JP2019190617A - 変速制御装置 - Google Patents

変速制御装置 Download PDF

Info

Publication number
JP2019190617A
JP2019190617A JP2018086620A JP2018086620A JP2019190617A JP 2019190617 A JP2019190617 A JP 2019190617A JP 2018086620 A JP2018086620 A JP 2018086620A JP 2018086620 A JP2018086620 A JP 2018086620A JP 2019190617 A JP2019190617 A JP 2019190617A
Authority
JP
Japan
Prior art keywords
vehicle
shift
vehicle information
shift mode
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018086620A
Other languages
English (en)
Inventor
二村 卓
Taku Futamura
卓 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2018086620A priority Critical patent/JP2019190617A/ja
Priority to US16/394,160 priority patent/US10823281B2/en
Publication of JP2019190617A publication Critical patent/JP2019190617A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】車両の状況に応じて適切にシフトポイントを設定できる変速制御装置を提供する。【解決手段】変速制御装置30は、加速度センサー24が検出した車両の前後方向の加速度に関する検出情報と、自動変速機14の出力回転から求められる前記車両の前後方向の実加速度と、駆動源が出力する駆動力及び前記車両に作用する空気抵抗に基づく走行駆動力と、のうち少なくとも2つを車両情報として出力する車両情報出力部40と、前記車両情報と予め定められた選択用閾値との比較によってシフトモードを選択し、前記シフトモードに基づいて前記車両に設けられた前記自動変速機を制御するためのシフトポイントを設定する設定部42と、を備える。【選択図】図3

Description

本発明は、変速制御装置に関する。
車両に設けられた自動変速機の変速段を制御する装置が知られている。このような装置は、例えば、車両に抵抗として作用する走行抵抗から算出した変速マップ等に基づくシフトポイントで変速段を切り替えて自動変速機を制御している。
特開2013−199961号公報 特開2010−084867号公報
しかしながら、上述の装置は、車重または車両の傾斜等を含む車両の状況に応じて適切にシフトポイントを設定することが難しいといった課題がある。
本発明は、上記に鑑みてなされたものであって、車両の状況に応じて適切にシフトポイントを設定できる変速制御装置を提供する。
上述した課題を解決し、目的を達成するために、本発明の変速制御装置は、加速度センサーが検出した車両の前後方向の加速度に関する検出情報と、自動変速機の出力回転から求められる前記車両の前後方向の実加速度と、駆動源が出力する駆動力及び前記車両に作用する空気抵抗に基づく走行駆動力と、のうち少なくとも2つを車両情報として出力する車両情報出力部と、前記車両情報と予め定められた選択用閾値との比較によってシフトモードを選択し、前記シフトモードに基づいて前記車両に設けられた前記自動変速機を制御するためのシフトポイントを設定する設定部と、を備える。
このように、本発明にかかる変速制御装置は、車両の状況によって変化する車両情報と選択用閾値との比較によって、シフトモードを選択し、シフトモードに基づくシフトポイントによって自動変速機を制御している。これにより、変速制御装置は、運転手等の乗員によらず自動でシフトモードを選択し、当該シフトモードに応じて車両の状況が変化しても、適切なシフトポイントで自動変速機を制御することができる。
本発明の変速制御装置において、前記設定部は、前記車両が走行中の路面の勾配に応じた前記選択用閾値と前記車両情報との比較によって前記シフトモードを選択してもよい。
このように、本発明にかかる変速制御装置は、路面の勾配に応じた選択用閾値に基づいてシフトモードを選択している。これにより、変速制御装置は、選択用閾値と車両情報との比較に基づいて登り、平坦及び降りを含む路面の勾配に対して適切なシフトモードを選択できる。
本発明の変速制御装置において、前記設定部は、前記車両の重量である車重に応じた前記選択用閾値と前記車両情報との比較によって前記シフトモードを選択してもよい。
このように、本発明にかかる変速制御装置は、車重に応じた選択用閾値に基づいてシフトモードを選択している。これにより、変速制御装置は、選択用閾値と車両情報との比較に基づいて、荷物の積載または被牽引車両の牽引等によって変化する車重に対して適切なシフトモードを選択できる。
本発明の変速制御装置において、前記設定部は、前記車両が走行中の路面の勾配及び前記車両の重量である車重に応じた前記選択用閾値と前記車両情報との比較によって前記シフトモードを選択してもよい。
このように、本発明にかかる変速制御装置は、路面の勾配及び車重に応じた選択用閾値と車両情報との比較によってシフトモードを設定しているので、路面の勾配及び車重の両方に対して適切なシフトモードを設定することができる。
本発明の変速制御装置において、前記設定部は、前記車両が走行中の車重及び路面勾配から決まる走行抵抗に応じた前記選択用閾値と、前記車両情報との比較によって前記シフトモードを選択してもよい。
このように、本発明にかかる変速制御装置は、走行抵抗に応じた選択用閾値によってシフトモードを選択している。これにより、変速制御装置は、選択用閾値に基づいて走行抵抗に対して適切なシフトモードを選択できる。
本発明の変速制御装置において、前記設定部は、前記車両が走行中の路面の勾配から受ける勾配抵抗と、前記路面から受ける転がり抵抗との和に応じた前記選択用閾値と前記車両情報との比較によって前記シフトモードを選択してもよい。
このように、本発明にかかる変速制御装置は、勾配抵抗と転がり抵抗との和に応じた選択用閾値によってシフトモードを選択している。これにより、変速制御装置は、選択用閾値に基づいて勾配抵抗と転がり抵抗との和に対して適切なシフトモードを選択できる。
本発明の変速制御装置において、加速度センサーが検出した車両の前後方向の加速度に関する検出情報と、自動変速機の出力回転から求められる前記車両の前後方向の実加速度と、駆動源が出力する駆動力及び前記車両に作用する空気抵抗に基づく走行駆動力と、を車両情報として出力する車両情報出力部と、前記車両情報から走行抵抗を算出し、前記走行抵抗に基づいて前記車両に設けられた前記自動変速機を制御するためのシフトポイントを設定する設定部と、を備える。
このように、本発明にかかる変速制御装置は、車重が不明でも算出可能な走行抵抗に基づいてシフトポイントを設定している。これにより、変速制御装置は、車重の変化が大きい車両においても適切にシフトポイントを設定することができる。
図1は、実施形態の変速制御システムが搭載される車両の概略図である。 図2は、実施形態の変速制御装置を含む変速制御システムの全体構成を示すブロック図である。 図3は、変速制御装置の機能を説明するための機能ブロック図である。 図4は、第1実施形態における選択用閾値を説明する図である。 図5は、変速マップのグラフの一例である。 図6は、変速マップの生成を説明するための車速と駆動源の駆動力との関係を示すグラフの一例である。 図7は、処理部が実行する第1実施形態の変速制御処理のフローチャートである。 図8は、第2実施形態における選択用閾値を説明する図である。 図9は、処理部が実行する第2実施形態の変速制御処理のフローチャートである。 図10は、第3実施形態における選択用閾値を説明する図である。 図11は、第4実施形態の選択用閾値を説明する図である。 図12は、第4実施形態の他の選択用閾値を説明する図である。 図13は、第5実施形態の選択用閾値を説明する図である。 図14は、第5実施形態の選択用閾値を説明する図である。 図15は、第5実施形態の選択用閾値を説明する図である。 図16は、処理部が実行する第6実施形態の変速制御処理のフローチャートである。
以下の例示的な実施形態等の同様の構成要素には共通の符号を付与して、重複する説明を適宜省略する。
<第1実施形態>
図1は、実施形態の変速制御システム22が搭載される車両10の概略図である。図1に示すように、車両10は、駆動源12と、自動変速機14と、差動装置16と、車軸18と、複数の車輪20と、変速制御システム22とを備える。
駆動源12は、例えば、エンジン等の内燃機関等の車両10を走行させる駆動力を発生させる装置である。駆動源12は、内燃機関及び電動機の両方を備えていてもよい。駆動源12は、発生させた駆動力を自動変速機14へ出力する。
自動変速機14は、オートマチックトランスミッションとも呼ばれ、スロットルの開度または出力軸14aの回転速度等に応じて、変速比または変速段を切り替える。自動変速機14は、変換した回転駆動力を、出力軸14aを介して差動装置16へ出力する。
差動装置16は、例えば、後側の車軸18に設けられている。差動装置16は、左右の車輪20の回転数の差を吸収しつつ、車軸18を介して、自動変速機14が出力した回転駆動力を後側の車輪20へ伝達する。
一対の車軸18のそれぞれは、前側または後側の左右の車輪20を連結する。後側の車軸18は、差動装置16から伝達された回転駆動力を車輪20へ伝達する。
車輪20は、車両10の前後左右に合計4個設けられている。後側の車輪20は、駆動源12が出力した回転駆動力が車軸18を介して伝達され、当該回転駆動力を路面に伝えて、車両10を走行させる。
変速制御システム22は、自動変速機14を制御する。変速制御システム22は、加速度センサー24と、車速センサー26と、開度センサー28と、制動センサー29と、変速制御装置30とを有する。
加速度センサー24は、車両10の前後方向の加速度を検出し、当該加速度を示す加速度センサー値を変速制御装置30へ出力する。加速度センサー24は、例えば、車両10に作用する加速度を圧電素子またはMEMS(Micro Electro Mechanical Systems)等によって電気信号に変換して出力する素子であってよい。
車速センサー26は、車両10の前後方向の速度を算出するための車速情報を検出して、変速制御装置30へ出力する。車速センサー26は、例えば、自動変速機14の出力軸14aの近傍に設けられたホール素子を有する。この場合、車速センサー26は、例えば、自動変速機14の出力軸14aの出力回転を車速情報として出力してよい。尚、出力回転を示す車速情報は、例えば、自動変速機14の出力軸14aの回転速度、車輪20の回転数、及び、駆動源12の出力軸の回転数のいずれかであってもよい。
開度センサー28は、駆動源12への混合気または空気等の供給量を調整するためのスロットルバルブの開度である開度情報を検出して、変速制御装置30へ出力する。開度センサー28は、例えば、スロットルバルブの近傍に設けられた位置センサーであってよい。尚、開度情報は、アクセルの開度であってもよい。
制動センサー29は、車両10に設けられ、ブレーキによる制動力を算出するための制動情報を検出して変速制御装置30へ出力する。制動センサー29は、例えば、運転手によるブレーキ操作により発生したブレーキ油圧を制動情報として出力してよい。
変速制御装置30は、車両情報に基づいてシフトモードを選択し、シフトモードに応じたシフトポイントで自動変速機14の変速段を制御する。
図2は、実施形態の変速制御装置30を含む変速制御システム22の全体構成を示すブロック図である。図2に示すように、変速制御システム22は、加速度センサー24と、車速センサー26と、開度センサー28と、変速制御装置30と、車内ネットワーク32とを備える。
変速制御装置30は、ECU(Electronic Control Unit)等のコンピュータである。変速制御装置30は、CPU(Central Processing Unit)30aと、ROM(Read Only Memory)30bと、RAM(Random Access Memory)30cと、SSD(Solid State Drive)30dとを備える。CPU30a、ROM30b及びRAM30cは、同一パッケージ内に集積されていてもよい。
CPU30aは、ハードウェアプロセッサの一例であって、ROM30bまたはSSD30d等の不揮発性の記憶装置に記憶されたプログラムを読み出して、当該プログラムにしたがって各種の演算処理および制御を実行する。CPU30aは、例えば、自動変速機14を制御するための変速制御の処理を実行する。
ROM30bは、各プログラム及びプログラムの実行に必要なパラメータ等のデータを記憶する。RAM30cは、CPU30aでの演算で用いられる各種のデータを一時的に記憶する。SSD30dは、書き換え可能な不揮発性の記憶装置であって、変速制御装置30の電源がオフされた場合にあってもデータを維持する。
車内ネットワーク32は、例えば、CAN(Controller Area Network)及びLIN(Local Interconnect Network)等を含む。車内ネットワーク32は、加速度センサー24と、車速センサー26と、開度センサー28と、制動センサー29と、変速制御装置30と、自動変速機14とを互いに情報を送受信可能に接続する。
図3は、変速制御装置30の機能を説明するための機能ブロック図である。図3に示すように、変速制御装置30は、処理部34と、記憶部36とを備える。
処理部34は、CPU30aの機能として実現される。処理部34は、車両情報出力部40と、設定部42として機能する。処理部34は、例えば、記憶部36に格納された変速制御プログラム44を読み込むことによって、車両情報出力部40及び設定部42として機能する。車両情報出力部40及び設定部42の一部または全部は、ASIC(Application Specific Integrated Circuit)及びFPGA(Field-Programmable Gate Array)等の回路によって構成してもよい。
車両情報出力部40は、車両情報を算出または取得して、設定部42へ出力する。
例えば、車両情報出力部40は、車両10に設けられた加速度センサー24が検出した車両10の前後方向の加速度センサー値GSを取得する。ここで、傾斜角θで傾斜している路面上の車両10の前後方向に重力加速度gによって作用する加速度を勾配加速度GA(=g*sinθ)する。この場合、加速度センサー値GSは、後述する実加速度VAと勾配加速度GAとの和を含む次の式(1)で表すことができる。
GS=VA+GA ・・・(1)
車両情報出力部40は、次の式(1a)に基づいて、加速度センサー値GSから加速度センサー補正値GS’を車両情報として算出する。加速度センサー補正値GS’は、加速度センサー値GSを転がり抵抗RRによる加速度(=g*μ)だけオフセットした値である。尚、μは、転がり係数である。加速度センサー補正値GS’は検出情報の一例である。
GS’=GS+g*μ ・・・(1a)
車両情報出力部40は、次の式(2)に基づいて、車両情報として車両10の前後方向の実加速度VAを算出して算出する。具体的には、車両情報出力部40は、車速センサー26から取得した時刻の異なる車速情報に基づいて車速CVを繰り返し算出する。車両情報出力部40は、複数の車速CVの時間微分によって車両10の前後方向の実加速度VAを算出して求める。換言すれば、実加速度VAは、自動変速機14の出力回転である車速情報から求められる車両10の前後方向の加速度であって、加速度センサー値GSよりも車両10の実際の加速度に近い値となる。
VA=dCV/dt ・・・(2)
CV:車速(=RS*2π*WR/DfR)
RS:自動変速機14の出力軸14aの回転速度
DfR:差動装置16のギヤ比(=デファレンシャルギヤ比)
WR:車輪20の半径
車両情報出力部40は、駆動源12が出力する駆動力DF及び車両10に作用する空気抵抗ARに基づく、走行駆動力RFを車両情報として算出する。具体的には、車両情報出力部40は、次の式(3)に示すように、空気抵抗ARを駆動源12の駆動力DFから引いた値を走行駆動力RFとして算出してもよい。車両情報出力部40は、スロットルバルブの開度(またはアクセルの開度)及び出力軸14aの回転速度等の出力回転に予め関連付けられた駆動力特性から駆動源12の駆動力DFを求めてよい。尚、空気抵抗ARは、式(3a)によって算出してよい。
RF=DF−AR ・・・(3)
AR=λ*S*CV ・・・(3a)
λ:空気抵抗の係数
S:車両10の前面投影面積
設定部42は、車両情報出力部40から取得した車両情報に基づいて、自動変速機14を制御するためのシフトポイントを設定し、自動変速機14を制御する。具体的には、設定部42は、車両情報と、選択用閾値との比較に基づいてシフトポイントを設定する。例えば、設定部42は、車両10が走行中の路面の勾配に応じた選択用閾値と車両情報との比較によって、シフトポイントを設定するためのシフトモードを選択する。設定部42は、シフトモードと関連付けられた変速マップが示すシフトポイントに基づいて、自動変速機14を制御する。
記憶部36は、ROM30b、RAM30c及びSSD30dの機能として実現される。記憶部36は、処理部34と情報を入出力可能に接続されている。記憶部36は、ネットワーク等を介して接続された外部の記憶装置であってもよい。記憶部36は、処理部34が実行するプログラム、プログラムの実行に必要な情報及びプログラムの実行によって生成された情報等を記憶する。例えば、記憶部36は、処理部34が実行する変速制御プログラム44を記憶する。変速制御プログラム44は、CD−ROM(Compact Disc Read Only Memory)またはDVD−ROM(Digital Versatile Disc Read Only Memory)等のコンピュータにより読み取り可能な記憶媒体に記憶されて提供されてもよく、インターネット等のネットワークを介して提供されてもよい。記憶部36は、処理部34が変速制御プログラム44を実行する際に必要な変速マップ及び選択用閾値等を含む数値データ46を記憶する。記憶部36は、処理部34が変速制御プログラム44を実行することによって取得した各センサー24、26、28、29の値及び算出した値等を一時的に記憶する。
次に、第1実施形態における選択用閾値及びシフトモードの設定方法を説明する。図4は、第1実施形態における選択用閾値を説明する図である。図4の三軸は車両10の実加速度VA、加速度センサー補正値GS’、及び、走行駆動力RFを示す。以下、図4の空間を車両情報空間と記載する。加速度センサー補正値GS’は、走行駆動力RFの軸上で加速度センサー値GSを転がり抵抗RRによる加速度(=−g*μ)だけオフセットした値である。
加速度センサー24から取得した加速度センサー値GS、及び、算出した実加速度VAを含む式(1)に基づいて、路面の傾斜角θによって示される勾配加速度GAは、次の式(4)で表すことができる。
GA=GS−VA ・・・(4)
ここで勾配加速度GAを一定とした場合、車両情報空間では、加速度センサー値GSと実加速度VAとの差分である勾配加速度GAは、図4に太い一点鎖線で示すように平面PLa1、PLa2、PLa3、PLa4、PLa5となる。尚、平面PLa1、PLa2、PLa3、PLa4、PLa5は、説明するために離散的に記載しているが、勾配加速度GAに応じて連続的に形成される面である。以下の説明において、平面PLa1、PLa2、PLa3、PLa4、PLa5を区別する必要がない場合、平面PLaと記載する。各平面PLaは、走行駆動力RFの軸と平行であって、実加速度VAの軸及び加速度センサー補正値GS’の軸と45°で交差する。平面PLa1は、路面が平坦な場合、即ち、傾斜角θ=0の場合を示す。尚、平面PLa1は、GS’=g*μで加速度センサー補正値GS’の軸と交差する。平面PLa2、PLa3は、路面が登りの場合、即ち、傾斜角θが正の場合を示す。平面PLa4、PLa5は、路面が降りの場合、即ち、傾斜角θが負の場合を示す。
設定部42は、走行駆動力RF、実加速度VA及び加速度センサー値GSを含む車両情報が示す車両情報空間内での位置(以下、車両情報位置)が、路面の傾斜角θまたは勾配加速度GA毎に異なる平面PLaで示す選択用閾値のいずれ側かでシフトモードを選択してよい。尚、選択用閾値は、予め設定されていてもよく、運転手等の車両10のユーザが変更可能に構成されていてもよい。
例えば、路面が登りか降りかでシフトモードを選択する場合、設定部42は、平面PLa1で示す選択用閾値のどちら側かでシフトモードを選択してよい。具体的には、設定部42は、車両情報位置が図4の車両情報空間において選択用閾値よりも左上方であれば、第1シフトモードを選択する。第1シフトモードは、例えば、燃費を重視したモードである。設定部42は、車両情報位置が選択用閾値よりも図4の車両情報空間において右下方であれば、第2シフトモードを選択する。第2シフトモードは、例えば、ドライバビリティ及びレスポンスを重視した運転性の高いモードである。路面の登りが予め定められた傾斜角θの大きさ以上か否かでシフトモードを選択する場合、設定部42は、平面PLa2、PLa3等で示す選択用閾値のどちら側かでシフトモードを選択してよい。路面の降りが予め定められた傾斜角θの大きさ以上か否かでシフトモードを選択する場合、設定部42は、平面PLa4、PLa5等で示す選択用閾値のどちら側かでシフトモードを選択してよい。
尚、選択用閾値となる各平面PLaは走行駆動力RFの軸と平行なので、設定部42は、車両情報のうち、実加速度VA及び加速度センサー補正値GS’に基づいて、車両情報位置が選択用閾値のいずれ側かを判定してよい。換言すれば、設定部42は、各平面PLaを実加速度VAと加速度センサー値GSとの二次元平面に投影した直線を選択用閾値として、シフトモードを選択してもよい。
次に、設定部42によるシフトポイントの判定方法について説明する。図5は、変速マップのグラフの一例である。設定部42は、シフトモードのそれぞれと関連付けられた変速マップに基づいて、自動変速機14の変速段を切り替えるシフトポイントを判定する。変速マップは、図5に示すように、自動変速機14の出力軸14aの回転速度RS及び開度情報が示すスロットル開度とシフトポイントとに関連付けられたアップシフトライン(実線参照)及びダウンシフトライン(破線参照)を示すマップである。設定部42は、回転速度RS及びスロットル開度がアップシフトラインまたはダウンシフトラインを跨ぐと、シフトポイントに達したと判定して、自動変速機14の変速段をアップまたはダウンする。変速マップは、シフトモードごとに設定されて記憶部36の数値データ46の一部として格納されている。従って、設定部42は、設定したシフトモードに応じた変速マップを数値データ46から取得して、シフトポイントを判定する。
図6は、変速マップの生成を説明するための車速CVと駆動源12の駆動力DFとの関係を示すグラフの一例である。図6の横軸は車両10の車速CVを示し、縦軸は駆動源12が出力する駆動力DFを示す。図6の実線(以下、最大駆動力線)は、第2速から第6速までの各変速段においてスロットルの開度を最大にした駆動源12の駆動力DFを示す。図6の太い一点鎖線は、第1シフトモード及び第2シフトモードにおける走行抵抗DRに基づくポイント判定線JL1、JL2を示す。ポイント判定線JL1、JL2は、各車速においてシフトポイントを判定するための線であって、走行抵抗DRを上方にずらした線であってよい。走行抵抗DRは、例えば、空気抵抗AR、勾配抵抗GR及び転がり抵抗RRの和から算出される。
車速CVを維持するためには、車両10に作用する走行抵抗DRよりも駆動源12の駆動力DFが大きいことが必要条件である。従って、変速マップは、各シフトモードにおいて走行抵抗DRよりも大きい駆動源12の駆動力DFを出力する変速段によって生成される。更に、変速マップのポイント判定線JL1、JL2は、各シフトモードにおいて重視される条件、例えば、第1シフトモードでは燃費、及び、第2シフトモードではドライバビリティに基づいて設定される。
図7は、処理部34が実行する第1実施形態の変速制御処理のフローチャートである。処理部34は、変速制御プログラム44を読み込むことによって変速制御処理を実行する。
図7に示す変速制御処理において、車両情報出力部40は、加速度センサー値GSを加速度センサー24から取得して、式(1a)に示す加速度センサー補正値GS’を算出する(S102)。車両情報出力部40は、車速センサー26から取得した自動変速機14の出力軸14aの回転速度RSから算出された車速CVを含む式(2)に基づいて、実加速度VAを算出する(S104)。車両情報出力部40は、駆動源12の駆動力DF及び空気抵抗ARを含む式(3)に基づいて、走行駆動力RFを算出する(S106)。車両情報出力部40は、自動変速機14の出力軸14aの回転速度RSと、加速度センサー補正値GS’、実加速度VA及び走行駆動力RFを含む車両情報とを設定部42へ出力する(S108)。
設定部42は、路面の勾配に応じた選択用閾値を記憶部36の数値データ46から取得する(S110)。設定部42は、車両情報と選択用閾値との比較に基づいて、シフトモードを選択する(S112)。具体的には、設定部42は、平面PLaで示す選択用閾値のどちら側かで第1シフトモードまたは第2シフトモードのいずれかを選択する。設定部42は、選択したシフトモードに応じて記憶部36の数値データ46から変速マップを取得する(S114)。設定部42は、開度センサー28からスロットルの開度を示す開度情報を取得する(S116)。設定部42は、車両情報出力部40から回転速度RS及び開度情報に基づいてシフトポイントか否かを判定する(S118)。
設定部42は、回転速度RS及び開度情報がシフトポイントでないと判定すると(S118:No)、ステップS102以降を繰り返す。一方、設定部42は、車速CV及び開度情報がシフトポイントであると判定すると(S118:Yes)、自動変速機14の変速段を変更して(S120)、ステップS102以降を実行する。
上述したように、変速制御装置30は、車両10の状況によって変化する車両情報及び選択用閾値との比較によってシフトモードを選択し、シフトモードに関連付けられた変速マップに基づくシフトポイントによって自動変速機14を制御している。これにより、変速制御装置30は、車両10の状況に応じて、運転手等の乗員によらず自動でシフトモードを選択し、当該シフトモードに応じて適切なシフトポイントで自動変速機14を制御することができる。
変速制御装置30は、路面の勾配に応じた選択用閾値に基づいてシフトモードを選択している。これにより、変速制御装置30は、選択用閾値と車両情報との比較に基づいて登り、平坦及び降りを含む路面の勾配に対して適切なシフトモードを選択できる。この結果、変速制御装置30は、車両10が走行している路面の勾配に応じた適切なシフトポイントで自動変速機14を制御できる。特に、変速制御装置30は、ピックアップトラックのように車両10の重量(以下、車重CM)が大きく、路面の勾配の影響を受けやすい車両10であっても適切にシフトモードを選択できる。また、運転手等の乗員は路面の勾配に応じてシフトモードを切り替える傾向があるが、変速制御装置30は、当該傾向に沿って、即ち、乗員の感覚に沿ってシフトモードを選択することができる。
<第2実施形態>
次に、車重CMに基づく選択用閾値によってシフトモードを選択する第2実施形態の変速制御装置30について説明する。図8は、第2実施形態における選択用閾値を説明する図である。
第2実施形態の変速制御装置30では、設定部42が、車重CMに応じた選択用閾値を設定し、選択用閾値と車両情報との比較によってシフトモードを選択する。ここで、車両10が走行中の路面の勾配による勾配抵抗GR(=CM*g*sinθ)、転がり抵抗RR(=CM*g*μ)及び空気抵抗ARを考慮した場合の車両10の運動方程式は、次の式(5)になる。
DF−(GR+RR+AR)=CM*VA ・・・(5)
車重CMは、式(5)から走行駆動力RF、加速度センサー値GS(=VA+GR/CM)、及び、加速度センサー補正値GS’(=GS+g*μ)を用いた次の式(6)で表すことができる。
CM=RF/(GS+g*μ)=RF/GS’ ・・・(6)
ここで車重CMを一定とした場合、車両情報空間では、式(6)で表される車重CMは、図8に太い一点鎖線で示すように平面PLb1、PLb2、PLb3となる。平面PLb1、PLb2、PLb3は、説明するために離散的に記載しているが、車重CMに応じて連続的に形成される面である。以下の説明において、平面PLb1、PLb2、PLb3を区別する必要がない場合、平面PLbと記載する。平面PLb1は、車重CMが中間値の場合を示す。平面PLb2は、車重CMが中間値より重い場合を示す。中間値は、例えば、最大積載量等の半分としてよい。平面PLb3は、車重CMが中間値より軽い場合を示す。各平面PLbは、実加速度VAと平行であって、実加速度VAの軸の周りで回転させた面である。
設定部42は、車重CMに応じて異なる平面PLbを選択用閾値としてシフトモードを選択する。設定部42は、走行駆動力RF、実加速度VA及び加速度センサー値GSを含む車両情報が示す車両情報空間内での位置(以下、車両情報位置)が、実加速度VAの軸を中心とする周方向において、車重CM毎に異なる平面PLbで示す選択用閾値のいずれ側かでシフトモードを選択してよい。尚、選択用閾値は、予め設定されていてもよく、運転手等の車両10のユーザが変更可能に構成されていてもよい。
例えば、車重CMが中間値よりも重いか否かでシフトモードを選択する場合、設定部42は、中間の平面PLb1で示す選択用閾値のどちら側かでシフトモードを選択してよい。具体的には、設定部42は、車両情報位置が図8の車両情報空間において平面PLb1で示す選択用閾値よりも実加速度VAの軸の周りで反時計回り側であれば、燃費重視の第1シフトモードを選択する。設定部42は、車両情報位置が平面PLb1で示す選択用閾値よりも実加速度VAの軸の周りで時計周り側であれば、ドライバビリティ重視の第2シフトモードを選択する。車重CMが大幅に重いか否かでシフトモードを選択する場合、設定部42は、車重CMが重い場合の平面PLb2で示す選択用閾値のどちら側かでシフトモードを選択してよい。車重CMが大幅に軽いか否かでシフトモードを選択する場合、設定部42は、車重CMが軽い場合の平面PLb3で示す選択用閾値のどちら側かでシフトモードを選択してよい。
尚、選択用閾値となる平面PLbは実加速度VAの軸と平行なので、設定部42は、車両情報のうち、走行駆動力RF及び加速度センサー補正値GS’に基づいて、車両情報位置が選択用閾値のいずれ側かによってシフトモードを選択してもよい。換言すれば、設定部42は、各平面PLbを走行駆動力RFと加速度センサー補正値GS’との二次元平面に投影した直線を選択用閾値として、シフトモードを選択してもよい。
図9は、処理部34が実行する第2実施形態の変速制御処理のフローチャートである。処理部34は、変速制御プログラム44を読み込むことによって変速制御処理を実行する。上述の実施形態と同様のステップには同じステップ番号を付与して説明を省略または簡略化する。
図9に示すように、第2実施形態の変速制御処理において、車両情報出力部40は、自動変速機14の出力軸14aの回転速度RS及び車両情報を設定部42へ出力する(S102〜S108)。
設定部42は、車重CMに応じた選択用閾値を記憶部36の数値データ46から取得する(S210)。設定部42は、選択用閾値及び車両情報に基づいて選択したシフトモードによってシフトポイントか否かを判定し、自動変速機14を制御する(S112〜S120)。
上述したように変速制御装置30は、車重CMに応じた選択用閾値に基づいてシフトモードを選択している。これにより、変速制御装置30は、選択用閾値と車両情報との比較に基づいて、荷物の積載または被牽引車両の牽引等によって変化する車重CMに対して適切なシフトモードを選択できる。この結果、変速制御装置30は、車重CMに応じた適切なシフトポイントで自動変速機14を制御できる。特に、変速制御装置30は、ピックアップトラックのように被牽引車等によって車重CMの変化が大きい車両10であっても適切にシフトモードを選択できる。また、運転手等の乗員は車重CMに応じてシフトモードを切り替える傾向があるが、変速制御装置30は、当該傾向に沿って、即ち、乗員の感覚に沿ってシフトモードを選択することができる。
<第3実施形態>
次に、路面の勾配及び車重CMに基づく選択用閾値によってシフトモードを選択する第3実施形態の変速制御装置30について説明する。図10は、第3実施形態における選択用閾値を説明する図である。
第3実施形態の変速制御装置30では、設定部42が、路面の勾配及び車重CMに応じた選択用閾値と車両情報との比較によってシフトモードを選択する。例えば、設定部42は、勾配加速度GAが一定とした場合の平面PLa1(一点鎖線参照)及び車重CMが一定とした場合の平面PLb1(二点鎖線参照)を選択用閾値として設定する。即ち、第3実施形態の選択用閾値は、2つの平面PLa1、PLb1によって構成される。尚、図示の平面PLa1、PLb1は代表的な平面であって、路面の勾配の傾斜角θ及び車重CMに応じて連続的に形成される複数の平面のいずれかを選択用閾値の平面PLa1、PLb1としてよい。両平面PLa1、PLb1の設定方法は、第1実施形態及び第2実施形態と同様である。
設定部42は、車両情報位置が両平面PLa1、PLb1で区切られた4つの領域のいずれに属するかによってシフトモードを選択する。例えば、車両情報位置が路面の勾配に応じた平面PLa1よりも左上方かつ車重CMに応じた平面PLb1の反時計回り側の領域であれば、設定部42は第1シフトモードを選択する。車両情報位置が路面の勾配に応じた平面PLa1よりも右下方かつ車重CMに応じた平面PLb1の時計回り側の領域であれば、設定部42は第2シフトモードを選択する。車両情報位置が上述の2つの領域以外の場合、設定部42は、第1シフトモード及び第2シフトモード以外のシフトモード(以下、第3シフトモード)を設定してよい。第3シフトモードは、第1シフトモードと第2シフトモードとの中間のシフトモードであって、燃費とドライバビリティを同程度重視したシフトモードであってよい。
第3実施形態の変速制御処理は、第1実施形態と第2実施形態とを組み合わせた処理とほぼ同様の処理になるので説明を省略する。
上述したように第3実施形態の変速制御装置30は、路面の勾配及び車重CMに応じた選択用閾値によってシフトモードを設定しているので、路面の勾配及び車重CMの両方に対して適切なシフトモードを設定することができる。
<第4実施形態>
次に、走行駆動力RF、実加速度VA、及び、加速度センサー補正値GS’に基づく選択用閾値によってシフトモードを選択する第4実施形態について説明する。図11は、第4実施形態の選択用閾値を説明する図である。図12は、第4実施形態の他の選択用閾値を説明する図である。
第4実施形態の変速制御装置30では、設定部42が、車両10が走行中の車重CM及び路面勾配から決まる走行抵抗DRに応じた選択用閾値と、車両情報との比較によってシフトモードを選択する。走行抵抗DRは、例えば、空気抵抗AR、勾配抵抗GR及び転がり抵抗RRの和から算出される。つまり、設定部42が、勾配抵抗GRと転がり抵抗RRとの和に応じた選択用閾値と車両情報との比較によってシフトモードを選択する。ここで、車両10の運動方程式である上述の式(5)を変形すると、次の式(7)になる。
GR+RR=(DF−AR)*(1−VA/GS’)
=RF*(1−VA/GS’) ・・・(7)
ここで、式(7)の右辺の走行駆動力RF(=DF−AR)、実加速度VA及び加速度センサー補正値GS’は、車両情報空間における三軸である。従って、式(8)及び式(9)で示すように勾配抵抗GRと転がり抵抗RRとの和を一定とした場合、車両情報空間では、勾配抵抗GRと転がり抵抗RRとの和は、図11及び図12に示す曲面PLc1、PLc2となる。勾配抵抗GR及び転がり抵抗RRは、車重CM及び勾配の傾斜角θの増減に伴って増減する。
RF*(1−VA/GS’)=C1 ・・・(8)
RF*(1−VA/GS’)=C2 ・・・(9)
但し、C1<C2
設定部42は、曲面PLc1、PLc2を選択用閾値としてシフトモードを選択してよい。具体的には、車両情報位置が図11に示す曲面PLc1で示す選択用閾値よりも右上方であれば、設定部42は、燃費重視の第1シフトモードを選択してよい。車両情報位置が図12に示す曲面PLc2で示す選択用閾値よりも左下方であれば、設定部42は、ドライバビリティ重視の第3シフトモードを選択してよい。車両情報位置が図11に示す曲面PLc1と図12に示す曲面PLc2との間の場合、設定部42は、第1シフトモード及び第3シフトモードの中間の第2シフトモードを選択してよい。
上述したように第4実施形態の変速制御装置30は、走行抵抗DRに応じた選択用閾値であって、車重CM及び勾配の傾斜角θによって増減する勾配抵抗GRと転がり抵抗RRとの和に応じた選択用閾値によってシフトモードを選択している。これにより、変速制御装置30は、選択用閾値に基づいて走行抵抗DR及び勾配抵抗GRと転がり抵抗RRとの和、即ち、車重CM及び勾配の傾斜角θに対して適切なシフトモードを選択できる。この結果、変速制御装置30は、車両10が走行している勾配抵抗GRと転がり抵抗RRとの和に応じた適切なシフトポイントで自動変速機14を制御できる。
<第5実施形態>
次に、制動状態における選択用閾値を設定する第5実施形態について説明する。図13、図14及び図15は、第5実施形態の選択用閾値を説明する図である。尚、図13、図14及び図15の車両情報空間の座標は負側であって、原点は図示された車両情報空間の外側(ほぼ左側)である。
第5実施形態の設定部42は、ブレーキによる制動力BFが作用している制動状態において、上述の実施形態と同様の選択用閾値と車両情報との比較に基づいてシフトモードを選択してもよい。ここで、ブレーキによる制動力BFを考慮した場合の車両10の運動方程式は、次の式(10)となる。尚、設定部42は、制動センサー29から取得した制動情報に基づいて、制動力BFを算出してよい。
DF−(GR+RR+AR+BF)=CM*VA ・・・(10)
式(10)を変形すると、次の式(11)になる。
GR+RR=(DF−AR−BF)*(1−VA/GS’) ・・・(11)
本実施形態では、次の式(12)で示すように走行駆動力RFが制動力BFを含むとする。
RF=DF−AR−BF ・・・(12)
ここで、式(11)の右辺の走行駆動力RF(=DF−AR−BF)、実加速度VA及び加速度センサー補正値GS’は、車両情報空間における三軸である。従って、次の式(13)、式(14)及び式(15)で示すように勾配抵抗GRと転がり抵抗RRとの和を一定とした場合、車両情報空間では、勾配抵抗GRと転がり抵抗RRとの和は、図13、図14及び図15に示す曲面PLd1、PLd2、PLd3となる。勾配抵抗GR及び転がり抵抗RRは、車重CM及び勾配の傾斜角θの増減に伴って増減する。
RF*(1−VA/GS’)=C3 ・・・(13)
RF*(1−VA/GS’)=C4 ・・・(14)
RF*(1−VA/GS’)=C5 ・・・(15)
但し、C3>C4>C5
設定部42は、曲面PLd1、PLd2、PLd3を選択用閾値としてシフトモードを選択してよい。具体的には、車両情報位置が図13に示す曲面PLd1で示す選択用閾値よりも左下方であれば、設定部42は、燃費重視の第1シフトモードを選択してよい。車両情報位置が図13の曲面PLd1で示す選択用閾値と図14の曲面PLd2で示す選択用閾値との間であれば、設定部42は、第1シフトモードと第3シフトモードとの間の第2シフトモードを選択してよい。車両情報位置が図14の曲面PLd2で示す選択用閾値と図15の曲面PLd3で示す選択用閾値との間であれば、設定部42は、ドライバビリティ重視の第3シフトモードを選択してよい。車両情報位置が図15の曲面PLd3で示す選択用閾値よりも左下方であれば、設定部42は、エンジンブレーキ等の駆動源12によるブレーキ及びドライバビリティ重視の第4シフトモードを選択してよい。
上述したように、第5実施形態の変速制御装置30では、設定部42が制動力BFを含む走行駆動力RFに基づいて選択用閾値を設定している。これにより、変速制御装置30は、運転手がブレーキを操作している際においても自動で適切にシフトモードを選択することができる。また、変速制御装置30は、選択用閾値を細分化(例えば、3段階)することで、燃費及びドライバビリティに加えて、駆動源12によるブレーキを重視した第4シフトモードを適切に選択できる。
<第6実施形態>
次に、走行抵抗DRを算出してシフトポイントを設定する第6実施形態について説明する。
従来技術では車重CMを既知の値として走行抵抗DRを演算している(DR=DF−CM*VA)が、第6実施形態の変速制御装置30では、設定部42は、車重CMが既知の値でなくても、走行抵抗DRに基づいてシフトポイントを算出できる。ここで、走行抵抗DRは、空気抵抗AR、勾配抵抗GR及び転がり抵抗RRを含む次の式(16)で表すことができる。
DR=AR+GR+RR ・・・(16)
式(16)に式(7)の右辺を代入すると式(17)になる。
DR=RF*(1−VA/GS’)+AR ・・・(17)
式(17)の右辺は車重CMを含まない。従って、設定部42は、式(17)に基づいて、車重CMが不明でも走行抵抗DRを算出できる。具体的には、設定部42は、車両情報である走行駆動力RF、実加速度VA及び加速度センサー補正値GS’と、空気抵抗ARとから走行抵抗DRを算出する。尚、設定部42は、空気抵抗ARを車速CVから算出してよい。設定部42は、算出した走行抵抗DRに基づいてシフトポイントを算出してよい。例えば、設定部42は、走行抵抗DRと、図6に示すような駆動源12が出力する駆動力DFの最大値を示す最大駆動力線とポイント判定線とに基づいて、シフトポイントを設定してよい。例えば、設定部42は、走行抵抗DRを上方にずらしたポイント判定線を設定し、当該ポイント判定線と最大駆動力線との交点をシフトポイントとしてよい。最大駆動力線は、数値データ46の一部として予め記憶部36に格納されていてよい。
図16は、処理部34が実行する第6実施形態の変速制御処理のフローチャートである。上述の実施形態と同様のステップには同じステップ番号を付与して説明を省略または簡略化する。
図16に示すように、第6実施形態の変速制御処理において、車両情報出力部40は、ステップS102、S104、S106を実行して、加速度センサー値GS、実加速度VA及び走行駆動力RFを含む車両情報を算出または取得する。車両情報出力部40は、回転速度RS、車速CV及び車両情報を設定部42へ出力する(S308)。
設定部42は、車速CVから算出した空気抵抗AR及び車両情報に基づいて走行抵抗DRを算出する(S310)。設定部42は、走行抵抗DRと、図6に示す駆動源12の最大駆動力線と走行抵抗DRとに基づいて、シフトポイントを算出する(S312)。設定部42は、開度情報が示すスロットル開度及び回転速度RSに基づいてシフトポイントか否かを判定する。設定部42は、シフトポイントでないと判定すると(S314:No)、ステップS102以降を繰り返す。設定部42は、シフトポイントであると判定すると(S314:Yes)、自動変速機14の変速段を変更した後(S120)、ステップS102以降を繰り返す。
上述したように第6実施形態の変速制御装置30は、車重CMが不明でも算出可能な走行抵抗DRに基づいてシフトポイントを設定している。これにより、変速制御装置30は、ピックアップトラック等のように車重CMの変化が大きい車両10においても適切にシフトポイントを設定することができる。
上述した各実施形態の構成の機能、接続関係、個数、配置等は、発明の範囲及び発明の範囲と均等の範囲内で適宜変更、削除等してよい。各実施形態を適宜組み合わせてもよい。各実施形態の各ステップの順序を適宜変更してよい。
上述の実施形態では、車両情報出力部40が、車両10に設けられたセンサー24、26、28から加速度センサー値GS、車速情報、及び、開度情報を取得する例を挙げたが、車両情報出力部40は外部のセンサー等から上述の情報を取得してもよい。
上述の実施形態では、設定部42が実加速度VA、走行駆動力RF等を算出する例を挙げたが、設定部42は実加速度VA、走行駆動力RF等を外部の情報処理装置等から取得してもよい。
上述の第1実施形態及び第2実施形態では、1つの選択用閾値によって2つのシフトモードからシフトモードを選択する変速制御装置30を挙げたが、第1実施形態及び第2実施形態においても、変速制御装置30は、2以上の選択用閾値によって3以上のシフトモードからシフトモードを選択してもよい。
上述の車両10の運動方程式である式(5)及び式(10)において、駆動源12から車輪20に達するまでに生じる駆動力DFの損失を考慮してもよい。
上述の実施形態では、加速度センサー補正値GS’を車両情報としたが、加速度センサー値GSを車両情報としてもよい。この場合、加速度センサー値GSが検出情報の一例である。
上述の実施形態では、車両情報出力部40が、加速度センサー補正値GS’、実加速度VA及び走行駆動力RFを車両情報として出力する例を挙げたが、車両情報はこれに限定されない。上述の第1実施形態から第5実施形態において、車両情報は、加速度センサー補正値GS’、実加速度VA及び走行駆動力RFの少なくとも2つを出力すればよい。例えば、車両情報出力部40は、第1実施形態において、加速度センサー補正値GS’及び実加速度VAの2つを車両情報として出力してもよい。この場合、設定部42は、加速度センサー補正値GS’及び実加速度VAを二軸とする二次元平面上に選択用閾値を直線として設定して、シフトモードを選択してよい。車両情報出力部40は、第2実施形態において、加速度センサー補正値GS’及び走行駆動力RFの2つを車両情報として出力してもよい。この場合、設定部42は、加速度センサー補正値GS’及び走行駆動力RFを二軸とする二次元平面上に選択用閾値を直線として設定して、シフトモードを選択してよい。
上述の実施形態における選択用閾値は例であって、他の要素によって選択用閾値は設定されてもよい。例えば、選択用閾値は、勾配抵抗GR(=CM*g*sinθ)が一定となるように設定されてもよい。
制動力BFを考慮した上述の第5実施形態では、第4実施形態と同様に勾配抵抗GRと転がり抵抗RRとの和を一定とした場合の選択用閾値に基づいてシフトモードを選択する例を挙げたが、制動力BFを考慮した場合のシフトモードの選択方法は第5実施形態の方法に限られない。例えば、第1実施形態から第3実施形態のように、路面の勾配、及び、車重CMの少なくとも一方を一定とした場合の選択用閾値に基づいてシフトモードを選択してもよい。
10:車両、 12:駆動源、 14:自動変速機、 22:変速制御システム、 24:加速度センサー、 30:変速制御装置、 40:車両情報出力部、 42:設定部、 44:変速制御プログラム、 46:数値データ。

Claims (7)

  1. 加速度センサーが検出した車両の前後方向の加速度に関する検出情報と、自動変速機の出力回転から求められる前記車両の前後方向の実加速度と、駆動源が出力する駆動力及び前記車両に作用する空気抵抗に基づく走行駆動力と、のうち少なくとも2つを車両情報として出力する車両情報出力部と、
    前記車両情報と予め定められた選択用閾値との比較によってシフトモードを選択し、前記シフトモードに基づいて前記車両に設けられた前記自動変速機を制御するためのシフトポイントを設定する設定部と、
    を備える変速制御装置。
  2. 前記設定部は、前記車両が走行中の路面の勾配に応じた前記選択用閾値と前記車両情報との比較によって前記シフトモードを選択する
    請求項1に記載の変速制御装置。
  3. 前記設定部は、前記車両の重量である車重に応じた前記選択用閾値と前記車両情報との比較によって前記シフトモードを選択する
    請求項1に記載の変速制御装置。
  4. 前記設定部は、前記車両が走行中の路面の勾配及び前記車両の重量である車重に応じた前記選択用閾値と前記車両情報との比較によって前記シフトモードを選択する
    請求項1に記載の変速制御装置。
  5. 前記設定部は、前記車両が走行中の車重及び路面勾配から決まる走行抵抗に応じた前記選択用閾値と、前記車両情報との比較によって前記シフトモードを選択する
    請求項1に記載の変速制御装置。
  6. 前記設定部は、前記車両が走行中の路面の勾配から受ける勾配抵抗と、前記路面から受ける転がり抵抗との和に応じた前記選択用閾値と前記車両情報との比較によって前記シフトモードを選択する
    請求項1に記載の変速制御装置。
  7. 加速度センサーが検出した車両の前後方向の加速度に関する検出情報と、自動変速機の出力回転から求められる前記車両の前後方向の実加速度と、駆動源が出力する駆動力及び前記車両に作用する空気抵抗に基づく走行駆動力と、を車両情報として出力する車両情報出力部と、
    前記車両情報から走行抵抗を算出し、前記走行抵抗に基づいて前記車両に設けられた前記自動変速機を制御するためのシフトポイントを設定する設定部と、
    を備える変速制御装置。
JP2018086620A 2018-04-27 2018-04-27 変速制御装置 Pending JP2019190617A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018086620A JP2019190617A (ja) 2018-04-27 2018-04-27 変速制御装置
US16/394,160 US10823281B2 (en) 2018-04-27 2019-04-25 Speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018086620A JP2019190617A (ja) 2018-04-27 2018-04-27 変速制御装置

Publications (1)

Publication Number Publication Date
JP2019190617A true JP2019190617A (ja) 2019-10-31

Family

ID=68389727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086620A Pending JP2019190617A (ja) 2018-04-27 2018-04-27 変速制御装置

Country Status (1)

Country Link
JP (1) JP2019190617A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115467966A (zh) * 2022-09-14 2022-12-13 一汽解放汽车有限公司 换挡点设置系统、方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571635A (ja) * 1991-09-14 1993-03-23 Honda Motor Co Ltd 車両用自動変速機の制御装置
JP2010084867A (ja) * 2008-09-30 2010-04-15 Aisin Aw Co Ltd 自動変速機の制御装置
JP2012092939A (ja) * 2010-10-28 2012-05-17 Jatco Ltd 自動変速機
JPWO2010131367A1 (ja) * 2009-05-15 2012-11-01 トヨタ自動車株式会社 自動変速機の変速制御装置及び自動変速機の変速制御方法
JP2017094981A (ja) * 2015-11-26 2017-06-01 ダイムラー・アクチェンゲゼルシャフトDaimler AG 車両の走行制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571635A (ja) * 1991-09-14 1993-03-23 Honda Motor Co Ltd 車両用自動変速機の制御装置
JP2010084867A (ja) * 2008-09-30 2010-04-15 Aisin Aw Co Ltd 自動変速機の制御装置
JPWO2010131367A1 (ja) * 2009-05-15 2012-11-01 トヨタ自動車株式会社 自動変速機の変速制御装置及び自動変速機の変速制御方法
JP2012092939A (ja) * 2010-10-28 2012-05-17 Jatco Ltd 自動変速機
JP2017094981A (ja) * 2015-11-26 2017-06-01 ダイムラー・アクチェンゲゼルシャフトDaimler AG 車両の走行制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115467966A (zh) * 2022-09-14 2022-12-13 一汽解放汽车有限公司 换挡点设置系统、方法、装置及存储介质

Similar Documents

Publication Publication Date Title
US10518771B2 (en) System and method for controlling vehicle speed
CN110949370A (zh) 自动驾驶车辆的安全监测方法、系统及运动控制系统
AU2015306392B2 (en) Automatic speed control of a vehicle traversing a water obstacle
JP2018020778A (ja) 車両速度を制御するためのシステム及び方法
JP5083455B2 (ja) 車両状態判定装置及び車両状態判定方法
KR20000070353A (ko) 차량의 기울기 검출방법 및 장치
US10118615B2 (en) System and method for controlling the speed of a vehicle using vehicle configuration
CN109677412B (zh) 用于在环境友好车辆中控制爬行扭矩的装置和方法
US9682706B2 (en) System and method for controlling the speed of a vehicle
US20150210282A1 (en) Speed control system and method for operating the same
AU2015340838A1 (en) Controlling the braking of a vehicle descending a slope
KR20160044362A (ko) 현가시스템의 제어방법
EP2885188B1 (en) System and method for selecting a driveline gear ratio
JP2008265545A (ja) 車両の重心位置推定装置及び重心位置/ヨー慣性モーメント推定装置。
US10823281B2 (en) Speed control device
JP5097165B2 (ja) 車両制御装置
KR102610741B1 (ko) 차량의 군집주행 제어 장치 및 그 방법
JP2019190617A (ja) 変速制御装置
JPH11351864A (ja) 道路勾配推定装置
JP6353207B2 (ja) 車両の制御装置
CN102066176A (zh) 车辆控制装置
KR20230045384A (ko) 전기차 드리프트 제어 시스템 및 그 방법
JP2017150650A (ja) 駆動力制御装置
JP4973195B2 (ja) 車両状態判定装置
JP7029104B2 (ja) 電動車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221011