JP2019186200A - パラメータ決定方法および細孔内のガスまたはイオンの輸送性を求めるシミュレーション方法 - Google Patents
パラメータ決定方法および細孔内のガスまたはイオンの輸送性を求めるシミュレーション方法 Download PDFInfo
- Publication number
- JP2019186200A JP2019186200A JP2019046434A JP2019046434A JP2019186200A JP 2019186200 A JP2019186200 A JP 2019186200A JP 2019046434 A JP2019046434 A JP 2019046434A JP 2019046434 A JP2019046434 A JP 2019046434A JP 2019186200 A JP2019186200 A JP 2019186200A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- parameter
- pore
- concentration
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 206
- 238000000034 method Methods 0.000 title claims abstract description 88
- 238000004088 simulation Methods 0.000 title claims abstract description 40
- 150000002500 ions Chemical class 0.000 claims abstract description 82
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 102
- 229910052799 carbon Inorganic materials 0.000 claims description 62
- 238000004364 calculation method Methods 0.000 claims description 37
- 239000003054 catalyst Substances 0.000 claims description 31
- 238000009792 diffusion process Methods 0.000 claims description 26
- 238000000329 molecular dynamics simulation Methods 0.000 claims description 17
- 230000008859 change Effects 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 131
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 68
- 239000001301 oxygen Substances 0.000 description 68
- 229910052760 oxygen Inorganic materials 0.000 description 68
- 238000001179 sorption measurement Methods 0.000 description 44
- 229910002804 graphite Inorganic materials 0.000 description 39
- 239000010439 graphite Substances 0.000 description 39
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 14
- 239000005518 polymer electrolyte Substances 0.000 description 12
- 238000003795 desorption Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000446 fuel Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000001846 repelling effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04305—Modeling, demonstration models of fuel cells, e.g. for training purposes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C10/00—Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C60/00—Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04447—Concentration; Density of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04455—Concentration; Density of cathode reactants at the inlet or inside the fuel cell
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fluid Mechanics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Physics (AREA)
- Algebra (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Hybrid Cells (AREA)
Abstract
Description
本発明者らは、上記した発電性能に関するトレードオフの問題について鋭意検討を行った結果、以下の知見を得た。
まず、ステップ(1)について説明する。このステップ(1)は、図6に示すフローチャートにおいて、ステップS61に示すモデルの構築、およびステップS62に示す分子動力学計算に対応する。なお、実施の形態で実施する分子動力学計算には、例えば、材料物性解析ソフトウェアとして知られるJ−OCTA(登録商標)を用いることができる。
次に、上記した分子動力学計算により算出したガス濃度比を再現することが可能な吸着パラメータ(パラメータ)A1、A2を決定する処理について説明する。なお、この処理では、例えば、有限要素法の手法を用いてメッシュ(セル)を設定し吸着パラメータA1、A2を決定してもよい。このステップ(2)の目的は、主として、ステップ(1)の分子動力学計算により算出されたガス濃度比を再現することができる吸着パラメータA1、A2を算出することである。また、このステップ(2)は、図6に示すフローチャートにおいて、拡散方程式の計算(ステップS63)と、ガス濃度が変化しなかったか否かを判定する分岐処理(ステップS64)と、ガス濃度比が一致するか否か判定する分岐処理(ステップS65)と、吸着パラメータの再設定(ステップS66)とに対応する。
次にステップ(3)について説明する。このステップ(3)では、ステップ(2)で得られた吸着パラメータA1、A2を代入した数式(1)を、カーボン細孔105の壁面における境界条件として適用する。そして、数式(2)に示す細孔内空間5におけるガスの拡散方程式を解くことにより、カーボン細孔105の壁面に対するガスの吸着効果を考慮したガスの輸送性を算出することができる。
4 細孔外空間
5 細孔内空間
6 反発面
10 グラファイト上面
11 グラファイト側面
12 グラファイト底面
15 穴部
100 高分子電解質
102 触媒金属
103 カーボン担体
104 液水領域
105 カーボン細孔
106 気体領域
A1 吸着パラメータ
A2 吸着パラメータ
Claims (10)
- 細孔内空間におけるガスまたはイオンの輸送性を求めるシミュレーションに用いる、細孔内の壁面とガスまたはイオンとの界面における境界条件を定めたパラメータの値を決定するパラメータ決定方法であって、
前記細孔内のガスまたはイオンの濃度と細孔外のガスまたはイオンの濃度との割合を示す第1濃度比を再現する前記パラメータの値を、前記細孔内空間の壁面とガスまたはイオンとの界面における境界条件を定めたパラメータの値として決定するステップを含むパラメータ決定方法。 - 前記パラメータの値を決定するステップの前に、前記第1濃度比を取得するステップを含む、請求項1に記載のパラメータ決定方法。
- 前記パラメータの値を決定するステップの前に、前記第1濃度比を算出するステップを含む、請求項1に記載のパラメータ決定方法。
- 分子動力学計算により前記第1濃度比を算出する、請求項3に記載のパラメータ決定方法。
- 前記パラメータの値を決定するステップでは、前記パラメータの値を前記境界条件として適用させた拡散方程式により求めた細孔内のガスまたはイオンの濃度と細孔外のガスまたはイオンの濃度との割合を示す第2濃度比と、前記第1濃度比とが一致するときに設定されている前記パラメータの値を、前記細孔内空間の壁面とガスまたはイオンとの界面における境界条件を定めたパラメータの値として決定する請求項1−4のいずれか1項に記載のパラメータ決定方法。
- 前記パラメータの値を決定するステップにおいて、任意に設定した前記パラメータの値を境界条件として適用した拡散方程式を反復計算して、細孔内外におけるガスまたはイオンの濃度を求めるステップと、
前記反復計算されたガスまたはイオンの濃度の値に変化がなくなったか否か判定するステップと、
前記ガスまたはイオンの濃度の値に変化がなくなったと判定されたときの細孔内のガスまたはイオンの濃度と細孔外のガスまたはイオンの濃度との割合を示す濃度比を前記第2濃度比として、前記第1濃度比と比較して一致するか否か判定するステップと、
前記第1濃度比と前記第2濃度比とが一致する場合、そのとき設定されているパラメータの値を、前記細孔内空間の壁面とガスまたはイオンとの界面における境界条件を定めたパラメータの値として決定するステップとを含む請求項5に記載のパラメータ決定方法。 - 前記細孔の径は、10nm以下である、請求項1−6のいずれか1項に記載のパラメータ決定方法。
- 前記細孔は、カーボンを含む、請求項1−7のいずれか1項に記載のパラメータ決定方法。
- 前記細孔は、電極触媒層におけるカーボン担体の細孔である、請求項1−8のいずれか1項に記載のパラメータ決定方法。
- 前記請求項1−9のいずれか1項に記載のパラメータ決定方法により決定されたパラメータの値を、細孔内の壁面とガスまたはイオンとの界面における境界条件を定めたパラメータの値として適用し、拡散方程式によりガスまたはイオンの濃度変化を算出する、細孔内のガスまたはイオンの輸送性を求めるシミュレーション方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018076523 | 2018-04-12 | ||
JP2018076523 | 2018-04-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019186200A true JP2019186200A (ja) | 2019-10-24 |
JP6624411B2 JP6624411B2 (ja) | 2019-12-25 |
Family
ID=68162917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019046434A Expired - Fee Related JP6624411B2 (ja) | 2018-04-12 | 2019-03-13 | パラメータ決定方法および細孔内のガスまたはイオンの輸送性を求めるシミュレーション方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200175215A1 (ja) |
EP (1) | EP3780196A4 (ja) |
JP (1) | JP6624411B2 (ja) |
KR (1) | KR20200141916A (ja) |
CN (1) | CN110679020A (ja) |
WO (1) | WO2019198447A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113345530A (zh) * | 2021-07-02 | 2021-09-03 | 青岛科技大学 | 一种基于分子动力学的二元体系相互扩散系数模拟方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114943159A (zh) * | 2022-07-11 | 2022-08-26 | 北京科技大学 | 一种基于分子动力学的流场作用下金属凝固的模拟方法 |
CN115966731B (zh) * | 2022-11-25 | 2024-05-07 | 天津大学 | 质子交换膜燃料电池催化层局部氧气传输过程仿真方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07256112A (ja) * | 1994-03-19 | 1995-10-09 | Masahiro Watanabe | 改質ガス酸化触媒及び該触媒を用いた改質ガス中一酸化炭素の酸化方法 |
JPH08194684A (ja) * | 1995-01-19 | 1996-07-30 | Hitachi Ltd | 固体表面吸着解析方法および装置 |
JP2003201417A (ja) * | 2001-10-30 | 2003-07-18 | Ne Chemcat Corp | カーボンブラック、該カーボンブラックからなる電極触媒用担体、並びに該担体を用いる電極触媒および電気化学的装置 |
JP2004033892A (ja) * | 2002-07-02 | 2004-02-05 | Toyobo Co Ltd | 金属触媒担持用カーボン担体 |
JP2005294107A (ja) * | 2004-04-01 | 2005-10-20 | Toyota Motor Corp | 燃料電池及びこれを用いた燃料電池システム |
JP2010153354A (ja) * | 2008-11-27 | 2010-07-08 | Toyota Motor Corp | 燃料電池シミュレーションモデル作成装置 |
WO2014175097A1 (ja) * | 2013-04-25 | 2014-10-30 | 日産自動車株式会社 | 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層 |
JP2018181838A (ja) * | 2017-04-17 | 2018-11-15 | パナソニックIpマネジメント株式会社 | 電気化学デバイスの電極触媒層、電気化学デバイスの膜/電極接合体、電気化学デバイス、および電気化学デバイスの電極触媒層の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102460790B (zh) * | 2009-06-26 | 2015-05-13 | 日产自动车株式会社 | 气体扩散电极及其生产方法、膜电极组件及其生产方法 |
JP5877494B2 (ja) * | 2011-08-25 | 2016-03-08 | 日産自動車株式会社 | 燃料電池用電極触媒層、燃料電池用電極、燃料電池用膜電極接合体及び燃料電池 |
JP5810860B2 (ja) * | 2011-11-17 | 2015-11-11 | 日産自動車株式会社 | 燃料電池用電極触媒層 |
JP2015135790A (ja) * | 2014-01-20 | 2015-07-27 | パナソニックIpマネジメント株式会社 | 燃料電池のシミュレーション方法およびシミュレーション装置とこれを用いた製造方法 |
US10714762B2 (en) * | 2014-10-29 | 2020-07-14 | Nissan Motor Co., Ltd. | Electrode catalyst layer for fuel cell, and fuel cell membrane electrode assembly and fuel cell using the catalyst layer |
JP2018026312A (ja) * | 2016-08-12 | 2018-02-15 | トヨタ自動車株式会社 | 燃料電池の状態判断方法 |
-
2019
- 2019-03-13 JP JP2019046434A patent/JP6624411B2/ja not_active Expired - Fee Related
- 2019-03-20 WO PCT/JP2019/011625 patent/WO2019198447A1/ja active Application Filing
- 2019-03-20 KR KR1020197032873A patent/KR20200141916A/ko unknown
- 2019-03-20 CN CN201980002497.1A patent/CN110679020A/zh active Pending
- 2019-03-20 EP EP19785874.9A patent/EP3780196A4/en not_active Withdrawn
-
2020
- 2020-02-05 US US16/782,091 patent/US20200175215A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07256112A (ja) * | 1994-03-19 | 1995-10-09 | Masahiro Watanabe | 改質ガス酸化触媒及び該触媒を用いた改質ガス中一酸化炭素の酸化方法 |
JPH08194684A (ja) * | 1995-01-19 | 1996-07-30 | Hitachi Ltd | 固体表面吸着解析方法および装置 |
JP2003201417A (ja) * | 2001-10-30 | 2003-07-18 | Ne Chemcat Corp | カーボンブラック、該カーボンブラックからなる電極触媒用担体、並びに該担体を用いる電極触媒および電気化学的装置 |
JP2004033892A (ja) * | 2002-07-02 | 2004-02-05 | Toyobo Co Ltd | 金属触媒担持用カーボン担体 |
JP2005294107A (ja) * | 2004-04-01 | 2005-10-20 | Toyota Motor Corp | 燃料電池及びこれを用いた燃料電池システム |
JP2010153354A (ja) * | 2008-11-27 | 2010-07-08 | Toyota Motor Corp | 燃料電池シミュレーションモデル作成装置 |
WO2014175097A1 (ja) * | 2013-04-25 | 2014-10-30 | 日産自動車株式会社 | 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層 |
JP2018181838A (ja) * | 2017-04-17 | 2018-11-15 | パナソニックIpマネジメント株式会社 | 電気化学デバイスの電極触媒層、電気化学デバイスの膜/電極接合体、電気化学デバイス、および電気化学デバイスの電極触媒層の製造方法 |
Non-Patent Citations (1)
Title |
---|
MUZAFFAR TASLEEM: "Physical Modeling of the Proton Density in Nanopores of PEM Fuel Cell Catalyst Layers", ELECTROCHIMICA ACTA, vol. 245, JPN6019032884, 2017, GB, pages 1048 - 1058, ISSN: 0004102967 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113345530A (zh) * | 2021-07-02 | 2021-09-03 | 青岛科技大学 | 一种基于分子动力学的二元体系相互扩散系数模拟方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2019198447A1 (ja) | 2019-10-17 |
US20200175215A1 (en) | 2020-06-04 |
CN110679020A (zh) | 2020-01-10 |
EP3780196A1 (en) | 2021-02-17 |
JP6624411B2 (ja) | 2019-12-25 |
KR20200141916A (ko) | 2020-12-21 |
EP3780196A4 (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Grooved electrodes for high-power-density fuel cells | |
Komini Babu et al. | Resolving electrode morphology’s impact on platinum group metal-free cathode performance using nano-CT of 3D hierarchical pore and ionomer distribution | |
Spernjak et al. | Enhanced water management of polymer electrolyte fuel cells with additive-containing microporous layers | |
WO2019198447A1 (ja) | パラメータ決定方法および細孔内のガスまたはイオンの輸送性を求めるシミュレーション方法 | |
Zhao et al. | Pore structure and effective diffusion coefficient of catalyzed electrodes in polymer electrolyte membrane fuel cells | |
Strahl et al. | Electrode structure effects on the performance of open-cathode proton exchange membrane fuel cells: A multiscale modeling approach | |
Chen et al. | Microporous layers with different decorative patterns for polymer electrolyte membrane fuel cells | |
Zhang et al. | Structure design for ultrahigh power density proton exchange membrane fuel cell | |
Chen et al. | Pore-scale numerical study of multiphase reactive transport processes in cathode catalyst layers of proton exchange membrane fuel cells | |
Wang et al. | Pore-scale simulations of porous electrodes of Li–O2 batteries at different saturation levels | |
JP2019186133A (ja) | 燃料電池の発電性能を予測するシミュレーション方法 | |
Liao et al. | Effect of structural parameters on mass transfer characteristics in the gas diffusion layer of proton exchange membrane fuel cells using the lattice boltzmann method | |
Yu et al. | Review on the Properties of Nano-/Microstructures in the Catalyst Layer of PEMFC | |
Fan et al. | Mechanism of water content on the electrochemical surface area of the catalyst layer in the proton exchange membrane fuel cell | |
Afsahi et al. | Impact of ionomer content on proton exchange membrane fuel cell performance | |
Zhang et al. | Self-adjusting anode catalyst layer for smart water management in anion exchange membrane fuel cells | |
Jiao et al. | Two-phase flow in porous electrodes of proton exchange membrane fuel cell | |
You et al. | Insight into oxygen transport in solid and high-surface-area carbon supports of proton exchange membrane fuel cells | |
CN113555588B (zh) | 一种燃料电池性能预测方法、装置、电子设备及存储介质 | |
Zhang et al. | Multiscale study of reactive transport and multiphase heat transfer processes in catalyst layers of proton exchange membrane fuel cells | |
JP2009245874A (ja) | シミュレーション装置、シミュレーション方法及びシミュレーションプログラム | |
Wang et al. | Lattice Boltzmann simulation of cathode catalyst layer degradation on transport reaction process within a proton exchange membrane fuel cell | |
Yeon et al. | Layer-by-Layer Polydimethylsiloxane Modification Using a Two-Nozzle Spray Process for High Durability of the Cathode Catalyst in Proton-Exchange Membrane Fuel Cells | |
Zhang et al. | Effect of Gas Diffusion Layer Notch Arrangement and Gradient Depth on the Performance of Proton Exchange Membrane Fuel Cells in the Serpentine Flow Field | |
Min et al. | Pore-scale study of gas transport in catalyst layers of PEMFCs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190723 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190723 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191112 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6624411 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |