JP2019199842A - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- JP2019199842A JP2019199842A JP2018095434A JP2018095434A JP2019199842A JP 2019199842 A JP2019199842 A JP 2019199842A JP 2018095434 A JP2018095434 A JP 2018095434A JP 2018095434 A JP2018095434 A JP 2018095434A JP 2019199842 A JP2019199842 A JP 2019199842A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- injection amount
- intake
- asynchronous
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
【課題】燃料の霧化を促進しつつも噴射量の算出精度の低下を抑制できるようにした内燃機関の制御装置を提供する。【解決手段】CPU52は、燃焼室24内に充填される新気量に基づき、要求噴射量を算出し、その一部を、非同期第1噴射量として早期に噴射する。その後、CPU52は、新たに取得した新気量に基づき要求噴射量を更新し、更新に応じて、吸気バルブ18の開弁期間に同期して燃料を噴射する吸気同期噴射の噴射量である同期噴射量を算出し、要求噴射量から非同期第1噴射量と同期噴射量を減算した値を、非同期第2噴射量に代入する。そしてCPU52は、非同期第2噴射量の燃料の噴射の後、同期噴射量の燃料を噴射する。【選択図】図1
Description
本発明は、吸気通路に燃料を噴射するポート噴射弁を備える内燃機関に適用される内燃機関の制御装置に関する。
たとえば下記特許文献1には、排気行程と吸気行程とのそれぞれにおいて、ポート噴射弁から燃料を噴射するマルチ噴射処理を実行する制御装置が記載されている。
ところで、上記マルチ噴射処理を、冷間時に実行する場合等には、排気行程の燃料噴射を極力進角側のタイミングとして霧化時間を確保することが望ましい。ただし、その場合、噴射量の算出タイミングをより進角側とする必要があることから、噴射量の算出精度が低下するおそれがある。
上記課題を解決すべく、内燃機関の制御装置は、吸気通路に燃料を噴射するポート噴射弁を備える内燃機関に適用され、吸気バルブの開弁期間に同期して燃料を噴射する吸気同期噴射の噴射量である同期噴射量と、前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する吸気非同期噴射の噴射量である非同期噴射量とに要求噴射量を分割し、前記ポート噴射弁を操作して前記吸気非同期噴射、前記吸気同期噴射の順に実行するマルチ噴射処理を実行し、前記マルチ噴射処理は、前記内燃機関の気筒内に充填される新気量に比例した噴射量であるベース噴射量を算出するベース噴射量算出処理と、前記ベース噴射量を補正して前記要求噴射量を算出する要求噴射量算出処理と、前記要求噴射量に基づき、前記非同期噴射量の一部である非同期第1噴射量の燃料を噴射する非同期第1噴射処理と、前記非同期第1噴射処理の後に前記ベース噴射量および前記要求噴射量を更新する更新処理と、前記同期噴射量を算出する同期算出処理と、更新された前記要求噴射量から前記非同期第1噴射量と前記同期噴射量とを減算した値である非同期第2噴射量の燃料を噴射する非同期第2噴射処理と、前記非同期第2噴射処理の後に前記同期噴射量の燃料を噴射する同期噴射処理と、を含む。
上記構成では、非同期第2噴射量の設定により、非同期第1噴射量と非同期第2噴射量と同期噴射量との和を更新された要求噴射量とすることができる。このため、更新される以前の要求噴射量に基づき非同期第1噴射量を算出し、この量の燃料を噴射することによって燃料の霧化を促進しつつも、噴射量の算出精度の低下を抑制することができる。
以下、内燃機関の制御装置にかかる一実施形態について図面を参照しつつ説明する。
図1に示す内燃機関10の吸気通路12には、スロットルバルブ14が設けられており、スロットルバルブ14の下流には、ポート噴射弁16が設けられている。吸気通路12に吸入された空気とポート噴射弁16から噴射された燃料とは、吸気バルブ18の開弁に伴って、シリンダ20およびピストン22によって区画された燃焼室24に流入する。燃焼室24において、燃料と空気との混合気は、点火装置26の火花放電によって燃焼に供され、その際生成される燃焼エネルギは、ピストン22を介してクランク軸28の回転エネルギに変換される。燃焼に供された混合気は、排気バルブ30の開弁に伴って、排気として排気通路32に排出される。排気通路32には、触媒34が設けられている。
図1に示す内燃機関10の吸気通路12には、スロットルバルブ14が設けられており、スロットルバルブ14の下流には、ポート噴射弁16が設けられている。吸気通路12に吸入された空気とポート噴射弁16から噴射された燃料とは、吸気バルブ18の開弁に伴って、シリンダ20およびピストン22によって区画された燃焼室24に流入する。燃焼室24において、燃料と空気との混合気は、点火装置26の火花放電によって燃焼に供され、その際生成される燃焼エネルギは、ピストン22を介してクランク軸28の回転エネルギに変換される。燃焼に供された混合気は、排気バルブ30の開弁に伴って、排気として排気通路32に排出される。排気通路32には、触媒34が設けられている。
クランク軸28の回転動力は、タイミングチェーン38を介して、吸気側カム軸40および排気側カム軸42に伝達される。なお、本実施形態では、吸気側カム軸40には、吸気側バルブタイミング調整装置44を介してタイミングチェーン38の動力が伝達される。吸気側バルブタイミング調整装置44は、クランク軸28と吸気側カム軸40との回転位相差を調整することによって、吸気バルブ18の開弁タイミングを調整するアクチュエータである。
制御装置50は、内燃機関10を制御対象とし、その制御量(トルク、排気成分比率等)を制御するために、上記スロットルバルブ14や、ポート噴射弁16、点火装置26、吸気側バルブタイミング調整装置44等の内燃機関10の操作部を操作する。この際、制御装置50は、クランク角センサ60の出力信号Scrや、エアフローメータ62によって検出される吸入空気量Ga、スロットルセンサ64によって検出されるスロットルバルブ14の開口度TA、アクセルセンサ74によって検出されるアクセルペダルの操作量(アクセル操作量ACCP)を参照する。また制御装置50は、排気通路32に設けられた空燃比センサ66によって検出される空燃比Afや、吸気側カム角センサ68の出力信号Sca、水温センサ70によって検出される内燃機関10の冷却水の温度(水温THW)、大気圧センサ72によって検出される大気圧Paを参照する。
制御装置50は、CPU52、ROM54および制御装置50内の各箇所に電力を供給する電源回路56を備えており、ROM54に記憶されたプログラムをCPU52が実行することにより、上記制御量の制御を実行する。
図2に、制御装置50が実行する処理の一部を示す。図2に示す処理は、ROM54に記憶されたプログラムをCPU52が実行することにより実現される。
吸気位相差算出処理M10は、クランク角センサ60の出力信号Scrと吸気側カム角センサ68の出力信号Scaとに基づき、クランク軸28の回転角度に対する吸気側カム軸40の回転角度の位相差である吸気位相差DINを算出する処理である。目標吸気位相差算出処理M12は、内燃機関10の動作点に基づき、目標吸気位相差DIN*を可変設定する処理である。なお、本実施形態では、回転速度NEと充填効率ηとによって動作点を定義している。ここで、CPU52は、回転速度NEを、クランク角センサ60の出力信号Scrに基づき算出し、充填効率ηを回転速度NEおよび吸入空気量Gaに基づき算出する。なお、充填効率ηは、燃焼室24内に充填される新気量を定めるパラメータである。
吸気位相差算出処理M10は、クランク角センサ60の出力信号Scrと吸気側カム角センサ68の出力信号Scaとに基づき、クランク軸28の回転角度に対する吸気側カム軸40の回転角度の位相差である吸気位相差DINを算出する処理である。目標吸気位相差算出処理M12は、内燃機関10の動作点に基づき、目標吸気位相差DIN*を可変設定する処理である。なお、本実施形態では、回転速度NEと充填効率ηとによって動作点を定義している。ここで、CPU52は、回転速度NEを、クランク角センサ60の出力信号Scrに基づき算出し、充填効率ηを回転速度NEおよび吸入空気量Gaに基づき算出する。なお、充填効率ηは、燃焼室24内に充填される新気量を定めるパラメータである。
吸気位相差制御処理M14は、吸気位相差DINを目標吸気位相差DIN*に制御するために吸気側バルブタイミング調整装置44を操作すべく、操作信号MS4を出力する処理である。
開口度目標値設定処理M16は、アクセル操作量ACCPに基づき、スロットルバルブ14の開口度の目標値(目標開口度TA*)を設定する処理である。具体的には、開口度目標値設定処理M16は、たとえば、アクセル操作量ACCPが大きい場合に小さい場合よりも目標開口度TA*を大きい値に設定する処理である。
遅延処理M18は、目標開口度TA*を所定の遅延時間遅延させた遅延開口度TArを算出する処理である。スロットル制御処理M20は、スロットルセンサ64によって検出される開口度TAを遅延開口度TArに制御するために、スロットルバルブ14を操作すべく、操作信号MS1を出力する処理である。
ローパスフィルタM22は、実際の開口度TAを目標開口度TA*に制御すると仮定した場合、目標開口度TA*の変化に対して実際の開口度TAが遅延することに鑑み、目標開口度TA*の1次遅れ処理値を予測開口度TAeとして出力する処理である。
スロットルモデルM24は、後述する処理によって算出される吸気圧Pm1と、予測開口度TAeおよび大気圧Paとに基づきスロットルバルブ14を通過する空気量であるスロットル流量mtを算出する処理である。具体的には、スロットルモデルM24は、大気圧Paが高い場合に低い場合よりもスロットル流量mtを大きい値に算出し、吸気圧Pm1が高い場合に低い場合よりもスロットル流量mtを小さい値に算出し、予測開口度TAeが大きい場合に小さい場合よりもスロットル流量mtを大きい値に算出する処理である。具体的には、スロットルモデルM24は、入力パラメータである予測開口度TAe、大気圧Paおよび吸気圧Pm1と、出力パラメータであるスロットル流量mtとを関係づけるモデル式に基づきスロットル流量mtを算出する処理である。なお、モデル式は、上記入力パラメータと出力パラメータとを直接結び付ける式とは限らず、たとえば式の係数が、入力パラメータによって可変設定されるものであってもよい。
インマニモデルM26は、後述する処理によって算出される閉弁時流入空気量Mc1と、スロットル流量mtとに基づき、上記吸気圧Pm1を算出する処理である。閉弁時流入空気量Mc1は、1燃焼サイクルにおける燃焼室24への流入空気量のうち吸気バルブ18の閉弁時期までに吸気通路12に吹き戻された量を除いた値である。具体的には、インマニモデルM26は、スロットル流量mtから閉弁時流入空気量Mc1を減算した値が大きい場合に小さい場合よりも吸気圧Pm1の増加速度が大きくなるように上記吸気圧Pm1を算出する処理である。
吸気弁モデルM28は、吸気圧Pm1と、吸気位相差DINと、回転速度NEとに基づき、上記閉弁時流入空気量Mc1を算出する処理である。吸気弁モデルM28は、吸気圧Pm1が高い場合に低い場合よりも閉弁時流入空気量Mc1を大きい値に算出する処理である。また、吸気弁モデルM28は、吸気位相差DINが、吸気バルブ18の閉弁時期をBDCよりも遅角側とする場合、より遅角側であるほど、閉弁時流入空気量Mc1を小さい値に算出する処理である。
定常値補正処理M30は、吸入空気量Gaや開口度TAに基づき、定常状態において、吸気圧Pm1を吸入空気量Gaに応じた値となるように補正するための補正量ΔPmを算出する処理である。補正処理M32は、吸気圧Pm1から補正量ΔPmを減算することによって吸気圧Pmを算出する処理である。吸気圧Pmは、定常状態においては吸入空気量Gaから把握される吸気圧に一致し、過渡状態においては吸気圧Pm1の応答性を重視した値となっている。
上記定常値補正処理M30は、たとえば吸気圧の推定処理として、次の2つの処理を実行し、それらの差を補正量ΔPmとして算出する処理とすればよい。すなわち、第1の推定処理は、スロットルモデルM24、インマニモデルM26および吸気弁モデルM28と同様のモデルを用いるものの、予測開口度TAeに代えて開口度TAを入力とする処理である。一方、第2の推定処理は、インマニモデルM26および吸気弁モデルM28と同様のモデルを用い、スロットル流量mtに代えて吸入空気量Gaを入力とする処理である。ここで、第1の推定処理によって推定される吸気圧は、定常状態においてはスロットル流量mt相当の量に基づく吸気圧となるため、補正量ΔPmは、定常状態においてはスロットル流量mtの吸入空気量Gaに対する誤差を補償する値となる。一方、過渡時においては、第1の推定処理によって推定される吸気圧の応答性は第2の推定処理によって推定された吸気圧の応答性に近似するため、過渡時においては吸気圧Pmに吸気圧Pm1の変化を顕在化させることができる値となっている。
吸気弁モデルM34は、吸気圧Pmと、吸気位相差DINと、回転速度NEとを入力パラメータとし、入力パラメータに基づき、出力パラメータとしての閉弁時流入空気量Mcを算出する処理である。吸気弁モデルM34は、吸気弁モデルM28とは入力パラメータが相違するものの、入力パラメータに基づき出力パラメータを算出する処理自体は同様の処理を実行する部分である。
閉弁時流入空気量Mcは、所定期間だけ未来において燃焼室24に吸入されている空気量の予測値となっている。これは、スロットルバルブ14が遅延開口度TArに制御されている一方、閉弁時流入空気量Mcは、スロットルバルブ14の開口度が目標開口度TA*に制御される場合の値であるからである。
噴射弁操作処理M36は、閉弁時流入空気量Mc、吸気位相差DIN、回転速度NE、吸気圧Pm、水温THW、および空燃比Afを取り込み、ポート噴射弁16を操作する処理である。
図3に、噴射弁操作処理M36の処理の手順を示す。図3に示す処理は、ROM54に記憶されたプログラムをCPU52がたとえば所定周期で繰り返し実行することにより実現される。なお、以下では、先頭に「S」を付与した数字によって各処理のステップ番号を表現する。
図3に示す一連の処理において、CPU52は、まず、上記閉弁時流入空気量Mcに基づき、空燃比を目標空燃比に開ループ制御するための噴射量であるベース噴射量Qbを算出する(S10)。具体的には、CPU52は、燃焼室24内に充填される新気量の最大値に対する閉弁時流入空気量Mcの割合から充填効率ηを算出し、充填効率ηに、同充填効率の1単位に対して空燃比を目標空燃比とするうえで必要な噴射量を乗算することによってベース噴射量Qbを算出する。
次にCPU52は、1燃焼サイクルにおいて1つの気筒に3回の燃料噴射をする要求があるか否かを判定する(S12)。ここで、3回の燃料噴射をする要求は、以下の条件(ア)および条件(イ)の論理積が真である場合に生じるものとする。
条件(ア):マルチ噴射処理の要求がある旨の条件。
条件(イ):回転速度NEが閾値以下である旨の条件。
ここで、上記マルチ噴射処理は、吸気バルブ18の開弁期間に同期して燃料を噴射する吸気同期噴射と、吸気同期噴射よりも進角側のタイミングにて燃料を噴射する吸気非同期噴射との2つの燃料噴射を実行する処理である。詳しくは、吸気同期噴射は、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置(吸気ポートの下流端、換言すれば燃焼室24への入り口部分)に到達する期間が吸気バルブ18の開弁期間に収まるように燃料を噴射するものである。ここで、「到達する期間」の始点は、ポート噴射弁16から噴射された燃料のうちの最も早いタイミングで噴射された燃料が開弁前の位置に到達するタイミングであり、終点は、ポート噴射弁16から噴射された燃料のうちの最も遅いタイミングで噴射された燃料が開弁前の位置に到達するタイミングである。これに対し、吸気非同期噴射は、ポート噴射弁16から噴射された燃料が吸気バルブ18が開弁する前に吸気バルブ18に到達するように燃料を噴射するものである。換言すれば、吸気非同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁するまでは吸気通路12内で滞留し、開弁した後に燃焼室24内に流入する噴射である。なお、本実施形態において吸気非同期噴射は、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとする。
条件(イ):回転速度NEが閾値以下である旨の条件。
ここで、上記マルチ噴射処理は、吸気バルブ18の開弁期間に同期して燃料を噴射する吸気同期噴射と、吸気同期噴射よりも進角側のタイミングにて燃料を噴射する吸気非同期噴射との2つの燃料噴射を実行する処理である。詳しくは、吸気同期噴射は、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置(吸気ポートの下流端、換言すれば燃焼室24への入り口部分)に到達する期間が吸気バルブ18の開弁期間に収まるように燃料を噴射するものである。ここで、「到達する期間」の始点は、ポート噴射弁16から噴射された燃料のうちの最も早いタイミングで噴射された燃料が開弁前の位置に到達するタイミングであり、終点は、ポート噴射弁16から噴射された燃料のうちの最も遅いタイミングで噴射された燃料が開弁前の位置に到達するタイミングである。これに対し、吸気非同期噴射は、ポート噴射弁16から噴射された燃料が吸気バルブ18が開弁する前に吸気バルブ18に到達するように燃料を噴射するものである。換言すれば、吸気非同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁するまでは吸気通路12内で滞留し、開弁した後に燃焼室24内に流入する噴射である。なお、本実施形態において吸気非同期噴射は、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとする。
本実施形態においてマルチ噴射処理は、PNを低減することを狙って実行される。すなわち、水温THWがある程度低い場合、充填効率ηがある程度大きい領域においてシングル噴射処理を実行すると、PNが増加する傾向がある。これは、充填効率ηが大きい場合には小さい場合よりもポート噴射弁16から噴射される燃料量が大きい値となり、結果、吸気通路12に付着する燃料量が多くなることに起因していると考えられる。詳しくは、吸気通路12に付着した燃料量がある程度多くなる場合、付着した燃料のせん断によって、付着した燃料の一部が液滴のまま燃焼室24に流入するためであると推察される。そこで本実施形態では、充填効率ηがある程度大きい領域においては、ポート噴射弁16から噴射される燃料量の一部を、吸気同期噴射によって噴射することにより吸気通路12に付着する燃料量を低減させ、ひいてはPNの低減を図る。
上記条件(ア)は、水温THWが規定温度以下であることと、充填効率ηが規定比率以上であることとの論理積が真である場合に成立する。
一方、上記条件(イ)は、吸気非同期噴射の噴射量を決定するクランク角度が同一であっても、回転速度NEが低い場合には高い場合と比較して、吸気非同期噴射の噴射量の決定タイミングから吸気バルブ18の閉弁タイミングまでの時間が長くなることに鑑みたものである。すなわち、吸気非同期噴射の噴射量の決定タイミングから吸気バルブ18の閉弁タイミングまでの時間が長くなる場合、噴射量を決定する際の閉弁時流入空気量Mcの精度が低くなる。このため、燃焼室24内の混合気の空燃比を目標値に制御する上で適切な値に対する決定された噴射量の誤差が大きくなるおそれがある。このため、こうした場合には、吸気非同期噴射を2回に分割し、合計3回の燃料噴射をすることによって、以下に示すようにして噴射量の誤差を抑制する。
一方、上記条件(イ)は、吸気非同期噴射の噴射量を決定するクランク角度が同一であっても、回転速度NEが低い場合には高い場合と比較して、吸気非同期噴射の噴射量の決定タイミングから吸気バルブ18の閉弁タイミングまでの時間が長くなることに鑑みたものである。すなわち、吸気非同期噴射の噴射量の決定タイミングから吸気バルブ18の閉弁タイミングまでの時間が長くなる場合、噴射量を決定する際の閉弁時流入空気量Mcの精度が低くなる。このため、燃焼室24内の混合気の空燃比を目標値に制御する上で適切な値に対する決定された噴射量の誤差が大きくなるおそれがある。このため、こうした場合には、吸気非同期噴射を2回に分割し、合計3回の燃料噴射をすることによって、以下に示すようにして噴射量の誤差を抑制する。
すなわち、CPU52は、3回噴射の要求があると判定する場合(S12:YES)、ベース噴射量Qbに、補正係数Kc、および第1噴射割合K1を乗算した値を、1回目の噴射の噴射量である非同期第1噴射量Qns1に代入する(S14)。本実施形態では、補正係数Kcを、フィードバック補正係数KAFと低温増量係数Kwとの積とする。ここで、フィードバック補正係数KAFは、空燃比Afを目標値にフィードバック制御するための操作量としてのベース噴射量Qbの補正係数である。また、低温増量係数Kwは、水温THWが低い場合に高い場合よりもベース噴射量Qbを増量する係数である。低温増量係数Kwは、燃焼室24に流入する燃料のうち燃焼に寄与しない燃料量を補償するためのものである。なお、重質燃料が用いられる場合には、そうでない場合と比較して、低温増量係数Kwを大きい値に設定することが望ましい。
上記第1噴射割合K1は、「0」よりも大きく「1」よりも小さい値であり、要求噴射量である「Qb・Kc」の燃料のうちの非同期第1噴射量Q1の割合を定めるものである。
CPU52は、S14の処理が完了すると、1回目の吸気非同期噴射の開始時期(非同期第1噴射開始時期)となるまで待機し(S16:NO)、非同期第1噴射開始時期となる場合(S16:YES)、ポート噴射弁16に操作信号MS2を出力して1回目の吸気非同期噴射を実行する(S18)。
その後、CPU52は、S10の処理の後に新たに算出された閉弁時流入空気量Mcに基づきベース噴射量Qbを更新する(S20)。この処理は、必要な噴射量としてより精度の高い噴射量に更新する処理である。そしてCPU52は、S20の処理によって更新されたベース噴射量Qbに、ベース噴射量Qbに占める吸気同期噴射の噴射量の割合である同期噴射割合Ksを乗算することによって、吸気同期噴射の噴射量である同期噴射量Qsを算出する(S22)。ここで、CPU52は、同期噴射割合Ksを、回転速度NE、充填効率η、水温THWおよび吸気位相差DINに応じて算出する。詳しくは、回転速度NE、充填効率η、水温THWおよび吸気位相差DINを入力変数とし、同期噴射割合Ksを出力変数とするマップデータが予めROM54に記憶された状態で、CPU52により同期噴射割合Ksがマップ演算される。
なお、マップデータとは、入力変数の離散的な値と、入力変数の値のそれぞれに対応する出力変数の値と、の組データである。またマップ演算は、たとえば、入力変数の値がマップデータの入力変数の値のいずれかに一致する場合、対応するマップデータの出力変数の値を演算結果とし、一致しない場合、マップデータに含まれる複数の出力変数の値の補間によって得られる値を演算結果とする処理とすればよい。
次にCPU52は、S20の処理によって更新されたベース噴射量Qbに補正係数Kcを乗算した値である更新された要求噴射量から、非同期第1噴射量Qns1と同期噴射量Qsとを減算した値を、2回目の吸気非同期噴射の噴射量である非同期第2噴射量Qns2に代入する(S24)。これにより、非同期第1噴射量Qns1と、非同期第2噴射量Qns2と、同期噴射量Qsとの和は、S20の処理によって更新されたベース噴射量Qbに補正係数Kcを乗算した値(更新された要求噴射量)となる。すなわち、1燃焼サイクルにおいて噴射される総噴射量が、S20の処理によって更新されたベース噴射量Qbに基づき定まることとなる。
そして、CPU52は、2回目の吸気非同期噴射の噴射開始時期である非同期第2噴射開始時期となるまで待機し(S26:NO)、非同期第2噴射開始時期となると(S26:YES)、ポート噴射弁16に操作信号MS2を出力してポート噴射弁16から非同期第2噴射量Qns2の燃料を噴射させる(S28)。次に、CPU52は、吸気同期噴射の噴射開始時期である同期噴射開始時期となるまで待機し(S30:NO)、同期噴射開始時期となると(S30:YES)、ポート噴射弁16に操作信号MS2を出力してポート噴射弁16から同期噴射量Qsの燃料を噴射させる(S32)。
ちなみに、同期噴射開始時期は、回転速度NE、充填効率η、水温THWおよび吸気位相差DINに基づき算出される。また、非同期第2噴射開始時期は、同期噴射開始時期と2回目の吸気非同期噴射の終了時期との時間間隔が所定時間以上となるように設定される。
これに対し、CPU52は、S12の処理において否定判定する場合、マルチ噴射処理またはシングル噴射処理を実行する(S34)。ここで、CPU52は、上記条件(ア)が成立する場合にマルチ噴射処理を実行し、成立しない場合にはシングル噴射処理を実行する。ここで、吸気非同期噴射が1回のマルチ噴射処理においては、非同期噴射量Qnsを、「Qb・Kc−Qs」とすればよい。また、非同期噴射開始時期は、非同期第2噴射開始時期と同様の処理によって設定されるものである。ちなみに、非同期噴射開始時期は、非同期第1噴射開始時期よりも遅角側としてもよい。さらに、シングル噴射処理の噴射開始時期は、たとえば回転速度NEや充填効率ηに応じて設定すればよい。
なお、CPU52は、S32,S34の処理が完了する場合、図3に示す一連の処理を一旦終了する。
ここで、本実施形態の作用および効果について説明する。
ここで、本実施形態の作用および効果について説明する。
図4に、回転速度NEがある一定の速度(たとえば、「1200rpm」)であるときにおける、噴射開始時期および、同噴射開始時期に燃料噴射を開始する場合の噴射量の算出に用いる閉弁時流入空気量Mcが現在時刻に対して先行している時間である先読み時間の関係と、先読み時間および、閉弁時流入空気量Mcの誤差率の関係とを示す。図4に示すように、開始時期を進角側とするほど、先読み時間が長くなる。そして先読み時間が長くなる場合、短い場合と比較して、誤差率が大きくなる。
そこでCPU52は、回転速度NEが閾値以下である場合、非同期第1噴射開始時期を、非同期第1噴射開始時期において噴射された燃料の霧化時間を十分に確保できる時期T1とする一方、非同期第2噴射開始時期を、霧化時間を確保しつつも閉弁時流入空気量Mcの精度を確保できる時期T2以降とする。ここで、非同期第1噴射開始時期を時期T1とするうえでの先読み時間A1においては、誤差率が大きいものの、非同期第2噴射開始時期を時期T2とするうえでの先読み時間A2においては誤差が抑制されている。しかも、ここで、非同期第1噴射量Qns1と非同期第2噴射量Qns2と同期噴射量Qsとの和は、時期T2以降において算出された閉弁時流入空気量Mcに応じて設定されたものとなる。このため、噴射量の算出精度を確保することと燃料の霧化を促進することとの好適な両立を図ることができる。
ちなみに、先読み時間A2を超えるあたりから誤差率が大きくなるのは、先読み時間A2が、遅延処理M18による上記遅延時間程度となっているからである。
<対応関係>
上記実施形態における事項と、上記「課題を解決するための手段」の欄に記載した事項との対応関係は、次の通りである。マルチ噴射処理は、S10〜S34の処理に対応し、ベース噴射量算出処理は、S10の処理に対応し、要求噴射量算出処理は、S14の処理において、「Qb・Kc」が算出されていることに対応し、非同期第1噴射処理は、S18の処理に対応する。更新処理は、S20の処理に対応し、同期算出処理は、S22の処理に対応し、非同期第2噴射処理は、S28の処理に対応し、同期噴射処理は、S32の処理に対応する。
<対応関係>
上記実施形態における事項と、上記「課題を解決するための手段」の欄に記載した事項との対応関係は、次の通りである。マルチ噴射処理は、S10〜S34の処理に対応し、ベース噴射量算出処理は、S10の処理に対応し、要求噴射量算出処理は、S14の処理において、「Qb・Kc」が算出されていることに対応し、非同期第1噴射処理は、S18の処理に対応する。更新処理は、S20の処理に対応し、同期算出処理は、S22の処理に対応し、非同期第2噴射処理は、S28の処理に対応し、同期噴射処理は、S32の処理に対応する。
<その他の実施形態>
なお、本実施形態は、以下のように変更して実施することができる。本実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
なお、本実施形態は、以下のように変更して実施することができる。本実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・ベース噴射量Qbの算出に用いる新気量に関する情報としては、図2に例示したエアモデルを用いて算出される閉弁時流入空気量Mcに限らない。たとえば、エアフローメータ62によって検出される吸入空気量Ga自体であってもよい。
10…内燃機関、12…吸気通路、14…スロットルバルブ、16…ポート噴射弁、18…吸気バルブ、20…シリンダ、22…ピストン、24…燃焼室、26…点火装置、28…クランク軸、30…排気バルブ、32…排気通路、34…触媒、38…タイミングチェーン、40…吸気側カム軸、42…排気側カム軸、44…吸気側バルブタイミング調整装置、50…制御装置、52…CPU、54…ROM、56…電源回路、60…クランク角センサ、62…エアフローメータ、64…スロットルセンサ、66…空燃比センサ、68…吸気側カム角センサ、70…水温センサ、72…大気圧センサ。
Claims (1)
- 吸気通路に燃料を噴射するポート噴射弁を備える内燃機関に適用され、
吸気バルブの開弁期間に同期して燃料を噴射する吸気同期噴射の噴射量である同期噴射量と、前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する吸気非同期噴射の噴射量である非同期噴射量とに要求噴射量を分割し、前記ポート噴射弁を操作して前記吸気非同期噴射、前記吸気同期噴射の順に実行するマルチ噴射処理を実行し、
前記マルチ噴射処理は、
前記内燃機関の気筒内に充填される新気量に比例した噴射量であるベース噴射量を算出するベース噴射量算出処理と、
前記ベース噴射量を補正して前記要求噴射量を算出する要求噴射量算出処理と、
前記要求噴射量に基づき、前記非同期噴射量の一部である非同期第1噴射量の燃料を噴射する非同期第1噴射処理と、
前記非同期第1噴射処理の後に前記ベース噴射量および前記要求噴射量を更新する更新処理と、
前記同期噴射量を算出する同期算出処理と、
更新された前記要求噴射量から前記非同期第1噴射量と前記同期噴射量とを減算した値である非同期第2噴射量の燃料を噴射する非同期第2噴射処理と、
前記非同期第2噴射処理の後に前記同期噴射量の燃料を噴射する同期噴射処理と、を含む内燃機関の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018095434A JP6930494B2 (ja) | 2018-05-17 | 2018-05-17 | 内燃機関の制御装置 |
PCT/JP2018/031129 WO2019049676A1 (ja) | 2017-09-05 | 2018-08-23 | 内燃機関の制御装置および制御方法 |
US16/643,876 US11002213B2 (en) | 2017-09-05 | 2018-08-23 | Internal combustion engine control device and control method |
EP18853272.5A EP3680475A4 (en) | 2017-09-05 | 2018-08-23 | COMBUSTION ENGINE CONTROL DEVICE AND CONTROL METHOD |
CN201880056840.6A CN111065809B (zh) | 2017-09-05 | 2018-08-23 | 内燃机的控制装置以及控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018095434A JP6930494B2 (ja) | 2018-05-17 | 2018-05-17 | 内燃機関の制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019199842A true JP2019199842A (ja) | 2019-11-21 |
JP6930494B2 JP6930494B2 (ja) | 2021-09-01 |
Family
ID=68613043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018095434A Active JP6930494B2 (ja) | 2017-09-05 | 2018-05-17 | 内燃機関の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6930494B2 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09273415A (ja) * | 1996-04-09 | 1997-10-21 | Nissan Motor Co Ltd | 内燃機関の燃料供給制御装置 |
JP2013194664A (ja) * | 2012-03-21 | 2013-09-30 | Hitachi Automotive Systems Ltd | 内燃機関 |
JP2015059456A (ja) * | 2013-09-18 | 2015-03-30 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
-
2018
- 2018-05-17 JP JP2018095434A patent/JP6930494B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09273415A (ja) * | 1996-04-09 | 1997-10-21 | Nissan Motor Co Ltd | 内燃機関の燃料供給制御装置 |
JP2013194664A (ja) * | 2012-03-21 | 2013-09-30 | Hitachi Automotive Systems Ltd | 内燃機関 |
JP2015059456A (ja) * | 2013-09-18 | 2015-03-30 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6930494B2 (ja) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10968854B2 (en) | Controller and control method for internal combustion engine | |
JP2018188992A (ja) | 内燃機関の制御装置 | |
CN110410227B (zh) | 内燃机的控制装置以及控制方法 | |
EP3680476B1 (en) | Internal-combustion-engine control device and control method | |
JP6981358B2 (ja) | 内燃機関の制御装置 | |
EP3569849B1 (en) | Controller and control method for internal combustion engine | |
JP6911815B2 (ja) | 内燃機関の制御装置 | |
JP6977647B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP6930494B2 (ja) | 内燃機関の制御装置 | |
WO2019049674A1 (ja) | 内燃機関の制御装置および制御方法 | |
EP3412900B1 (en) | Controller for internal combustion engine and method for controlling internal combustion engine | |
JP7239869B2 (ja) | 内燃機関の制御装置 | |
JP7332276B2 (ja) | 内燃機関の制御装置 | |
JP2019218935A (ja) | 内燃機関の制御装置 | |
JP2020002874A (ja) | 内燃機関の制御装置 | |
JP6969492B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP7103061B2 (ja) | 内燃機関の制御装置 | |
JP7239868B2 (ja) | 内燃機関の制御装置 | |
JP6927142B2 (ja) | 内燃機関の制御装置 | |
JP2019173598A (ja) | 内燃機関の制御装置 | |
JP2020090924A (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210726 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6930494 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |