JP2008076336A - Interference/triangulation same-optical-axis combination distance measuring instrument - Google Patents

Interference/triangulation same-optical-axis combination distance measuring instrument Download PDF

Info

Publication number
JP2008076336A
JP2008076336A JP2006258651A JP2006258651A JP2008076336A JP 2008076336 A JP2008076336 A JP 2008076336A JP 2006258651 A JP2006258651 A JP 2006258651A JP 2006258651 A JP2006258651 A JP 2006258651A JP 2008076336 A JP2008076336 A JP 2008076336A
Authority
JP
Japan
Prior art keywords
displacement
triangulation
circle
interference
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006258651A
Other languages
Japanese (ja)
Other versions
JP4945750B2 (en
Inventor
Fumio Matsuda
文夫 松田
Akira Nishiwaki
彰 西脇
Junpei Sugiura
純平 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2006258651A priority Critical patent/JP4945750B2/en
Publication of JP2008076336A publication Critical patent/JP2008076336A/en
Application granted granted Critical
Publication of JP4945750B2 publication Critical patent/JP4945750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple and precise same-optical-axis combination distance measuring instrument combined with micro displacement measurement by an interference fringe and displacement measurement by a triangulation method. <P>SOLUTION: This interference/triangulation same-optical-axis combination distance measuring instrument is constituted of one laser beam emitted toward a diffusion face, the interference fringe generated by reflected lights from the diffusion face and a reference face, an optical device for reading those, a portion for processing an image and for calculating a displacement of the diffusion face in a range within a half wevelength of the laser beam, based on moving of sinking-down to a circular center direction of the interference fringe on concentric circles generated by the displacement of the diffusion face or of going-up from the circular center, a lens for receiving the reflected light from the diffusion face, a position detecting element for knowing a position of a point of converging the reflected light from the diffusion face, and a portion for calculating the displacement of the diffusion face, using a principle of the triangulation, based on a position of the position detecting element, in an instrument for measuring the face-vertical-directional displacement of the diffusion face. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、面の垂直方向の変位を非接触に計測する干渉・三角測量同一光軸複合距離計測装置に関する。   The present invention relates to an interference / triangulation same optical axis combined distance measuring device for measuring a vertical displacement of a surface in a non-contact manner.

物体面の凹凸や変位を非接触で高精度に計測する要求に対し,レーザーを用いたスペックル光の干渉による微小変位計測がある。この手法は,被測定物体表面が拡散面であっても照射レーザー光のスポット径を小さく絞ることにより,粗面からの反射光をあたかも鏡面からの反射光のように得ることが可能となり,参照光との干渉によって干渉縞を形成し,この干渉縞のフリンジの半径方向への移動距離から,測定面の変位を求めるものである。この欠点は反波長(Heレーザ波長:633nm)以上の変位に対しては,変位が連続しない限り,フリンジの移動が,半波長周期で何回移動した結果か判別できないことである。従って測定範囲は半波長以内となる。測定スポット径は4.8μmである。測定精度はフリンジの一つ分の移動距離の10分の1から100分の1の読み取りが可能と考えれば,およそ(63.3/2)nmから(6.33/2)nmとなる.
一方,同様の要求に対して,三角測量の手法によって被測定面の変位を求める方法もある。この方法は製品としてはすでに存在し,その一例として,カタログ状の仕様は測定範囲が±0.2mmで,測定精度が0.001μm,最小スポット径が20×12μmである。測定精度が0.01μmはカタログ上で,実際は0.1μm=100nm程度と考えられる。
In response to the requirement to measure the unevenness and displacement of the object surface with high accuracy without contact, there is a minute displacement measurement by speckle light interference using a laser. This method makes it possible to obtain reflected light from a rough surface as if it were reflected from a mirror surface by reducing the spot diameter of the irradiated laser light even if the surface of the object to be measured is a diffuse surface. Interference fringes are formed by interference with light, and the displacement of the measurement surface is obtained from the distance of the fringes moving in the radial direction. This disadvantage is that for displacements of the opposite wavelength (He laser wavelength: 633 nm) or more, unless the displacement continues, it is impossible to determine how many times the fringe has moved in a half wavelength period. Therefore, the measurement range is within half a wavelength. The measurement spot diameter is 4.8 μm. The measurement accuracy is approximately (63.3 / 2) nm to (6.33 / 2) nm, assuming that reading of 1/10 to 1/100 of the movement distance of one fringe is possible.
On the other hand, there is also a method for obtaining the displacement of the surface to be measured by a triangulation method in response to the same requirement. This method already exists as a product. As an example, the catalog specification has a measurement range of ± 0.2 mm, a measurement accuracy of 0.001 μm, and a minimum spot diameter of 20 × 12 μm. A measurement accuracy of 0.01 μm is considered to be about 0.1 μm = 100 nm in the catalog.

非特許文献1には、拡散面であっても照射レーザーのスポット径を小さく絞ることにより、拡散面である被測定面からの反射光をあたかも鏡面からの反射光のように得ることが可能となり、この被測定面からの反射光と参照面からの反射光との干渉によって干渉縞を形成して、被測定面の面垂直方向の変位が同心円上の干渉縞の円中心方向への沈み込みまたは湧き上がりの移動となって表示され、移動量から被測定面の変位が算出される方法がすでに提案されている。   In Non-Patent Document 1, it is possible to obtain reflected light from a surface to be measured which is a diffusing surface as if it is reflected from a mirror surface by reducing the spot diameter of the irradiation laser even on the diffusing surface. The interference fringe is formed by the interference between the reflected light from the surface to be measured and the reflected light from the reference surface, and the displacement of the surface to be measured in the direction perpendicular to the surface sinks toward the center of the circle on the concentric circle. Alternatively, a method has been proposed in which the displacement of the surface to be measured is calculated from the amount of movement, which is displayed as a movement of upwelling.

レーザー研究、Vol.32、pp538〜542,2004Laser Research, Vol. 32, pp 538-542, 2004

また、三角測量による変位計測はすでに確立した方法であり、製品としても数多く存在している。カタログ値の測定範囲と測定精度の一例として、(±8mm,500nm)と(±0.2mm,10nm)が記載されている。   In addition, displacement measurement by triangulation is an established method, and many products exist. As an example of the measurement range and measurement accuracy of the catalog value, (± 8 mm, 500 nm) and (± 0.2 mm, 10 nm) are described.

拡散面であることが多い加工中の垂直方向の変位を非接触で高精度に計測する要求に対して、スペックル光の干渉による微小変位計測と、三角測量の手法による変位計測を用いて、干渉縞による測定精度と三角測量の測定範囲を有する変位計測が可能である。   In response to the requirement to measure the displacement in the vertical direction during machining, which is often a diffusing surface, in a non-contact manner with high accuracy, by using micro displacement measurement by interference of speckle light and displacement measurement by triangulation method, Displacement measurement having a measurement accuracy of interference fringes and a measurement range of triangulation is possible.

しかしながら、上記変位計測の問題点は、二つの方法の計測点が同一でないことがあげられる。計測点が違う限り計測できたことにならない。また、干渉縞による測定精度と三角測量の測定範囲である微小変位計測を可能にするには、スペックル光の干渉による微小変位計測と三角測量の手法による変位計測をどのように組み合わせるかが課題である。   However, the problem of the displacement measurement is that the measurement points of the two methods are not the same. As long as the measurement points are different, it cannot be measured. Also, in order to enable the measurement accuracy by interference fringes and the micro displacement measurement that is the measurement range of triangulation, how to combine micro displacement measurement by interference of speckle light and displacement measurement by triangulation method is a problem It is.

したがって、本発明の目的は、干渉縞による微小変位計測と三角測量法による変位計測を組み合わせた、簡便でかつ高精度の同一光軸複合距離計測装置を提供することにある。   Accordingly, an object of the present invention is to provide a simple and highly accurate same optical axis combined distance measuring device which combines a minute displacement measurement by interference fringes and a displacement measurement by a triangulation method.

すなわち、請求項1に記載の発明は、拡散面の面垂直方向の変位を計測する装置において、拡散面に照射する一つのレーザー光と、拡散面と参照面からの反射光によって生じる干渉縞と、これを読みとる光学装置と、この画像を処理して拡散面の変位によって生じる同心円上の干渉縞の円中心方向への沈み込みまたは円中心からの湧き上がりの移動からレーザー光の半波長以内の範囲で拡散面の変位を算出する部分と、拡散面からの反射光を受けるレンズと、拡散面からの反射光を集めた点の位置を知る位置検出素子と、位置検出素子の位置から三角測量の原理を用いて拡散面の変位を算出する部分を備えたことを特徴とする干渉・三角測量同一光軸複合距離計測装置である。   That is, the invention described in claim 1 is an apparatus for measuring the displacement of the diffusing surface in the direction perpendicular to the surface. One laser beam applied to the diffusing surface and interference fringes generated by the reflected light from the diffusing surface and the reference surface An optical device that reads this, and processing of this image causes the interference fringes on concentric circles caused by displacement of the diffusing surface to sink into the center of the circle or move up from the center of the circle within a half wavelength of the laser beam. A part that calculates the displacement of the diffusing surface in the range, a lens that receives the reflected light from the diffusing surface, a position detecting element that knows the position of the point where the reflected light from the diffusing surface is collected, and triangulation from the position of the position detecting element This is an interference / triangulation same optical axis compound distance measuring device characterized in that it includes a portion for calculating the displacement of the diffusion surface using the principle of.

また、請求項2に記載の発明は、干渉縞の円中心方向への沈み込みまたは円中心からの湧き上がりの移動から求められるレーザー光の半波長以内の範囲での拡散面の変位と、位置検出素子の位置から三角測量の原理を用いて求められる拡散面の変位から干渉縞による方法の測定精度と、三角測量による方法の測定範囲を有する計測値を算出する部分を備えた請求項1に記載の干渉・三角測量同一光軸複合距離計測装置である。   Further, the invention according to claim 2 is directed to the displacement and position of the diffusion surface within a half wavelength range of the laser light determined from the sinking of the interference fringes toward the center of the circle or the movement of upwelling from the center of the circle. 2. The method according to claim 1, further comprising: a part for calculating a measurement value having a measurement accuracy of the method using interference fringes and a measurement range of the method using triangulation from the displacement of the diffusion surface obtained from the position of the detection element using the principle of triangulation. It is an interference and triangulation same optical axis compound distance measuring device of statement.

本発明によって、被測定物が鏡面でない拡散面である加工中の製品の加工面の凹凸や面垂直変位を非接触で、測定精度は干渉縞による精度を持ち、測定範囲は三角測量の範囲を持つ微小変位計測を実現することができた。これによって、従来の加工方法や検査方法をより簡便にかつ高い精度で行うことができた。   According to the present invention, the unevenness and vertical displacement of the processed surface of the product being processed, which is a diffusion surface that is not a mirror surface, is non-contact, the measurement accuracy is accurate due to interference fringes, and the measurement range is the range of triangulation We were able to realize the small displacement measurement we had. As a result, the conventional processing method and inspection method can be performed more easily and with high accuracy.

以下、本発明の実施形態を図面により具体的に説明する。
図1は、スペックル光の干渉縞による変位計測と三角測量による変位計測に対して、同じ物体照射レーザー光軸を用いて、計測点を同じにする方法を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a method for making the measurement points the same using the same object irradiation laser optical axis for displacement measurement by interference fringes of speckle light and displacement measurement by triangulation.

まず、スペックル光の干渉縞による変位計測の原理を述べる。レーザー光源1からのレーザー光は平面ミラー2で反射され、ビームエキスパンダ3でレーザービームは拡大されさらに平行光線となる。この平行光線は凸レンズ4で、ビームスプリッタ5を通して、被測定面6と参照面7の表面の一点に集められる。これらの2点は凸レンズ4の焦点距離となる。被測定面6と参照面7の表面に照射されるレーザー光のスポット径は非常に小さく、これらの表面が拡散面であっても、あたかも鏡面のように振る舞うと考えられる。   First, the principle of displacement measurement by interference fringes of speckle light will be described. The laser light from the laser light source 1 is reflected by the plane mirror 2, and the laser beam is expanded by the beam expander 3 to become parallel rays. The parallel rays are collected by the convex lens 4 through the beam splitter 5 at one point on the surfaces of the measurement surface 6 and the reference surface 7. These two points are the focal length of the convex lens 4. The spot diameter of the laser light irradiated onto the surface 6 to be measured and the reference surface 7 is very small, and even if these surfaces are diffusing surfaces, it is considered that they behave as if they were mirror surfaces.

被測定面6と参照面7の表面からの反射光は、再びビームスプリッタ5を通して、スクリーン8に図4に示すような同心円状の干渉縞を作る。この干渉縞は、どの円(フリンジ)もコーン状であるので、スクリーン8をビームスプリッタ5とCCDカメラ9との間のどこの位置に置いても干渉縞は可視化される。スクリーン8上の干渉縞はCCDカメラ9を通してコンピュータに取り込まれ、画像処理がされる。   Reflected light from the surfaces of the measured surface 6 and the reference surface 7 passes through the beam splitter 5 again to form concentric interference fringes as shown in FIG. Since every circle (fringe) of this interference fringe has a cone shape, the interference fringe is visualized no matter where the screen 8 is placed between the beam splitter 5 and the CCD camera 9. The interference fringes on the screen 8 are taken into the computer through the CCD camera 9 and processed.

図2は、拡散面である測定面と参照面からの反射光で作られる同心円状の干渉縞の写真である。画像処理によって、被測定面の面垂直方向の動きによって湧き上がったり、沈み込んだりするフリンジR1の半径方向の移動量を二つのフリンジR1とR2の間隔内で求める。被測定面の面垂直方向の変位は、半波長(λ/2)の整数倍の変位とλ/2以内の変位の和で表されるが、この画像処理では、λ/2以内の変位のみが求まる。   FIG. 2 is a photograph of concentric interference fringes formed by reflected light from the measurement surface, which is a diffusing surface, and the reference surface. By image processing, the amount of movement in the radial direction of the fringe R1 that rises or sinks due to the movement of the surface to be measured in the direction perpendicular to the surface is determined within the interval between the two fringes R1 and R2. The displacement of the surface to be measured in the direction perpendicular to the surface is represented by the sum of a displacement that is an integral multiple of a half wavelength (λ / 2) and a displacement within λ / 2. In this image processing, only the displacement within λ / 2 is detected. Is obtained.

三角測量の手法による変位計測にも、干渉縞による変位計測に用いた被測定面6への照射光をそのまま用いる。被測定面6で拡散反射された散乱光は凸レンズ10を通して、位置検出素子(PSD)上の一点に集められる。この位置情報は電圧または電流の大きさで与えられる。この位置から被測定面6の干渉縞で求める変位に比較しておおまかな変位が求まる。   Irradiation light to the measurement surface 6 used for displacement measurement by interference fringes is also used as it is for displacement measurement by the triangulation method. Scattered light diffusely reflected by the surface to be measured 6 passes through the convex lens 10 and is collected at one point on the position detection element (PSD). This position information is given by the magnitude of voltage or current. Compared to the displacement obtained from the interference fringes on the surface to be measured 6 from this position, a rough displacement is obtained.

図2は、干渉縞による微小変位計測と、三角測量による被測定面の変位計測を、組み合わせることによって、測定精度は干渉縞による測定精度の値を持ち、測定範囲は三角測量の範囲を持つ微小変位計測を可能にする方法における仮想的な位置関係を示す。仮想被測定面12は算出上の被測定面6を示す。   FIG. 2 shows a combination of micro-displacement measurement using interference fringes and displacement measurement of the surface to be measured using triangulation, so that the measurement accuracy has the value of measurement accuracy using interference fringes, and the measurement range is very small with a triangulation range. The virtual positional relationship in the method which enables displacement measurement is shown. The virtual measured surface 12 shows the measured measured surface 6.

被測定面6の面垂直方向の変位xは、式(1)で表される。半波長(λ/2)の整数倍nの変位とλ/2以内の変位Δxの和で表される。干渉縞による微小変位計測における画像処理では、λ/2以内の変位Δxのみが求まる。式(1)の整数倍nは、式(2)で求める。   The displacement x in the direction perpendicular to the surface to be measured 6 is expressed by equation (1). It is represented by the sum of a displacement of an integral multiple n of a half wavelength (λ / 2) and a displacement Δx within λ / 2. In the image processing in the minute displacement measurement using the interference fringes, only the displacement Δx within λ / 2 is obtained. The integer multiple n of equation (1) is obtained by equation (2).

式(2)のΔbは、三角法で得られた被測定表面の変位である。±eはその測定精度である。[ ]は、[ ]の中の値の小数点以下を切り捨てた整数値とする演算を示す。±eが±λ/4以内であれば、nは二つ(一つ場合もある)存在するが、式(1)で計算したxの値でΔb±eに入るxは一つしか存在しない。したがって、被測定表面の変位xが得られる。   Δb in equation (2) is the displacement of the surface to be measured obtained by the trigonometric method. ± e is the measurement accuracy. [] Indicates an operation for converting the value in [] to an integer value obtained by rounding down the decimal point. If ± e is within ± λ / 4, there are two (some may be one) n, but there is only one x that falls within Δb ± e with the value of x calculated by equation (1). . Therefore, the displacement x of the surface to be measured is obtained.

一方、±eが±λ/4以上、±λ/2より小さい場合はnの値が三つ(二つ場合もある)存在するが、式(1)で計算したxの値でΔb±eに入る二つの中のΔbに近い値を被測定表面の変位xとする。   On the other hand, when ± e is greater than or equal to ± λ / 4 and smaller than ± λ / 2, there are three (may be two) values of n, but the value of x calculated by equation (1) is Δb ± e The value close to Δb in the two entered is the displacement x of the surface to be measured.

また、±eが±λ以上の場合は、nが四つ以上存在し、式(1)で計算したxの値でΔb±eに入るxの値は、三つ以上となり、この中のどれが被測定表面の変位xであるかを論理的には決めることは不可能である。ただしΔb±eが正規分布をしていると仮定すれば、Δbに近い値を被測定表面の変位xとすることも考えられるが、±eがλを遙かに超えることも考えれば、この算出の適用外するのが妥当である。   When ± e is greater than or equal to ± λ, there are four or more n, and the value of x calculated by Equation (1) has Δb ± e of three or more. It is impossible to logically determine whether is the displacement x of the surface to be measured. However, assuming that Δb ± e has a normal distribution, a value close to Δb can be considered as the displacement x of the surface to be measured, but if ± e is far beyond λ, It is reasonable to exclude the calculation.

したがって三角測量法の測定精度±eは、±λ/2より小さいことが条件となる。   Therefore, the measurement accuracy ± e of the triangulation method is required to be smaller than ± λ / 2.

図3は、三角測量の手法による変位計測の詳しい原理を示す。三角測量の手法による被測定表面6の変位をΔbとすると、この変位は凸レンズ10を通して位置検出素子11上の変位Δaとなる。この関係は式(3)で表される。   FIG. 3 shows the detailed principle of displacement measurement by the triangulation method. When the displacement of the surface 6 to be measured by the triangulation method is Δb, this displacement becomes the displacement Δa on the position detection element 11 through the convex lens 10. This relationship is expressed by equation (3).

Lは被測定物体6上の照射点から凸レンズ10までの距離、Lは凸レンズ10から位置検出素子11までの距離を示す。aは照射レーザー光軸から位置検出素子11上の受光点までの距離、bは被測定物体6上の照射点から位置検出素子11の表面の垂直方向の距離である。 L 1 indicates the distance from the irradiation point on the measured object 6 to the convex lens 10, and L 2 indicates the distance from the convex lens 10 to the position detection element 11. a is the distance from the irradiation laser optical axis to the light receiving point on the position detecting element 11, and b is the distance in the vertical direction of the surface of the position detecting element 11 from the irradiation point on the measured object 6.

次に、本発明の実施例について、図面を参照しながら説明する。なお、各図は正確なスケールで描かれているものではなく、図面を見やすくするために誇張して描かれている部分がある。   Next, embodiments of the present invention will be described with reference to the drawings. Each figure is not drawn to an accurate scale, and there are parts exaggerated to make the drawing easier to see.

<同一照射点>
図1に示すように円情報の抽出は、CCDカメラ9から取り込んだ干渉縞画像を2値化処理によって二値化した後、円の中心部から上下方向に画素を走査して円を検出する。測定面が変位する前の画像から抽出した円情報を基準と決めておき、変位した後の情報を比較することにより、円の変位が検出できる。
<Same irradiation point>
As shown in FIG. 1, the circle information is extracted by binarizing the interference fringe image captured from the CCD camera 9 by binarization processing and then scanning the pixels in the vertical direction from the center of the circle to detect the circle. . The circle information extracted from the image before the measurement surface is displaced is determined as a reference, and the displacement of the circle can be detected by comparing the information after the displacement.

<同心円状の中心座標とその同心円の半径抽出アルゴリズム>
図5は、同心円状の干渉縞の円中心座標とその第1円と第2円の半径算出の求め方を表した図である。本出願人が特願2005−258340として特許出願ずみの円検出方法は、干渉縞の性質である、ある一定の点を中心に縞の湧き沈みが起こる性質を利用する。同じ測定物の測定で、干渉縞の中心の位置がずれることは考えにくいので、目視により縞の中心位置をあらかじめ決めておく。そして、入力された中心点から縦方向に走査を開始する。二値画像の干渉縞の谷は黒画素となり、また谷は幅を持つため、黒画素が縦方向に連続して出現した点を円との接点と考える。この縦方向に連続して出現する点の数は円を検出するための最適な値が与えられる。ここで最小の円を第1円、2番目に小さい円を第2円とする。第2円の検出には、第1円で検出した円の接点からさらに外方向に走査を行うことによって求まる。
<Concentric center coordinates and radius extraction algorithm for the concentric circles>
FIG. 5 is a diagram showing the circle center coordinates of concentric interference fringes and how to calculate the radii of the first and second circles. The method for detecting a circle of a patent application filed as Japanese Patent Application No. 2005-258340 by the present applicant uses the property of interference fringes, which is the nature of the ups and downs of fringes around a certain point. Since it is unlikely that the center position of the interference fringes will be shifted when measuring the same object, the center position of the fringes is determined in advance by visual inspection. Then, scanning is started in the vertical direction from the input center point. Since the valleys of the interference fringes of the binary image are black pixels and the valleys have a width, the point where the black pixels appear continuously in the vertical direction is considered as a contact point with the circle. The number of points that appear continuously in the vertical direction is given an optimum value for detecting a circle. Here, the smallest circle is the first circle, and the second smallest circle is the second circle. The detection of the second circle is obtained by scanning further outward from the contact point of the circle detected in the first circle.

図5において、目視による中心点の決定では、本来の中心点とのずれが起こることが予想されるので、入力された中心点からX方向に走査範囲を広げておき、円との2つの交点を求め、交点間の距離が最大になる線の中間点を新たに円の中心座標とする。中心座標が決まった後、その捜査線上の第1円の交点から第1円の半径を求め、交点からさらに走査を延ばし、第2円との交点を求め、これから第2円の半径を求める。   In FIG. 5, when the center point is visually determined, a deviation from the original center point is expected. Therefore, the scanning range is expanded in the X direction from the input center point, and two intersections with the circle are obtained. And the middle point of the line where the distance between the intersections is maximum is newly set as the center coordinate of the circle. After the central coordinates are determined, the radius of the first circle is obtained from the intersection of the first circle on the investigation line, the scanning is further extended from the intersection, the intersection with the second circle is obtained, and the radius of the second circle is obtained from this.

本手法では、干渉縞画像に対し画像処理を施すことにより、微小変位の検出を図るが、干渉縞である図2の画像から分かるように、円中心部に近い縞の明暗のほうが間隔が大きく、鮮明に写っている。そのため画像処理では、円中心付近の円情報を用いる。干渉縞そのものを用いるのではなく、縞にある暗(谷)の部分を用いる。縞そのものを画像処理に用いない理由は、干渉縞の明度自体が安定していないためである。撮影状況によるところも大きいが、実験中では干渉縞の中心から最初の谷と2番目の谷から安定して円情報が得られる。   In this method, image processing is performed on the interference fringe image to detect a small displacement. As can be seen from the image of FIG. 2, which is the interference fringe, the distance between the bright and dark stripes near the center of the circle is larger. , Clearly reflected. Therefore, in image processing, circle information near the center of the circle is used. Instead of using the interference fringes themselves, the dark (valley) portions of the fringes are used. The reason why the fringes themselves are not used for image processing is that the brightness of the interference fringes is not stable. Although it depends largely on the shooting situation, in the experiment, the circle information can be obtained stably from the first valley and the second valley from the center of the interference fringes.

図6は計測の実験装置を示す。干渉の生ずる場所にスクリーン8を配置し、干渉縞の明暗のパターンを映し出し、CCDカメラ9によりパソコンに取り込む。スクリーン8は必ずしも必要ではないが、スクリーンを用いない場合には、光電変換素子を用いての計測が必要となる。   FIG. 6 shows an experimental apparatus for measurement. A screen 8 is arranged at a place where interference occurs, and a bright and dark pattern of interference fringes is projected and taken into a personal computer by a CCD camera 9. Although the screen 8 is not necessarily required, when a screen is not used, measurement using a photoelectric conversion element is required.

CCDカメラ9からパソコンに取り込まれた画像は、画像処理により同心円情報を抽出後、基準となる画像との比較を行い、被測定面6の面垂直方向の変位Δxが求まる。   The image taken into the personal computer from the CCD camera 9 is extracted with concentric circle information by image processing, and then compared with a reference image to obtain a displacement Δx in the direction perpendicular to the surface 6 to be measured.

実験で用いた光学系は、レーザー光源1にHe−Neガスレーザ(波長633nm)を用い、ビームエキスパンダ3により、直径20mmの平行ビームに拡大する。その後、焦点距離f=150mmの凸レンズ4でビームを収束させる。焦点でのスポット径は、6.04μmとなる。CCDカメラ9の解像度は、640×640である。   The optical system used in the experiment uses a He—Ne gas laser (wavelength 633 nm) as the laser light source 1 and expands it into a parallel beam having a diameter of 20 mm by the beam expander 3. Thereafter, the beam is converged by the convex lens 4 having a focal length f = 150 mm. The spot diameter at the focal point is 6.04 μm. The resolution of the CCD camera 9 is 640 × 640.

被測定物が鏡面でない拡散面である加工中の製品の加工面の凹凸や面垂直変位を非接触で、測定精度は干渉縞による精度の値を持ち、測定範囲は三角測量の範囲を持つ微小変位計測を可能にすることにより、製品の測定や加工検査を組み込むことが可能になり、加工や検査方法を大きく変えることになる。   The object to be measured is a diffusion surface that is not a mirror surface. The unevenness and vertical displacement of the processed surface of the product being processed are non-contact, the measurement accuracy has an accuracy value due to interference fringes, and the measurement range is a minute with a triangulation range. By enabling displacement measurement, it becomes possible to incorporate product measurement and processing inspection, and greatly change the processing and inspection methods.

計測を行うためのシステム構成例を表した図である。It is a figure showing the example of a system configuration for measuring. 同心円状の干渉縞の図である。It is a figure of a concentric interference fringe. 計測距離の算出方法である。This is a method for calculating the measurement distance. 三角測量による変位計測を表した図である。It is a figure showing the displacement measurement by triangulation. 同心円状の円中心を求める方法を示す図である。It is a figure which shows the method of calculating | requiring a concentric circle center. 計測装置の一例を示す図である。It is a figure which shows an example of a measuring device.

符号の説明Explanation of symbols

1:レーザー光源
2:平面ミラー
3:ビームエキスパンダ
4:凸レンズ1
5:ビームスプリッタ
6:被測定面
7:参照面
8:スクリーン
9:CCDカメラ
10:凸レンズ2
11:位置検出素子
12:仮想被測定面
1: Laser light source 2: Plane mirror 3: Beam expander 4: Convex lens 1
5: Beam splitter 6: Measurement surface 7: Reference surface 8: Screen 9: CCD camera 10: Convex lens 2
11: Position detecting element 12: Virtual measured surface

Claims (2)

拡散面の面垂直方向の変位を計測する装置において、拡散面に照射する一つのレーザー光と、拡散面と参照面からの反射光によって生じる干渉縞と、これを読みとる光学装置と、この画像を処理して拡散面の変位によって生じる同心円上の干渉縞の円中心方向への沈み込みまたは円中心からの湧き上がりの移動からレーザー光の半波長以内の範囲で拡散面の変位を算出する部分と、拡散面からの反射光を受けるレンズと、拡散面からの反射光を集めた点の位置を知る位置検出素子と、位置検出素子の位置から三角測量の原理を用いて拡散面の変位を算出する部分を備えたことを特徴とする干渉・三角測量同一光軸複合距離計測装置。   In a device that measures the displacement of the diffusing surface in the direction perpendicular to the surface, one laser beam that irradiates the diffusing surface, interference fringes caused by the reflected light from the diffusing surface and the reference surface, an optical device that reads this, and this image A part that calculates the displacement of the diffusing surface within a half-wavelength of the laser beam from the sinking of the interference fringes on the concentric circle caused by the displacement of the diffusing surface to the center of the circle or the movement of upwelling from the center of the circle, and , A lens that receives the reflected light from the diffusing surface, a position detection element that knows the position of the point that collected the reflected light from the diffusing surface, and calculates the displacement of the diffusing surface from the position of the position detecting element using the principle of triangulation Interferometer / triangulation same optical axis compound distance measuring device characterized by comprising 干渉縞の円中心方向への沈み込みまたは円中心からの湧き上がりの移動から求められるレーザー光の半波長以内の範囲での拡散面の変位と、位置検出素子の位置から三角測量の原理を用いて求められる拡散面の変位から干渉縞による方法の測定精度と、三角測量による方法の測定範囲を有する計測値を算出する部分を備えた請求項1に記載の干渉・三角測量同一光軸複合距離計測装置。   Using the principle of triangulation from the displacement of the diffusion surface within the half wavelength range of the laser beam and the position of the position detection element obtained from the sinking of interference fringes toward the center of the circle or the movement of upwelling from the center of the circle 2. The interference / triangulation same optical axis combined distance according to claim 1, further comprising: a portion for calculating a measurement value having a measurement range of the method using the interference fringe and a measurement range of the method using the triangulation from the displacement of the diffusion surface obtained Measuring device.
JP2006258651A 2006-09-25 2006-09-25 Apparatus and method for measuring unevenness and displacement of diffusion surface Active JP4945750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258651A JP4945750B2 (en) 2006-09-25 2006-09-25 Apparatus and method for measuring unevenness and displacement of diffusion surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258651A JP4945750B2 (en) 2006-09-25 2006-09-25 Apparatus and method for measuring unevenness and displacement of diffusion surface

Publications (2)

Publication Number Publication Date
JP2008076336A true JP2008076336A (en) 2008-04-03
JP4945750B2 JP4945750B2 (en) 2012-06-06

Family

ID=39348547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258651A Active JP4945750B2 (en) 2006-09-25 2006-09-25 Apparatus and method for measuring unevenness and displacement of diffusion surface

Country Status (1)

Country Link
JP (1) JP4945750B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236464A (en) * 2014-09-04 2014-12-24 宁波舜宇智能测量仪器有限公司 Laser vibration displacement sensor and measuring method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101702A (en) * 1986-10-20 1988-05-06 Fujitsu Ltd Optical length measuring gauge
JPS6488327A (en) * 1987-09-30 1989-04-03 Ricoh Kk Shape measuring method for interference wave front
JPH0339605A (en) * 1989-07-05 1991-02-20 Brother Ind Ltd Optical surface shape measuring instrument
JPH0357905A (en) * 1989-07-26 1991-03-13 Matsushita Electric Works Ltd Non-contact measuring apparatus of surface shape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101702A (en) * 1986-10-20 1988-05-06 Fujitsu Ltd Optical length measuring gauge
JPS6488327A (en) * 1987-09-30 1989-04-03 Ricoh Kk Shape measuring method for interference wave front
JPH0339605A (en) * 1989-07-05 1991-02-20 Brother Ind Ltd Optical surface shape measuring instrument
JPH0357905A (en) * 1989-07-26 1991-03-13 Matsushita Electric Works Ltd Non-contact measuring apparatus of surface shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236464A (en) * 2014-09-04 2014-12-24 宁波舜宇智能测量仪器有限公司 Laser vibration displacement sensor and measuring method thereof

Also Published As

Publication number Publication date
JP4945750B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
Heist et al. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement
JP4445959B2 (en) Non-contact dynamic detection method of solid contour shape
US20130057650A1 (en) Optical gage and three-dimensional surface profile measurement method
Wakayama et al. Three-dimensional measurement of an inner surface profile using a supercontinuum beam
TW201732263A (en) Method and system for optical three-dimensional topography measurement
Wang et al. A new optical technique for roughness measurement on moving surface
KR100785802B1 (en) Apparatus for measurment of three-dimensional shape
JP6616651B2 (en) Distance measuring apparatus and method
Balamurugan et al. Displacement measurement and study of surface roughness using laser speckle technique
JP2023176026A (en) Method for determining scan range
JP4945750B2 (en) Apparatus and method for measuring unevenness and displacement of diffusion surface
Lin et al. An automatic evaluation method for the surface profile of a microlens array using an optical interferometric microscope
Lim et al. A novel one-body dual laser profile based vibration compensation in 3D scanning
JP6616650B2 (en) Distance measuring apparatus and method
KR101323183B1 (en) Three-dimensional shape measurement with dual-optical device
Li et al. Measurement of diameter of metal cylinders using a sinusoidally vibrating interference pattern
Lu et al. Optical 3D shape measurement and wear evaluation method of power head of rotary drilling rig
Tan et al. Feature extraction from Moiré pattern images for tilt sensing
JP7493960B2 (en) Shape measuring device and shape measuring method
Xie et al. Biaxial structured illumination microscopy with high measurement accuracy based on product processing
WO2016002443A1 (en) Distance measurement device and method
JP2008046022A (en) Optical measurement method and optical measuring instrument
Harding et al. Optimized measurement of gaps
Miyoshi et al. High sensitivity optical detection of oriented microdefects on silicon wafer surfaces using annular illumination
Chen et al. Accurate 3-D Surface Profilometry Using Novel Boundary Edge Detection on Digital Image Correlation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A521 Written amendment

Effective date: 20081228

Free format text: JAPANESE INTERMEDIATE CODE: A523

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A521 Written amendment

Effective date: 20090119

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090529

A131 Notification of reasons for refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A02 Decision of refusal

Effective date: 20100112

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20100422

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20100604

Free format text: JAPANESE INTERMEDIATE CODE: A912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150