθa、初期検出
点Boの位相をθb、概略相対高さKaとすると、干渉
縞の次数Naと測定点Aと測定点Bとの相対高さHaは
次のようになる。 Na=Ka/(λ/2) ただし、余りがλ/4より小さいものは切り捨てる。 Ha={2πNa−(θa−θb)}λ/(4π) なお、従来の方法ではJaが相対高さとして算出され
る。
A specific example of the method for calculating the relative height H will be described with reference to FIG. In FIG. 5, the measurement point A shown in FIG.
And the relative height Ha between two points of the measurement point B and the measurement point B. That is, when the phase of the initial detection point Ao is θa, the phase of the initial detection point Bo is θb, and the relative height is Ka, the order Na of the interference fringes and the relative height Ha between the measurement point A and the measurement point B are as follows. Become like Na = Ka / (λ / 2) However, those having a remainder smaller than λ / 4 are discarded. Ha = {2πNa− (θa−θb)} λ / (4π) In the conventional method, Ja is calculated as a relative height.

【0016】本発明に係る非接触表面形状測定方法に用
いる測定機構の実施の形態2を、図6に示す。図6に示
す測定機構は、図1に示した実施の形態1に対して検出
器の構成を変えている。基本的には、検出器内部の基準
位置からワークまでの距離と参照ミラーまでの距離とを
相対的に微小変位させる方法が異なり、参照ミラーから
ワークの表面Waまでの距離Laを変位させるようにし
ている。また、光源とCCDカメラの位置を変えてい
る。
FIG. 6 shows a second embodiment of the measuring mechanism used in the non-contact surface shape measuring method according to the present invention. The measurement mechanism shown in FIG. 6 is different from the first embodiment shown in FIG. 1 in the configuration of the detector. Basically, the method of relatively slightly displacing the distance from the reference position inside the detector to the workpiece and the distance to the reference mirror is different, and the distance La from the reference mirror to the surface Wa of the workpiece is displaced. ing. In addition, the positions of the light source and the CCD camera are changed.

【0017】すなわち、検出器40は上下2段に構成さ
れ、上部は白色光源であるランプ41、コリメートレン
ズ42、ハーフミラー43、ミラー44、結像レンズ4
5、CCDカメラ46、フィルター47から構成されて
いる。下部は、参照ミラー51、ハーフミラー52から
構成されており、上部と下部は圧電素子48で結合され
ている。そして、下部は圧電素子48によって測定方向
(Za方向)に駆動される。フィルター47は検出器2
0と同様に図示しない機構でUb方向に駆動される。ま
た、上部はZa方向に可動自在になっており、上端に固
着された反射ミラー49にレーザーが投射されて変位量
が測長器30で検出される。上部が変位するときは当然
下部も変位する。
That is, the detector 40 is composed of two stages, upper and lower, and a lamp 41, a collimating lens 42, a half mirror 43, a mirror 44,
5, a CCD camera 46 and a filter 47. The lower part is composed of a reference mirror 51 and a half mirror 52, and the upper and lower parts are connected by a piezoelectric element 48. The lower portion is driven by the piezoelectric element 48 in the measurement direction (Za direction). Filter 47 is detector 2
As in the case of 0, it is driven in the Ub direction by a mechanism not shown. Further, the upper portion is movable in the Za direction, and a laser is projected onto the reflection mirror 49 fixed to the upper end, and the displacement is detected by the length measuring device 30. When the upper part is displaced, the lower part is also displaced.

【0018】検出器40による検出原理は次のとおり。
すなわち、ランプ41から出た光はコリメートレンズ4
2を介してハーフミラー43に入り、ハーフミラー43
で反射して下部方向(ワーク表面Wa側)に向かう。こ
の光は、下部でハーフミラー52を通過してワーク表面
Waに向かう光とハーフミラー52に反射して参照ミラ
ー51に向かう光とに分けられる。ワーク表面Wa向か
った光はワーク表面Waで反射し、再びハーフミラー5
2を通過する。そして、ハーフミラー43を通過しミラ
ー44で反射して結像レンズ45を介しCCDカメラ4
6に入る。また、ハーフミラー52で反射して参照ミラ
ー51に向かった光は参照ミラー51で反射し、再びハ
ーフミラー52で反射する。そして、ハーフミラー43
を通過しミラー44で屈折して結像レンズ45を介しC
CDカメラ46に入る。この結果、ハーフミラー52か
らのワーク表面Waまでの距離Laと参照ミラー51ま
での距離Lbとの差によって、干渉縞が発生する。
The principle of detection by the detector 40 is as follows.
That is, the light emitted from the lamp 41 is
2 enters the half mirror 43 via the half mirror 43
And is directed downward (toward the workpiece surface Wa side). This light is divided into light that passes through the half mirror 52 at the lower portion and travels toward the work surface Wa, and light that is reflected by the half mirror 52 and travels toward the reference mirror 51. The light directed toward the work surface Wa is reflected by the work surface Wa, and is again returned to the half mirror 5.
Pass 2 Then, the light passes through the half mirror 43, is reflected by the mirror 44, and passes through the imaging lens 45 to the CCD camera 4.
Enter 6. The light reflected by the half mirror 52 and traveling toward the reference mirror 51 is reflected by the reference mirror 51 and is reflected again by the half mirror 52. And the half mirror 43
Passes through the mirror 44 and is refracted by the mirror 44 via
Enter the CD camera 46. As a result, an interference fringe is generated due to the difference between the distance La from the half mirror 52 to the work surface Wa and the distance Lb to the reference mirror 51.

【0019】本発明に係る非接触表面形状測定方法に用
いる測定機構の実施の形態2はこのように構成され、実
施の形態1と同様に、次のようにしてワークの各測定点
の高さを検出する。フロー図は図2と同じである。 (1)光源からフィルター47を外し白色干渉状態にす
る(ステップS1)。 (2)検出器40をZa方向に変位させ、ワークの測定
範囲で干渉縞が発生することを確認する(ステップS
2)。 (3) 検出器40をワーク測定範囲の所定(略中間等)
の位置に移動し固定する(ステップS3)。 (4)光源にフィルター47を入れ単波長干渉状態にす
る(ステップS4)。 (5)各測定点の干渉縞強度を検出するとともに、これ
を各測定点の初期検出点の干渉縞強度として記憶する
(ステップS5)。 (6)各測定点ごとに、圧電素子48によってZa方向
に検出器40の下部を微小変位させ、初期検出点から干
渉縞強度の1周期の範囲の3箇所以上について干渉縞強
度を検出する(ステップS6)。 (7)干渉縞強度がsin曲線であるとして、検出され
た3個以上の干渉縞強度と微小変位させた量とから、各
測定点ごとに初期検出点の位相θを算出する(ステップ
S7)。 (8)光源からフィルター47を外し白色干渉状態にす
る(ステップS8)。 (9)検出器40をZa方向に変位させて、各測定点ご
とに干渉縞が発生する位置を測長器30で検出し、これ
から各測定点間の概略相対高さKを算出して記憶する
(ステップS9)。 (10)概略相対高さKに相当する干渉縞の次数Nを算
出する(ステップS10)。 (11)各測定点の初期検出点の位相θと干渉縞の次数
Nとから、各測定点間の相対高さHを算出する(ステッ
プS11)。
The second embodiment of the measuring mechanism used in the non-contact surface shape measuring method according to the present invention is configured as described above, and similarly to the first embodiment, the height of each measuring point of the workpiece is as follows. Is detected. The flow chart is the same as FIG. (1) The filter 47 is removed from the light source to make a white interference state (step S1). (2) The detector 40 is displaced in the Za direction, and it is confirmed that interference fringes are generated in the measurement range of the work (Step S)
2). (3) Set the detector 40 to a specified work measurement range (approximately at the middle, etc.)
(Step S3). (4) Put the filter 47 in the light source to make a single-wavelength interference state (step S4). (5) The interference fringe intensity at each measurement point is detected, and this is stored as the interference fringe intensity at the initial detection point at each measurement point (step S5). (6) For each measurement point, the lower part of the detector 40 is minutely displaced in the Za direction by the piezoelectric element 48, and the interference fringe intensity is detected at three or more positions within one cycle of the interference fringe intensity from the initial detection point ( Step S6). (7) Assuming that the interference fringe intensity is a sin curve, the phase θ of the initial detection point is calculated for each measurement point from the detected three or more interference fringe intensities and the amount of slight displacement (step S7). . (8) The filter 47 is removed from the light source to make a white interference state (step S8). (9) The detector 40 is displaced in the Za direction, the position where the interference fringe is generated at each measurement point is detected by the length measuring device 30, and the approximate relative height K between each measurement point is calculated and stored from this. (Step S9). (10) The order N of the interference fringes corresponding to the approximate relative height K is calculated (step S10). (11) The relative height H between the measurement points is calculated from the phase θ of the initial detection point of each measurement point and the order N of the interference fringes (step S11).

【0020】なお、以上説明した実施の形態では、検出
器20、検出器40の変位量をレーザ式の測長器30で
検出したが、他の検出センサー(例えば、光学式リニア
センサー)でもよいことはいうまでもない。
In the above-described embodiment, the displacement of the detector 20 and the detector 40 is detected by the laser-type length measuring device 30. However, another detection sensor (for example, an optical linear sensor) may be used. Needless to say.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、白
色干渉走査方式において、各測定点の干渉縞強度につい
て位相を求め、それによって干渉縞強度のピーク位置を
算出して補正するようにした。したがって、精度の高い
白色干渉走査方式の測定方法を提供することができる。
As described above, according to the present invention, in the white interference scanning method, the phase of the interference fringe intensity at each measurement point is obtained, and the peak position of the interference fringe intensity is calculated and corrected. did. Therefore, it is possible to provide a highly accurate white interference scanning method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る測定方法に用いる測定機構の実施
の形態1
FIG. 1 is a first embodiment of a measuring mechanism used in a measuring method according to the present invention.

【図2】本発明に係る測定方法のフローチャートFIG. 2 is a flowchart of a measuring method according to the present invention.

【図3】本発明に係る測定方法の初期検出点の説明図FIG. 3 is an explanatory diagram of an initial detection point of the measuring method according to the present invention.

【図4】本発明に係る測定方法の位相算出方法の説明図FIG. 4 is an explanatory diagram of a phase calculation method of the measurement method according to the present invention.

【図5】本発明に係る測定方法のワーク相対高さ算出方
法の説明図
FIG. 5 is an explanatory diagram of a method for calculating a relative height of a work in the measuring method according to the present invention.

【図6】本発明に係る測定方法に用いる測定機構の実施
の形態2
FIG. 6 is a second embodiment of the measuring mechanism used in the measuring method according to the present invention.

【図7】従来の測定方法の説明図FIG. 7 is an explanatory diagram of a conventional measuring method.

【符号の説明】 Ao……測定点Aの初期検出点 Bo……測定点Bの初期検出点 θa……初期検出点Aoの位相 θb……初期検出点Boの位相 Ka……測定点Aと測定点Bとの概略相対高さ Ha……測定点Aと測定点Bとの相対高さ[Explanation of Signs] Ao: initial detection point of measurement point A Bo: initial detection point of measurement point B θa: phase of initial detection point Ao θb: phase of initial detection point Bo Ka: measurement point A Rough height relative to measurement point B Ha ... Relative height between measurement point A and measurement point B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内部の基準位置からワークまでの距離と参
照ミラーまでの距離とを相対的に微小変位させる機構を
有するとともに、光源を白色光から単波長又はそれに近
い光に切り換える機能を備えた白色干渉走査方式の検出
器を用いた測定方法であって、 前記光源を単波長又はそれに近い光に切り換え、 前記検出器を測定範囲の所定の位置に固定してワークの
各測定点の干渉縞強度を検出し、これを各測定点の初期
検出点の干渉縞強度として記憶し、 前記検出器内部の基準位置からワークまでの距離と参照
ミラーまでの距離とを相対的に微小変位させて、各測定
点ごとに、前記初期検出点から干渉縞強度の1周期の3
箇所以上について干渉縞強度を検出し、 検出された3個以上の前記干渉縞強度と微小変位させた
量とから、干渉縞強度がsin曲線であるとして各測定
点ごとに前記初期検出点の位相を算出し、 前記光源を白色光に切り換え、 前記検出器を測定方向に変位させ、各測定点ごとに干渉
縞が発生する位置を検出して、これから各測定点間の概
略相対高さ算出し、 前記概略相対高さに相当する干渉縞の次数を算出し、 前記初期検出点の位相と前記干渉縞の次数とから各測定
点の相対高さを算出して、ワークの表面形状を求めるこ
とを特徴とする非接触表面形状測定方法。
1. A mechanism for relatively slightly displacing a distance from an internal reference position to a workpiece and a distance to a reference mirror, and a function of switching a light source from white light to light of a single wavelength or a light close thereto. A measurement method using a white interference scanning type detector, wherein the light source is switched to a single wavelength or light close to the single wavelength, and the detector is fixed at a predetermined position in a measurement range, and interference fringes at each measurement point of a workpiece. Detecting the intensity, storing this as the interference fringe intensity of the initial detection point of each measurement point, relatively slightly displacing the distance from the reference position inside the detector to the work and the distance to the reference mirror, For each measurement point, 3 of one cycle of the interference fringe intensity from the initial detection point
The interference fringe intensity is detected for more than one location, and from the detected three or more interference fringe intensities and the amount of minute displacement, it is assumed that the interference fringe intensity is a sin curve and the phase of the initial detection point is determined for each measurement point. The light source is switched to white light, the detector is displaced in the measurement direction, the position where interference fringes are generated for each measurement point is detected, and the approximate relative height between each measurement point is calculated from this. Calculating the order of interference fringes corresponding to the approximate relative height, calculating the relative height of each measurement point from the phase of the initial detection point and the order of the interference fringes, and determining the surface shape of the workpiece. A non-contact surface shape measuring method characterized by the above-mentioned.
【請求項2】前記光源を白色光とし、それにフィルター
を入れることによって、前記光源を白色光から単波長又
はそれに近い光に切り換えることを特徴とする請求項1
に記載の非接触表面形状測定方法。
2. The method according to claim 1, wherein the light source is white light, and the light source is switched from white light to light of a single wavelength or a light having a wavelength close to the white light by providing a filter.
Non-contact surface shape measuring method according to 4.
【請求項3】前記参照ミラーを圧電素子で駆動すること
によって、前記検出器内部の基準位置からワークまでの
距離と参照ミラーまでの距離とを相対的に微小変位させ
ることを特徴とする請求項1に記載の非接触表面形状測
定方法。
3. A distance between a reference position inside the detector and a workpiece and a distance between the reference mirror and a reference mirror are relatively displaced by driving the reference mirror with a piezoelectric element. 2. The non-contact surface shape measuring method according to 1.
JP06452599A 1999-03-11 1999-03-11 Non-contact surface shape measurement method Expired - Fee Related JP3310945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06452599A JP3310945B2 (en) 1999-03-11 1999-03-11 Non-contact surface shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06452599A JP3310945B2 (en) 1999-03-11 1999-03-11 Non-contact surface shape measurement method

Publications (2)

Publication Number Publication Date
JP2000258142A true JP2000258142A (en) 2000-09-22
JP3310945B2 JP3310945B2 (en) 2002-08-05

Family

ID=13260735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06452599A Expired - Fee Related JP3310945B2 (en) 1999-03-11 1999-03-11 Non-contact surface shape measurement method

Country Status (1)

Country Link
JP (1) JP3310945B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015366A1 (en) * 2002-08-09 2004-02-19 Toray Engineering Co., Ltd. Surface shape determining method and its device
JP2006250853A (en) * 2005-03-14 2006-09-21 Fujitsu Ltd Object surface shape measuring method and its system
JP2007033217A (en) * 2005-07-26 2007-02-08 Keyence Corp Interference measuring instrument, and interference measuring method
JP2007033318A (en) * 2005-07-28 2007-02-08 Canon Inc Interference measuring apparatus
JP2007333470A (en) * 2006-06-13 2007-12-27 Hamamatsu Photonics Kk Surface profile measuring apparatus
JP2008096295A (en) * 2006-10-12 2008-04-24 Mitsutoyo Corp Three-dimensional sensor and contact probe
CN100406848C (en) * 2005-03-31 2008-07-30 阿尔卑斯电气株式会社 Three-dimensional measuring method and three-dimensional measuring apparatus
JP2012022012A (en) * 2011-11-02 2012-02-02 Canon Inc Interference measuring apparatus and method for determining measurement origin
WO2013084557A1 (en) * 2011-12-07 2013-06-13 コニカミノルタ株式会社 Shape-measuring device
CN113310439A (en) * 2021-05-08 2021-08-27 中国工程物理研究院材料研究所 Method and system for detecting surface roughness of spherical shell part based on white light confocal sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015366A1 (en) * 2002-08-09 2004-02-19 Toray Engineering Co., Ltd. Surface shape determining method and its device
JP2006250853A (en) * 2005-03-14 2006-09-21 Fujitsu Ltd Object surface shape measuring method and its system
CN100406848C (en) * 2005-03-31 2008-07-30 阿尔卑斯电气株式会社 Three-dimensional measuring method and three-dimensional measuring apparatus
JP2007033217A (en) * 2005-07-26 2007-02-08 Keyence Corp Interference measuring instrument, and interference measuring method
JP2007033318A (en) * 2005-07-28 2007-02-08 Canon Inc Interference measuring apparatus
JP2007333470A (en) * 2006-06-13 2007-12-27 Hamamatsu Photonics Kk Surface profile measuring apparatus
JP2008096295A (en) * 2006-10-12 2008-04-24 Mitsutoyo Corp Three-dimensional sensor and contact probe
JP2012022012A (en) * 2011-11-02 2012-02-02 Canon Inc Interference measuring apparatus and method for determining measurement origin
WO2013084557A1 (en) * 2011-12-07 2013-06-13 コニカミノルタ株式会社 Shape-measuring device
CN113310439A (en) * 2021-05-08 2021-08-27 中国工程物理研究院材料研究所 Method and system for detecting surface roughness of spherical shell part based on white light confocal sensor
CN113310439B (en) * 2021-05-08 2022-11-04 中国工程物理研究院材料研究所 Method and system for detecting surface roughness of spherical shell part based on white light confocal sensor

Also Published As

Publication number Publication date
JP3310945B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
US5486926A (en) Method and a device for a highly accurate measurement of distances, which may change, if a necessary, between an object, for example a clamp workpiece, and a point of reference
JPS60127403A (en) Thickness measuring apparatus
US20110080593A1 (en) Surface shape measurement apparatus
JP3310945B2 (en) Non-contact surface shape measurement method
EP0208276A1 (en) Optical measuring device
JPH02161332A (en) Device and method for measuring radius of curvature
CN104508421B (en) Optical measuring probe and the method for optical measurement for interior diameter and overall diameter
JPH116719A (en) Interference measuring apparatus
JPS5979104A (en) Optical device
JPH10293019A (en) Height shape measurement method and device using optical heterodyne interference
JPH06194125A (en) Method and apparatus for detecting deviation of object from focal point of objective lens or change in position
JP2001165629A (en) Shape measuring device and shape measuring method
JP2557377B2 (en) Depth measuring device
JP2541197Y2 (en) Interference shape measuring instrument
JP2698446B2 (en) Interval measuring device
KR100332035B1 (en) distance measuring apparatus and method using double pass of homodyne laser
JPH01235807A (en) Depth measuring instrument
JPH0711413B2 (en) Non-contact type surface profile measuring device
JP3061160B2 (en) Laser interference displacement measurement device
JPH03243804A (en) Shape measuring method for aspherical surface
JP2002267426A (en) Shape-measuring instrument and method
JPH1123229A (en) Measuring method for film thickness
JPH08166209A (en) Polygon mirror evaluating device
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JPH06129840A (en) Surface measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees