JP2019196718A - 内燃機関及び内燃機関の制御方法 - Google Patents

内燃機関及び内燃機関の制御方法 Download PDF

Info

Publication number
JP2019196718A
JP2019196718A JP2018089951A JP2018089951A JP2019196718A JP 2019196718 A JP2019196718 A JP 2019196718A JP 2018089951 A JP2018089951 A JP 2018089951A JP 2018089951 A JP2018089951 A JP 2018089951A JP 2019196718 A JP2019196718 A JP 2019196718A
Authority
JP
Japan
Prior art keywords
amount
internal combustion
combustion engine
gas
gas component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018089951A
Other languages
English (en)
Inventor
義文 長島
Yoshibumi Nagashima
義文 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2018089951A priority Critical patent/JP2019196718A/ja
Priority to CN201980031192.3A priority patent/CN112105808B/zh
Priority to PCT/JP2019/016404 priority patent/WO2019216135A1/ja
Publication of JP2019196718A publication Critical patent/JP2019196718A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】燃料タンクに貯留された液化天然ガスを気化させたガスを点火により燃焼させる内燃機関において、ガス燃料のガス成分が変化した場合でも、ノッキングの発生を抑制できる、液化天然ガスを燃料とする内燃機関及び内燃機関の制御方法を提供する。【解決手段】内燃機関の運転中に、内燃機関の気筒に供給される液化天然ガスが気化した天然ガスのガス成分を検出し、このガス成分におけるメタン成分の比率が低下した場合に、その低下量に応じて、EGR量の最終的な目標量となる最終目標EGR量を、エンジン運転状態から決定される標準目標EGR量よりも多くする。【選択図】図2

Description

本発明は、内燃機関の運転中における、気化した天然ガスのガス成分の変化に対応できる、内燃機関及び内燃機関の制御方法に関する。
液化天然ガス(LNG:Liquefied Natural Gas)を燃料とする内燃機関では、燃料となる天然ガスは、主成分のメタン(CH4)以外に、エタン(C26)、プロパン(C38)、ブタン(C410)などの沸点と比重の異なる成分が含まれており、燃料タンクに貯留して燃料として消費している途中で、気化した天然ガスの成分が変化していく。つまり、沸点の低いものから気化していくため、燃料の液化天然ガスの成分比が変化して、気化する天然ガスの性状も異なってくる。この性状変化により、ノッキングが発生し易くなり、内燃機関の運転が悪影響を受ける可能性がある。
これに関連して、圧縮天然ガス(CNG:Compressed Natural Gas)を燃料とするエンジンにおいて、燃料のメタン濃度が低下してもノッキングの発生を抑えるために、エンジンの運転状態に応じて決定されるベース点火時期を、空気量と燃料量とに基づく吸気空燃比よりも、排気ガスの酸素濃度に基づく排気空燃が高い程大きな遅角量になるように補正して、この補正量に基づいて点火する点火時期の制御装置及び制御方法が提案されている(例えば、特許文献1参照)。
特開2016−75235号公報
ところで、この特許文献1の火時期の制御装置及び制御方法では、圧縮天然ガスを燃料の対象にしているため、燃料の性状の変化が少なく、比較的、ノッキング発生の抑制対策が容易であるが、これに対して、燃料の性状の変化が大きい液化天然ガスを燃料とする場合には、点火時期の遅角制御だけではノッキング発生の抑制は不十分な場合があるという問題がある。
本発明は、上記のことを鑑みてなされたものであり、その目的は、燃料タンクに貯留された液化天然ガスを気化させたガスを点火により燃焼させる内燃機関において、ガス燃料中のガス成分が変化した場合でも、ノッキングの発生を抑制できる、液化天然ガスを燃料とする内燃機関及び内燃機関の制御方法を提供することである。
上記の目的を達成するための本開示の内燃機関は、液化天然ガスを燃料とする内燃機関において、当該内燃機関の気筒に供給される気化した天然ガスのガス成分を検出するガス成分検出システムと、当該内燃機関を制御する制御装置とを備えて、前記制御装置が、当該内燃機関の運転中に、前記ガス成分検出システムにより前記気筒に供給される天然ガスのガス成分を検出し、当該ガス成分に応じて目標EGR量を補正するEGR補正制御を行うEGR補正制御手段を備えて構成されている。
また、上記の目的を達成するための本開示の内燃機関の制御方法は、液化天然ガスを燃料とする内燃機関の制御方法において、当該内燃機関の運転中に、当該内燃機関の気筒に供給される液化天然ガスが気化した天然ガスのガス成分を検出し、このガス成分におけるメタン成分の比率が低下した場合に、その低下量に応じて、EGR量の最終的な目標量となる最終目標EGR量を、エンジン運転状態から決定される標準目標EGR量よりも多くすることを特徴とする制御方法である。
上記の内燃機関及び内燃機関の制御方法によれば、燃料タンクに貯留された液化天然ガスを気化させたガスを点火により燃焼させる内燃機関において、ガス燃料中のガス成分が変化した場合でも、ノッキングの発生を抑制できる。
本発明に係る実施の形態の液化天然ガスを燃料とする内燃機関の構成を模式的に示す図である。 燃料系統の構成を模式的に示す図である。 制御装置の構成を模式的に示す図である。 本発明に係る実施の形態の液化天然ガスを燃料とする内燃機関の制御方法の制御フローの一例を示す図である。 EGR補正制御に使用されるテーブルの一例を示す図である。 点火時期補正に使用されるテーブルの一例を示す図である。 ブースト圧補正制御に使用されるテーブルの一例を示す図である。 点火リタード限界量補正に使用されるテーブルの一例を示す図である。
以下、本発明に係る実施の形態の液化天然ガスを燃料とする内燃機関及び内燃機関の制御方法について、図面を参照しながら説明する。この内燃機関は、液化天然ガス(LNG)を燃料とし、燃料タンクである超低温容器に貯留した液化天然ガスを気化させて、ガス状態の天然ガスにして、この天然ガスを点火により燃焼させる内燃機関である。
図1に示すように、本発明の実施の形態の液化天然ガスを燃料とする内燃機関(以下、エンジン)10においては、吸気系として、エンジン本体11の各気筒(シリンダ)12にはピストン13が挿入され、このピストン13の往復動によりクランク軸14が回転させられる。
気筒12の上のシリンダヘッドには吸気孔12aと排気孔12bが設けられており。この吸気孔12aには吸気系通路21が接続され、この吸気系通路21は、吸気孔12aに接続する吸気分岐通路と、この吸気分岐通路が集合する吸気マニホールド(インテークマニホールド)と、この吸気マニホールドに接続している吸気通路からなる。
この吸気系通路21に上流側からエアクリーナー22、ターボ式過給機23のコンプレッサ23a、インタークーラ24、吸気スロットルバルブ(電制スロットル)25が配設されている。また、インタークーラ24を迂回するバイパス通路22aが設けられ、このバイパス通路22aには、吸気バイパスバルブ22bが設けられている。
そして、吸気Aは、吸気系通路21を経由して吸気孔12aを通過して気筒12のピストン13の上部の燃焼室15に導入される。
一方、燃料系として、図2に示すように、超低温容器である燃料タンク41と、この燃料タンク41とフューエルレール47と間に燃料通路42が設けられている。この燃料通路42には、気化器43と緩衝容器44と開閉バルブ45と圧力レギュレータ46が上流側から順に配設されている。なお、この気化器43は、大気と冷媒の間で熱交換する空気式熱交換器と、空気式熱交換器からの冷媒とLNGとの間で熱交換してLNGを気化させるLNG熱交換器とを有している。
また、燃料タンク41には、液化天然ガスLの液量(残量)Wfを検出する液面計41aが設けられている。また、特に詳細な説明はしないが、この燃料タンク41には、外部から液化天然ガスLを燃料タンク41の内部に供給するための燃料導入ラインや、燃料タンク41で発生するボイルオフガスを処理するためのボイルオフガスラインや、燃料タンク41の圧力が異常に高くなるのを回避するための安全バルブ(圧力逃がし弁)などが設けられている。
図1に示すように、この燃料通路42はフューエルレール47に接続され、このフューエルレール47には、吸気系通路21の吸気分岐通路のそれぞれに設けられた燃料噴射装置(フェールインジェクタ)48に接続する燃料分岐通路が設けられている。この燃料通路42は、燃料の温度を検出する燃料温度センサ49aと燃料の圧力を検出する燃料圧力センサ49bが設けられている。
液化天然ガスLは、図2に示す燃料タンク41を出た後、気化器43で気化された後、気化した天然ガスFは、圧力レギュレータ46で一定の圧力(例えば0.4MPa)になるように圧力調整された後、フューエルレール47に供給され、一旦貯留される。この天然ガスFは、燃料分岐通路を経由して燃料噴射装置48から吸気分岐通路の内部に噴射され、吸気Aと混合し、気筒12内の燃焼室15に入る。
この天然ガスFと吸気Aの混合気Mが気筒12内の燃焼室15で燃焼して排気ガスGを発生する。つまり、混合気Mを吸気行程で導入し、圧縮行程において気筒12の内部の燃焼室15に設けられた点火プラグ(点火コイル)16で点火して天然ガスFを燃焼させる。
図1に示すように、この気筒12の周辺には、ノックセンサ61、エンジン冷却水温度センサ62、クランク角度センサ63、シリンダ判別センサ(カム角度センサ)64等が設けられている。また、吸気系通路21には、第1吸気温度センサ65a、吸気圧力センサ66、第2吸気温度センサ65bが設けられている。
そして、各気筒12には、排気系通路31が設けられ、この排気系通路31は、排気孔12bに接続する排気分岐通路と、この排気分岐通路が集合する排気マニホールド(エキゾーストマニホールド)と、この排気マニホールドに接続する排気通路とからなる。この排気系通路31にはターボ式過給機23のタービン23b、三元触媒装置(プレコンバータ)32と消音器(三元触媒内臓)33が上流側から順に設けられている。また、タービン23bには、ウエストゲート23cが設けられ、ウエストゲートコントロール装置23dによりその開閉を調整制御される。また、この排気系通路31には、三元触媒装置32の上流側に空燃比センサ(λセンサ)67が、三元触媒装置32の下流側に酸素センサ68が設けられている。
そして、排気ガスGは、排気行程で気筒12から排気孔12bを通過して排出され、排気系通路31を経由して、三元触媒装置32で浄化された後、消音器33から大気中に放出される。
この三元触媒装置32は、セラミックなどで形成された触媒担持体(モノリス担体など)にプラチナ、パラジウム、ロジウム等の触媒を担持して、その酸化還元能力により排気ガスG中の未燃炭化水素、CO、NOx等を浄化する装置である。
また、排気系通路(例えば、排気マニホールド)31から分岐して、吸気系通路(例えば吸気マニホールド21a)21に接続するEGR通路51が設けられている。このEGR通路51にEGRクーラー52とEGRバルブ53とが設けられている。そして、排気ガスGの一部であるEGRガスGeを気筒12に還流している。
また、制御装置70が設けられ、燃料温度センサ49a、燃料圧力センサ49b、ノックセンサ61、エンジン冷却水温度センサ62、クランク角度センサ63、シリンダ判別センサ64、第1吸気温度センサ65a、第2吸気温度センサ65b、吸気圧力センサ66、空燃比センサ67、酸素センサ68、及び、その他の各種センサの検出値を入力して、燃料噴射装置49に供給する天然ガスFの圧力を調整したり、燃料噴射量Vgを制御する制御指令を燃料噴射装置49に出力したり、点火プラグ16の点火時期Tgを制御したり、EGR弁53の弁開度を制御したり、ウエストゲートコントロール装置23dによりウエストゲート23cの開閉を制御したりする。なお、図1では、制御装置70と各種センサや弁類や機器や装置などとの間の制御信号線を図面表示の煩雑さを回避するために省略して図示している。
この制御装置70は、通常は、ターボ過給システムやEGRシステムや燃料供給システム等を含めたエンジンの運転全般を制御するECU(エンジンコントロールユニット)と呼ばれるエンジン制御装置に組み入れられて構成される。
そして、本開示においては、エンジン10の気筒12に供給される気化した天然ガスFのガス成分を検出するガス成分検出システム80を備えている。なお、以下に例示するガス成分検出システム80は一例であり、他のガス成分検出システムやガス成分検出装置を使用してもよい。
この例示のガス成分検出システム80は、図1及び図2に示すように、吸気スロットルバルブ25よりも上流側で吸気系通路(吸気通路)21から分岐されて、例えば吸気マニホールド21a等の吸気系通路21に接続される吸気バイパス通路81を有し、この吸気バイパス通路81に希釈バルブ82と分析室83を備えて構成される。
図2に示すように、この吸気バイパス通路81は吸気スロットルバルブ25よりも上流側で吸気系通路21から分岐されるのが好ましく、これにより、希釈用空気を確保し易くなる。また、吸気バイパス通路81を吸気マニホールド21aに接続することにより、分析室からの検出用天然ガスFを含むガスが大気中に排出されるのを防止する。そして、希釈バルブ82を、吸気系通路21からの分岐部と燃料成分検出部である分析室83との間に設けて、分析室83に流入する希釈空気量を調整するように構成する。
この分析室83は、2つのガス成分検出センサ84、85と、気筒12に供給される天然ガスFの一部を噴射するガス燃料噴射器86とを備えて構成される。このガス燃料噴射器86には、フューエルレール47に接続する燃料管87が接続され、この燃料管87には、遮断バルブ(カットバルブ)88が設けられている。この遮断バルブ88により、ガス成分の割合の推定を行わないときには、燃料管87の流通を遮断して分析室83の内部への燃料噴射を停止する。
また、この2つのガス成分検出センサ84、85は、ガス成分に対して互いに異なるガス感度特性を持つ、言い換えれば、反応する成分が異なる第1ガス成分検出センサ84と第2ガス成分検出センサ85で構成される。より好ましくは、第1ガス成分検出センサ84を、メタンガスに対するガス感度が優れている、メタンを検出するガス成分検出センサで構成し、第2ガス成分検出センサ85を、メタンガスよりも他の炭化水素に対するガス感度が優れている、炭化水素を検出するガス成分検出センサで構成する。
このメタンを検出するガス成分検出センサと炭化水素を検出するガス成分検出センサは、都市ガスやLPガス等のガス漏れを検知するためのガス警報器のセンサとして市販されており、いずれも比較的低価格で容易に入手できるセンサである。しかしながら、これらのガス成分検出センサはガス漏れ検知用に非常に低濃度のガス成分を検出するようになっているため、検出時には吸気バイパス通路81に吸気Aの一部を導入して、天然ガスFを希釈してガス成分を検出する。
つまり、現状では、高価な成分分析計はあるが、ガス燃料の性状を把握できるセンサが無いので、低コストのガス漏れ警報器のセンサを利用して、ガス成分を推定するが、ガス漏れ警報器のセンサは低濃度で反応するように構成されているため、ガス燃料のような高濃度では測定できないため、エンジン10で吸引した吸気Aの一部を使用して、ガス漏れ警報器のセンサで検出できるレベルまで、ガス燃料を希釈する。また、この希釈した可燃性ガスは大気中に排出できないので気筒12に導入して燃焼する。
そして、2つのガス成分検出センサ84、85で検出される検出値C1、C2を比較することで、この検出値の比率Rc(=C1/C2)と天然ガスFのガス成分の割合との関係を、予めマップデータ等のデータベースにしておき、検出値の比率Rcからこのデータベースを参照して天然ガスFのガス成分の割合を推定する。
つまり、ガス漏れ警報器のセンサも多様な種類のものが市販されているわけではなく、メタン検出用のセンサとそれ以外のセンサ位しかないので、天然ガスFのガス成分分析をすることは考えない。その替りに、次の方法でガス成分の割合を推定する。つまり、燃料として使用する液化天然ガスLのガス成分は、事前に分かっており、エンジン10の運転中において、燃料タンク41内の液化天然ガスLのガス成分の割合の変化と、2つのガス成分検出センサ84、85で検出される検出値の比率Rcとの関係も予め実験的にも求めることが容易にできる。従って、この検出値の比率Rcと液化天然ガスLの成分の割合との関係を求めてマップデータ等でデータベース化しておき、エンジン10の運転時に、2つのガス成分検出センサ84、85の検出値C1、C2から得られる検出値の比率Rcから液化天然ガスLのガス成分の割合を推定する。
一般的に、液化天然ガスLにはおいては、主成分のメタンのほかに、エタン、プロパン、ブタンなどの沸点と比重が異なる成分を含んでいるため、燃料タンク41の液量Wfが少なくなると、オクタン価の低い、プロパン、ブタンの成分の割合が多くなり、ノッキングが発生し易くなる。
そして、液化天然ガスLは冷却しないで放置すると、メタンが気化し易いため、燃料タンク41に充填した後では、充填後の時間と温度状態と燃料使用量によって、液化天然ガスL中のメタンの含有率が変化する。そのため、別実施例として、燃料タンク41の液量Wfだけで、天然ガスFのガス成分の割合が変化していることを推定できるので、燃料タンク41へ液化天然ガスLを充填した後の時間から、天然ガスFのガス成分を検出してもよい。
そして、制御装置70は、図3に示すように、エンジン運転手段71に加えて、エンジン10の運転中に、ガス成分検出システム80により気筒12に供給される天然ガスFのガス成分を検出して、このガス成分におけるメタン成分の比率が低下した場合に、その低下量に応じてEGR、点火時期、ブースト圧、及び、点火リタード限界量を補正するEGR補正制御手段72a、点火時期補正制御手段72b、ブースト圧補正制御手段72c、及び、点火リタード限界量補正制御手段72dとを有するガス成分変化対応制御手段72を備えて構成されている。
このEGR補正制御手段72aは、ガス成分におけるメタン成分の比率の低下量に応じて、EGR量の最終的な目標量となる最終目標EGR量を、エンジン運転状態から決定される標準目標EGR量よりも多くするEGR補正制御を行う手段である。この制御により、EGR量を増加することで、気筒12に送り込まれる二酸化炭素量を多くして、気筒12内における燃焼速度を遅くして、メタンよりもオクタン価が低いプロパンやブタンが増加し、メタンに適合させた点火時期ではノッキングが発生し易くなるのを回避して、オクタン価が低い燃料に適合した点火時期で燃料を燃焼させることで、ノッキングの発生を防止する。
また、点火時期補正制御手段72bは、ガス成分におけるメタン成分の比率の低下量に応じて、点火時期の最終的な目標量となる最終目標点火時期を、エンジン運転状態から決定される標準目標点火時期よりも遅くする点火時期補正制御を行う手段である。メタンに適合させた点火時期ではノッキングが発生し易くなってしまうが、本制御により、オクタン価が低い燃料に適合した点火時期で燃料を燃焼するので、ノッキングの発生を防止できる。
そして、ブースト圧補正制御手段72cは、ガス成分におけるメタン成分の比率の低下量に応じて、ブースト圧の最終的な目標量となる最終目標ブースト圧を、エンジン運転状態から決定される標準目標ブースト圧よりも低くするブースト圧補正制御を行う手段である。この制御により、最終目標ブースト圧になるように自動制御を行った場合でも、燃料成分がメタンよりも発熱量が大きいプロパンやブタン成分が多くなっても、最終目標ブースト圧が低くなっているので、気筒12に送り込まれる空気量も少なくなり、それに伴って空燃比一定で制御されている燃料も少なくなる。これにより、メタン成分の比率が低下して発熱量が増加しタ場合でもエンジン10の出力の増加を防止する。
また、点火リタード限界量補正制御手段72dは、ガス成分におけるメタン成分の比率の低下量に応じて、ノッキング判定時の点火リタード量に関する限界値に関して、点火リタード量の最終的な設定限界量となる最終目標点火リタード限界量を、エンジン運転状態から決定される標準目標点火リタード限界量よりも大きくする点火リタード限界量補正制御を行う手段である。一般的に、ノッキング判定時の点火リタード限界値はリタードし過ぎると、出力トルクの低下、及び、排気温度の上昇が発生するので、環境変化などを考慮して、ある程度の点火リタード量に留めている。その結果、メタン成分の比率が低下してオクタン価が変化すると、この環境変化などを考慮して設定した点火リタード量ではノックングの発生を防止しきれなくなる。しかし、この制御により、メタン成分の比率の低下に応じて、点火リタード限界値を大きくすることで、ノックングの発生を防止できるようになる。
次に、本発明に係る実施の形態の内燃機関の制御方法について説明する。この方法は、燃料タンク41に貯留された液化天然ガスLを気化させて天然ガスFとし、この天然ガスFを点火により燃焼させる内燃機関の制御方法である。この制御方法において、エンジン10の運転中に、エンジン10の気筒12に供給される液化天然ガスLが気化した天然ガスFのガス成分を検出し、このガス成分におけるメタン成分の比率が低下した場合に、その低下量に応じて、ガス成分変化対応制御を行う方法である。
このガス成分変化対応制御として、ガス成分におけるメタン成分の比率の低下量に応じて、EGR量の最終的な目標量となる最終目標EGR量を、エンジン運転状態から決定される標準目標EGR量よりも多くするEGR補正制御と、ガス成分におけるメタン成分の比率の低下量に応じて点火時期の最終的な目標量となる最終目標点火時期を、エンジン運転状態から決定される標準目標点火時期よりも遅くする点火時期補正制御と、ガス成分におけるメタン成分の比率の低下量に応じて、ブースト圧の最終的な目標量となる最終目標ブースト圧を、エンジン運転状態から決定される標準目標ブースト圧よりも低くするブースト圧補正制御と、ガス成分におけるメタン成分の比率の低下量に応じて、ノッキング判定時の点火リタード量に関する限界値に関して、点火リタード量の最終的な設定限界量となる最終目標点火リタード限界量を、エンジン運転状態から決定される標準目標点火リタード限界量よりも大きくする点火リタード限界量補正制御が有る。
以下において、より詳細に、この内燃機関の制御方法を図4の制御フローを参照しながら説明する。この図4の制御フローは、エンジン10の運転が開始されると、エンジン10の運転中に、上級の制御フローから呼ばれて、実行され、上級の制御フローに戻り、エンジン10の運転の停止と共に、この上級の制御フローの終了とともに終了するものとして示している。
この図4の制御フローが、エンジン10の運転が開始されて、上級の制御フローで呼ばれてスタートすると、ステップS10の「ガス成分の検出」でガス成分を検出する。なお、ガス成分の検出ができる環境になっていない場合はガス成分の検出ができるようになるまで待機する。
次のステップS11で、「ガス成分の判定」を行う。この「ガス成分の判定」では、ガス成分変化対応制御をする必要があるか否かを判定する。この判定は、ガス成分におけるメタン成分の比率Rが予め設定した設定比率Rc以下か否かによって行う。このステップS11の判定で、メタン成分の比率Rが設定比率Rc以下ではなく、ガス成分変化対応制御をする必要が無いとの判定であれば(NO)、予め設定した制御時間を経過した後、ステップS10に戻る。
一方、このステップS11の判定で、メタン成分の比率Rが設定比率Rc以下であり、ガス成分変化対応制御をする必要があるとの判定であれば(YES)、ステップS12の「対応制御の選択」に行く。このステップS12の「対応制御の選択」では、EGR補正、点火時期補正、ブースト圧補正、及び、点火リタード限界量補正のいずれか、又は、幾つかの組み合わせを選択する。
通常は、EGR補正を選択し、これで燃料の変化に十分な対応ができないと判定した場合は、点火時期補正とブースト圧補正のいずれか一方を追加し、それでも対応が不十分であると判定した場合には、点火時期補正とブースト圧補正の両方を行う。また、点火リタード限界量補正は、これ以外のEGR補正、点火時期補正、ブースト圧補正が行われている間、モニター的に行うことが好ましい。
以下、図5〜図8の各種テーブルを用いて説明するが、図5〜図8で図示しているテーブルでは、ノウハウを示さないために数値自体は省略していたり、仮の数値を用いたりしているが、実際に使用するものでは、実験やシミュレーションなどにより各欄の数値は予め設定されている。
ステップS13のEGR補正を行う場合には、図5に例示するようなEGRバルブ開度テーブルを基に、エンジン回転数と空気量ベース負荷(燃料噴射量に関係)等のエンジン運転状態から決定されるEGRバルブ開度(標準目標EGR量)を算出すると共に、EGR補正テーブルを基に、燃料成分センサー(例えば、ガス成分検出システム80)の出力値と空気量ベース負荷とからEGR補正率を算出して、最終目標EGR量を標準目標EGR量にEGR補正率を乗算して算出し(最終目標EGR量=標準目標EGR量×EGR補正率:最終EGR=EGRバルブ開度×EGR補正率)、この最終目標EGR量になるようEGRバルブ開度を制御する。
ステップS14の点火時期補正制御を行う場合には、図6に例示するような最終目標点火時期テーブルを基に、エンジン回転数と空気量ベース負荷等のエンジン運転状態から決定される標準目標点火時期を算出すると共に、点火時期補正テーブルを基に、燃料成分センサー(例えば、ガス成分検出システム80)の出力値と空気量ベース負荷とから点火時期補正量を算出して、最終目標点火時期を標準目標点火時期に点火時期補正量(マイナスの値)を加算して算出し(最終目標点火時期=標準目標点火時期+点火時期補正量、この最終目標点火時期になるよう点火時期を遅角させる。
ステップS15のブースト圧補正制御を行う場合には、図7に例示するような目標ブースト圧テーブルを基に、エンジン回転数とアクセルペダルセンサ等のエンジン運転状態から決定される標準目標ブースト圧を算出すると共に、ブースト圧補正テーブルを基に、燃料成分センサー(例えば、ガス成分検出システム80)の出力値からブースト圧補正率を算出して、最終目標ブースト圧を標準目標ブースト圧にブースト圧補正率を乗算して算出し(最終目標ブースト圧=標準目標ブースト圧+点ブースト圧補正率)、この最終目標ブースト圧になるよう、ターボ式過給機23のウエストゲートコントロール装置23dにより、タービン23bのウエストゲート23cの開閉を調整制御する。
そして、ステップS16の点火リタード限界量補正制御を行う場合には、図8に例示するような標準目標点火リタード限界量テーブルを基に、エンジン回転数とアクセルペダルセンサ等のエンジン運転状態から決定される標準目標点火リタード限界量を算出すると共に、限界量補正テーブルを基に、燃料成分センサー(例えば、ガス成分検出システム80)の出力値から限界量補正量を算出して、最終目標点火リタード限界量を標準目標点火リタード限界量に限界量補正量を加算して算出し(最終目標点火リタード限界量=標準目標点火リタード限界量+限界量補正量)、この最終目標点火リタード限界量の範囲内になるように、点火時期を制御する。
これらのステップS13〜S16のいずれか、又は、幾つかの組み合わせで、予め設定された制御時間の間行い、ステップS10に戻る。そして、ステップS10〜ステップ(S13〜S16のいずれか又はいくつかの組み合わせ)を繰り返す。そして、これらの制御の途中でエンジン運転の停止が行われると割り込みが生じて、リターンに行き、上級の制御フローに戻って、上級の制御フローの終了と共にこの図4の制御フローも終了する。
上記の構成の液化天然ガスを燃料とする内燃機関及び内燃機関の制御方法によれば、燃料タンク41に貯留された液化天然ガスLを気化させたガスFを点火により燃焼させる内燃機関において、ガス燃料中のガス成分が変化した場合でも、ノッキングの発生を抑制できる。
10 エンジン(内燃機関)
11 エンジン本体
12 気筒(シリンダ)
16 点火プラグ
21 吸気系通路
21a 吸気マニホールド
25 吸気スロットルバルブ
31 排気系通路
41 燃料タンク
42 燃料通路
47 フューエルレール
48 燃料噴射装置(フェールインジェクタ)
70 制御装置
80 ガス成分検出システム
81 吸気バイパス通路
82 希釈バルブ
83 分析室
84 第1ガス成分検出センサ
85 第2ガス成分検出センサ
86 ガス燃料噴射器
87 燃料管
88 遮断バルブ(カットバルブ)
A 吸気
L 液化天然ガス
F 天然ガス
G 排気ガス
Ge EGRガス
M 混合気

Claims (6)

  1. 液化天然ガスを燃料とする内燃機関において、
    当該内燃機関の気筒に供給される気化した天然ガスのガス成分を検出するガス成分検出システムと、当該内燃機関を制御する制御装置とを備えて、
    前記制御装置が、当該内燃機関の運転中に、前記ガス成分検出システムにより前記気筒に供給される天然ガスのガス成分を検出して、当該ガス成分に応じて目標EGR量を補正するEGR補正制御手段を備えて構成されていることを特徴とする内燃機関。
  2. 前記ガス成分検出システムは、ガス成分におけるメタン成分の比率を検出し、
    前記EGR補正制御手段は、前記メタン成分の比率が予め設定した比率よりも低下した場合に、EGR量の最終的な目標量となる最終目標EGR量を、エンジン運転状態から決定される標準目標EGR量よりも多くするEGR補正制御を行うように構成されている
    ことを特徴とする請求項1に記載の内燃機関。
  3. 前記制御装置が、当該内燃機関の運転中に、前記ガス成分検出システムにより前記気筒に供給される天然ガスのガス成分を検出して、このガス成分におけるメタン成分の比率が低下した場合に、その低下量に応じて、点火時期の最終的な目標量となる最終目標点火時期を、エンジン運転状態から決定される標準目標点火時期よりも遅くする点火時期補正制御を行う点火時期補正制御手段を備えて構成されていることを特徴とする請求項1又は2に記載の内燃機関。
  4. 前記制御装置が、当該内燃機関の運転中に、前記ガス成分検出システムにより前記気筒に供給される天然ガスのガス成分を検出して、このガス成分におけるメタン成分の比率が低下した場合に、その低下量に応じて、ブースト圧の最終的な目標量となる最終目標ブースト圧を、エンジン運転状態から決定される標準目標ブースト圧よりも低くするブースト圧補正制御を行う点火時期補正制御手段を備えて構成されていることを特徴とする請求項1〜3のいずれか1項に記載の内燃機関。
  5. 前記制御装置が、当該内燃機関の運転中に、前記ガス成分検出システムにより前記気筒に供給される天然ガスのガス成分を検出して、このガス成分におけるメタン成分の比率が低下した場合に、その低下量に応じて、ノッキング判定時の点火リタード量に関する限界値に関して、点火リタード量の最終的な設定限界量となる最終目標点火リタード限界量を、エンジン運転状態から決定される標準目標点火リタード限界量よりも大きくする点火リタード限界量補正制御を行う点火リタード限界量補正制御手段を備えて構成されていることを特徴とする請求項1〜4のいずれか1項に記載の内燃機関。
  6. 液化天然ガスを燃料とする内燃機関の制御方法において、
    当該内燃機関の運転中に、当該内燃機関の気筒に供給される液化天然ガスが気化した天然ガスのガス成分を検出し、このガス成分におけるメタン成分の比率が低下した場合に、その低下量に応じて、EGR量の最終的な目標量となる最終目標EGR量を、エンジン運転状態から決定される標準目標EGR量よりも多くすることを特徴とする内燃機関の制御方法。
JP2018089951A 2018-05-08 2018-05-08 内燃機関及び内燃機関の制御方法 Pending JP2019196718A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018089951A JP2019196718A (ja) 2018-05-08 2018-05-08 内燃機関及び内燃機関の制御方法
CN201980031192.3A CN112105808B (zh) 2018-05-08 2019-04-17 内燃机、内燃机的控制方法及内燃机的控制系统
PCT/JP2019/016404 WO2019216135A1 (ja) 2018-05-08 2019-04-17 内燃機関、内燃機関の制御方法及び内燃機関の制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089951A JP2019196718A (ja) 2018-05-08 2018-05-08 内燃機関及び内燃機関の制御方法

Publications (1)

Publication Number Publication Date
JP2019196718A true JP2019196718A (ja) 2019-11-14

Family

ID=68468295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089951A Pending JP2019196718A (ja) 2018-05-08 2018-05-08 内燃機関及び内燃機関の制御方法

Country Status (3)

Country Link
JP (1) JP2019196718A (ja)
CN (1) CN112105808B (ja)
WO (1) WO2019216135A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111878261A (zh) * 2020-06-30 2020-11-03 潍柴动力股份有限公司 燃气再循环系统、双燃料发动机和燃气再循环控制方法
JP2021092202A (ja) * 2019-12-11 2021-06-17 いすゞ自動車株式会社 燃料供給システム、車両および燃料供給方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113074071B (zh) * 2021-05-07 2022-08-23 潍柴动力股份有限公司 一种气体发动机的点火控制方法、气体发动机及车辆
CN115370498B (zh) * 2022-08-31 2024-04-05 上海中船三井造船柴油机有限公司 一种船用双燃料低速发动机的气缸压力控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152908A (ja) * 1999-09-07 2001-06-05 Nissan Motor Co Ltd 自己着火・火花点火式内燃機関の制御装置
KR101000233B1 (ko) * 2008-12-03 2010-12-10 현대자동차주식회사 엘엔지 차량의 엔진 제어방법
WO2014054081A1 (ja) * 2012-10-05 2014-04-10 川崎重工業株式会社 ガスエンジン用の燃焼安定化装置
JP2016113959A (ja) * 2014-12-15 2016-06-23 三菱自動車工業株式会社 排気還流制御装置
JP2018031311A (ja) * 2016-08-25 2018-03-01 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327480A (ja) * 2006-06-09 2007-12-20 Toyota Motor Corp 内燃機関の排気浄化システム
US9562489B2 (en) * 2011-11-22 2017-02-07 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152908A (ja) * 1999-09-07 2001-06-05 Nissan Motor Co Ltd 自己着火・火花点火式内燃機関の制御装置
KR101000233B1 (ko) * 2008-12-03 2010-12-10 현대자동차주식회사 엘엔지 차량의 엔진 제어방법
WO2014054081A1 (ja) * 2012-10-05 2014-04-10 川崎重工業株式会社 ガスエンジン用の燃焼安定化装置
JP2016113959A (ja) * 2014-12-15 2016-06-23 三菱自動車工業株式会社 排気還流制御装置
JP2018031311A (ja) * 2016-08-25 2018-03-01 トヨタ自動車株式会社 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092202A (ja) * 2019-12-11 2021-06-17 いすゞ自動車株式会社 燃料供給システム、車両および燃料供給方法
JP7255471B2 (ja) 2019-12-11 2023-04-11 いすゞ自動車株式会社 燃料供給システム、車両および燃料供給方法
CN111878261A (zh) * 2020-06-30 2020-11-03 潍柴动力股份有限公司 燃气再循环系统、双燃料发动机和燃气再循环控制方法

Also Published As

Publication number Publication date
CN112105808A (zh) 2020-12-18
CN112105808B (zh) 2023-11-21
WO2019216135A1 (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2019216135A1 (ja) 内燃機関、内燃機関の制御方法及び内燃機関の制御システム
US5735245A (en) Method and apparatus for controlling fuel/air mixture in a lean burn engine
JP4315196B2 (ja) 内燃機関の制御装置
US6668804B2 (en) Control system and method for a bi-fuel engine
US9822727B2 (en) Method and systems for adjusting engine cylinder operation based on a knock sensor output
US20180073446A1 (en) System to control and condition the supply of natural gas to bi-fuel engines
JP2003120350A (ja) 燃料改質器を備えたガスエンジン
JP2019183801A (ja) 内燃機関及び内燃機関の制御方法
RU2666498C2 (ru) Способ указания ухудшения работы топливной системы транспортного средства (варианты)
US9016259B2 (en) Process for controlling the combustion of an internal combustion engine with gasoline direct injection, in particular with controlled ignition
KR102172165B1 (ko) 노킹 제어 시스템이 구비된 엔진 및 엔진의 노킹 제어 방법
d'Ambrosio et al. Experimental investigation of fuel consumption, exhaust emissions and heat release of a small-displacement turbocharged CNG engine
Helmut et al. Potential of Synergies in a Vehicle for Variable Mixtures of CNG and Hydrogen
JP5593794B2 (ja) 内燃機関の制御装置
US9835098B2 (en) System and method of injecting natural gas in liquid form into a diesel engine
JP7211471B1 (ja) エンジンの制御装置及び車両
WO2020116425A1 (ja) 内燃機関システム、車両および点火プラグの点火時期補正方法
Jakliński et al. The effect of injection start angle of vaporized LPG on SI engine operation parameters
JP6536195B2 (ja) Cngエンジンにおける燃焼制御方法及び装置
KR20150087597A (ko) 엘피지 및 천연가스 공용 엔진의 연료공급장치
WO2024111168A1 (ja) ガスエンジンシステム
JPH04284171A (ja) ガス燃料エンジンの点火時期調整装置
US9057344B2 (en) System and method of injecting combustible gas in liquid form into a diesel engine
JP5728818B2 (ja) ガス燃料エンジンの制御装置
WO2023230344A1 (en) Control system for internal combustion engine, internal combustion engine configured to control combustion, and method of control thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206