JP3327998B2 - Shape measuring method and device - Google Patents

Shape measuring method and device

Info

Publication number
JP3327998B2
JP3327998B2 JP12853793A JP12853793A JP3327998B2 JP 3327998 B2 JP3327998 B2 JP 3327998B2 JP 12853793 A JP12853793 A JP 12853793A JP 12853793 A JP12853793 A JP 12853793A JP 3327998 B2 JP3327998 B2 JP 3327998B2
Authority
JP
Japan
Prior art keywords
measured
light
measuring
aberration
wavefront aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12853793A
Other languages
Japanese (ja)
Other versions
JPH06313707A (en
Inventor
進 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP12853793A priority Critical patent/JP3327998B2/en
Publication of JPH06313707A publication Critical patent/JPH06313707A/en
Application granted granted Critical
Publication of JP3327998B2 publication Critical patent/JP3327998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非球面形状を測定する方
法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring an aspherical shape.

【0002】[0002]

【従来の技術】非球面形状を測定する手段として、従来
より干渉計を用いた方法が知られている。図5は、特開
昭63−138204号公報に開示された従来の非球面
形状測定装置を示す。光源から射出したレーザビームa
は、光路途中のビームスプリッタbにより2分され、一
方のレーザビームaは、対物レンズdをかえして被測定
面eで反射し物体光として再び光路に戻る。他方のレー
ザビームは、精度良く作られた参照鏡cで反射し参照光
となる。そして、物体光と参照光はビームスプリッタb
で重ね合わされて干渉する。
2. Description of the Related Art As a means for measuring an aspherical shape, a method using an interferometer has been conventionally known. FIG. 5 shows a conventional aspherical shape measuring device disclosed in JP-A-63-138204. Laser beam a emitted from light source
Is split into two by a beam splitter b in the middle of the optical path, and one laser beam a is reflected by the measured surface e by changing the objective lens d and returns to the optical path again as object light. The other laser beam is reflected by a reference mirror c that has been accurately formed and becomes reference light. Then, the object light and the reference light are converted into beam splitters b.
Interfere with each other.

【0003】次に、回折の影響を制御するため、これら
の光を結像光学系fに通過させた後、イメージセンサg
に干渉縞を投影する。イメージセンサgは、センサ移動
制御部iの制御で、移動テーブルhにより移動され、干
渉縞像の検出したい位置に置かれる。このとき、干渉縞
像の強度情報は、演算処理部に送り出されるが、この強
度情報は、主制御部kの制御により駆動される位相変調
素子mにより参照鏡cの位置を変化させて得られたもの
であり、これは、光路長を変化させた状態においての情
報となっている(フリンジスキャン法)。そして、この
情報に基づいて、演算処理部jが、イメージセンサgの
位置とともに位相を計算し、被測定面eの形状を計算す
る。そして、この演算結果を表示部nに表示する。
Next, in order to control the influence of diffraction, after passing these lights through an imaging optical system f, the image sensor g
To project interference fringes. The image sensor g is moved by the moving table h under the control of the sensor movement control unit i, and is placed at a position where an interference fringe image is to be detected. At this time, the intensity information of the interference fringe image is sent to the arithmetic processing unit. This intensity information is obtained by changing the position of the reference mirror c by the phase modulation element m driven by the control of the main control unit k. This is information in a state where the optical path length is changed (fringe scan method). Then, based on this information, the arithmetic processing unit j calculates the phase together with the position of the image sensor g, and calculates the shape of the measured surface e. Then, the calculation result is displayed on the display unit n.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
においては以下のような問題点があり、非球面形状の測
定手段としては満足できるものではなかった。すなわ
ち、レーザビームaをビームスプリッタb、対物レンズ
dを交換するとき、これらの光学系による透過波面収差
(以後、内部収差と呼ぶ)の影響を受け、この影響が、
測定誤差として加わる。このため、被測定面eの正確な
形状が求められないという問題点があった。
However, the above-mentioned prior art has the following problems, and has not been satisfactory as means for measuring an aspherical shape. That is, when the laser beam a is replaced with the beam splitter b and the objective lens d, the transmitted wavefront aberration (hereinafter referred to as internal aberration) by these optical systems is affected.
Adds as a measurement error. For this reason, there has been a problem that an accurate shape of the surface to be measured e cannot be obtained.

【0005】本発明は、上記従来技術の問題点に鑑みて
なされたもので、ビームスプリッタと対物レンズによる
内部収差の影響を低減することができ、被測定面の形状
測定精度の向上を図ることができる形状測定方法及び装
置を提供とすることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is intended to reduce the influence of internal aberrations caused by a beam splitter and an objective lens, and to improve the shape measurement accuracy of a surface to be measured. It is an object of the present invention to provide a shape measuring method and an apparatus capable of measuring the shape.

【0006】[0006]

【課題を解決するための手段および作用】 上記目的を
達成するために、本発明の形状測定方法は、図1に示す
ように、被測定面4の形状測定に際し、光源部2より照
射された光を照射部3により2分して被測定面及び参照
面に照射する。この時、被測定面4と面形状の設計値が
同様の参照面5と、測定光学系の内部収差を測定するた
め、被測定面側に被測定面4と面形状の設計値が同様の
原器10を取り付ける。このとき、被測定面側原器10
と参照面5について、光軸を回転軸とした任意の基準位
置を決め、波面収差測定部7により、双方共に基準位置
で測定した波面収差W0、参照面5と被測定面側の原器
10を交換し、双方共に前記基準位置で測定した波面収
差W0′、また、被測定面側の原器10を前記基準位置
にして参照面5を参照面回転機構11により、前記基準
位置に対して90°回転した位置で測定した波面収差W
S90、また、参照面5を前記基準位置に対して180
°回転した位置で測定した波面収差WS180、また、
参照面5を前記基準位置にして被測定面側の原器10を
被測定面回転機構6により、前記基準位置に対して90
°回転して測定した波面収差WR90、また、被測定面
側の原器10を前記基準位置に対して180°回転して
測定した波面収差WR180を得て、それぞれ測定した
波面収差W0,w0′,WS90,WS180,WR9
0,WR180を演算部8において、WSA=(W0+
W0′)/2,WAS=(WS90+WR90)/2,
WCM=(WS180+WR180)/2の演算を行
う。このとき、WSAは、対称成分の波面収差である球
面収差に対するもので、原器10と参照面5を相互に交
換しても対称成分の内部収差が等価である性質を利用し
て、内部収差を前述の式により求めることができる。ま
た、WASについては90°の回転により、アス成分の
収差が分離でき、WCMについては180°の回転によ
り、コマ成分の収差が分離できる性質を利用して、内部
収差を前述の式により求めることができる。
In order to achieve the above object, the shape measuring method according to the present invention, when measuring the shape of the surface 4 to be measured, as shown in FIG. The light is irradiated on the measured surface and the reference surface by dividing the light into two by the irradiation unit 3. At this time, in order to measure the internal aberration of the measurement optical system and the reference surface 5 having the same design value as the surface 4 to be measured, the design value of the surface shape is similar to the surface 4 to be measured. Attach the prototype 10. At this time, the prototype 10
An arbitrary reference position with the optical axis as the rotation axis is determined for the reference surface 5 and the wavefront aberration W0 measured by the wavefront aberration measurement unit 7 at both reference positions. replace the wavefront measured by the reference position in both aberration W0 ', also by reference surface rotating mechanism 11 the reference surface 5 to the prototype 10 of the measurement surface side of the reference position, relative to the reference position Wavefront aberration W measured at 90 ° rotated position
S90, the reference plane 5 is moved 180 degrees with respect to the reference position.
The wavefront aberration WS180 measured at the rotated position ,
With the reference surface 5 as the reference position, the prototype 10 on the measured surface side is rotated 90 degrees with respect to the reference position by the measured surface rotating mechanism 6.
° wavefront aberration WR90 rotated to measured, also obtains the wavefront aberration WR180 was measured by rotating 180 ° the prototype 10 of the measurement surface side with respect to the reference position, the wavefront aberration W0 measured respectively, w0 ' , WS90, WS180, WR9
0, WR180 in the arithmetic unit 8, WSA = (W0 +
W0 ') / 2, WAS = (WS90 + WR90) / 2,
The calculation of WCM = (WS180 + WR180) / 2 is performed. At this time, the WSA is for the spherical aberration which is the wavefront aberration of the symmetric component, and utilizes the property that the internal aberration of the symmetric component is equivalent even if the prototype 10 and the reference surface 5 are exchanged with each other. Can be obtained by the above equation. Also, by using the property that the aberration of the ass component can be separated by rotating the WAS by 90 ° and the aberration of the coma component can be separated by rotating the WCM by 180 °, the internal aberration is calculated by the above-described equation. Can be.

【0007】次に、WSA,WAS,WCMをそれぞれ
ツェルニケに展開し、この展開されたツェルニケの係数
WSAより球面収差成分、WASよりアス成分、WCM
よりコマ成分を抜き出し、この抜き出したツェルニケの
係数より波面収差を作成することにより、測定光学系の
内部収差を求める。しかる後、被測定面4の面形状を測
定する際、被測定面4を波面収差測定部7により面形状
を測定した値から、演算部8より前記測定光学系の内部
収差を差し引く演算をして、正確な被測定面4の面形状
を求める。そして、この値を表示部9にて表示する。
Next, WSA, WAS, and WCM are respectively developed into Zernike, and a spherical aberration component is obtained from the expanded Zernike coefficient WSA, an assembler component is obtained from WAS, and WCM is obtained.
From the coma component, the wavefront aberration is created from the extracted Zernike coefficients to determine the internal aberration of the measuring optical system. Thereafter, when measuring the surface shape of the surface 4 to be measured, a calculation is performed by subtracting the internal aberration of the measurement optical system from the calculation unit 8 from the value obtained by measuring the surface shape of the surface 4 to be measured by the wavefront aberration measurement unit 7. Thus, an accurate surface shape of the measured surface 4 is obtained. Then, this value is displayed on the display unit 9.

【0008】また、本発明の形状測定装置1は、図1の
概念図に示すように、被測定面及び参照面に光を照射さ
せる光源部2と、光源部2より照射された光を被測定面
側及び参照面側に2分させて被測定面及び参照面に照射
させる照射部3と、被測定面及び参照面より反射してき
た反射光により生成された干渉縞より波面収差を測定す
るための波面収差測定部7と、被測定面4と面形状の設
計値が同様の参照面5と、測定光学系の内部収差を測定
するための被測定面4と面形状の設計値が同様の原器1
0と、被測定面側の原器10及び参照面5を光軸を中心
に回転する被測定面回転機構6と参照面回転機構11
と、被測定面側に原器10を置き、双方共に基準位置、
参照面5と被測定面側の原器10を交換し、双方共に基
準位置、被測定面側の原器10を基準位置にして参照面
5を基準位置に対して90°、180°回転した位置、
参照面5を基準位置にして被測定面側の原器10を基準
位置に対して90°、180°回転した位置で波面収差
測定部7により、それぞれ測定した波面収差W0,W
0′,WS90,WS180,WR90,WR180か
ら、WSA=(W0+W0′)/2,WAS=(WS9
0+WR90)/2,WCM=(WS180+WR18
0)/2の演算及びWSA,WAS,WCMをそれぞれ
ツェルニケの展開をし、この展開されたツェルニケの係
数WSAより球面収差成分、WASよりアス成分、WC
Mよりコマ成分を抜き出し、この抜き出したツェルニケ
の係数より波面収差を演算することにより、測定光学系
の内部収差を求め、しかる後、被測定面4の面形状を測
定する際、被測定面の測定値より、前記演算して求めた
内部収差を差し引く演算をするための演算部8と、この
演算結果を表示する表示部9とから構成される。
Further, as shown in the conceptual diagram of FIG. 1, the shape measuring apparatus 1 of the present invention includes a light source unit 2 for irradiating light to a surface to be measured and a reference surface, and a light source 2 for irradiating light emitted from the light source unit 2. The wavefront aberration is measured from the irradiating unit 3 that irradiates the measured surface and the reference surface by dividing the light into the measurement surface side and the reference surface side, and interference fringes generated by reflected light reflected from the measured surface and the reference surface. Aberration measurement unit 7, the reference surface 5 having the same design value as the surface 4 to be measured, and the design value of the surface shape similar to the surface 4 to measure the internal aberration of the measuring optical system. Prototype 1
0, the measured surface rotating mechanism 6 and the reference surface rotating mechanism 11 for rotating the prototype 10 and the reference surface 5 on the measured surface side around the optical axis.
And the prototype 10 is placed on the surface to be measured.
The reference surface 5 and the original 10 on the side to be measured were replaced, and both were rotated by 90 ° and 180 ° with respect to the reference position and the original 10 on the side to be measured as the reference position. position,
Wavefront aberrations W0, W measured by the wavefront aberration measurement unit 7 at positions where the original 10 on the surface to be measured is rotated 90 ° and 180 ° with respect to the reference position with the reference surface 5 as the reference position.
0 ′, WS90, WS180, WR90, WR180, WSA = (W0 + W0 ′) / 2, WAS = (WS9
0 + WR90) / 2, WCM = (WS180 + WR18)
0) / 2, and Zernike expansion of WSA, WAS, and WCM, respectively.
The coma component is extracted from M, and the wavefront aberration is calculated from the extracted Zernike coefficients to determine the internal aberration of the measurement optical system. An arithmetic unit 8 for performing an arithmetic operation for subtracting the internal aberration obtained by the arithmetic operation from the measured value, and a display unit 9 for displaying the arithmetic result.

【0009】[0009]

【実施例1】図2は、本発明に掛かる形状測定装置1の
実施例1を示す構成説明図である。なお、以下の説明に
おいて、図1に示した各構成部に対応する構成部には、
その構成の理解を容易にするために同一の符合を付して
ある。
Embodiment 1 FIG. 2 is a structural explanatory view showing Embodiment 1 of a shape measuring apparatus 1 according to the present invention. In the following description, components corresponding to the components shown in FIG.
The same reference numerals are given to facilitate understanding of the configuration.

【0010】図2において、2は被測定面及び参照面に
光を参照させる光源部、3は光源部2より照射された光
を被測定面側及び参照面側に2分させて被測定面及び参
照面に照射させる照射部、4は被測定面、5は被測定面
4と面形状の設計値が同様の参照面、10は測定光学系
の内部収差を測定するための被測定面4と面形状の設計
値が同様の原器、6は被測定面側の原器10を光軸を中
心に正確に90°及び180°の角度で回転させるため
の角度目盛りのついた被測定面回転治具、11は参照面
を光軸を中心に正確に90°及び180°の角度で回転
させるための角度目盛りのついた参照面回転治具、7は
被測定面及び参照面5より反射してきた反射光により生
成された干渉縞より波面収差を測定するための波面収差
測定部7,8は被測定面側に原器10を置き、双方共に
任意の基準位置、参照面5と被測定面側の原器10を交
換し、双方ともに前記基準位置、被測定面側の原器10
を前記基準位置して参照面5を前記基準位置に対して9
0°,180°回転した位置、参照面5を前記基準位置
にして被測定面側の原器10を前記基準位置に対して9
0°,180°回転した位置で波面収差測定部7によ
り、それぞれ測定した波面収差W0,W0′,WS9
0,WS180,WR90,WR180から、WSA=
(W0+W0′)/2,WAS=(WS90+WR9
0)/2,WCM=(WS180+WR180)/2の
演算及びWSA,WAS,WCMをそれぞれツェルニケ
の展開をし、この展開されたツェルニケの係数WSAよ
り球面収差成分、WASよりアス成分、WCMよりコマ
成分を抜き出し、この抜き出したツェルニケの係数より
波面収差を演算することにより、測定光学系の内部収差
を求め、しかる後、被測定面の面形状を測定する際、被
測定面4の測定値より前記演算して求めた内部収差を差
し引く演算をするための演算部としてのコンピュータ、
9は演算結果を表示する表示部としてのモニターであ
る。
In FIG. 2, reference numeral 2 denotes a light source unit for referencing light to the surface to be measured and the reference surface, and 3 denotes a surface to be measured by dividing light emitted from the light source unit 2 into the surface to be measured and the reference surface. And an irradiating unit for irradiating the reference surface, 4 is a measured surface, 5 is a reference surface having the same surface shape design value as the measured surface 4, and 10 is a measured surface 4 for measuring internal aberration of the measuring optical system. The reference numeral 6 designates a surface to be measured having the same graduation for rotating the prototype 10 on the surface to be measured at an angle of 90 ° and 180 ° about the optical axis. A rotating jig 11 is a reference surface rotating jig provided with an angle scale for rotating the reference surface accurately at an angle of 90 ° and 180 ° about the optical axis, and 7 is a reflection from the measured surface and the reference surface 5. Wavefront aberration measuring units 7 and 8 for measuring wavefront aberration from interference fringes generated by reflected light On the side place the prototype 10, any reference position both, the reference surface 5 Replace the prototype 10 of the measurement surface side, the reference positions in both, standard 10 of the measurement surface side
And the reference plane 5 is set at 9 to the reference position.
With the reference plane 5 being the reference position and the reference plane 5 being rotated by 0 ° and 180 °, the prototype 10 on the side to be measured is moved 9
The wavefront aberrations W0, W0 ', and WS9 measured by the wavefront aberration measurement unit 7 at positions rotated by 0 ° and 180 °, respectively.
0, WS180, WR90, WR180, WSA =
(W0 + W0 ') / 2, WAS = (WS90 + WR9
0) / 2, WCM = (WS180 + WR180) / 2, and Zernike expansion of WSA, WAS, and WCM, respectively, a spherical aberration component from the expanded Zernike coefficient WSA, an ass component from WAS, and a coma component from WCM By calculating the wavefront aberration from the extracted Zernike coefficients, the internal aberration of the measuring optical system is obtained. Thereafter, when measuring the surface shape of the surface to be measured, the measurement value of the surface to be measured 4 is used. A computer as a calculation unit for performing a calculation for subtracting the internal aberration obtained by the calculation,
Reference numeral 9 denotes a monitor as a display unit for displaying a calculation result.

【0011】光源部2は、レーザ光源12、レーザ光源
12のレーザ光を平行に広げ照射部3に投射するビーム
エキスパンダ13により構成されている。また、照射部
3は、光源部2より照射されたレーザ光を2分するビー
ムスプリッタ14、2分された光の一方を被測定面に照
射するための対物レンズ15、もう一方の光を参照面5
に参照するための対物レンズ16により構成される。波
面収差測定部7は、被測定面からの反射光を物体光及び
参照面5からの反射光を参照光としたとき、物体光及び
参照光が対物レンズ15,16を戻り、ビームスプリッ
タ14により重ね合わされた光を撮像素子18に投影さ
せ、回折を抑えるための結像レンズ17、参照面5の位
置を光軸方向に変化させるピエゾ素子を使用した位相変
調素子19、位相変調素子19を駆動するためのコント
ローラ20、上記物体光及び参照光により生成された干
渉縞の強度を検出するための二次元の撮像素子18より
構成される。
The light source unit 2 includes a laser light source 12 and a beam expander 13 that spreads the laser light of the laser light source 12 in parallel and projects the laser light on the irradiation unit 3. Further, the irradiating unit 3 includes a beam splitter 14 that divides the laser light emitted from the light source unit 2 into two, an objective lens 15 that irradiates one of the divided light onto the surface to be measured, and the other light. Face 5
Is constituted by an objective lens 16 for reference. When the reflected light from the measured surface is the object light and the reflected light from the reference surface 5 is the reference light, the wavefront aberration measuring unit 7 returns the object light and the reference light to the objective lenses 15 and 16, and the beam splitter 14 The superimposed light is projected onto an image sensor 18 to drive an imaging lens 17 for suppressing diffraction, a phase modulator 19 using a piezo element for changing the position of the reference surface 5 in the optical axis direction, and a phase modulator 19. And a two-dimensional image sensor 18 for detecting the intensity of interference fringes generated by the object light and the reference light.

【0012】次に、上記構成からなる装置により非球面
の形状測定を行う方法を説明する。まず、原器10を非
測定面回転治具6に取り付ける。そして、レーザ光源1
2からレーザ光をビームスプリッタ14に照射する。レ
ーザ光はビームスプリッタ13により平行に広げられ、
光路途中のビームスプリッタ14で2分される。2分さ
れた一方のレーザ光は、対物レンズ15により、原器1
0に照射される。そして、原器10により反射され、物
体光として再び光路に戻る。他方のレーザ光は、対物レ
ンズ16により、参照面5に照射される。そして、参照
面5で反射され参照光となる。この物体光と参照光は、
ビームスプリッタ14で重ね合わされて干渉し、結像レ
ンズ17を介して、二次元の撮像素子18に投影する。
Next, a method for measuring the shape of an aspherical surface using the apparatus having the above-described configuration will be described. First, the prototype 10 is attached to the non-measurement surface rotating jig 6. And the laser light source 1
2 irradiates the beam splitter 14 with laser light. The laser light is spread in parallel by the beam splitter 13,
The beam is split into two by a beam splitter 14 in the middle of the optical path. One of the two laser beams is split by the objective lens 15 into the prototype 1
It is irradiated to 0. Then, the light is reflected by the prototype 10 and returns to the optical path again as object light. The other laser beam is applied to the reference surface 5 by the objective lens 16. Then, the light is reflected by the reference surface 5 and becomes reference light. This object light and reference light are
The beams are superposed and interfere with each other by the beam splitter 14, and are projected onto a two-dimensional image pickup device 18 via the imaging lens 17.

【0013】ここで、コンピュータ8、コントローラ2
0、位相変調素子19、参照面5、撮像素子18により
フリンジスキャン法を行うことにより位相を求め、波面
収差を計算する。ことのき、原器10と参照面5につい
て、被測定面回転治具6と参照面回転治具11で任意の
基準位置を決め、前記基準位置で測定し、このときの波
面収差をW0とし、参照面5を被検面側に取り付け、原
器10を参照面側に取り付け、双方共に前記基準位置で
測定して得られた波面収差をW0′、さらに、参照面5
を参照面側に、原器10を被測定面側に戻し、原器10
は被測定面回転治具6を前記基準位置にして、参照面5
は参照面回転治具11により、前記基準位置に対して9
0°回転した位置で測定して得られた波面収差をWS9
0、さらに、参照面5を参照面回転治具11により、前
記基準位置に対して180°回転した位置で測定して得
られた波面収差をWS180、次に、参照面5を参照面
回転治具11により前記基準位置にして原器10を被測
定面回転治具6により、前記基準位置に対して90°回
転した位置で測定して得られた波面収差をWR90、さ
らに、原器10を被測定面回転治具6により、前記基準
位置に対して180°回転した位置で測定して得られた
波面収差WR180とする。そして、この測定値をコン
ピュータ8において、測定光学系の内部収差を計算し、
被測定面4の波面収差を測定し面形状を算出する際、上
記内部収差を差引き正確な被測定面4の面形状を求め
る。この値をモニタ9にて表示する。次に、この時のコ
ンピュータ8による演算処理を説明する。
Here, the computer 8 and the controller 2
The phase is obtained by performing a fringe scan method using 0, the phase modulation element 19, the reference surface 5, and the imaging element 18, and the wavefront aberration is calculated. At this time, an arbitrary reference position is determined with respect to the prototype 10 and the reference surface 5 by the measured surface rotation jig 6 and the reference surface rotation jig 11, and measured at the reference position, and the wavefront aberration at this time is defined as W0. , The reference surface 5 is attached to the surface to be inspected, the prototype 10 is attached to the reference surface, and the wavefront aberration obtained by measuring both at the reference position is W0 ′.
Is returned to the reference surface side, and the prototype 10 is returned to the measured surface side.
Is the reference surface 5 with the measured surface rotating jig 6 as the reference position.
Is 9 with respect to the reference position by the reference plane rotating jig 11.
The wavefront aberration obtained by measuring at a position rotated by 0 ° is represented by WS9
0, and the wavefront aberration obtained by measuring the reference surface 5 at a position rotated by 180 ° with respect to the reference position by the reference surface rotating jig 11 is referred to as WS180. The wavefront aberration obtained by measuring the prototype 10 at the position rotated by 90 ° with respect to the reference position with the measured surface rotating jig 6 using the fixture 11 at the reference position and the WR90, It is assumed that the wavefront aberration WR180 is obtained by measuring at a position rotated by 180 ° with respect to the reference position by the measured surface rotating jig 6. Then, the computer 8 calculates the internal aberration of the measurement optical system using the measured value,
When measuring the wavefront aberration of the measured surface 4 and calculating the surface shape, the internal aberration is subtracted to obtain an accurate surface shape of the measured surface 4. This value is displayed on the monitor 9. Next, the arithmetic processing by the computer 8 at this time will be described.

【0014】波面収差測定部7にて測定された波面収差
(W0,W0′,WS90,WS180,WR90,W
R180)より、WSA=(W0+W0′)/2,WA
S=WS90+WR90)/2、WCM=(WS180
+WR180)/2の演算処理を行い、WSA,WA
S,WCMをそれぞれツェルニケの展開をして、ツェル
ニケの係数を算出する。そして、ツェルニケの係数WS
Aより球面収差の係数、WASよりアス成分の係数、W
CMよりコマ成分の係数を抜き出し、この抜き出した係
数より波面収差を算出し、これが内部収差となる。しか
る後、被測定面4を測定する際、被測定面4を波面収差
測定部7により面形状を測定した値から、前記内部収差
を差し引く演算をおこない、正確な被測定面4の面形状
を求める。このような本実施例によれば、フリンジスキ
ャン法を用い、精度向上ができる。
The wavefront aberrations (W0, W0 ', WS90, WS180, WR90, W
R180), WSA = (W0 + W0 ') / 2, WA
S = WS90 + WR90) / 2, WCM = (WS180)
+ WR180) / 2 to perform WSA, WA
Zernike expansion is performed on each of S and WCM to calculate Zernike coefficients. And the Zernike coefficient WS
Coefficient of spherical aberration from A, coefficient of ass component from WAS, W
The coefficient of the coma component is extracted from the CM, the wavefront aberration is calculated from the extracted coefficient, and this is the internal aberration. Thereafter, when measuring the surface 4 to be measured, the surface aberration of the surface 4 to be measured is calculated by subtracting the internal aberration from the value obtained by measuring the surface shape by the wavefront aberration measuring unit 7 to obtain the accurate surface shape of the surface 4 to be measured. Ask. According to this embodiment, the accuracy can be improved by using the fringe scan method.

【0015】[0015]

【実施例2】図3は、本発明の形状測定装置の実施例2
を示す構成説明図である。本実施例の装置1の特徴は、
上記実施例1における光源部2のビームエキスパンダ1
3を被測定面4に対応して発散光に変換する光学系21
又は、収束光にかえる光学系22として、対物レンズ1
5,16を外した点にある。その他の構成は、実施例1
と同様であるので、同様の構成部には同一の符合を付し
て、その説明を省略する。
Second Embodiment FIG. 3 shows a second embodiment of the shape measuring apparatus according to the present invention.
FIG. The features of the device 1 of this embodiment are as follows.
Beam expander 1 of light source unit 2 in the first embodiment
Optical system 21 for converting 3 into divergent light corresponding to surface 4 to be measured
Alternatively, the objective lens 1 may be used as the optical system 22 for converting convergent light.
5 and 16 are removed. Other configurations are described in Example 1.
Therefore, the same components are denoted by the same reference numerals and description thereof will be omitted.

【0016】次に、本実施例を用いて非球面の形状を測
定する方法を説明する。まず、原器10を被測定面回転
治具6に取り付ける。そして、レーザ光源12からレー
ザ光をビームスプリッタ14に照射する。レーザ光は被
測定面4に対応して発散光にかえる光学系21又は、収
束光にかえる光学系22を介して、発散光又は収束光と
なり光路途中のビームスプリッタ14で2分される。2
分された一方のレーザ光は、原器10に照射される。そ
して、原器10より反射され、物体光として再び光路に
戻る。他方のレーザ光は、参照面5に照射される。そし
て、参照面5で反射され参照光となる。この物体光と参
照光は、ビームスプリッタ14で重ね合わされて干渉
し、結像レンズ17を介して、二次元の撮像素子18に
投影する。
Next, a method of measuring the shape of an aspheric surface using this embodiment will be described. First, the prototype 10 is attached to the surface rotation jig 6 to be measured. Then, laser light is emitted from the laser light source 12 to the beam splitter 14. The laser light becomes divergent light or convergent light via an optical system 21 for converting to divergent light or an optical system 22 for converting to convergent light corresponding to the surface 4 to be measured, and is split into two by a beam splitter 14 in the optical path. 2
One of the divided laser beams is applied to the prototype 10. Then, the light is reflected from the prototype 10 and returns to the optical path again as object light. The other laser beam is applied to the reference surface 5. Then, the light is reflected by the reference surface 5 and becomes reference light. The object light and the reference light are superimposed on each other by the beam splitter 14 and interfere with each other, and are projected onto a two-dimensional image sensor 18 via the imaging lens 17.

【0017】ここで、コンピュータ8、コントローラ2
0、位相変調素子19、参照面5、撮像素子18により
フリンジスキャン法を行うことにより位相を求め、波面
収差を計算する。このとき、原器10と参照面5につい
て、被測定面回転治具6と参照面回転治具11で任意の
基準位置を決め、前記基準位置で測定し、このときの波
面収差をW0とし、参照面5を被測定面に取り付け、原
器10を参照面側に取り付け、双方ともに前記基準位置
で測定して得られた波面収差をW0′、さらに、参照面
5を参照面側に、原器10を被測定面側に戻し、原器1
0は被測定面回転治具6を前記基準位置にして、参照面
5は参照面回転治具11により前記基準位置に対して9
0°回転した位置で測定して得られた波面収差をWS9
0、さらに、参照面5を参照面回転治具11により、前
記基準位置に対して180°回転した位置で測定して得
られた波面収差をWS180、次に、参照面5を参照面
回転治具11により前記基準位置にして原器10を被測
定面回転治具6により、前記基準位置に対して90°回
転した位置で測定して得られた波面収差をWR90、さ
らに、原器10を被測定面回転治具6により、前記基準
位置に対して180°回転した位置で測定して得られた
波面収差WR180とする。そして、この測定値をコン
ピュータ8により、上記実施例1と同様に演算処理し
て、測定光学系の内部収差を計算し、被測定面4の波面
収差を測定し面形状を算出する際、上記内部収差を差引
き正確な被測定面4の面形状を求める。この値をモニタ
9にて表示する。
Here, the computer 8 and the controller 2
The phase is obtained by performing a fringe scan method using 0, the phase modulation element 19, the reference surface 5, and the imaging element 18, and the wavefront aberration is calculated. At this time, with respect to the prototype 10 and the reference surface 5, an arbitrary reference position is determined by the surface rotation jig 6 to be measured and the reference surface rotation jig 11, and measurement is performed at the reference position. The reference surface 5 is attached to the surface to be measured, the prototype 10 is attached to the reference surface side, the wavefront aberration obtained by measuring both at the reference position is W0 ', and the reference surface 5 is attached to the reference surface side. The instrument 10 is returned to the surface to be measured,
0 is the reference surface rotating jig 6 by the reference surface rotating jig 11 with respect to the reference position.
The wavefront aberration obtained by measuring at a position rotated by 0 ° is represented by WS9
0, and the wavefront aberration obtained by measuring the reference surface 5 at a position rotated by 180 ° with respect to the reference position by the reference surface rotating jig 11 is referred to as WS180. The wavefront aberration obtained by measuring the prototype 10 at the position rotated by 90 ° with respect to the reference position with the measured surface rotating jig 6 using the fixture 11 at the reference position and the WR90, It is assumed that the wavefront aberration WR180 is obtained by measuring at a position rotated by 180 ° with respect to the reference position by the measured surface rotating jig 6. Then, the measured values are subjected to arithmetic processing by the computer 8 in the same manner as in the first embodiment to calculate the internal aberration of the measuring optical system, to measure the wavefront aberration of the surface 4 to be measured, and to calculate the surface shape. The internal aberration is subtracted to obtain an accurate surface shape of the surface 4 to be measured. This value is displayed on the monitor 9.

【0018】本実施例によれば、実施例1と比べ、対物
レンズ15,16が不要になり、内部収差を小さくする
ことができる。
According to the present embodiment, the objective lenses 15 and 16 are not required as compared with the first embodiment, and the internal aberration can be reduced.

【0019】[0019]

【実施例3】図4は、本発明に係る形状測定装置の実施
例3を示す構成説明図である。本実施例の装置1の特徴
は、上記実施例1における波面収差測定部7の波面収差
測定方法が、フリンジスキャン法であったのに対し、波
面収差測定部7の波面収差測定方法を光ヘテロダイン法
にした点である。この方法に基づき、以下のように他の
構成部についても構成を変えた。
Third Embodiment FIG. 4 is a structural explanatory view showing a third embodiment of the shape measuring apparatus according to the present invention. The feature of the device 1 of the present embodiment is that the wavefront aberration measuring method of the wavefront aberration measuring unit 7 in the first embodiment is a fringe scan method, whereas the wavefront aberration measuring method of the wavefront aberration measuring unit 7 is optical heterodyne. It is the point that we made the law. Based on this method, the configuration of other components was changed as follows.

【0020】光源部2は、偏光がPとSと異なり、それ
ぞれの偏光方法に対して、わずかに周波数の違う光を発
するレーザ光源12、レーザ光源12のレーザ光を2方
向にわけるビームスプリッタ30をレーザ光源12とビ
ームエキスパンダ13に配置する。また、照射部3は、
光源部2より投射されたレーザ光を偏光PとSに2分す
る偏光ビームスプリッタ23,被測定面側からの反射光
の偏光をSからPに変えるためのλ/4波長板24と参
照面側からの反射光の偏光をPからSに変えるためのλ
/4波長板25を対物レンズ15,16と偏光ビームス
プリッタ23の間に配置する。さらに、波面収差測定部
7は、被測定面側からの反射光を物体光及び参照面5か
らの反射光を参照光としたとき、物体光と参照光を干渉
させるための偏光板28を偏光ビームスプリッタ23と
撮像素子18の間に配置する。また、ビームスプリッタ
30により分かれたもう一方の光は、偏光板26により
干渉し光検出器27により参照信号とする。撮像素子1
8により検出した信号を測定信号とし、参照信号の位相
と測定信号の位相を求める位相検出器29を配置する。
その他の構成は、実施例1と同様であるので、同様の構
成部には同一の符合を付してその説明を省略する。
The light source unit 2 includes a laser light source 12 that emits light having slightly different frequencies for the respective polarization methods, and a beam splitter 30 for dividing the laser light of the laser light source 12 into two directions. Are arranged in the laser light source 12 and the beam expander 13. In addition, the irradiation unit 3
A polarization beam splitter 23 for dividing the laser light projected from the light source unit 2 into polarizations P and S, a λ / 4 wavelength plate 24 for changing the polarization of light reflected from the surface to be measured from S to P, and a reference surface Λ for changing the polarization of light reflected from the side from P to S
The 波長 wavelength plate 25 is disposed between the objective lenses 15 and 16 and the polarizing beam splitter 23. Further, when the reflected light from the measured surface side is the object light and the reflected light from the reference surface 5 is the reference light, the wavefront aberration measuring unit 7 polarizes the polarizing plate 28 for causing the object light and the reference light to interfere with each other. It is arranged between the beam splitter 23 and the image sensor 18. The other light split by the beam splitter 30 interferes with the polarizing plate 26 and becomes a reference signal by the photodetector 27. Image sensor 1
The signal detected in step 8 is used as a measurement signal, and a phase detector 29 for determining the phase of the reference signal and the phase of the measurement signal is arranged.
Other configurations are the same as those of the first embodiment, and thus the same components are denoted by the same reference numerals and description thereof will be omitted.

【0021】次に、本実施例を用いた非球面形状の測定
方法を説明する。まず、原器10を非測定面回転治具6
に取り付ける。そして、レーザ光源12からレーザ光を
偏光ビームスプリッタ23に照射する。レーザ光はビー
ムスプリッタ30により2分され、一方はビームエキス
パンダ13により平行に広げられ、光路途中の偏光ビー
ムスプリッタ23でPとSの偏光成分に2分される。2
分された一方のレーザ光は、対物レンズ15により、原
器10に照射される。そして、原器10より反射され、
物体光として再び光路に戻る。この時、λ/4板を通り
P偏光となる。他方のレーザ光は、対物レンズ16によ
り、参照面5に照射される。そして、参照面5で反射さ
れ参照光となる。この時、λ/4板を通りS偏光とな
る。この物体光と参照光は、偏光ビームスプリッタ23
で重ね合わされ、結像レンズ17と偏光板28を介して
干渉し、二次元の撮像素子18に投影する。この時、干
渉縞は、偏光に伴った周波数の僅かな違いにより、ビー
トを起こす。この干渉縞のビート信号を測定信号として
撮像素子18で検出する。
Next, a method of measuring an aspherical shape using this embodiment will be described. First, the prototype 10 is moved to the non-measurement surface rotating jig 6.
Attach to Then, laser light is emitted from the laser light source 12 to the polarization beam splitter 23. The laser light is split into two by a beam splitter 30, and one is spread in parallel by a beam expander 13, and split into two P and S polarization components by a polarization beam splitter 23 in the optical path. 2
One of the divided laser beams is applied to the prototype 10 by the objective lens 15. Then, it is reflected from the prototype 10,
It returns to the optical path again as object light. At this time, the light passes through the λ / 4 plate and becomes P-polarized light. The other laser beam is applied to the reference surface 5 by the objective lens 16. Then, the light is reflected by the reference surface 5 and becomes reference light. At this time, the light passes through the λ / 4 plate and becomes S-polarized light. The object light and the reference light are supplied to the polarization beam splitter 23.
And interfere with each other via the imaging lens 17 and the polarizing plate 28 to project the image on the two-dimensional image pickup device 18. At this time, the interference fringes cause a beat due to a slight difference in frequency accompanying the polarization. The beat signal of this interference fringe is detected by the image sensor 18 as a measurement signal.

【0022】ビームスプリッタ30により分けられたも
う一方の光は、偏光板26を通り干渉を起こし、光検出
器27に投影される。この時、干渉縞は、偏光に伴った
周波数の僅かな違いにより、ビートを起こす。この干渉
縞のビート信号を参照信号として光検出器27で検出す
る。
The other light split by the beam splitter 30 passes through the polarizing plate 26, causes interference, and is projected on the photodetector 27. At this time, the interference fringes cause a beat due to a slight difference in frequency accompanying the polarization. The beat signal of this interference fringe is detected by the photodetector 27 as a reference signal.

【0023】ここで、位相検出器29により、測定信号
と参照信号の位相を求め、コンピュータ8により、双方
の位相の差を求め、波面収差を計算する。このとき、原
器10と参照面5について、非測定面回転治具6と参照
面回転治具11で任意の基準位置を決め、前記基準位置
で測定し、このときの波面収差をW0とし、参照面5を
被測定面側に取り付け、原器10を参照面側に取り付
け、双方共に前記基準位置で測定して得られた波面収差
をW0′、さらに、参照面5を参照面側に、原器10を
被測定面側に戻し、原器10を被測定面回転治具6を前
記基準位置にして参照面5を参照面回転治具11によ
り、前記基準位置に対して90°回転した位置で測定し
て得られた波面収差をWS90、さらに、参照面5を参
照面回転治具11により、前記基準位置に対して180
°回転した位置で測定して得られた波面収差をWS18
0とする。次に、参照面5は参照面回転治具11を前記
基準位置にして原器10を被測定面回転治具6により、
前記基準位置に対して90°回転した位置で測定して得
られた波面収差をWR90、さらに、原器10を被測定
面回転治具6により、前記基準位置に対して180°回
転した位置で測定して得られた波面収差をWR180と
する。そして、この測定値をコンピュータ8により、上
記実施例2と同様に演算処理して、測定光学系の内部収
差を計算し、被測定面4の波面収差を測定し面形状を算
出する際、上記内部収差を差引き正確な被測定面4の面
形状を求める。この値をモニタ9にて表示する。
Here, the phase of the measurement signal and the reference signal is obtained by the phase detector 29, the difference between the two phases is obtained by the computer 8, and the wavefront aberration is calculated. At this time, with respect to the prototype 10 and the reference surface 5, an arbitrary reference position is determined by the non-measuring surface rotation jig 6 and the reference surface rotation jig 11, and measurement is performed at the reference position. The wavefront aberration at this time is W0. The reference surface 5 is attached to the surface to be measured, the prototype 10 is attached to the reference surface, and the wavefront aberration obtained by measuring both at the reference position is W0 ′. Further, the reference surface 5 is attached to the reference surface. The prototype 10 was returned to the measurement surface side, and the reference surface 5 was rotated 90 ° with respect to the reference position by the reference surface rotation jig 11 using the measurement surface rotation jig 6 as the reference position. The wavefront aberration obtained by measuring the position is measured by WS90, and the reference surface 5 is moved 180 degrees from the reference position by the reference surface rotating jig 11.
The wavefront aberration obtained by measuring at the rotated position
Set to 0. Next, the reference surface 5 is set with the reference surface rotating jig 11 as the reference position, and the prototype 10 is rotated by the measured surface rotating jig 6.
The wavefront aberration obtained by measuring at a position rotated by 90 ° with respect to the reference position is WR90, and further, the prototype 10 is rotated by 180 ° with respect to the reference position by the surface rotating jig 6 to be measured. The wavefront aberration obtained by the measurement is defined as WR180. Then, the measured values are subjected to arithmetic processing by the computer 8 in the same manner as in the second embodiment to calculate the internal aberration of the measuring optical system, to measure the wavefront aberration of the surface 4 to be measured, and to calculate the surface shape. The internal aberration is subtracted to obtain an accurate surface shape of the surface 4 to be measured. This value is displayed on the monitor 9.

【0024】本実施例によれば、実施例1に比べ、フリ
ンジスキャン法により参照光路を変えるときに伴う測定
誤差の影響を受けないため、測定精度がさらに向上す
る。
According to the present embodiment, as compared with the first embodiment, the measurement accuracy is further improved because it is not affected by the measurement error caused when the reference light path is changed by the fringe scan method.

【0025】[0025]

【発明の効果】以上のように、本発明によれば、測定光
学系の内部収差による測定精度の劣化を低減することが
でき、非球面形状の測定精度の向上を図ることができ
る。
As described above, according to the present invention, it is possible to reduce the deterioration of the measurement accuracy due to the internal aberration of the measurement optical system, and to improve the measurement accuracy of the aspherical shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構成を示すブロック図である。FIG. 1 is a block diagram showing a basic configuration of the present invention.

【図2】実施例1の基本構成を示すブロック図である。FIG. 2 is a block diagram illustrating a basic configuration of the first embodiment.

【図3】実施例2の基本構成を示すブロック図である。FIG. 3 is a block diagram illustrating a basic configuration of a second embodiment.

【図4】実施例3の基本構成を示すブロック図である。FIG. 4 is a block diagram illustrating a basic configuration of a third embodiment.

【図5】従来例の基本構成を示すブロック図である。FIG. 5 is a block diagram showing a basic configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 形状測定装置 2 光源部 3 照射部 4 被測定面 5 参照面 6 回転機構 7 波面収差測定部 8 演算部 9 表示部 DESCRIPTION OF SYMBOLS 1 Shape measuring apparatus 2 Light source part 3 Irradiation part 4 Surface to be measured 5 Reference surface 6 Rotation mechanism 7 Wavefront aberration measurement part 8 Calculation part 9 Display part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源から放射される光を2分した一方の
光を被測定面に照射するとともに他方の光を参照面に照
射し、被測定面からの反射光と参照面からの反射光とか
ら得られる干渉縞から被測定面の形状を測定する形状測
定方法において、前記被測定面と面形状の設計値が同様
の参照面を置き、被測定面側に被測定面と面形状の設計
値が同様の原器を置き、光軸を回転軸とした任意の基準
位置を決め、双方共に前記基準位置で測定した波面収差
W0と、参照面と被測定面側の原器を交換し、双方共に
前記基準位置で測定した波面収差W0′と、被測定面側
の原器を前記基準位置にして参照面を前記基準位置に対
して90°回転し、測定した波面収差WS90と、参照
面を前記基準位置に対して180°回転し、測定した波
面収差WS180と、参照面を前記基準位置にして被測
定面側の原器を前記基準位置に対して90°回転し、測
定した波面収差WR90と、被測定面側の原器を前記基
準位置に対して180°回転し、測定した波面収差WR
180とを求め、この求めた波面収差を、WSA=(W
0+W0′)/2、WAS=(WS90+WR90)/
2、WCM=(WS180+WR180)/2と演算す
るとともに、このWSA,WAS,WCMをそれぞれツ
ェルニケの展開を行い、この展開されたツェルニケの係
数WSAより球面収差成分、WASよりアス成分、WC
Mよりコマ成分を抜き出し、この抜き出したツェルニケ
の係数より波面収差を演算することにより、測定光学系
の内部収差を求め、しかる後、被測定面の面形状を測定
する際、被測定面の測定値より、前記演算して求めた内
部収差を差し引くことにより被測定面の面形状を測定す
ることを特徴とする形状測定方法。
1. A surface to be measured is irradiated with one light obtained by dividing light radiated from a light source into two parts, and the other light is irradiated on a reference surface, and reflected light from the measured surface and reflected light from the reference surface. In the shape measurement method for measuring the shape of the surface to be measured from the interference fringes obtained from the design surface of the surface to be measured and the design value of the surface shape is placed the same reference surface, the surface to be measured and the surface shape of the surface shape Waveform aberration measured at the reference position for both reference positions with the same reference values as the design values, determined an arbitrary reference position with the optical axis as the rotation axis.
W0, the reference plane and the original on the measured surface side are exchanged, the wavefront aberration W0 ' both measured at the reference position, and the original on the measured surface side as the reference position, and the reference surface is set at the reference position. , The measured wavefront aberration WS90, the reference surface rotated by 180 ° with respect to the reference position, the measured wavefront aberration WS180, and the original on the surface to be measured using the reference surface as the reference position. The wavefront aberration WR90 measured by rotating the measuring device 90 ° with respect to the reference position, and the measured wavefront aberration WR measured by rotating the prototype on the surface to be measured 180 ° with respect to the reference position.
180, and the obtained wavefront aberration is represented by WSA = (W
0 + W0 ') / 2, WAS = (WS90 + WR90) /
2. While calculating WCM = (WS180 + WR180) / 2, the WSA, WAS, and WCM are each subjected to Zernike expansion.
The coma component is extracted from M, and the wavefront aberration is calculated from the extracted Zernike coefficients to determine the internal aberration of the measuring optical system. Thereafter, when measuring the surface shape of the surface to be measured, the measurement of the surface to be measured is performed. A shape measuring method characterized in that the surface shape of the surface to be measured is measured by subtracting the internal aberration obtained by the calculation from the value.
【請求項2】 光源から放射される光を2分して一方の
光を被測定面に照射するとともに他方の光を参照面に照
射し、被測定面からの反射光と参照面からの反射光とか
ら得られる干渉縞から被測定面の形状を測定する形状測
定装置において、被測定面側及び参照面側に照射するた
めの光源部と、光源部より照射された光を被測定面側及
び参照面側に2分させて被測定面及び参照面に照射させ
る照射部と、被測定面及び参照面から反射してきた反射
光により生成された干渉縞より波面収差を測定するため
の波面収差測定部と、被測定面と面形状の設計値が同様
の参照面と、測定光学系の内部収差を測定するための被
測定面と面形状の設計値が同様の原器と、被測定面及び
参照面を光軸を中心に回転する被測定面回転機構及び参
照面回転機構と、被測定面側に原器を置き、双方共に任
意の基準位置、参照面と被測定面側の原器を交換し、双
方共に前記基準位置、被測定面側の原器を前記基準位置
にして参照面を前記基準位置に対して90°、180°
回転した位置、参照面を前記基準位置にして被測定面側
の原器を前記基準位置に対して90°,180°回転し
た位置で前記波面収差測定部によりそれぞれ測定した波
面収差W0,W0′,WS90,WS180,WR9
0,WR180から、WSA=(W0+W0′)/2、
WAS=(WS90+WR90)/2、WCM=(WS
180+WR180)/2の演算及びWSA,WAS,
WCMをそれぞれツェルニケの展開をし、この展開され
たツェルニケの係数WSAより球面収差成分、WASよ
りアス成分、WCMよりコマ成分を抜き出し、この抜き
出したツェルニケの係数より波面収差を演算することに
より、測定光学系の内部収差を求め、しかる後、被測定
面の面形状を測定する際、被測定面の測定値より、前記
演算して求めた内部収差を差し引く演算をするための演
算部と、この演算結果を表示する表示部とを備えている
ことを特徴とする形状測定装置。
2. A light radiated from a light source is divided into two parts, and one light is radiated to a surface to be measured and the other light is radiated to a reference surface to reflect light from the surface to be measured and reflection from the reference surface. In a shape measuring device that measures the shape of a surface to be measured from interference fringes obtained from light, a light source unit for irradiating the surface to be measured and the reference surface side, and light irradiated from the light source unit to the surface to be measured An irradiating unit that divides the light into the measured surface and the reference surface by dividing it into two parts on the reference surface side, and a wavefront aberration for measuring the wavefront aberration from interference fringes generated by reflected light reflected from the measured surface and the reference surface A measuring unit, a reference surface having the same design values as the surface to be measured and the surface shape, a prototype having the same design values as the surface to be measured for measuring the internal aberration of the measuring optical system, and a surface to be measured; A rotation mechanism for rotating the reference surface around the optical axis and a rotation mechanism for the reference surface, Place a prototype on the measurement surface side, replace both reference positions with the reference surface, the reference surface and the prototype on the measurement surface side, and refer to both reference positions and the reference surface on the measurement surface side as the reference position. 90 °, 180 ° with respect to the reference position
Wavefront aberrations W0 and W0 'measured by the wavefront aberration measurement unit at positions where the original on the surface to be measured is rotated 90 ° and 180 ° with respect to the reference position with the rotated position and the reference surface being the reference position. , WS90, WS180, WR9
0, WR180, WSA = (W0 + W0 ′) / 2,
WAS = (WS90 + WR90) / 2, WCM = (WS
180 + WR180) / 2 and WSA, WAS,
Each WCM is Zernike-developed, the spherical aberration component is extracted from the Zernike's expanded coefficient WSA, the ass component and the coma component from WAS are extracted, and the wavefront aberration is calculated from the extracted Zernike's coefficient. Calculating the internal aberration of the optical system, and then, when measuring the surface shape of the surface to be measured, from a measurement value of the surface to be measured, a calculation unit for performing a calculation of subtracting the calculated internal aberration from the calculation, A display unit for displaying a calculation result.
JP12853793A 1993-04-29 1993-04-29 Shape measuring method and device Expired - Fee Related JP3327998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12853793A JP3327998B2 (en) 1993-04-29 1993-04-29 Shape measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12853793A JP3327998B2 (en) 1993-04-29 1993-04-29 Shape measuring method and device

Publications (2)

Publication Number Publication Date
JPH06313707A JPH06313707A (en) 1994-11-08
JP3327998B2 true JP3327998B2 (en) 2002-09-24

Family

ID=14987211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12853793A Expired - Fee Related JP3327998B2 (en) 1993-04-29 1993-04-29 Shape measuring method and device

Country Status (1)

Country Link
JP (1) JP3327998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589472A (en) * 2012-03-15 2012-07-18 浙江大学 Method for highly precisely eliminating adjustment error in spherical surface shape interference detection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162539A (en) * 2007-12-28 2009-07-23 Fujinon Corp Light wave interferometer apparatus
JP2009244227A (en) * 2008-03-31 2009-10-22 Fujinon Corp Light wave interference measuring method
JP2010102745A (en) * 2008-10-21 2010-05-06 Pulstec Industrial Co Ltd Method for measuring wavefront aberration of laser light
JP6772442B2 (en) * 2015-09-14 2020-10-21 株式会社ニコン Microscope device and observation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589472A (en) * 2012-03-15 2012-07-18 浙江大学 Method for highly precisely eliminating adjustment error in spherical surface shape interference detection

Also Published As

Publication number Publication date
JPH06313707A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
JP4951189B2 (en) Frequency conversion phase shift interferometry
KR101858082B1 (en) An Improved Holographic Reconstruction Apparatus and Method
JP3237309B2 (en) System error measuring method and shape measuring device using the same
US8873068B2 (en) Low coherence interferometric system for phase stepping shearography combined with 3D profilometry
KR102426103B1 (en) An Improved Holographic Reconstruction Apparatus and Method
US20190187612A1 (en) Ellipsometry Device and Ellipsometry Method
KR20170120462A (en) An Improved Holographic Reconstruction Apparatus and Method
JP4766989B2 (en) Strain measuring method and strain measuring apparatus using phase shift digital holography method
JP3327998B2 (en) Shape measuring method and device
US7466426B2 (en) Phase shifting imaging module and method of imaging
JP3230536B2 (en) Optical performance measuring method and apparatus
US5995215A (en) Autocollimator with grating
JPH07280535A (en) Three-dimensional shape measuring apparatus
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
US20060119861A1 (en) Method for measuring contour variations
JP2003269909A (en) Method of measuring shape, instrument for measuring interference, method of manufacturing projection optical system, and projection exposure unit
JP2831428B2 (en) Aspherical shape measuring machine
JP3086013B2 (en) Optical performance measuring method and apparatus
JP2753545B2 (en) Shape measurement system
JP2002357407A (en) Plane shape measuring method in phase shift interference fringe simultaneous imaging device
JP3054469B2 (en) Method and apparatus for evaluating linearity of diffraction grating
JPH0711413B2 (en) Non-contact type surface profile measuring device
JP2003106934A (en) Device and method for measuring optical path length, device and method for measuring thickness, and device and method for measuring inclined component of refractive index distribution
JPS62106310A (en) Apparatus for measuring degree of parallelism of plane-parallel plates
JP3496786B2 (en) Method and apparatus for measuring phase object

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees