JP2015210241A - Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element - Google Patents

Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element Download PDF

Info

Publication number
JP2015210241A
JP2015210241A JP2014093886A JP2014093886A JP2015210241A JP 2015210241 A JP2015210241 A JP 2015210241A JP 2014093886 A JP2014093886 A JP 2014093886A JP 2014093886 A JP2014093886 A JP 2014093886A JP 2015210241 A JP2015210241 A JP 2015210241A
Authority
JP
Japan
Prior art keywords
light
test object
wavefront
transmitted
receiving position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014093886A
Other languages
Japanese (ja)
Inventor
杉本 智洋
Tomohiro Sugimoto
智洋 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014093886A priority Critical patent/JP2015210241A/en
Publication of JP2015210241A publication Critical patent/JP2015210241A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a transmission wavefront of a specimen with high accuracy.SOLUTION: Specific light from a light source is divided into first light and second light, a first light receiving position when the first light is received by a wavefront sensor 81 and a second light receiving position when the second light is received by an imaging element 80 are measured, light transmitted through a specimen 60 is measured by the wavefront sensor 81, and an image of the specimen 60 is measured by the imaging element 80. A reference point on the wavefront sensor 81 is calculated on the basis of the first light receiving position, the second light receiving position, and the image of the specimen 60, and a transmission wavefront of the specimen 60 is calculated by using a measured value by the wavefront sensor 81 of the light transmitted through the specimen 60 and the reference point.

Description

本発明は、光学素子の透過波面を計測する波面計測方法及び波面計測装置に関する。   The present invention relates to a wavefront measuring method and a wavefront measuring apparatus for measuring a transmitted wavefront of an optical element.

モールドによって製造されたモールドレンズは、レンズ内部に屈折率分布が存在する。レンズ内部の屈折率分布は、光学性能に悪影響を及ぼすため、モールドレンズの製造には、モールド後に非破壊で屈折率分布を計測する技術が必要である。   A mold lens manufactured by a mold has a refractive index distribution inside the lens. Since the refractive index distribution inside the lens adversely affects the optical performance, a technique for measuring the refractive index distribution in a non-destructive manner after molding is necessary for the production of a molded lens.

特許文献1に開示された計測方法では、光源からの可干渉光を、屈折率がほぼ一致している試液に浸した被検物に入射させ、検出器に干渉縞を結像させ、干渉縞から透過波面を算出する。そして、被検物の設計値から被検物の基準透過波面と被検物の光軸方向の厚さとを算出し、被検物の透過波面と基準透過波面と厚さとから被検物の屈折率分布を算出している。検出器に干渉縞を結像させるには、被検物の透過光がほぼ平行光となっていなければならないため、被検物の屈折率とほぼ等しい屈折率を有する試液に被検物を浸している。   In the measurement method disclosed in Patent Document 1, coherent light from a light source is incident on a test object immersed in a test solution having substantially the same refractive index, and an interference fringe is imaged on a detector. To calculate the transmitted wavefront. Then, the reference transmitted wavefront of the test object and the thickness in the optical axis direction of the test object are calculated from the design value of the test object, and the refraction of the test object is calculated from the transmitted wavefront of the test object, the reference transmitted wavefront and the thickness. The rate distribution is calculated. In order to form an interference fringe on the detector, the transmitted light of the test object must be substantially parallel light, so the test object is immersed in a test solution having a refractive index substantially equal to the refractive index of the test object. ing.

特許文献2に開示された計測方法では、被検物の屈折率とは異なる第1の屈折率を有する第1の媒質中に被検物を配置して第1の透過波面を計測し、第1の屈折率とは異なる第2の屈折率を有する第2の媒質中に被検物を配置して第2の透過波面を計測する。そして、第1及び第2の透過波面の計測結果と、被検物と同一形状及び特定の屈折率分布を有する基準被検物が第1及び第2の媒質中に配置されているときの各透過波面とを用いて、被検物の形状成分を除去して、被検物の屈折率分布投影値を算出する。そして、光に対して被検物の角度が異なる複数の配置において屈折率分布投影値を算出し、複数の屈折率分布投影値から被検物の3次元屈折率分布を算出している。   In the measurement method disclosed in Patent Document 2, the first transmitted wavefront is measured by arranging the test object in the first medium having the first refractive index different from the refractive index of the test object, A test object is placed in a second medium having a second refractive index different from the refractive index of 1, and the second transmitted wavefront is measured. And each of the measurement results of the first and second transmitted wavefronts and the reference specimen having the same shape and specific refractive index distribution as the specimen are arranged in the first and second media. Using the transmitted wavefront, the shape component of the test object is removed, and the refractive index distribution projection value of the test object is calculated. Then, a refractive index distribution projection value is calculated in a plurality of arrangements having different angles of the test object with respect to light, and a three-dimensional refractive index distribution of the test object is calculated from the plurality of refractive index distribution projection values.

特開平11−044641号公報Japanese Patent Application Laid-Open No. 11-044641 特開2011−247692号公報JP 2011-247692 A

特許文献1に開示された方法では、被検物の屈折率とほぼ等しい屈折率を有する試液が必要である。しかしながら、屈折率が高い試液は、透過率が低い。このため、特許文献1で開示された計測方法により高屈折率の光学素子の干渉縞を測定すると、検出器から小さな信号しか得られず、透過波面の計測精度が低くなる。透過波面の計測精度が低下すると、屈折率分布の算出精度も低下する。特許文献2で開示された方法では、被検物の屈折率と媒質の屈折率が異なるため、被検物を透過した波面が大きな収差をもつ。大収差の透過波面を計測するためには、透過光の基準点(例えば中心点)を正確に算出する必要がある。算出した基準点が本来の基準点と異なると、本来無いはずの非回転対称の波面誤差が、計測された透過波面に混入するからである。特許文献2で開示された方法のように、透過波面が大収差をもつ状態で被検物を傾けると、透過光束が非回転対称な形になる。非回転対称な形の透過光束から基準点を正確に算出することは難しい。基準点の位置ずれによって、計測される透過波面の精度が低下し、屈折率分布の算出精度も低下する。   In the method disclosed in Patent Document 1, a test solution having a refractive index substantially equal to the refractive index of the test object is required. However, a test solution having a high refractive index has a low transmittance. For this reason, when the interference fringes of the optical element having a high refractive index are measured by the measurement method disclosed in Patent Document 1, only a small signal is obtained from the detector, and the measurement accuracy of the transmitted wavefront is lowered. When the measurement accuracy of the transmitted wavefront decreases, the calculation accuracy of the refractive index distribution also decreases. In the method disclosed in Patent Document 2, since the refractive index of the test object is different from the refractive index of the medium, the wavefront transmitted through the test object has large aberration. In order to measure the transmitted wavefront of large aberration, it is necessary to accurately calculate a reference point (for example, a center point) of transmitted light. This is because if the calculated reference point is different from the original reference point, a non-rotationally symmetric wavefront error that should not exist is mixed in the measured transmitted wavefront. When the test object is tilted with the transmitted wavefront having large aberration as in the method disclosed in Patent Document 2, the transmitted light beam has a non-rotationally symmetric shape. It is difficult to accurately calculate the reference point from the transmitted light beam having a non-rotationally symmetric shape. Due to the displacement of the reference point, the accuracy of the measured transmitted wavefront is reduced, and the accuracy of calculating the refractive index distribution is also reduced.

被検物の屈折率分布を高精度に算出するためには、被検物の透過波面を高精度に計測することが必要である。   In order to calculate the refractive index distribution of the test object with high accuracy, it is necessary to measure the transmitted wavefront of the test object with high accuracy.

本発明は、被検物の透過波面を高精度に計測することができる波面計測方法および波面計測装置を提供することを例示的な目的とする。   An object of the present invention is to provide a wavefront measuring method and a wavefront measuring apparatus capable of measuring a transmitted wavefront of a test object with high accuracy.

本発明の一側面としての波面計測方法は、光源からの特定の光を第1の光と第2の光とに分割し、前記第1の光を波面センサで受光したときの第1の受光位置と、前記第2の光を撮像素子で受光したときの第2の受光位置とを測定するステップと、前記光源からの光を被検物に入射させて、前記被検物を透過した光を前記波面センサで測定し、前記被検物の像を前記撮像素子で測定するステップと、前記第1の受光位置と、前記第2の受光位置と、前記被検物の像とに基づいて前記波面センサ上の基準点を算出し、前記被検物を透過した光の前記波面センサによる測定値と、前記基準点とを用いて前記被検物の透過波面を算出するステップとを有することを特徴とする。   The wavefront measuring method as one aspect of the present invention divides specific light from a light source into first light and second light, and the first light reception when the first light is received by a wavefront sensor. A step of measuring a position and a second light receiving position when the second light is received by an imaging device; and light transmitted through the test object by causing light from the light source to enter the test object Is measured by the wavefront sensor, and an image of the test object is measured by the imaging device, based on the first light receiving position, the second light receiving position, and the image of the test object. Calculating a reference point on the wavefront sensor, and calculating a transmitted wavefront of the test object using the measurement value of the light transmitted through the test object by the wavefront sensor and the reference point. It is characterized by.

尚、光学素子をモールドするステップと、上記の波面計測方法を用いて光学素子の透過波面を計測することによって、モールドされた光学素子の光学性能を評価するステップとを含む光学素子の製造方法も、本発明の他の一側面を構成する。   An optical element manufacturing method including the steps of molding the optical element and evaluating the optical performance of the molded optical element by measuring the transmitted wavefront of the optical element using the wavefront measuring method described above. This constitutes another aspect of the present invention.

また、本発明のさらに他の一側面としての波面計測装置は、光源と、該光源からの特定の光を第1の光と第2の光とに分割し、前記第1の光を波面センサで受光したときの第1の受光位置と、前記第2の光を撮像素子で受光したときの第2の受光位置とを測定し、前記被検物を透過した光を前記波面センサで測定し、前記撮像素子上に結像された前記被検物の像を測定する測定手段と、前記第1の受光位置と、前記第2の受光位置と、前記被検物の像とに基づいて前記波面センサ上の基準点を算出し、前記被検物を透過した光の前記波面センサによる測定値と、前記基準点とを用いて前記被検物の透過波面を算出する算出手段とを有することを特徴とする。   According to another aspect of the present invention, there is provided a wavefront measuring apparatus that divides a light source, specific light from the light source into first light and second light, and the first light is a wavefront sensor. And measuring the first light receiving position when the second light is received by the imaging device and the second light receiving position when the second light is received by the imaging device, and measuring the light transmitted through the test object by the wavefront sensor. , Based on the measurement means for measuring the image of the test object imaged on the image sensor, the first light receiving position, the second light receiving position, and the image of the test object. A calculation means for calculating a reference point on the wavefront sensor and calculating a transmitted wavefront of the test object using the measurement value of the light transmitted through the test object by the wavefront sensor and the reference point; It is characterized by.

本発明によれば、被検物の透過波面を高精度に計測することができる。   According to the present invention, the transmitted wavefront of a test object can be measured with high accuracy.

本発明における実施例1の波面計測装置の概略構成を示す図。The figure which shows schematic structure of the wavefront measuring apparatus of Example 1 in this invention. 実施例1における波面センサの受光位置と撮像素子の受光位置の対応関係を示す図。FIG. 3 is a diagram illustrating a correspondence relationship between a light receiving position of a wavefront sensor and a light receiving position of an image sensor in the first embodiment. 実施例1における被検物の透過波面の算出手順を示すフローチャート。3 is a flowchart showing a procedure for calculating a transmitted wavefront of a test object in the first embodiment. 被検物上に定義された座標系と計測装置内での光線の光路を示す図。The figure which shows the optical path of the light ray in the coordinate system defined on the to-be-tested object, and a measuring device. 本発明における実施例2の波面計測装置の概略構成を示す図。The figure which shows schematic structure of the wavefront measuring apparatus of Example 2 in this invention.

以下、図面を参照しつつ、本発明の実施例について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明における実施例1の波面計測装置の概略構成を示している。計測装置は、光源10、干渉光学系、被検物60と媒質70を収容可能な容器50、撮像素子80、波面センサ81、コンピュータ90を有し、被検物60の透過波面を計測する。本実施例では、被検物は負の屈折力を有するレンズであるが、レンズに限られず、平板等の屈折型光学素子であれば透過波面の測定を行うことができる。尚、媒質70の屈折率は、被検物60の屈折力を小さくする役割をもち、被検物60の屈折率と一致している必要はない(例えば、被検物の屈折率が1.9程度であるとき、媒質の屈折率が1.7程度であってもよい)。   FIG. 1 shows a schematic configuration of the wavefront measuring apparatus according to the first embodiment of the present invention. The measuring device includes a light source 10, an interference optical system, a container 50 that can store a test object 60 and a medium 70, an image sensor 80, a wavefront sensor 81, and a computer 90, and measures the transmitted wavefront of the test object 60. In this embodiment, the test object is a lens having a negative refractive power, but is not limited to a lens, and a transmitted wavefront can be measured if it is a refractive optical element such as a flat plate. The refractive index of the medium 70 serves to reduce the refractive power of the test object 60 and does not need to match the refractive index of the test object 60 (for example, the refractive index of the test object is 1. When it is about 9, the refractive index of the medium may be about 1.7).

光源10は、レーザ光源(例えば、HeNeレーザー)である。光源からの光は、ピンホール30を通過して発散波となり、コリメータレンズ40を通って平行光となる。   The light source 10 is a laser light source (for example, a HeNe laser). The light from the light source passes through the pinhole 30 to become a divergent wave, and passes through the collimator lens 40 to become parallel light.

干渉光学系は、ビームスプリッタ100、101、ミラー105、106を有する。干渉光学系は、コリメータレンズ40を通った光を、被検物を透過しない参照光と被検物を透過する被検光に分割し、参照光と被検光を干渉させて、その干渉光を撮像素子80に導光する。また、干渉光学系は、被検光を波面センサ81に導光する。   The interference optical system includes beam splitters 100 and 101 and mirrors 105 and 106. The interference optical system divides the light that has passed through the collimator lens 40 into reference light that does not pass through the test object and test light that passes through the test object, and causes the reference light and test light to interfere with each other. Is guided to the image sensor 80. The interference optical system guides the test light to the wavefront sensor 81.

容器50には、被検物60と媒質70とガラスプリズム110が収容される。容器50の側面50a、50bは厚さが同一かつ平行であり、屈折率が均一であることが好ましい。   In the container 50, the test object 60, the medium 70, and the glass prism 110 are accommodated. It is preferable that the side surfaces 50a and 50b of the container 50 have the same and parallel thickness and a uniform refractive index.

容器50に入射した被検光の一部は、媒質70、被検物60を透過し、別の被検光の一部は、媒質70及びガラスプリズム110を透過する。容器50に入射したその他の被検光は、媒質70のみを透過する。一方、ビームスプリッタ100を透過した参照光は、容器50の側面及び媒質70を透過し、ミラー105で反射される。参照光と被検光は、ビームスプリッタ101で干渉し、干渉光を形成する。   Part of the test light incident on the container 50 passes through the medium 70 and the test object 60, and part of the other test light passes through the medium 70 and the glass prism 110. Other test light incident on the container 50 transmits only the medium 70. On the other hand, the reference light transmitted through the beam splitter 100 passes through the side surface of the container 50 and the medium 70 and is reflected by the mirror 105. The reference light and the test light interfere with each other at the beam splitter 101 to form interference light.

媒質70の屈折率は、媒質70内に配置された屈折率及び形状が既知のガラスプリズム110の透過波面から算出される。媒質70の屈折率は、ガラスプリズム110を用いる代わりに、温度計を用いて媒質70の温度を測定し、測定した温度をもとに屈折率に換算する方法で算出してもよい。   The refractive index of the medium 70 is calculated from the transmitted wavefront of the glass prism 110 having a known refractive index and shape disposed in the medium 70. The refractive index of the medium 70 may be calculated by a method in which the temperature of the medium 70 is measured using a thermometer instead of using the glass prism 110 and converted into the refractive index based on the measured temperature.

ミラー105は、不図示の駆動機構により、図1中の矢印方向に駆動される。駆動方向は図1の矢印方向に限らず、ミラー105の駆動によって参照光と被検光の光路長差が変化しさえすれば任意の方向でよい。ミラー105の駆動機構は、例えば、ピエゾステージから構成される。ミラー105の駆動量は、不図示の測長器(例えば、レーザ変位計やエンコーダ)によって測定され、コンピュータ90によって制御される。参照光と被検光の光路長差は、ミラー105の駆動機構によって調整される。   The mirror 105 is driven in the direction of the arrow in FIG. 1 by a drive mechanism (not shown). The driving direction is not limited to the arrow direction in FIG. 1, and may be any direction as long as the optical path length difference between the reference light and the test light changes by driving the mirror 105. The drive mechanism of the mirror 105 is composed of, for example, a piezo stage. The driving amount of the mirror 105 is measured by a length measuring device (not shown) (for example, a laser displacement meter or an encoder) and controlled by the computer 90. The optical path length difference between the reference light and the test light is adjusted by the drive mechanism of the mirror 105.

ビームスプリッタ101で形成された干渉光は、結像レンズ45を介して撮像素子80(例えば、CCDやCMOS)で検出される。撮像素子80で検出された干渉信号は、コンピュータ90に送られる。撮像素子80は、被検物60及びガラスプリズム110の位置と、結像レンズ45に関して共役な位置に配置されている。つまり、結像レンズ45によって、撮像素子80上に被検物60の像とガラスプリズム110の像とが結像される。   The interference light formed by the beam splitter 101 is detected by the image sensor 80 (for example, CCD or CMOS) through the imaging lens 45. The interference signal detected by the image sensor 80 is sent to the computer 90. The image sensor 80 is disposed at a conjugate position with respect to the position of the test object 60 and the glass prism 110 and the imaging lens 45. That is, the imaging lens 45 forms an image of the test object 60 and an image of the glass prism 110 on the image sensor 80.

本実施例においては被検物60と媒質70の屈折率が異なるため、被検物60を透過する被検光は発散波となる。発散波となった被検光と参照光とで形成される干渉縞の大部分は、撮像素子80で分解できないほど密になる。そのため撮像素子80は、被検物60を透過する被検光と参照光とで形成される干渉縞の大部分を測定できない。しかし、本実施例において、撮像素子80は、被検物60の透過光すべての干渉信号を検出する必要はない。撮像素子80は、媒質70やガラスプリズム110を透過した透過光に関する干渉信号と、被検物60の光学中心を透過した透過光に関する干渉信号を検出すればよい。被検物60の光学中心を透過した透過光は、被検物60の傾き角に関わらず、被検物60に入射する入射光と平行であるため、容易に検出できる。   In the present embodiment, since the refractive index of the test object 60 and the medium 70 are different, the test light transmitted through the test object 60 becomes a divergent wave. Most of the interference fringes formed by the test light and the reference light that have become diverging waves are so dense that they cannot be resolved by the image sensor 80. Therefore, the image sensor 80 cannot measure most of the interference fringes formed by the test light that passes through the test object 60 and the reference light. However, in this embodiment, the image sensor 80 does not need to detect all interference signals transmitted through the test object 60. The image sensor 80 may detect an interference signal related to the transmitted light transmitted through the medium 70 and the glass prism 110 and an interference signal related to the transmitted light transmitted through the optical center of the test object 60. Since the transmitted light that has passed through the optical center of the test object 60 is parallel to the incident light incident on the test object 60 regardless of the tilt angle of the test object 60, it can be easily detected.

被検物60を透過した被検光の一部は、ビームスプリッタ101で反射され、波面センサ81(例えば、シャックハルトマンセンサ)で検出される。波面センサ81で検出された信号は、コンピュータ90に送られる。   A part of the test light transmitted through the test object 60 is reflected by the beam splitter 101 and detected by the wavefront sensor 81 (for example, Shack-Hartmann sensor). The signal detected by the wavefront sensor 81 is sent to the computer 90.

コンピュータ90は、撮像素子80の検出結果と、波面センサ81の検出結果とをもとに被検物の透過波面を算出する算出手段や、ミラー105の駆動量を制御する制御手段を有し、CPU等から成る。   The computer 90 has calculation means for calculating the transmitted wavefront of the test object based on the detection result of the image sensor 80 and the detection result of the wavefront sensor 81, and control means for controlling the driving amount of the mirror 105. It consists of CPU etc.

本実施例では、被検物が容器内に配置されていない状態で、光源からの光線がビームスプリッタ101で反射して波面センサ81上に到達する位置と、その光線がビームスプリッタ101を透過して撮像素子80上に到達する位置とが予め測定されている。図2(a)は、ある光線における波面センサ81上の受光位置(u,v)と撮像素子80上の受光位置(p,q)との対応関係を示している。受光位置の対応関係は、例えば次のようにして測定できる。   In this embodiment, the position where the light beam from the light source is reflected by the beam splitter 101 and reaches the wavefront sensor 81 in a state where the test object is not arranged in the container, and the light beam passes through the beam splitter 101. The position reaching the image sensor 80 is measured in advance. FIG. 2A shows the correspondence between the light receiving position (u, v) on the wavefront sensor 81 and the light receiving position (p, q) on the image sensor 80 for a certain light beam. The correspondence relationship between the light receiving positions can be measured, for example, as follows.

受光位置の対応関係の測定方法は、図1において被検物60の代わりにピンホールを設置する。そのピンホールを被検光に対して垂直方向に走査しながら、波面センサ81上の受光位置(u,v)と撮像素子80上の受光位置(p,q)とを測定する。そして、撮像素子80上の受光位置(p,q)がわかれば波面センサ81上の受光位置(u,v)が算出できるように、例えば、u=f(p)、v=g(q)のような関数として対応関係を算出する。   As a method for measuring the correspondence relationship between the light receiving positions, a pinhole is installed instead of the test object 60 in FIG. The light receiving position (u, v) on the wavefront sensor 81 and the light receiving position (p, q) on the image sensor 80 are measured while scanning the pinhole in a direction perpendicular to the test light. Then, for example, u = f (p), v = g (q) so that the light receiving position (u, v) on the wavefront sensor 81 can be calculated if the light receiving position (p, q) on the image sensor 80 is known. The correspondence is calculated as a function like

図3は、被検物60の透過波面を算出する算出手順を示すフローチャートである。まず、被検物が媒質中に配置される(S10)。次に、被検光の中の特定の光(光線)が、ビームスプリッタ101で第1の光と第2の光とに分割され、波面センサ81が第1の光を受光し、撮像素子80が第2の光を受光する。そして、波面センサ81上における第1の光の受光位置である第1の受光位置(u,v)と、撮像素子80上における第2の光の受光位置である第2の受光位置(p,q)が測定される(S20)。 FIG. 3 is a flowchart showing a calculation procedure for calculating the transmitted wavefront of the test object 60. First, a test object is placed in a medium (S10). Next, specific light (light beam) in the test light is split into first light and second light by the beam splitter 101, the wavefront sensor 81 receives the first light, and the image sensor 80. Receives the second light. The first light receiving position (u 0 , v 0 ) that is the light receiving position of the first light on the wavefront sensor 81 and the second light receiving position (the light receiving position of the second light on the image sensor 80 ( p 0 , q 0 ) is measured (S20).

図1の計測装置の素子の位置は、熱膨張などによって経時変化する。S20の受光位置の測定ステップは、事前に測定してある受光位置の対応関係u=f(p)、v=g(q)を校正するステップである。対応関係の校正には、少なくとも光線1本分の対応関係(u,v)と(p,q)とがあればよい。尚、本実施例における特定の光とは、被検光のうち、被検物60やガラスプリズム110を透過しない光を指す。 The position of the element of the measuring device in FIG. 1 changes with time due to thermal expansion or the like. The light receiving position measuring step in S20 is a step of calibrating the correspondence relationship u = f (p) and v = g (q) of the light receiving positions measured in advance. The calibration of the correspondence relationship only needs to have at least the correspondence relationship (u 0 , v 0 ) and (p 0 , q 0 ) for one ray. In addition, the specific light in a present Example refers to the light which does not permeate | transmit the test object 60 or the glass prism 110 among test light.

被検物60の透過光が波面センサ81で測定される(S30)。被検物60の透過光を測定する際、被検物60を透過しない被検光や参照光は不要な光のため、波面センサ81に不要光が入らないようにアパーチャやシャッター等で不要光を遮光する。   The transmitted light of the test object 60 is measured by the wavefront sensor 81 (S30). When measuring the transmitted light of the test object 60, the test light that does not pass through the test object 60 and the reference light are unnecessary light, so that unnecessary light does not enter the wavefront sensor 81 with an aperture, a shutter, or the like. Shield the light.

そして、撮像素子80上に結像された被検物60の像が測定される(S40)。撮像素子80上に結像される像は、被検物60とガラスプリズム110の輪郭を示す像と、被検光と参照光とで形成される干渉縞の像とが重なった像である。前述のとおり、媒質70やガラスプリズム110を透過した透過光に関する干渉信号と、被検物60の光学中心を透過した透過光に関する干渉信号が検出される。   Then, the image of the test object 60 imaged on the image sensor 80 is measured (S40). The image formed on the image sensor 80 is an image in which an image showing the contours of the test object 60 and the glass prism 110 and an image of interference fringes formed by the test light and the reference light overlap. As described above, the interference signal related to the transmitted light transmitted through the medium 70 and the glass prism 110 and the interference signal related to the transmitted light transmitted through the optical center of the test object 60 are detected.

図2(b)は、被検物60の光学中心を通る光線における波面センサ81上の受光位置(u,v)と撮像素子80上の受光位置(p,q)との対応関係を示している。図2(b)では、簡単のため、容器60や媒質70などは省略されている。被検物60の光学中心を透過した光は、被検物60に入射する光に対して平行に進むため、透過波面を算出する際の基準点として使用しやすい。 FIG. 2B shows the correspondence between the light receiving position (u 1 , v 1 ) on the wavefront sensor 81 and the light receiving position (p 1 , q 1 ) on the image sensor 80 in the light beam passing through the optical center of the test object 60. Showing the relationship. In FIG. 2B, the container 60, the medium 70, and the like are omitted for simplicity. Since the light transmitted through the optical center of the test object 60 travels in parallel to the light incident on the test object 60, it is easy to use it as a reference point when calculating the transmitted wavefront.

第1の受光位置と第2の受光位置とによって校正された関数u=f(p)、v=g(q)と、被検物60の像から測定される光学中心を透過した光の撮像素子上80の受光位置(p,q)とに基づいて、波面センサ上81の基準点が算出される(S50)。最後に、被検物60の透過光の波面センサ81による測定値と基準点(u=f(p),v=g(q))とを用いて、被検物60の透過波面が算出される(S60)。 Imaging of light transmitted through the optical center measured from the function u = f (p), v = g (q) calibrated by the first light receiving position and the second light receiving position, and the image of the test object 60 Based on the light receiving position (p 1 , q 1 ) on the element 80, a reference point on the wavefront sensor 81 is calculated (S50). Finally, using the measured value of the transmitted light of the test object 60 by the wavefront sensor 81 and the reference point (u 1 = f (p 1 ), v 1 = g (q 1 )), the transmission of the test object 60 is performed. A wavefront is calculated (S60).

一般に、シャックハルトマンセンサなどの波面センサで測定される信号には、被検物のどこを通ってきた光が波面センサのどこに到達したかという情報が無い。そのため、波面を算出する際に、基準点をどこにするかが不明瞭である。特に、被検物を傾けた際、波面センサで受光する信号は非回転対称な形となるため、基準点を正確に算出することが難しくなる。正確な基準点がわからないため、算出される波面は誤差を含む。   In general, a signal measured by a wavefront sensor such as a Shack-Hartmann sensor does not have information on where the light that has passed through the test object has reached the wavefront sensor. Therefore, when calculating the wavefront, it is unclear where the reference point is. In particular, when the test object is tilted, the signal received by the wavefront sensor has a non-rotationally symmetric shape, making it difficult to accurately calculate the reference point. Since the exact reference point is not known, the calculated wavefront contains an error.

一方、本実施例では、被検物の光学中心を通る光が波面センサに到達する座標を正確に特定し、そこを基準点として波面を算出するため、被検物60の透過波面を高精度に算出することができる。   On the other hand, in this embodiment, the coordinates at which the light passing through the optical center of the test object reaches the wavefront sensor are accurately specified, and the wavefront is calculated using the coordinates as a reference point. Can be calculated.

本実施例では、波面センサ81の位置で計測される透過波面を算出した。一般に、波面は測定する環境(例えば、被検物60と波面センサ81との距離や媒質70の屈折率等)によって変化する。光学素子の性能を評価するためには、環境に左右されない光学素子特有の物理量に換算する必要がある。光学素子特有の物理量の1つである波面収差(光路長分布)や屈折率分布を算出する方法は次のとおりである。   In this example, the transmitted wavefront measured at the position of the wavefront sensor 81 was calculated. In general, the wavefront changes depending on the environment to be measured (for example, the distance between the test object 60 and the wavefront sensor 81, the refractive index of the medium 70, etc.). In order to evaluate the performance of the optical element, it is necessary to convert it into a physical quantity specific to the optical element that is not influenced by the environment. A method for calculating wavefront aberration (optical path length distribution) and refractive index distribution, which are one of the physical quantities peculiar to the optical element, is as follows.

図4(a)に示される被検物60内の点(x,y)を通る、波長λにおける被検物60の透過波面W(λ,x,y)は、数式1で表される。図4(a)の点(0,0)は、被検物60の光学中心を示している。 The transmitted wavefront W m (λ, x, y) of the test object 60 at the wavelength λ passing through the point (x, y) in the test object 60 shown in FIG. . A point (0, 0) in FIG. 4A indicates the optical center of the test object 60.

Figure 2015210241
Figure 2015210241

ただし、L(x,y)、L(x,y)、L(x,y)、L(x,y)は、図4(b)に示される光線に沿った各構成要素間の幾何学的距離である。図4(b)の光線は、図4(a)に示す被検物60の内部にある点(x,y)を通る光線を指す。L(x,y)は、被検物60内における光線の光路の幾何学的距離、すなわち光線方向の被検物の厚みである。nsample(λ,x,y)は被検物60の波長λにおける屈折率、nmedium(λ)は媒質70の波長λにおける屈折率である。ここでは簡単のため、容器50の側面50a、50bの厚みは無視している。 However, L a (x, y), L b (x, y), L c (x, y), and L d (x, y) are constituent elements along the light beam shown in FIG. The geometric distance between. The light ray in FIG. 4B indicates a light ray passing through the point (x, y) inside the test object 60 shown in FIG. L (x, y) is the geometric distance of the optical path of the light beam in the test object 60, that is, the thickness of the test object in the light beam direction. n sample (λ, x, y) is the refractive index of the test object 60 at the wavelength λ, and n medium (λ) is the refractive index of the medium 70 at the wavelength λ. Here, for simplicity, the thickness of the side surfaces 50a and 50b of the container 50 is ignored.

次に、特定の屈折率分布を有する基準被検物の透過波面Wsim(λ,x,y)を算出する。ここでは、被検物60と同一形状で一様な屈折率分布nsample(λ,0,0)を有する被検物(基準被検物)を仮定し、基準被検物が被検物60と同じ位置に配置されている状態で透過波面を算出する。基準被検物の透過波面Wsim(λ,x,y)は、数式2のように表される。尚、本実施例において、基準被検物の屈折率nsample(λ,0,0)は既知の値としている。 Next, the transmitted wavefront W sim (λ, x, y) of the reference specimen having a specific refractive index distribution is calculated. Here, a test object (reference test object) having the same shape and uniform refractive index distribution n sample (λ, 0, 0) as the test object 60 is assumed, and the reference test object is the test object 60. The transmitted wavefront is calculated in the state where it is arranged at the same position. The transmitted wavefront W sim (λ, x, y) of the reference specimen is expressed as Equation 2. In this embodiment, the refractive index n sample (λ, 0, 0) of the reference specimen is a known value.

Figure 2015210241
Figure 2015210241

基準被検物の透過波面Wsim(λ,x,y)を算出する際に、媒質70の屈折率nmedium(λ)が必要である。媒質70の屈折率nmedium(λ)は、屈折率及び形状が既知のガラスプリズム110の透過波面から算出できる。ガラスプリズムの透過波面は、ミラー105を駆動させる位相シフト法を用いて測定できる。 When calculating the transmitted wavefront W sim (λ, x, y) of the reference specimen , the refractive index n medium (λ) of the medium 70 is required. The refractive index n medium (λ) of the medium 70 can be calculated from the transmitted wavefront of the glass prism 110 whose refractive index and shape are known. The transmitted wavefront of the glass prism can be measured using a phase shift method that drives the mirror 105.

そして、被検物60の透過波面W(λ,x,y)と、基準被検物の透過波面Wsim(λ,x,y)の差分をとれば、被検物60の波面収差(光路長分布)W(λ,x,y)が得られる。波面収差W(λ,x,y)を被検物の厚みL(x,y)で割れば、被検物60の屈折率分布GI(λ,x,y)が算出される。被検物60の波面収差W(λ,x,y)と屈折率分布GI(λ,x,y)とは、数式3のように表される。 Then, if the difference between the transmitted wavefront W m (λ, x, y) of the test object 60 and the transmitted wavefront W sim (λ, x, y) of the reference test object is taken, the wavefront aberration ( Optical path length distribution) W (λ, x, y) is obtained. If the wavefront aberration W (λ, x, y) is divided by the thickness L (x, y) of the test object, the refractive index distribution GI (λ, x, y) of the test object 60 is calculated. The wavefront aberration W (λ, x, y) and the refractive index distribution GI (λ, x, y) of the test object 60 are expressed as Equation 3.

Figure 2015210241
Figure 2015210241

数式1〜3では、被検物60と基準被検物が同一形状L(x,y)を有すると仮定している。被検物60の形状と基準被検物の形状が異なると、得られる波面収差及び屈折率分布は誤差を含む。そのため、あらかじめ被検物60の形状を計測し、その形状を基準被検物の形状に適用する方式を用いることが望ましい。もしくは、基準被検物の形状として設計値L(x,y)を適用し、被検物60の設計値からの形状誤差(形状成分)δL(x,y)を除去する方式を用いてもよい。   In Expressions 1 to 3, it is assumed that the test object 60 and the reference test object have the same shape L (x, y). When the shape of the test object 60 is different from the shape of the reference test object, the obtained wavefront aberration and refractive index distribution include errors. Therefore, it is desirable to use a method of measuring the shape of the test object 60 in advance and applying the shape to the shape of the reference test object. Alternatively, a design value L (x, y) may be applied as the shape of the reference test object, and a method of removing a shape error (shape component) δL (x, y) from the design value of the test object 60 may be used. Good.

形状誤差δL(x,y)は、異なる2種類の波長における波面収差を用いて除去できる。まず、第1の波長λ(例えば、λ=543nm)において透過光が測定され、第1の波長における透過光と基準点とから第1の波長における透過波面W(λ,x,y)が算出される。次に、第2の波長λ(例えば、λ=633nm)において透過光が測定され、第2の波長における透過光と基準点とから第2の波長における透過波面W(λ,x,y)が算出される。第kの波長における透過波面W(λ,x,y)は、数式4のように表される。ただし、k=1,2である。 The shape error δL (x, y) can be removed using wavefront aberrations at two different wavelengths. First, transmitted light is measured at a first wavelength λ 1 (for example, λ 1 = 543 nm), and a transmitted wavefront W m1 , x, x) at the first wavelength is determined from the transmitted light at the first wavelength and the reference point. y) is calculated. Next, the transmitted light is measured at the second wavelength λ 2 (for example, λ 2 = 633 nm), and the transmitted wavefront W m2 , x at the second wavelength is measured from the transmitted light at the second wavelength and the reference point. , Y) is calculated. The transmitted wavefront W mk , x, y) at the k-th wavelength is expressed as Equation 4. However, k = 1,2.

Figure 2015210241
Figure 2015210241

数式2と同様に、第1の波長における基準被検物の透過波面と第2の波長における基準被検物の透過波面とが算出される。また、第1の波長における被検物60の波面収差W(λ,x,y)と第2の波長における被検物60の波面収差W(λ,x,y)とが算出される。第kの波長における波面収差W(λ,x,y)は、数式5の近似式を用いて数式6のように表される。 Similar to Equation 2, the transmitted wavefront of the reference specimen at the first wavelength and the transmitted wavefront of the reference specimen at the second wavelength are calculated. In addition, the wavefront aberration W (λ 1 , x, y) of the test object 60 at the first wavelength and the wavefront aberration W (λ 2 , x, y) of the test object 60 at the second wavelength are calculated. . The wavefront aberration W (λ k , x, y) at the k-th wavelength is expressed as Equation 6 using the approximate equation of Equation 5.

Figure 2015210241
Figure 2015210241

Figure 2015210241
Figure 2015210241

第1及び第2の波長における被検物60の波面収差W(λ,x,y)、W(λ,x,y)と数式7の近似式を用いて形状成分δL(x,y)、δL(0,0)を除去する。これにより、第1の波長における屈折率分布GI(λ,x,y)と第2の波長における屈折率分布GI(λ,x,y)とが数式8のように算出される。 Using the wavefront aberrations W (λ 1 , x, y) and W (λ 2 , x, y) of the test object 60 at the first and second wavelengths and the approximate expression of Equation 7, the shape component δL (x, y ), ΔL (0, 0) is removed. Accordingly, the refractive index distribution GI (λ 1 , x, y) at the first wavelength and the refractive index distribution GI (λ 2 , x, y) at the second wavelength are calculated as in Expression 8.

Figure 2015210241
Figure 2015210241

Figure 2015210241
Figure 2015210241

形状誤差δL(x,y)は、異なる2種類の波長を用いる代わりに、屈折率の異なる2種類の媒質それぞれに被検物を浸して透過波面を計測することで除去できる。2種類の媒質を用いた形状成分除去方法は次のとおりである。   The shape error δL (x, y) can be removed by immersing the test object in each of two types of media having different refractive indexes and measuring the transmitted wavefront instead of using two different types of wavelengths. The shape component removal method using two types of media is as follows.

まず、第1の屈折率を有する第1の媒質(例えば、屈折率〜1.70のオイル)中における被検物60の第1の透過光と、撮像素子80上に結像された被検物60の第1の像とが測定される。次に、第1の屈折率とは異なる第2の屈折率を有する第2の媒質(例えば、屈折率〜1.75のオイル)中における被検物60の第2の透過光と、撮像素子80上に結像された被検物60の第2の像とが測定される。   First, the first transmitted light of the test object 60 in a first medium having a first refractive index (for example, oil having a refractive index of 1.70) and the test image formed on the image sensor 80. A first image of the object 60 is measured. Next, the second transmitted light of the test object 60 in a second medium having a second refractive index different from the first refractive index (for example, oil having a refractive index of 1.75), and an image sensor A second image of the test object 60 imaged on 80 is measured.

そして、第1の受光位置と第2の受光位置と第1の像とに基づいて第1の透過光の第1の基準点が算出され、第1の受光位置と第2の受光位置と第2の像とに基づいて第2の透過光の第2の基準点が算出される。第1の透過光と第1の基準点とを用いて被検物60の第1の透過波面が算出され、第2の透過光と第2の基準点とを用いて被検物60の第2の透過波面が算出される。   Then, a first reference point of the first transmitted light is calculated based on the first light receiving position, the second light receiving position, and the first image, and the first light receiving position, the second light receiving position, and the first light receiving position are calculated. The second reference point of the second transmitted light is calculated based on the two images. The first transmitted wavefront of the test object 60 is calculated using the first transmitted light and the first reference point, and the first transmitted wavefront of the test object 60 is calculated using the second transmitted light and the second reference point. Two transmitted wavefronts are calculated.

数式2と同様に、第1の媒質における基準被検物の透過波面と第2の媒質における基準被検物の透過波面とが算出される。また、第1の媒質における被検物60の波面収差W(λ,x,y)と第2の媒質における被検物60の波面収差W(λ,x,y)とが算出される。第kの媒質における波面収差W(λ,x,y)は、数式5の近似を用いて、数式9のように表される。ただし、n medium(λ)は、第kの媒質の屈折率である。 Similar to Equation 2, the transmitted wavefront of the reference specimen in the first medium and the transmitted wavefront of the reference specimen in the second medium are calculated. Further, the wavefront aberration W 1 (λ, x, y) of the test object 60 in the first medium and the wavefront aberration W 2 (λ, x, y) of the test object 60 in the second medium are calculated. . The wavefront aberration W k (λ, x, y) in the k-th medium is expressed as Equation 9 using the approximation of Equation 5. Here, n k medium (λ) is the refractive index of the kth medium.

Figure 2015210241
Figure 2015210241

最後に、第1及び第2の媒質における被検物60の波面収差W(λ,x,y)、W(λ,x,y)から、形状成分δL(x,y)、δL(0,0)を除去して、屈折率分布GI(λ,x,y)が数式10のように算出される。 Finally, from the wavefront aberrations W 1 (λ, x, y) and W 2 (λ, x, y) of the test object 60 in the first and second media, shape components δL (x, y), δL ( (0, 0) is removed, and the refractive index distribution GI (λ, x, y) is calculated as in Expression 10.

Figure 2015210241
Figure 2015210241

媒質の屈折率は、媒質の温度の変化に伴って変化する。したがって、1種類の媒質でも異なる2種類の温度の下で本実施例を行えば、屈折率の異なる2種類の媒質において本実施例を行ったことと同じことになる。そのため、2種類の温度を用いて被検物60の形状成分が除去されてもよい。   The refractive index of the medium changes as the temperature of the medium changes. Therefore, if the present embodiment is performed under two different temperatures even with one type of medium, it is the same as the present embodiment performed with two types of media having different refractive indexes. Therefore, the shape component of the test object 60 may be removed using two types of temperatures.

本実施例では、波面センサ81としてシャックハルトマンセンサを使用している。波面センサ81は、大きな収差の透過波面を計測できる波面センサであればよい。波面センサ81として、ハルトマン法を用いた波面センサや、タルボ干渉計のようなシアリング干渉法を用いた波面センサが代用できる。   In this embodiment, a Shack-Hartmann sensor is used as the wavefront sensor 81. The wavefront sensor 81 may be any wavefront sensor that can measure a transmitted wavefront having a large aberration. As the wavefront sensor 81, a wavefront sensor using the Hartmann method or a wavefront sensor using a shearing interferometry such as a Talbot interferometer can be used.

本実施例では、干渉光学系にマッハツェンダ干渉計を用いた。その代わりにトワイマングリーン干渉計など、参照光と被検光の光路長差がわかる干渉計であればよい。   In this embodiment, a Mach-Zehnder interferometer is used for the interference optical system. Instead, any interferometer such as a Twiman Green interferometer that can know the optical path length difference between the reference light and the test light may be used.

本実施例では、被検物60を媒質70中に配置した後に、特定の光における第1の受光位置と第2の受光位置とを測定した。その代わりに、被検物60を配置する前に第1の受光位置と第2の受光位置とを測定してもよい。   In this example, the first light receiving position and the second light receiving position in specific light were measured after the test object 60 was placed in the medium 70. Instead, the first light receiving position and the second light receiving position may be measured before placing the test object 60.

本実施例では、被検物の光学中心を透過した光をもとに基準点を算出した。その代わりに、被検物の外形(輪郭)から基準点を算出してもよいし、被検物の傾き角度と被検物の設計値とに基づいた計算により基準点を算出してもよい。   In this example, the reference point was calculated based on the light transmitted through the optical center of the test object. Instead, the reference point may be calculated from the outer shape (contour) of the test object, or the reference point may be calculated by calculation based on the tilt angle of the test object and the design value of the test object. .

本実施例では、実施例1で使用した干渉光学系を使用せずに、被検物60の透過波面を算出する方法を説明する。図5は、本発明における実施例2の波面計測装置の概略構成を示す図である。波面センサは、2次元回折格子83とCCDやCMOSのような2次元センサ82で構成されるタルボ干渉計を用いている。光源11はレーザダイオード、被検物60は正の屈折力をもつレンズである。実施例1と同様の構成については、同一の符号を付して説明する。   In this example, a method for calculating the transmitted wavefront of the test object 60 without using the interference optical system used in Example 1 will be described. FIG. 5 is a diagram showing a schematic configuration of the wavefront measuring apparatus according to the second embodiment of the present invention. The wavefront sensor uses a Talbot interferometer including a two-dimensional diffraction grating 83 and a two-dimensional sensor 82 such as a CCD or CMOS. The light source 11 is a laser diode, and the test object 60 is a lens having a positive refractive power. The same configurations as those in the first embodiment will be described with the same reference numerals.

光源11からの光は、ピンホール30を通って発散波となり、コリメータレンズ40を通って平行光となる。容器50には、被検物60と媒質70と不図示の温度計が配置されている。媒質70の屈折率は、温度計により測定された媒質70の温度と、媒質70の屈折率の温度係数とを用いて算出される。容器50を透過した光の一部は、ビームスプリッタ101を透過して、結像レンズ45を介して撮像素子80で検出される。容器50を透過した光の一部は、ビームスプリッタ101で反射して、2次元回折格子83と2次元センサ82で構成されるタルボ干渉計で検出される。撮像素子80は、被検物60の位置と、結像レンズ45に関して共役な位置に配置されている。   The light from the light source 11 becomes a divergent wave through the pinhole 30 and becomes a parallel light through the collimator lens 40. In the container 50, a test object 60, a medium 70, and a thermometer (not shown) are arranged. The refractive index of the medium 70 is calculated using the temperature of the medium 70 measured by a thermometer and the temperature coefficient of the refractive index of the medium 70. A part of the light transmitted through the container 50 passes through the beam splitter 101 and is detected by the image sensor 80 through the imaging lens 45. A part of the light transmitted through the container 50 is reflected by the beam splitter 101 and detected by a Talbot interferometer including a two-dimensional diffraction grating 83 and a two-dimensional sensor 82. The image sensor 80 is disposed at a position conjugate with the position of the test object 60 and the imaging lens 45.

本実施例における被検物60の波面計測方法を以下に示す。本実施例の方法は、まず、特定の光をビームスプリッタ101で第1の光と第2の光とに分割し、第1の光をタルボ干渉計(波面センサ)で受光したときの第1の受光位置と、第2の光を撮像素子80で受光したときの第2の受光位置とを測定する。被検物60を媒質70中に配置した後、被検物60を透過して収束する透過光をタルボ干渉計で測定し、撮像素子80上に結像された被検物60の像を測定する。   A method for measuring the wavefront of the test object 60 in this embodiment will be described below. In the method of this embodiment, first, specific light is split into first light and second light by the beam splitter 101, and the first light is received by the Talbot interferometer (wavefront sensor). And the second light receiving position when the second light is received by the image sensor 80 are measured. After disposing the test object 60 in the medium 70, the transmitted light that passes through the test object 60 and converges is measured with a Talbot interferometer, and the image of the test object 60 imaged on the image sensor 80 is measured. To do.

撮像素子80上に結像された被検物60の像の外形から、被検物60の像の中心を算出する。第1の受光位置と、第2の受光位置と、被検物60の像から算出した中心とに基づいて、透過光の基準点を算出する。透過光と透過光の基準点とを用いて被検物の透過波面を算出する。   The center of the image of the test object 60 is calculated from the outer shape of the image of the test object 60 formed on the image sensor 80. A reference point of transmitted light is calculated based on the first light receiving position, the second light receiving position, and the center calculated from the image of the test object 60. The transmitted wavefront of the test object is calculated using the transmitted light and the reference point of the transmitted light.

本実施例では、干渉縞をもとに基準点を算出した実施例1と異なり、被検物60の像の外形をもとに基準点を算出した。干渉縞を用いた基準点算出方法は、被検物内で屈折率分布が偏芯している場合、屈折率分布の影響で基準点がシフトするため、屈折率分布の偏芯量を計測できない。一方、外形を用いた基準点の算出方法は、屈折率分布の偏芯に影響されずに基準点を算出できるため、屈折率分布の偏芯量も算出できる。ただし、被検物の像を高い分解能で得る必要がある。   In this example, unlike Example 1 in which the reference point was calculated based on the interference fringes, the reference point was calculated based on the outer shape of the image of the test object 60. The reference point calculation method using interference fringes cannot measure the eccentricity of the refractive index distribution because the reference point shifts due to the influence of the refractive index distribution when the refractive index distribution is eccentric in the specimen. . On the other hand, since the reference point calculation method using the outer shape can calculate the reference point without being affected by the eccentricity of the refractive index distribution, the eccentricity amount of the refractive index distribution can also be calculated. However, it is necessary to obtain an image of the test object with high resolution.

実施例1、実施例2で説明した装置及び方法を用いて、計測された透過波面の結果を、モールドレンズ等の光学素子の製造方法にフィードバックすることも可能である。   Using the apparatus and method described in the first and second embodiments, it is also possible to feed back the result of the measured transmitted wavefront to a method for manufacturing an optical element such as a molded lens.

光学素子は、光学素子の設計工程、金型の設計工程及び、設計された金型を用いた光学素子のモールド工程を経て製造される。モールドされた光学素子は、その形状精度が評価され、精度不足である場合は金型を補正して再度モールドを行う。形状精度が良好であれば、光学素子の光学性能が評価される。この光学性能の評価工程に、図3を用いて説明した透過波面算出フローを組み込むことで、高屈折率硝材を母材としてモールドされる光学素子の量産が可能になる。なお、光学性能が低い場合は、光学面を補正した光学素子を設計し直す。   The optical element is manufactured through an optical element design process, a mold design process, and an optical element mold process using the designed mold. The molded optical element is evaluated for its shape accuracy, and when the accuracy is insufficient, the mold is corrected and the molding is performed again. If the shape accuracy is good, the optical performance of the optical element is evaluated. Incorporating the transmission wavefront calculation flow described with reference to FIG. 3 into the optical performance evaluation step enables mass production of optical elements molded using a high refractive index glass material as a base material. If the optical performance is low, the optical element whose optical surface is corrected is redesigned.

以上、説明した各実施例は代表的な例に過ぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。   The embodiments described above are merely representative examples, and various modifications and changes can be made to the embodiments when the present invention is implemented.

60 被検物
80 撮像素子
81 波面センサ
101 ビームスプリッタ
60 Test Object 80 Image Sensor 81 Wavefront Sensor 101 Beam Splitter

Claims (11)

光源からの特定の光を第1の光と第2の光とに分割し、前記第1の光を波面センサで受光したときの第1の受光位置と、前記第2の光を撮像素子で受光したときの第2の受光位置とを測定するステップと、
前記光源からの光を被検物に入射させて、前記被検物を透過した光を前記波面センサで測定し、前記被検物の像を前記撮像素子で測定するステップと、
前記第1の受光位置と、前記第2の受光位置と、前記被検物の像とに基づいて前記波面センサ上の基準点を算出し、前記被検物を透過した光の前記波面センサによる測定値と、前記基準点とを用いて前記被検物の透過波面を算出するステップとを有することを特徴とする波面計測方法。
Specific light from the light source is divided into first light and second light, and the first light receiving position when the first light is received by the wavefront sensor, and the second light is captured by the image sensor. Measuring a second light receiving position when light is received;
Making the light from the light source incident on the test object, measuring the light transmitted through the test object with the wavefront sensor, and measuring the image of the test object with the imaging device;
A reference point on the wavefront sensor is calculated based on the first light receiving position, the second light receiving position, and the image of the test object, and the light transmitted through the test object is generated by the wavefront sensor. A wavefront measurement method comprising: calculating a transmitted wavefront of the test object using a measured value and the reference point.
前記第1の受光位置と、前記第2の受光位置と、前記被検物の像から測定される前記被検物の光学中心を透過した光の前記撮像素子上の受光位置とに基づいて、前記基準点を算出することを特徴とする請求項1に記載の波面計測方法。   Based on the first light receiving position, the second light receiving position, and the light receiving position on the image sensor of the light transmitted through the optical center of the test object measured from the image of the test object, The wavefront measurement method according to claim 1, wherein the reference point is calculated. 前記第1の受光位置と、前記第2の受光位置と、前記被検物の像の外形から算出される前記被検物の像の中心とに基づいて、前記基準点を算出することを特徴とする請求項1に記載の波面計測方法。   The reference point is calculated based on the first light receiving position, the second light receiving position, and the center of the image of the test object calculated from the outer shape of the image of the test object. The wavefront measuring method according to claim 1. 前記光源からの光をピンホールに入射させ、該ピンホールを通過した光を分割して前記第1の光および前記第2の光とし、前記第1の光を前記波面センサで受光したときの第1の受光位置と、前記第2の光を前記撮像素子で受光したときの第2の受光位置とを測定することを特徴とする請求項1乃至3のいずれか1項に記載の波面計測方法。   When the light from the light source is incident on a pinhole, the light that has passed through the pinhole is divided into the first light and the second light, and the first light is received by the wavefront sensor 4. The wavefront measurement according to claim 1, wherein a first light receiving position and a second light receiving position when the second light is received by the imaging device are measured. 5. Method. 前記被検物の透過波面と、特定の屈折率分布を有する基準被検物が前記被検物の位置に配置されているときの透過波面との差分である波面収差を算出することを特徴とする請求項1乃至4のいずれか1項に記載の波面計測方法。   Calculating a wavefront aberration which is a difference between a transmitted wavefront of the test object and a transmitted wavefront when a reference test object having a specific refractive index distribution is arranged at the position of the test object, The wavefront measuring method according to any one of claims 1 to 4. 第1の波長における前記被検物の透過光と、前記第1の波長とは異なる第2の波長における前記被検物の透過光とを前記波面センサで測定するステップと、
前記第1の波長における前記被検物の透過光の測定値と、前記基準点とを用いて、前記第1の波長における前記被検物の透過波面を算出し、前記第2波長における前記被検物の透過光の測定値と、前記基準点とを用いて、前記第2の波長における前記被検物の透過波面を算出し、前記第1波長における前記被検物の透過波面と前記第2波長における前記被検物の透過波面とに基づいて、前記被検物の形状成分を除去して前記被検物の屈折率分布を算出するステップとを有することを特徴とする請求項1乃至5のいずれか1項に記載の波面計測方法。
Measuring the transmitted light of the test object at a first wavelength and the transmitted light of the test object at a second wavelength different from the first wavelength with the wavefront sensor;
Using the measured value of the transmitted light of the test object at the first wavelength and the reference point, the transmission wavefront of the test object at the first wavelength is calculated, and the test object at the second wavelength is calculated. Using the measured value of the transmitted light of the test object and the reference point, the transmitted wavefront of the test object at the second wavelength is calculated, and the transmitted wavefront of the test object at the first wavelength and the first wave 2. The method according to claim 1, further comprising: calculating a refractive index distribution of the test object by removing a shape component of the test object based on a transmitted wavefront of the test object at two wavelengths. 6. The wavefront measuring method according to any one of 5 above.
第1の屈折率を有する第1の媒質中における前記被検物の第1の透過光と、前記第1の屈折率とは異なる第2の屈折率を有する第2の媒質中における前記被検物の第2の透過光とを前記波面センサで測定するステップと、
前記第1の媒質中における前記被検物の第1の像と、前記第2の媒質中における前記被検物の第2の像とを前記撮像素子で測定するステップと、
前記第1の受光位置と、前記第2の受光位置と、前記第1の像とに基づいて前記第1の透過光の第1の基準点を算出し、前記第1の受光位置と、前記第2の受光位置と、前記第2の像とに基づいて前記第2の透過光の第2の基準点を算出し、前記第1の透過光の測定値と、前記第1の基準点とを用いて前記被検物の第1の透過波面を算出し、前記第2の透過光の測定値と、前記第2の基準点とを用いて前記被検物の第2の透過波面を算出し、前記第1の透過波面と前記第2の透過波面とに基づいて、前記被検物の形状成分を除去して前記被検物の屈折率分布を算出するステップとを有することを特徴とする請求項1乃至5のいずれか1項に記載の波面計測方法。
The first transmitted light of the test object in the first medium having the first refractive index and the test in the second medium having a second refractive index different from the first refractive index. Measuring the second transmitted light of the object with the wavefront sensor;
Measuring a first image of the test object in the first medium and a second image of the test object in the second medium with the imaging device;
A first reference point of the first transmitted light is calculated based on the first light receiving position, the second light receiving position, and the first image, and the first light receiving position, A second reference point of the second transmitted light is calculated based on the second light receiving position and the second image, and the measured value of the first transmitted light, the first reference point, Is used to calculate the first transmitted wavefront of the test object, and the second transmitted wavefront of the test object is calculated using the measured value of the second transmitted light and the second reference point. And calculating a refractive index distribution of the test object by removing a shape component of the test object based on the first transmitted wavefront and the second transmitted wavefront. The wavefront measuring method according to any one of claims 1 to 5.
光学素子をモールドするステップと、
請求項1乃至7のいずれか1項に記載の波面計測方法を用いて前記光学素子の透過波面を計測することによって、モールドされた光学素子の光学性能を評価するステップと、を含むことを特徴とする光学素子の製造方法。
Molding the optical element;
Evaluating the optical performance of the molded optical element by measuring the transmitted wavefront of the optical element using the wavefront measuring method according to any one of claims 1 to 7. A method for manufacturing an optical element.
光源と、
該光源からの特定の光を第1の光と第2の光とに分割し、前記第1の光を波面センサで受光したときの第1の受光位置と、前記第2の光を撮像素子で受光したときの第2の受光位置とを測定し、前記被検物を透過した光を前記波面センサで測定し、前記撮像素子上に結像された前記被検物の像を測定する測定手段と、
前記第1の受光位置と、前記第2の受光位置と、前記被検物の像とに基づいて前記波面センサ上の基準点を算出し、前記被検物を透過した光の前記波面センサによる測定値と、前記基準点とを用いて前記被検物の透過波面を算出する算出手段とを有することを特徴とする波面計測装置。
A light source;
Specific light from the light source is divided into first light and second light, and the first light receiving position when the first light is received by a wavefront sensor, and the second light is an image sensor. And measuring the second light receiving position when the light is received by the laser, measuring the light transmitted through the test object with the wavefront sensor, and measuring the image of the test object formed on the image sensor. Means,
A reference point on the wavefront sensor is calculated based on the first light receiving position, the second light receiving position, and the image of the test object, and the light transmitted through the test object is generated by the wavefront sensor. A wavefront measuring apparatus comprising: a calculation unit that calculates a transmitted wavefront of the test object using a measured value and the reference point.
前記波面センサは、シャックハルトマンセンサであることを特徴とする請求項9に記載の波面計測装置。   The wavefront measuring device according to claim 9, wherein the wavefront sensor is a Shack-Hartmann sensor. 前記波面センサは、タルボ干渉計であることを特徴とする請求項9に記載の波面計測装置。   The wavefront measuring apparatus according to claim 9, wherein the wavefront sensor is a Talbot interferometer.
JP2014093886A 2014-04-30 2014-04-30 Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element Pending JP2015210241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093886A JP2015210241A (en) 2014-04-30 2014-04-30 Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093886A JP2015210241A (en) 2014-04-30 2014-04-30 Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element

Publications (1)

Publication Number Publication Date
JP2015210241A true JP2015210241A (en) 2015-11-24

Family

ID=54612513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093886A Pending JP2015210241A (en) 2014-04-30 2014-04-30 Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element

Country Status (1)

Country Link
JP (1) JP2015210241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11513344B2 (en) * 2018-05-25 2022-11-29 Canon Kabushiki Kaisha Sensor and measurement apparatus for wavefront of light from optical element, and method of manufacturing optical element and optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11513344B2 (en) * 2018-05-25 2022-11-29 Canon Kabushiki Kaisha Sensor and measurement apparatus for wavefront of light from optical element, and method of manufacturing optical element and optical system

Similar Documents

Publication Publication Date Title
JP6157240B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
JP4895409B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
KR101245607B1 (en) Refractive index distribution measurement method and refractive index distribution measurement apparatus
KR101391160B1 (en) Refractive index distribution measuring method, refractive index distribution measuring apparatus and method of producing optical element
JP2011247692A (en) Method and apparatus for measuring distribution of diffraction factor
KR20160145496A (en) Refractive index measurement method, measurement apparatus, and optical element manufacturing method
JP5868142B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP2014016253A (en) Refractive index distribution measurement method, method of manufacturing optical element, and refractive index distribution measurement instrument
CN103454249A (en) Method and device for detecting uniformity of optical glass based on white light interferometry
KR20160142235A (en) Measurement method, measurement apparatus, and manufacturing method for optical element
JP6207383B2 (en) Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method
JP2015105850A (en) Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element
JPH1144641A (en) Method and apparatus for measuring refractive index distribution
JP6157241B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
JP2017198613A (en) Refractive index measurement method, refractive index measurement device, and optical element manufacturing method
JP6700699B2 (en) Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method
JP2015210241A (en) Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element
JP2011220903A (en) Refractive-index measurement method and device
KR102057153B1 (en) Curvature of both sides surface and refractive index profile simultaneous measurement method of the lens
JP2015010920A (en) Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method
JP5894464B2 (en) Measuring device
JP2016109595A (en) Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method
KR20170078084A (en) Curvature of both sides surface and refractive index profile simultaneous measurement equipment and method of the lens
JP6407000B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
JP2016109592A (en) Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method