JP2019174196A - 磁気センサおよび磁気センサシステム - Google Patents

磁気センサおよび磁気センサシステム Download PDF

Info

Publication number
JP2019174196A
JP2019174196A JP2018060541A JP2018060541A JP2019174196A JP 2019174196 A JP2019174196 A JP 2019174196A JP 2018060541 A JP2018060541 A JP 2018060541A JP 2018060541 A JP2018060541 A JP 2018060541A JP 2019174196 A JP2019174196 A JP 2019174196A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic sensor
magnetic
magnetization
field component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018060541A
Other languages
English (en)
Other versions
JP6620834B2 (ja
Inventor
圭祐 内田
Keisuke Uchida
圭祐 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018060541A priority Critical patent/JP6620834B2/ja
Priority to US16/165,254 priority patent/US11320285B2/en
Priority to DE102018128868.9A priority patent/DE102018128868A1/de
Priority to CN201811459229.6A priority patent/CN110308409B/zh
Publication of JP2019174196A publication Critical patent/JP2019174196A/ja
Application granted granted Critical
Publication of JP6620834B2 publication Critical patent/JP6620834B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0076Protection, e.g. with housings against stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Measuring Magnetic Variables (AREA)
  • Lens Barrels (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】入力磁界のうちの入力磁界成分を出力磁界成分に変換して磁界検出部に与える磁界変換部を備えた磁気センサにおいて、入力磁界が、入力磁界成分の方向以外の方向の磁界成分を含む場合における問題の発生を抑制する。【解決手段】磁気センサ30は、磁界変換部50と磁界検出部60と2つのシールド71,72を備えている。磁界変換部50は、複数のヨーク51を含んでいる。ヨーク51は、Y方向に長い形状を有し、入力磁界を受けて出力磁界を発生する。入力磁界は、Z方向に平行な方向の入力磁界成分と、Y方向に平行な方向の磁界成分を含んでいる。出力磁界は、X方向に平行な方向の出力磁界成分を含んでいる。磁界検出部60は、出力磁界成分に応じた検出値を生成する。シールド71,72は、Y方向における最大の寸法がX方向における最大の寸法よりも小さい形状を有している。【選択図】図7

Description

本発明は、磁気センサおよびこれを含む磁気センサシステムに関する。
近年、種々の用途で、磁気センサが利用されている。磁気センサを含むシステムの例としては、磁気センサと、この磁気センサに対する相対的な位置が変化可能な磁石とを含む位置検出装置がある。
磁気センサとしては、基板上に設けられたスピンバルブ型の磁気抵抗効果素子を用いたものが知られている。スピンバルブ型の磁気抵抗効果素子は、方向が固定された磁化を有する磁化固定層と、印加磁界の方向に応じて方向が変化可能な磁化を有する自由層と、磁化固定層と自由層の間に配置されたギャップ層とを有している。基板上に設けられたスピンバルブ型の磁気抵抗効果素子は、基板の面に平行な方向の磁界に対して感度を有するように構成される場合が多い。
一方、磁気センサを含むシステムでは、基板上に設けられた磁気抵抗効果素子によって、基板の面に垂直な方向の磁界を検出したい場合がある。このような例は、特許文献1に記載されている。
特許文献1には、磁石の位置を検出するための磁気センサが記載されている。この磁気センサでは、磁気抵抗効果素子が設けられた基板の上方に磁石が設けられている。この磁気センサは、磁気抵抗効果素子と磁石の間に設けられた軟磁性体を含んでいる。この軟磁性体は、磁石が発生する磁界の、基板の面に垂直な方向の垂直磁界成分を、磁気抵抗効果素子が感度を有する、基板の面に平行な方向の出力磁界成分に変換して、この出力磁界成分を磁気抵抗効果素子に与える。
特開2015−129697号公報
特許文献1に記載された磁気センサでは、磁石から発生されて軟磁性体および磁気抵抗効果素子に印加される磁界は、上記垂直磁界成分の他に、基板の面に平行な方向の水平磁界成分を含んでいる。この場合、磁気抵抗効果素子には、軟磁性体から与えられる出力磁界成分の他に、磁石が発生する水平磁界成分も印加される。出力磁界成分の方向と水平磁界成分の方向は互いに直交している。この2つの磁界成分のうち、本来、磁気抵抗効果素子によって検出したいのは、出力磁界成分である。そのため、この磁気センサでは、水平磁界成分が大きい場合には、水平磁界成分に起因して、磁気センサの検出値に誤差が生じたり、磁気センサの感度が低下したりするという問題点がある。
本発明はかかる問題点に鑑みてなされたもので、その目的は、磁界検出部と、入力磁界のうちの所定の方向の入力磁界成分を出力磁界成分に変換して磁界検出部に与える磁界変換部とを備えた磁気センサであって、入力磁界が、入力磁界成分の他に、入力磁界成分の方向以外の方向の磁界成分を含む場合における問題の発生を抑制できるようにした磁気センサ、ならびにこの磁気センサを含む磁気センサシステムを提供することにある。
本発明の磁気センサは、磁界変換部と、磁界検出部と、軟磁性体よりなる少なくとも1つのシールドとを備えている。磁界変換部は、軟磁性体よりなる少なくとも1つのヨークを含んでいる。少なくとも1つのヨークは、磁気センサに対する入力磁界を受けて、出力磁界を発生するように構成されている。入力磁界は、第1の方向に平行な方向の入力磁界成分を含んでいる。少なくとも1つのヨークは、第1の方向に平行な方向に見たときに、第1の方向と交差する第2の方向に長い形状を有している。出力磁界は、第1の方向および第2の方向と交差する第3の方向に平行な方向の出力磁界成分であって入力磁界成分に応じて変化する出力磁界成分を含んでいる。磁界検出部は、出力磁界を受けて、出力磁界成分に応じて変化する検出値を生成する。少なくとも1つのシールドは、第1の方向に平行な方向に見たときに、第2の方向における最大の寸法が第3の方向における最大の寸法よりも小さい形状を有し、且つ磁界変換部および磁界検出部と重なる位置に配置されている。
本発明の磁気センサにおいて、第1の方向に平行な方向に見たときに、磁界変換部および磁界検出部は、少なくとも1つのシールドの外縁の内側に位置していてもよい。
また、本発明の磁気センサにおいて、第1の方向、第2の方向および第3の方向は、互いに直交していてもよい。
また、本発明の磁気センサにおいて、磁界検出部は、少なくとも1つの磁気抵抗効果素子を含んでいてもよい。少なくとも1つの磁気抵抗効果素子は、所定の方向の磁化を有する磁化固定層と、印加される磁界に応じて方向が変化可能な磁化を有する自由層とを含んでいる。この場合、検出値は、自由層の磁化の方向が磁化固定層の磁化の方向に対してなす角度に応じて変化してもよい。磁化固定層の磁化の方向は、第3の方向に平行な方向であってもよい。
磁界検出部は、第1の部分と第2の部分を含んでいてもよい。第1の部分と第2の部分は、第2の方向における少なくとも1つのヨークの中心を通り第2の方向に垂直な断面である中央断面に対して面対称の位置に配置されている。
少なくとも1つの磁気抵抗効果素子は、第1の部分に含まれる第1の磁気抵抗効果素子と、第2の部分に含まれる第2の磁気抵抗効果素子とを含んでいてもよい。第1の磁気抵抗効果素子と第2の磁気抵抗効果素子は、中央断面に対して面対称の位置に配置され、且つ直列に接続されている。
第1の部分と第2の部分は、少なくとも1つの磁気抵抗効果素子における互いに異なる部分であってもよい。
また、本発明の磁気センサにおいて、磁界検出部は、所定の電圧が印加される電源ポートと、グランドに接続されるグランドポートと、出力ポートと、電源ポートと出力ポートの間に設けられた第1の抵抗部と、出力ポートとグランドポートの間に設けられた第2の抵抗部とを含んでいてもよい。第1および第2の抵抗部の各々は、第1の部分と第2の部分を含んでいてもよい。第1の部分と第2の部分は、第2の方向における少なくとも1つのヨークの中心を通り第2の方向に垂直な中央断面に対して面対称の位置に配置されている。
第1および第2の抵抗部の各々は、少なくとも1つの磁気抵抗効果素子を含んでいてもよい。少なくとも1つの磁気抵抗効果素子は、所定の方向の磁化を有する磁化固定層と、印加される磁界に応じて方向が変化可能な磁化を有する自由層とを含んでいる。この場合、検出値は、出力ポートの電位に依存してもよい。
また、本発明の磁気センサにおいて、磁界検出部は、所定の電圧が印加される電源ポートと、グランドに接続されるグランドポートと、第1の出力ポートと、第2の出力ポートと、電源ポートと第1の出力ポートの間に設けられた第1の抵抗部と、第1の出力ポートとグランドポートの間に設けられた第2の抵抗部と、電源ポートと第2の出力ポートの間に設けられた第3の抵抗部と、第2の出力ポートとグランドポートの間に設けられた第4の抵抗部とを含んでいてもよい。第1ないし第4の抵抗部の各々は、第1の部分と第2の部分を含んでいてもよい。第1の部分と第2の部分は、第2の方向における少なくとも1つのヨークの中心を通り第2の方向に垂直な中央断面に対して面対称の位置に配置されている。
第1ないし第4の抵抗部の各々は、少なくとも1つの磁気抵抗効果素子を含んでいてもよい。少なくとも1つの磁気抵抗効果素子は、所定の方向の磁化を有する磁化固定層と、印加される磁界に応じて方向が変化可能な磁化を有する自由層とを含んでいる。この場合、検出値は、第1の出力ポートと第2の出力ポートの電位差に依存してもよい。
また、本発明の磁気センサにおいて、入力磁界は、入力磁界成分の他に、第2の方向に平行な方向の磁界成分を含んでいてもよい。
本発明の磁気センサシステムは、本発明の磁気センサと、所定の磁界を発生する磁界発生部とを備えている。磁気センサと磁界発生部は、所定の磁界の一部である部分磁界が磁気センサに印加されるように構成されている。部分磁界は、第1の方向に平行な方向の第1の磁界成分と、第2の方向に平行な方向の第2の磁界成分とを含んでいる。入力磁界は、部分磁界である。入力磁界成分は、第1の磁界成分である。
本発明の磁気センサシステムにおいて、磁気センサと磁界発生部は、磁気センサに対する磁界発生部の相対的な位置が変化すると、第1の磁界成分が変化するように構成されていてもよい。
本発明の磁気センサおよび磁気センサシステムによれば、少なくとも1つのシールドを備えたことにより、入力磁界が、入力磁界成分の他に、入力磁界成分の方向以外の方向の磁界成分を含む場合における問題の発生を抑制することができるという効果を奏する。
本発明の第1の実施の形態に係る磁気センサシステムを含むカメラモジュールを示す斜視図である。 図1に示したカメラモジュールの内部を模式的に示す説明図である。 図1に示したカメラモジュールの駆動装置を示す斜視図である。 図1における駆動装置の複数のコイルを示す斜視図である。 図1における駆動装置の要部を示す側面図である。 本発明の第1の実施の形態に係る磁気センサシステムの要部を示す斜視図である。 本発明の第1の実施の形態に係る磁気センサを示す斜視図である。 本発明の第1の実施の形態に係る磁気センサを示す平面図である。 本発明の第1の実施の形態に係る磁気センサを示す側面図である。 本発明の第1の実施の形態における磁界検出部の回路構成を示す回路図である。 本発明の第1の実施の形態における配線部の一部と磁気抵抗効果素子を示す斜視図である。 本発明の第1の実施の形態における磁気抵抗効果素子を示す斜視図である。 本発明の第1の実施の形態における検出対象位置と入力磁界との関係を説明するための説明図である。 本発明の第1の実施の形態における検出対象位置と入力磁界との関係を説明するための説明図である。 本発明の第1の実施の形態における検出対象位置と入力磁界との関係を説明するための説明図である。 本発明の第1の実施の形態における検出対象位置と入力磁界の3方向の成分との関係を示す特性図である。 比較例の磁気センサを示す斜視図である。 比較例の磁気センサを示す平面図である。 比較例の磁気センサに第2の磁界成分が印加されたときの磁束の流れを示す説明図である。 比較例の問題点を説明するための説明図である。 本発明の第1の実施の形態に係る磁気センサに第2の磁界成分が印加されたときの磁束の流れを示す説明図である。 本発明の第1の実施の形態の効果を説明するための説明図である。 シールドの形状とシールドの能力との関係を示す特性図である。 本発明の第2の実施の形態に係る磁気センサを示す平面図である。
[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。始めに、図1および図2を参照して、本発明の第1の実施の形態に係る磁気センサシステムを含むカメラモジュールの構成について説明する。図1は、カメラモジュール100を示す斜視図である。図2は、カメラモジュール100の内部を模式的に示す説明図である。なお、図2では、理解を容易にするために、カメラモジュール100の各部を、図1における対応する各部とは異なる寸法および配置で描いている。カメラモジュール100は、例えば、光学式手振れ補正機構とオートフォーカス機構とを備えたスマートフォン用のカメラの一部を構成するものであり、CMOS等を用いたイメージセンサ200と組み合わせて用いられる。
カメラモジュール100は、駆動装置3と、レンズ5と、筐体6と、基板7とを備えている。駆動装置3は、レンズ5を移動させるものである。駆動装置3は、本実施の形態に係る磁気センサシステムを含んでいる。磁気センサシステムについては、後で説明する。筐体6は、駆動装置3を保護するものである。基板7は、上面7aを有している。なお、図1では基板7を省略し、図2では筐体6を省略している。
ここで、図1および図2に示したように、X方向、Y方向、Z方向を定義する。X方向、Y方向、Z方向は、互いに直交する。本実施の形態では、基板7の上面7aに垂直な一方向(図2では上側に向かう方向)をZ方向とする。X方向とY方向は、いずれも、基板7の上面7aに対して平行な方向である。また、X方向とは反対の方向を−X方向とし、Y方向とは反対の方向を−Y方向とし、Z方向とは反対の方向を−Z方向とする。また、以下、基準の位置に対してZ方向の先にある位置を「上方」と言い、基準の位置に対して「上方」とは反対側にある位置を「下方」と言う。
レンズ5は、その光軸方向がZ方向に平行な方向に一致するような姿勢で、基板7の上面7aの上方に配置されている。また、基板7は、レンズ5を通過した光を通過させる図示しない開口部を有している。図2に示したように、カメラモジュール100は、レンズ5および図示しない開口部を通過した光がイメージセンサ200に入射されるように、イメージセンサ200に対して位置合わせされている。
次に、図2ないし図5を参照して、駆動装置3について詳しく説明する。図3は、駆動装置3を示す斜視図である。図4は、駆動装置3の複数のコイルを示す斜視図である。図5は、駆動装置3の要部を示す側面図である。
駆動装置3は、第1の保持部材14と、第2の保持部材15と、複数の第1のワイヤ16と、複数の第2のワイヤ17とを備えている。第2の保持部材15は、レンズ5を保持するものである。図示しないが、第2の保持部材15は、例えば、その内部にレンズ5を装着できるように構成された筒状の形状を有している。
第2の保持部材15は、第1の保持部材14に対して一方向、具体的にはレンズ5の光軸方向すなわちZ方向に平行な方向に位置変更可能に設けられている。本実施の形態では、第1の保持部材14は、その内部にレンズ5と第2の保持部材15を収容できるように構成された箱状の形状を有している。複数の第2のワイヤ17は、第1の保持部材14と第2の保持部材15とを接続し、第2の保持部材15が第1の保持部材14に対してZ方向に平行な方向に移動できるように、第2の保持部材15を支持している。
第1の保持部材14は、基板7の上面7aの上方において、基板7に対してX方向に平行な方向とY方向に平行な方向に位置変更可能に設けられている。複数の第1のワイヤ16は、基板7と第1の保持部材14とを接続し、第1の保持部材14が基板7に対してX方向に平行な方向とY方向に平行な方向に移動できるように、第1の保持部材14を支持している。基板7に対する第1の保持部材14の相対的な位置が変化すると、基板7に対する第2の保持部材15の相対的な位置も変化する。
駆動装置3は、更に、磁石31A,31B,32A,32B,33A,33B,34A,34Bと、コイル41,42,43,44,45,46を備えている。磁石31Aは、レンズ5の−Y方向の先に配置されている。磁石32Aは、レンズ5のY方向の先に配置されている。磁石33Aは、レンズ5の−X方向の先に配置されている。磁石34Aは、レンズ5のX方向の先に配置されている。磁石31B,32B,33B,34Bは、それぞれ、磁石31A,32A,33A,34Aの上方に配置されている。また、磁石31A,31B,32A,32B,33A,33B,34A,34Bは、第1の保持部材14に固定されている。
図3に示したように、磁石31A,31B,32A,32Bは、それぞれX方向に長い直方体形状を有している。磁石33A,33B,34A,34Bは、それぞれY方向に長い直方体形状を有している。磁石31A,32Bの磁化の方向は、Y方向である。磁石31B,32Aの磁化の方向は、−Y方向である。磁石33A,34Bの磁化の方向は、X方向である。磁石33B,34Aの磁化の方向は、−X方向である。図1および図3では、磁石31A,31B,32B,33B,34A,34Bの磁化の方向を、各磁石に重なるように描かれた矢印で示している。また、図5では、磁石31A,31Bの磁化の方向を、磁石31A,31B内に描かれた矢印によって示している。
磁石31Aは、磁石31AのX方向の端に位置する端面31A1を有している。磁石34Aは、磁石34Aの−Y方向の端に位置する端面34A1を有している。
コイル41は、磁石31Aと基板7の間に配置されている。コイル42は、磁石32Aと基板7との間に配置されている。コイル43は、磁石33Aと基板7との間に配置されている。コイル44は、磁石34Aと基板7との間に配置されている。コイル45は、磁石31A,31Bとレンズ5との間に配置されている。コイル46は、磁石32A,32Bとレンズ5との間に配置されている。また、コイル41,42,43,44は、基板7に固定されている。コイル45,46は、第2の保持部材15に固定されている。
コイル41には、主に、磁石31Aから発生される磁界が印加される。コイル42には、主に、磁石32Aから発生される磁界が印加される。コイル43には、主に、磁石33Aから発生される磁界が印加される。コイル44には、主に、磁石34Aから発生される磁界が印加される。
また、図2、図4および図5に示したように、コイル45は、磁石31Aに沿ってX方向に延びる第1の導体部45Aと、磁石31Bに沿ってX方向に延びる第2の導体部45Bと、第1および第2の導体部45A,45Bを接続する2つの第3の導体部とを含んでいる。また、図2および図4に示したように、コイル46は、磁石32Aに沿ってX方向に延びる第1の導体部46Aと、磁石32Bに沿ってX方向に延びる第2の導体部46Bと、第1および第2の導体部46A,46Bを接続する2つの第3の導体部とを含んでいる。
コイル45の第1の導体部45Aには、主に、磁石31Aから発生される磁界のY方向の成分が印加される。コイル45の第2の導体部45Bには、主に、磁石31Bから発生される磁界の−Y方向の成分が印加される。コイル46の第1の導体部46Aには、主に、磁石32Aから発生される磁界の−Y方向の成分が印加される。コイル46の第2の導体部46Bには、主に、磁石32Bから発生される磁界のY方向の成分が印加される。
駆動装置3は、更に、コイル41,42の一方の内側において基板7に固定された磁気センサ30と、コイル43,44の一方の内側において基板7に固定された磁気センサ30を備えている。ここでは、2つの磁気センサ30は、それぞれコイル41の内側とコイル44の内側に配置されているものとする。後で説明するように、この2つの磁気センサ30は、手振れの影響を低減するためにレンズ5の位置を変化させる際に用いられる。
コイル41の内側に配置された磁気センサ30は、磁石31Aから発生される磁界を検出し、磁石31Aの位置に対応した検出値を生成する。コイル44の内側に配置された磁気センサ30は、磁石34Aから発生される磁界を検出し、磁石34Aの位置に対応した検出値を生成する。磁気センサ30の構成については、後で説明する。
駆動装置3は、更に、磁石13と、磁気センサ20とを備えている。磁気センサ20は、自動的に焦点合わせを行う際にレンズ5の位置を検出するために用いられる。磁気センサ20は、磁石31Aの端面31A1と磁石34Aの端面34A1の近傍において基板7に固定されている。磁気センサ20は、例えば、磁気抵抗効果素子等の磁界を検出する素子によって構成されている。
磁石13は、磁気センサ20の上方において、第2の保持部材15に固定されている。磁石13は、直方体形状を有している。第1の保持部材14に対する第2の保持部材15の相対的な位置がZ方向に平行な方向に変化すると、第1の保持部材14に対する磁石13の相対的な位置もZ方向に平行な方向に変化する。
ここで、図2ないし図5を参照して、駆動装置3の動作について説明する。始めに、光学式手振れ補正機構とオートフォーカス機構について簡単に説明する。駆動装置3は、光学式手振れ補正機構およびオートフォーカス機構の一部を構成する。駆動装置3、光学式手振れ補正機構およびオートフォーカス機構は、カメラモジュール100の外部の図示しない制御部によって制御される。
光学式手振れ補正機構は、例えば、カメラモジュール100の外部のジャイロセンサ等によって、手振れを検出できるように構成されている。光学式手振れ補正機構が手振れを検出すると、図示しない制御部は、手振れの態様に応じて基板7に対するレンズ5の相対的な位置が変化するように、駆動装置3を制御する。これにより、レンズ5の絶対的な位置を安定化させて、手振れの影響を低減することができる。なお、基板7に対するレンズ5の相対的な位置は、手振れの態様に応じて、X方向に平行な方向またはY方向に平行な方向に変化する。
オートフォーカス機構は、例えば、イメージセンサ200またはオートフォーカスセンサ等によって、被写体に焦点が合った状態を検出できるように構成されている。図示しない制御部は、被写体に焦点が合った状態になるように、駆動装置3によって、基板7に対するレンズ5の相対的な位置をZ方向に平行な方向に変化させる。これにより、自動的に被写体に対する焦点合わせを行うことができる。
次に、光学式手振れ補正機構に関連する駆動装置3の動作について説明する。図示しない制御部によってコイル41,42に電流が流されると、磁石31A,32Aから発生される磁界とコイル41,42から発生される磁界との相互作用によって、磁石31A,32Aが固定された第1の保持部材14は、Y方向に平行な方向に移動する。その結果、レンズ5も、Y方向に平行な方向に移動する。また、図示しない制御部によってコイル43,44に電流が流されると、磁石33A,34Aから発生される磁界とコイル43,44から発生される磁界との相互作用によって、磁石33A,34Aが固定された第1の保持部材14は、X方向に平行な方向に移動する。その結果、レンズ5も、X方向に平行な方向に移動する。図示しない制御部は、2つの磁気センサ30によって生成される磁石31A,34Aの位置に対応した信号を測定することによって、レンズ5の位置を検出する。
次に、オートフォーカス機構に関連する駆動装置3の動作について説明する。基板7に対するレンズ5の相対的な位置をZ方向に移動させる場合、図示しない制御部は、第1の導体部45AではX方向に電流が流れ、第2の導体部45Bでは−X方向に電流が流れるように、コイル45に電流を流し、第1の導体部46Aでは−X方向に電流が流れ、第2の導体部46BではX方向に電流が流れるように、コイル46に電流を流す。これらの電流と磁石31A,31B,32A,32Bから発生される磁界によって、コイル45の第1および第2の導体部45A,45Bとコイル46の第1および第2の導体部46A,46Bに、Z方向のローレンツ力が作用する。これにより、コイル45,46が固定された第2の保持部材15は、Z方向に移動する。その結果、レンズ5も、Z方向に移動する。
基板7に対するレンズ5の相対的な位置を−Z方向に移動させる場合には、図示しない制御部は、コイル45,46に、Z方向に移動させる場合とは逆方向に電流を流す。
基板7に対するレンズ5の相対的な位置がZ方向に平行な方向に変化すると、磁気センサ20に対する磁石13の相対的な位置もZ方向に平行な方向に変化する。磁気センサ20は、少なくとも磁石13が発生する磁界を検出し、磁石13の位置に対応した信号を生成する。図示しない制御部は、磁気センサ20によって生成される信号を測定することによって、レンズ5の位置を検出する。
次に、図1および図5を参照して、本実施の形態に係る磁気センサシステムの概略の構成について説明する。本実施の形態に係る磁気センサシステムは、本実施の形態に係る磁気センサと、所定の磁界を発生する磁界発生部とを備えている。本実施の形態では、コイル41の内側に配置された磁気センサ30、または、コイル43の内側に配置された磁気センサ30が、本実施の形態に係る磁気センサに対応する。コイル41の内側に配置された磁気センサ30を備えた磁気センサシステムでは、磁石31Aが、磁界発生部に対応する。コイル43の内側に配置された磁気センサ30を備えた磁気センサシステムでは、磁石33Aが、磁界発生部に対応する。
以下、図6を参照して、コイル41の内側に配置された磁気センサ30を備えた磁気センサシステム101について説明する。図6は、磁気センサシステム101の要部を示す斜視図である。なお、図6では、理解を容易にするために、コイル41を省略し、磁石31Aを図1ないし図3、図5とは異なる寸法および配置で描いている。以下の説明では、コイル41の内側に配置された磁気センサ30を、本実施の形態に係る磁気センサ30とも言う。
磁気センサ30と、磁界発生部である磁石31Aは、磁石31Aが発生する磁界の一部である部分磁界が磁気センサ30に印加されるように構成されている。この部分磁界は、Z方向に平行な第1の磁界成分Hzと、Y方向に平行な第2の磁界成分Hyとを含んでいる。Z方向は、本発明における第1の方向に対応する。Y方向は、本発明における第2の方向に対応する。
図6に示したように、本実施の形態では、磁石31Aの磁化の方向はY方向であり、第2の磁界成分Hyの方向は−Y方向である。なお、図6では、磁石31Aが図5に示した位置からY方向に移動したときの第1の磁界成分Hzを示している。
前述のように、磁気センサ30は、基板7に固定され、磁石31Aは、第1の保持部材14に固定されている(図2参照)。基板7に対する第1の保持部材14の位置が、Y方向に平行な方向に変化すると、磁気センサ30に対する磁石31Aの相対的な位置も、Y方向に平行な方向に変化する。磁気センサ30の検出値は、Y方向に平行な方向についての、磁気センサ30に対する磁石31Aの相対的な位置に対応する。以下、Y方向に平行な方向についての、磁気センサ30に対する磁石31Aの相対的な位置を、検出対象位置とも言う。磁気センサシステム101は、この検出対象位置を検出するための位置検出装置である。
また、磁気センサ30と磁石31Aは、検出対象位置が変化すると、第1の磁界成分Hzが変化するように構成されている。本実施の形態では、第1の保持部材14がY方向に平行な方向に移動して、検出対象位置が変化すると、第1の磁界成分Hzが変化する。第1の磁界成分Hzの変化の態様については、後で説明する。
次に、図7ないし図9を参照して、本実施の形態に係る磁気センサ30について説明する。図7は、磁気センサ30を示す斜視図である。図8は、磁気センサ30を示す平面図である。図9は、磁気センサ30を示す側面図である。磁気センサ30は、磁界変換部50と、磁界検出部60とを備えている。
磁界変換部50は、軟磁性体よりなる少なくとも1つのヨークを含んでいる。少なくとも1つのヨークは、Z方向に平行な方向に見たとき、例えば上方から見たときに、Y方向に長い形状を有している。また、少なくとも1つのヨークは、Z方向に平行な方向の入力磁界成分を含む入力磁界を受けて、出力磁界を発生するように構成されている。
本実施の形態では、入力磁界は、前述の部分磁界である。また、入力磁界成分は、前述の第1の磁界成分Hz(図6参照)である。出力磁界は、X方向に平行な方向の出力磁界成分であって入力磁界成分(第1の磁界成分Hz)に応じて変化する出力磁界成分を含んでいる。X方向は、本発明における第3の方向に対応する。また、本実施の形態では、第1の方向(Z方向)、第2の方向(Y方向)および第3の方向(X方向)は、互いに直交する。また、入力磁界は、入力磁界成分(第1の磁界成分Hz)の他に、Y方向に平行な方向の磁界成分である第2の磁界成分Hyを含んでいる。
図7および図8に示したように、本実施の形態では特に、磁界変換部50は、少なくとも1つのヨークとして、X方向に並ぶように配置された複数のヨーク51を含んでいる。複数のヨーク51の各々は、例えば、Y方向に長い直方体形状を有している。複数のヨーク51の形状は同じである。
磁界検出部60は、出力磁界を受けて、入力磁界成分(第1の磁界成分Hz)に応じて変化する検出値を生成する。磁界検出部60は、少なくとも1つの磁気抵抗効果素子220を含んでいる。以下、磁気抵抗効果素子をMR素子と記す。本実施の形態では特に、磁界検出部60は、少なくとも1つのMR素子220として、複数のMR素子220を含んでいる。
また、後で詳しく説明するが、複数のMR素子220は、複数の素子列を構成している。複数の素子列の各々は、Y方向に並んだ2つ以上のMR素子220によって構成されている。1つのヨーク51に対して2つの素子列が対応する。1つのヨーク51に対応する2つの素子列は、1つのヨーク51の−Z方向の端部の近傍において、X方向における1つのヨーク51の両側に配置されている。図7および図8に示した例では、ヨーク51の数は8であり、素子列の数は16であり、1つの素子列を構成するMR素子220の数は4である。
また、図8に示したように、磁界検出部60は、第1の抵抗部61、第2の抵抗部62、第3の抵抗部63および第4の抵抗部64を含んでいる。第1ないし第4の抵抗部61〜64の各々は、少なくとも1つのMR素子220を含んでいる。第1ないし第4の抵抗部61〜64の構成については、後で詳しく説明する。
磁気センサ30は、更に、軟磁性体よりなる少なくとも1つのシールドを備えている。少なくとも1つのシールドは、Z方向に平行な方向に見たとき、例えば上方から見たときに、Y方向における最大の寸法がX方向の寸法よりも小さい形状を有している。図7ないし図9に示したように、本実施の形態では特に、磁気センサ30は、少なくとも1つのシールドとして、磁界変換部50および磁界検出部60の上方に位置するシールド71と、磁界変換部50および磁界検出部60の下方に位置するシールド72とを備えている。なお、図8では、シールド71を省略している。シールド71,72は、それぞれ、板状の形状を有している。Z方向に平行な方向に見たとき、例えば上方から見たとき、シールド71,72の形状は、X方向に長い矩形である。
シールド71,72は、Z方向に平行な方向に見たとき、例えば上方から見たときに、磁界変換部50および磁界検出部60と重なる位置に配置されている。また、上方から見たときに、磁界変換部50および磁界検出部60は、シールド71,72の各々の外縁の内側に位置している。なお、図9に示したように、シールド71は、磁界変換部50の複数のヨーク51に接していてもよい。
ここで、上方から見たときにシールド72と重なる領域をシールド投影領域と言う。また、シールド投影領域のうち、X方向における中央から−X方向の端までの部分を左側領域と言い、X方向における中央からX方向の端までの部分を右側領域と言う。
図7および図8に示した例では、8つのヨーク51のうちの4つのヨーク51は左側領域に配置され、残りの4つのヨーク51は右側領域に配置されている。
本実施の形態では、入力磁界は、入力磁界成分(第1の磁界成分Hz)の他に、入力磁界成分の方向以外の方向の磁界成分である第2の磁界成分Hyを含んでいる。シールド71,72の主な役割は、第2の磁界成分Hyに対応する磁束を吸収して、第2の磁界成分Hyに起因して磁界検出部60に印加される、Y方向に平行な方向の磁界の強度を小さくすることである。
シールド71,72は、軟磁性材料によって構成されている。この軟磁性材料としては、例えばNiFeを用いることができる。NiFeを用いてシールド71,72を構成する場合には、シールド71,72の熱応力を低減するため、熱膨張係数が小さくなる組成である、Niの割合が35〜60重量%である組成のNiFeを用いることが好ましい。更にシールド71,72の磁気特性も考慮すると、Niの割合が40〜60重量%である組成のNiFeを用いることがより好ましい。
シールド71,72に求められる性能の1つは、最大磁束吸収量が大きいことである。シールド71,72の各々の最大磁束吸収量は、シールド71,72の各々における飽和磁化と厚み(Z方向の寸法)の積にほぼ比例する。シールド71,72の各々の性能を確保するために、シールド71,72の各々における飽和磁化と厚みの積、すなわち単位面積当たりの磁気モーメントは、0.6emu/cm2以上であることが好ましい。
磁気センサ30は、更に、複数のMR素子220を電気的に接続する配線部80を備えている。なお、図7および図9では、配線部80を省略している。
図示しないが、磁気センサ30は、更に、センサ基板と絶縁部とを備えている。シールド71は、センサ基板の上に配置されている。絶縁部は、絶縁材料よりなり、シールド71,72、複数のMR素子220および配線部80を覆っている。
次に、図8および図10を参照して、磁界検出部60の回路構成について説明する。図10は、磁界検出部60の回路構成を示す回路図である。磁界検出部60は、更に、所定の電圧が印加される電源ポートVと、グランドに接続されるグランドポートGと、第1の出力ポートE1と、第2の出力ポートE2とを含んでいる。第1の抵抗部61は、電源ポートVと第1の出力ポートE1との間に設けられている。第2の抵抗部62は、第1の出力ポートE1とグランドポートGとの間に設けられている。第3の抵抗部63は、電源ポートVと第2の出力ポートE2との間に設けられている。第4の抵抗部64は、第2の出力ポートE2とグランドポートGとの間に設けられている。磁界検出部60は、第1の出力ポートE1と第2の出力ポートE2との間の電位差に依存する検出値を生成する。
次に、図8を参照して、第1ないし第4の抵抗部61〜64の構成について詳しく説明する。本実施の形態では、第1ないし第4の抵抗部61〜64の各々は、複数のMR素子220を含んでいる。第1の抵抗部61と第3の抵抗部63を構成する複数のMR素子220は、左側領域に配置されている。第2の抵抗部62と第4の抵抗部64を構成する複数のMR素子220は、右側領域に配置されている。なお、図8では、第3の抵抗部63を構成する複数のMR素子220と第4の抵抗部64を構成する複数のMR素子220にハッチングを付している。
図8に示した例では、第1ないし第4の抵抗部61〜64の各々は、4つの素子列を含んでいる。以下、第1の抵抗部61に含まれる素子列を第1の素子列と言い、第2の抵抗部62に含まれる素子列を第2の素子列と言い、第3の抵抗部63に含まれる素子列を第3の素子列と言い、第4の抵抗部64に含まれる素子列を第4の素子列と言う。
4つの第1の素子列と4つの第3の素子列は、左側領域に配置された4つのヨーク51に対応する。1つのヨーク51に対応する1つの第1の素子列は、そのヨーク51における−X側に配置されている。1つのヨーク51に対応する1つの第3の素子列は、そのヨーク51におけるX側に配置されている。
4つの第2の素子列と4つの第4の素子列は、右側領域に配置された4つのヨーク51に対応する。1つのヨーク51に対応する1つの第2の素子列は、そのヨーク51における−X側に配置されている。1つのヨーク51に対応する1つの第4の素子列は、そのヨーク51におけるX側に配置されている。
また、第1の抵抗部61は第1の部分61Aと第2の部分61Bを含み、第2の抵抗部62は第1の部分62Aと第2の部分62Bを含み、第3の抵抗部63は第1の部分63Aと第2の部分63Bを含み、第4の抵抗部64は第1の部分64Aと第2の部分64Bを含んでいる。従って、磁界検出部60は、4つの第1の部分と4つの第2の部分を含んでいる。
前述の左側領域は、領域R11と領域R12を含んでいる。領域R11は、Y方向についての左側領域の中央に対してY方向の先に位置する。領域R12は、Y方向についての左側領域の中央に対して−Y方向の先に位置する。また、前述の右側領域は、領域R21と領域R22を含んでいる。領域R21は、Y方向についての右側領域の中央に対してY方向の先に位置する。領域R22は、Y方向についての右側領域の中央に対して−Y方向の先に位置する。
第1の抵抗部61の第1の部分61Aと第3の抵抗部63の第1の部分63Aは、領域R11に含まれている。第1の抵抗部61の第2の部分61Bと第3の抵抗部63の第2の部分63Bは、領域R12に含まれている。第2の抵抗部62の第1の部分62Aと第4の抵抗部64の第1の部分64Aは、領域R21に含まれている。第2の抵抗部62の第2の部分62Bと第4の抵抗部64の第2の部分64Bは、領域R22に含まれている。
第1ないし第4の抵抗部61〜64の各々において、第1の部分と第2の部分は、Y方向における少なくとも1つのヨーク51の中心を通りY方向に垂直な断面である中央断面Cに対して面対称の位置に配置されている。図8に示した例では、中央断面Cは、全てのヨーク51の中心を通る。
ここで、第1のMR素子220Aと第2のMR素子220Bを、以下のように定義する。第1のMR素子220Aは、第1の部分に含まれるMR素子220である。第2のMR素子220Bは、第2の部分に含まれるMR素子220である。第1のMR素子220Aと第2のMR素子220Bは、中央断面Cに対して面対称の位置に配置され、且つ直列に接続されている。
図8に示した例では、1つの素子列は、第1のMR素子220Aと第2のMR素子220Bの対を2つ含んでいる。この2つの対を構成する4つのMR素子220は、直列に接続されている。
次に、図11を参照して、配線部80について説明する。図11は、配線部80の一部とMR素子220を示す斜視図である。配線部80は、複数の下部電極81と、複数の上部電極82とを含んでいる。複数のMR素子220は、複数の下部電極81の上に配置されている。複数の上部電極82は、複数のMR素子220の上に配置されている。
複数のMR素子220と下部電極81および上部電極82との接続関係は、以下の通りである。複数の下部電極81の各々は、Y方向に細長い形状を有している。Y方向に隣接する2つの下部電極81の間には、間隙が形成されている。下部電極81の上面上において、Y方向の両端の近傍に、MR素子220が配置されている。複数の上部電極82の各々は、Y方向に隣接する2つの下部電極81上に配置されて隣接する2つのMR素子220を電気的に接続する。これにより、複数のMR素子220が直列に接続される。
配線部80は、更に、複数の接続電極を含んでいる。第1ないし第4の抵抗部61〜64の各々において、複数の接続電極は、複数の素子列が直列に接続されるように複数の下部電極81を電気的に接続する。
次に、図8および図12を参照して、MR素子220の構成の一例について説明する。図12は、MR素子220を示す斜視図である。この例では、MR素子220は、所定の方向の磁化を有する磁化固定層222と、印加される磁界に応じて方向が変化可能な磁化を有する自由層224と、磁化固定層222と自由層224の間に配置されたギャップ層223と、反強磁性層221とを含んでいる。反強磁性層221、磁化固定層222、ギャップ層223および自由層224は、下部電極81側からこの順に積層されている。反強磁性層221は、反強磁性材料よりなり、磁化固定層222との間で交換結合を生じさせて、磁化固定層222の磁化の方向を固定する。
MR素子220は、TMR(トンネル磁気抵抗効果)素子でもよいし、磁気的信号検出用のセンス電流を、MR素子220を構成する各層の面に対してほぼ垂直な方向に流すCPP(Current Perpendicular to Plane)タイプのGMR(巨大磁気抵抗効果)素子でもよい。TMR素子では、ギャップ層223はトンネルバリア層である。GMR素子では、ギャップ層223は非磁性導電層である。
MR素子220の抵抗値は、自由層224の磁化の方向が磁化固定層222の磁化の方向に対してなす角度に応じて変化し、この角度が0°のときに抵抗値は最小値になり、角度が180°のときに抵抗値は最大値になる。
本実施の形態では、磁化固定層222の磁化の方向は、X方向に平行な方向である。また、本実施の形態では、第1の抵抗部61における複数のMR素子220の磁化固定層222の磁化の方向と、第2の抵抗部62における複数のMR素子220の磁化固定層222の磁化の方向は、互いに反対方向である。第3の抵抗部63における複数のMR素子220の磁化固定層222の磁化の方向は、第1の抵抗部61における複数のMR素子220の磁化固定層222の磁化の方向と同じである。第4の抵抗部64における複数のMR素子220の磁化固定層222の磁化の方向は、第2の抵抗部62における複数のMR素子220の磁化固定層222の磁化の方向と同じである。
本実施の形態では特に、第1の抵抗部61と第3の抵抗部63の各々における複数のMR素子220の磁化固定層222の磁化の方向は、X方向である。第2の抵抗部62と第4の抵抗部64の各々における複数のMR素子220の磁化固定層222の磁化の方向は、−X方向である。
本実施の形態では、複数のMR素子220の各々は、Y方向に平行な方向に長い形状を有している。これにより、複数のMR素子220の各々の自由層224は、磁化容易軸方向がY方向に平行な方向となる形状異方性を有している。そのため、印加される磁界が存在しない状態では、自由層224の磁化の方向は、Y方向に平行な方向になっている。出力磁界成分が存在する場合には、出力磁界成分の方向および強度に応じて、自由層224の磁化の方向が変化する。従って、自由層224の磁化の方向が磁化固定層222の磁化の方向に対してなす角度は、複数のMR素子220の各々が受けた出力磁界成分の方向および強度によって変化する。そのため、複数のMR素子220の各々の抵抗値は、出力磁界成分に対応したものとなる。
本実施の形態では、第2の抵抗部62における複数のMR素子220が受ける出力磁界成分の方向は、第1の抵抗部61における複数のMR素子220が受ける出力磁界成分の方向と同じである。一方、第3の抵抗部63における複数のMR素子220が受ける出力磁界成分の方向と、第4の抵抗部64における複数のMR素子220が受ける出力磁界成分の方向は、第1の抵抗部61における複数のMR素子220が受ける出力磁界成分の方向とは反対である。
なお、MR素子220の構成は、図12を参照して説明した例に限られない。例えば、MR素子220は、反強磁性層221を含まない構成であってもよい。この構成は、例えば、反強磁性層221および磁化固定層222の代わりに、2つの強磁性層とこの2つの強磁性層の間に配置された非磁性金属層とを含む人工反強磁性構造の磁化固定層を含む構成であってもよい。
以下、本実施の形態に係る磁気センサ30および磁気センサシステム101の作用および効果について説明する。始めに、磁界検出部60の作用について説明する。ここでは、入力磁界が入力磁界成分のみからなると仮定して説明する。入力磁界成分が存在せず、その結果、出力磁界成分も存在しない状態では、MR素子220の自由層224の磁化の方向は、Y方向に平行な方向になっている。入力磁界成分の方向がZ方向の場合、第1および第2の抵抗部61,62内のMR素子220が受ける出力磁界成分の方向はX方向になり、第3および第4の抵抗部63,64内のMR素子220が受ける出力磁界成分の方向は−X方向になる。この場合、第1および第2の抵抗部61,62内のMR素子220の自由層224の磁化の方向は、Y方向に平行な方向からX方向に向かって傾き、第3および第4の抵抗部63,64内のMR素子220の自由層224の磁化の方向は、Y方向に平行な方向から−X方向に向かって傾く。その結果、出力磁界成分が存在しない状態と比べて、第1および第4の抵抗部61,64内のMR素子220の抵抗値は減少し、第1および第4の抵抗部61,64の抵抗値も減少する。また、出力磁界成分が存在しない状態と比べて、第2および第3の抵抗部62,63内のMR素子220の抵抗値は増加し、第2および第3の抵抗部62,63の抵抗値も増加する。
入力磁界成分の方向が−Z方向の場合は、出力磁界成分の方向と、第1ないし第4の抵抗部61〜64の抵抗値の変化は、上述の入力磁界成分の方向がZ方向の場合とは逆になる。
MR素子220の抵抗値の変化量は、MR素子220が受ける出力磁界成分の強度に依存する。出力磁界成分の強度が大きくなると、MR素子220の抵抗値は、その増加量またはその減少量がそれぞれ大きくなる方向に変化する。出力磁界成分の強度が小さくなると、MR素子220の抵抗値は、その増加量またはその減少量がそれぞれ小さくなる方向に変化する。出力磁界成分の強度は、入力磁界成分の強度に依存する。
このように、入力磁界成分の方向と強度が変化すると、第1ないし第4の抵抗部61〜64のそれぞれの抵抗値は、第1および第4の抵抗部61,64の抵抗値が増加すると共に第2および第3の抵抗部62,63の抵抗値が減少するか、第1および第4の抵抗部61,64の抵抗値が減少すると共に第2および第3の抵抗部62,63の抵抗値が増加するように変化する。これにより、図8および図10に示した第1の出力ポートE1と第2の出力ポートE2との間の電位差が変化する。磁界検出部60は、第1の出力ポートE1と第2の出力ポートE2との間の電位差に依存する検出値を生成する。検出値は、自由層224の磁化の方向が磁化固定層222の磁化の方向に対してなす角度に応じて変化する。
次に、図13ないし図15を参照して、検出対象位置と入力磁界との関係について説明する。図13ないし図15は、検出対象位置と入力磁界との関係を示している。図13ないし図15において、記号Hを付した矢印は、磁気センサ30に印加される部分磁界すなわち入力磁界を表している。また、記号Hzを付した矢印は、第1の磁界成分Hzすなわち入力磁界成分を表し、記号Hyを付した矢印は、第2の磁界成分Hyを表している。
図13は、磁石31AのY方向の位置が、磁気センサ30のY方向の位置に一致した状態を示している。図14は、磁石31Aが、図13に示した位置からY方向に移動した状態を示している。図15は、磁石31Aが、図13に示した位置から−Y方向に移動した状態を示している。図13ないし図15に示したように、Y方向に平行な方向についての、磁気センサ30に対する磁石31Aの相対的な位置すなわち検出対象位置が変化すると、第1の磁界成分Hzすなわち入力磁界成分が変化する。
ここで、検出対象位置と第1および第2の磁界成分Hz,Hyとの関係について説明する。図16は、検出対象位置と、第1および第2の磁界成分Hz,Hyに対応する磁束密度との関係を示す特性図である。図16において、横軸は検出対象位置を示し、縦軸は磁束密度を示している。図16では、磁石31AのY方向の位置が磁気センサ30のY方向の位置に一致した状態の検出対象位置を0とし、0の位置よりも磁石31AがY方向に移動したときの検出対象位置を正の値で表し、0の位置よりも磁石31Aが−Y方向に移動したときの検出対象位置を負の値で表している。
図16において、記号Bzを付した曲線は、第1の磁界成分Hzに対応する磁束密度を示し、記号Byを付した曲線は、第2の磁界成分Hyに対応する磁束密度を示している。図16には、部分磁界のX方向に平行な成分に対応する磁束密度Bxも示している。ただし、磁束密度Bxの大きさは、検出対象位置にかかわらずにほぼ0である。
図16では、第1の磁界成分Hzの方向がZ方向のときの磁束密度Bzを正の値で表し、第1の磁界成分Hzの方向が−Z方向のときの磁束密度Bzを負の値で表している。磁束密度Bzは、検出対象位置の値にほぼ比例して変化する。
また、図16では、第2の磁界成分Hyの方向が−Y方向のときの磁束密度Byを負の値で表している。磁束密度Byの絶対値は、磁束密度Bzの絶対値よりも大きい。
前述の磁界検出部60の作用の説明では、入力磁界が入力磁界成分すなわち第1の磁界成分Hzのみからなると仮定した。しかし、本実施の形態に係る磁気センサシステム101では、図13ないし図16から理解されるように、入力磁界は、入力磁界成分の他に第2の磁界成分Hyを含んでいる。
第2の磁界成分Hyが磁界検出部60に印加されると、MR素子220の自由層224に、X方向に平行な方向の出力磁界成分の他に、Y方向に平行な方向の第2の磁界成分Hyが印加される。この場合、入力磁界が入力磁界成分のみからなる場合に比べて、自由層224の磁化の方向が磁化固定層222の磁化の方向に対してなす角度が異なってしまい、その結果、磁界検出部60の検出値も異なってしまう。そのため、第2の磁界成分Hyは、磁界検出部60の検出値に誤差が生じたり、磁界検出部60の感度が低下したりする原因となる。
本実施の形態では、シールド71,72によって、第2の磁界成分Hyに対応する磁束を吸収して、第2の磁界成分Hyに起因して磁界検出部60に印加される、Y方向に平行な方向の磁界の強度を小さくすることができる。
このように、本実施の形態によれば、磁気センサ30に印加される入力磁界が、入力磁界成分の他に、入力磁界成分の方向以外の方向の磁界成分である第2の磁界成分Hyを含む場合における問題の発生を抑制することができる。
次に、本実施の形態における複数のヨーク51およびシールド71,72の形状および配置による効果について、比較例と比較しながら説明する。
本実施の形態では、上方から見たときに、複数のヨーク51は、それぞれ、Y方向に長い形状を有し、シールド71,72は、それぞれ、Y方向における最大の寸法がX方向における最大の寸法よりも小さい形状を有している。言い換えると、上方から見たときに、複数のヨーク51は、それぞれ、その長手方向がY方向に平行な方向に向く姿勢で配置され、シールド71,72は、それぞれ、その長手方向がX方向に平行な方向に向く姿勢で配置されている。
ここで、比較例の磁気センサおよび磁気センサシステムについて説明する。図17は、比較例の磁気センサ130を示す斜視図である。図18は、比較例の磁気センサ130を示す平面図である。比較例の磁気センサ130は、本実施の形態における磁界変換部50および磁界検出部60の代わりに、磁界変換部150および磁界検出部160を備えている。また、比較例の磁気センサ130は、本実施の形態に係る磁気センサ30と同様に、2つのシールド71,72を備えている。上方から見たときに、磁界変換部150および磁界検出部160は、シールド71,72の各々の外縁の内側に位置している。
磁界変換部150は、本実施の形態における磁界変換部50と同様に、複数のヨーク51を含んでいる。ただし、比較例におけるヨーク51の数は12である。磁界検出部160は、本実施の形態における磁界検出部60と同様に、第1ないし第4の抵抗部61〜64と、電源ポートVと、グランドポートGと、第1の出力ポートE1と、第2の出力ポートE2とを含んでいる。第1ないし第4の抵抗部61〜64の各々は、複数のMR素子220を含んでいる。
比較例の磁気センサ130では、複数のヨーク51の姿勢と、複数のMR素子220の姿勢が、本実施の形態に係る磁気センサ30と異なっている。すなわち、比較例では、上方から見たときに、複数のヨーク51は、それぞれ、その長手方向がX方向に平行な方向に向く姿勢で配置されている。なお、比較例では、6つのヨーク51が、前述の左側領域においてY方向に一列に並ぶように配置され、他の6つのヨーク51が、前述の右側領域においてY方向に一列に並ぶように配置されている。
また、比較例では、複数のMR素子220は、それぞれ、その長手方向がX方向に平行な方向に向く姿勢で配置されている。また、比較例では、複数の素子列の各々は、X方向に並んだ2つ以上のMR素子220によって構成されている。1つのヨーク51に対応する2つの素子列は、1つのヨーク51の−Z方向の端部の近傍において、Y方向における1つのヨーク51の両側に配置されている。第1の抵抗部61と第3の抵抗部63の各々における複数のMR素子220の磁化固定層222の磁化の方向は、Y方向であり、第2の抵抗部62と第4の抵抗部64の各々における複数のMR素子220の磁化固定層222の磁化の方向は、−Y方向である。
なお、比較例では、本実施の形態に係る磁気センサ30と同様に、上方から見たときに、シールド71,72は、それぞれ、その長手方向がX方向に平行な方向に向く姿勢で配置されている。すなわち、比較例では、上方から見たときに、ヨーク51の長手方向とシールド71,72の長手方向が一致するような姿勢で、複数のヨーク51とシールド71,72が配置されている。
比較例の磁気センサ130におけるその他の構成は、本実施の形態に係る磁気センサ30と同様である。
比較例の磁気センサシステムは、比較例の磁気センサ130と、磁界発生部である磁石31Aとを備えている。磁気センサ130と磁石31Aとの位置関係は、図6に示した、本実施の形態に係る磁気センサ30と磁石31Aとの位置関係と同じである。磁気センサ130と磁石31Aは、磁石31Aが発生する磁界の一部である部分磁界が磁気センサ30に印加されるように構成されている。この部分磁界は、Z方向に平行な第1の磁界成分Hzと、Y方向に平行な第2の磁界成分Hyとを含んでいる。
次に、図19を参照して、比較例の磁気センサ130において、第2の磁界成分Hyが印加されたときに、ヨーク51およびシールド71,72の構造に起因して、MR素子220に印加される磁界について説明する。以下、この磁界を構造起因磁界と言う。
図19において矢印で示したように、磁気センサ130に対して−Y方向に第2の磁界成分Hyが印加されると、シールド71,72のY方向の端部の近傍においてシールド71,72に流入する磁束と、シールド71,72の−Y方向の端部の近傍においてシールド71,72から流出する磁束が生じる。また、シールド71に接するヨーク51の−Z方向の端部の近傍では、シールド71を通過する磁束に関連して、ヨーク51から流出またはヨーク51に流入する磁束が生じる。この磁束は、ヨーク51がシールド71のY方向の両端に近いほど多くなる。以下、これらの磁束によってMR素子220に印加される磁界が、構造起因磁界である。
次に、図18ないし図20を参照して、構造起因磁界による比較例の問題点について説明する。図20は、構造起因磁界による比較例の問題点を説明するための説明図である。ここでは、第1の磁界成分Hzの強度が0であるものとしている。図20において、MR素子220に重なるように描かれた矢印は、そのMR素子220の自由層224の磁化の方向を表している。
図18に示した4つの領域R101,R102,R103,R104は、前述の4つの領域R11,R12,R13,R14に対応している。第1および第3の抵抗部61,63を構成する複数のMR素子220のうちの半数のMR素子220は、領域R101に含まれている。第1および第3の抵抗部61,63を構成する複数のMR素子220のうちの残りの半数のMR素子220は、領域R102に含まれている。第2および第4の抵抗部62,64を構成する複数のMR素子220のうちの半数のMR素子220は、領域R103に含まれている。第2および第4の抵抗部62,64を構成する複数のMR素子220のうちの残りの半数のMR素子220は、領域R104に含まれている。
図20は、図18に示した磁気センサ130を簡略化して示している。図20に示したように、第1の抵抗部61と第3の抵抗部63の各々は、領域R101に含まれるMR素子220と領域R102に含まれるMR素子220を含んでいる。第2の抵抗部62と第4の抵抗部64の各々は、領域R103に含まれるMR素子220と領域R104に含まれるMR素子220を含んでいる。
ここで、図19における最も右側のMR素子220に注目する。このMR素子220は、領域R101に含まれる第1の抵抗部61のMR素子220と、領域R103に含まれる第2の抵抗部62のMR素子220に対応する。このMR素子220には、図19における最も右側のヨーク51を通過する磁束に対応する磁界と、シールド72を通過する磁束に対応する磁界とが印加される。これら2つの磁界は、互いに方向がほぼ反対であるため、ほぼ相殺される。そのため、このMR素子220には、構造起因磁界による影響はほとんど生じない。その結果、図20に示したように、領域R101に含まれる第1の抵抗部61のMR素子220と、領域R103に含まれる第2の抵抗部62のMR素子220では、自由層224の磁化の方向は、磁化容易軸方向であるX方向に平行な方向に向いたままになる。
次に、図19における右側から2番目のMR素子220に注目する。このMR素子220は、領域R101に含まれる第3の抵抗部63のMR素子220と、領域R103に含まれる第4の抵抗部64のMR素子220に対応する。このMR素子220には、図19における最も右側のヨーク51を通過する磁束に対応する磁界と、シールド72を通過する磁束に対応する磁界とが印加される。これら2つの磁界は、いずれも−Y方向の成分を含んでいるため、相殺されない。そのため、このMR素子220には、構造起因磁界による−Y方向の磁界成分が印加される。その結果、図20に示したように、領域R101に含まれる第3の抵抗部63のMR素子220と、領域R103に含まれる第4の抵抗部64のMR素子220では、自由層224の磁化の方向は、X方向に平行な方向から−Y方向に向かって傾く。
次に、図19における最も左側のMR素子220に注目する。このMR素子220は、領域R102に含まれる第3の抵抗部63のMR素子220と、領域R104に含まれる第4の抵抗部64のMR素子220に対応する。このMR素子220には、図19における最も左側のヨーク51を通過する磁束に対応する磁界と、シールド72を通過する磁束に対応する磁界とが印加される。これら2つの磁界は、互いに方向がほぼ反対であるため、ほぼ相殺される。そのため、このMR素子220には、構造起因磁界による影響はほとんど生じない。その結果、図20に示したように、領域R102に含まれる第3の抵抗部63のMR素子220と、領域R104に含まれる第4の抵抗部64のMR素子220では、自由層224の磁化の方向は、X方向に平行な方向に向いたままになる。
次に、図19における左側から2番目のMR素子220に注目する。このMR素子220は、領域R102に含まれる第1の抵抗部61のMR素子220と、領域R104に含まれる第2の抵抗部62のMR素子220に対応する。このMR素子220には、図19における最も左側のヨーク51を通過する磁束に対応する磁界と、シールド72を通過する磁束に対応する磁界とが印加される。これら2つの磁界は、いずれも−Y方向の成分を含んでいるため、相殺されない。そのため、このMR素子220には、構造起因磁界による−Y方向の磁界成分が印加される。その結果、図20に示したように、領域R102に含まれる第1の抵抗部61のMR素子220と、領域R104に含まれる第2の抵抗部62のMR素子220では、自由層224の磁化の方向は、X方向に平行な方向から−Y方向に向かって傾く。
以上の説明から理解されるように、比較例では、同じ抵抗部に含まれるMR素子220であっても、そのMR素子220が、領域R101に含まれるか領域R102に含まれるかによって、あるいは領域R103に含まれるか領域R104に含まれるかによって、MR素子220が受ける構造起因磁界による影響が異なる。しかも、1つの抵抗部において、複数のMR素子220が受ける構造起因磁界による影響を相殺することができない。そのため、比較例では、第1ないし第4の抵抗部61〜64の全てが、構造起因磁界による影響を受ける。その結果、第1ないし第4の抵抗部61〜64の全てにおいて、構造起因磁界による影響を受けない場合と比べて、抵抗値が異なってしまう。
また、比較例では、構造起因磁界によって自由層224の磁化の方向が傾く方向は全て同じ方向であるが、MR素子220の磁化固定層222の磁化の方向は、第1および第3の抵抗部61,63と第2および第4の抵抗部62,64で異なっている。そのため、比較例では、構造起因磁界によって、第1の磁界成分Hzの強度が0のときの第1および第2の出力ポートE1,E2の各々の電位(以下、中点電位と言う。)が、第2の磁界成分Hyが存在しない場合における中点電位からずれてしまう。これにより、比較例では、構造起因磁界に起因して、磁界検出部160の検出値に誤差が生じたり、磁界検出部160の感度が低下したりする。また、比較例では、ヨーク51の位置が長手方向に直交する方向であるY方向にばらつくと、MR素子220の自由層224の磁化の傾きがばらつき、中点電位もばらつく。その結果、比較例の磁気センサ130の歩留まりが低下してしまう。以下、これらの問題点を比較例の第1の問題点と言う。
次に、比較例の磁気センサ130を、シールド71,72の長手方向がY方向に平行な方向に向く姿勢で配置した場合について考える。このような配置のシールド71,72のでは、長手方向がX方向に平行な方向に向く姿勢でシールド71,72が配置された場合と比べて、第2の磁界成分Hyの方向についてのシールド71,72の寸法が大きくなり、第2の磁界成分Hyに対する反磁界が小さくなる。その結果、シールド71,72による第2の磁界成分Hyの吸収能力が低下する。以下、これを比較例の第2の問題点という。比較例では、第1の問題点と第2の問題点を同時に解決することはできない。
これに対し、本実施の形態では、比較例の第1の問題点と第2の問題点を同時に解決することができる。以下、これについて詳しく説明する。
始めに、図21を参照して、本実施の形態に係る磁気センサ30において、第2の磁界成分Hyが印加されたときに、ヨーク51およびシールド71,72の構造に起因して、MR素子220に印加される磁界について説明する。比較例の場合と同様に、本実施の形態に関しても、この磁界を構造起因磁界と言う。
図21において矢印で示したように、磁気センサ30に対して−Y方向に第2の磁界成分Hyが印加されると、ヨーク51のY方向の端部の近傍においてヨーク51に流入し、ヨーク51の−Y方向の端部の近傍においてヨーク51から流出する磁束が生じる。この磁束によって、MR素子220には、構造起因磁界が印加される。
図22は、図21に示した磁気センサ30を簡略化して示している。図22に示したように、第1の抵抗部61と第3の抵抗部63の各々は、領域R11に含まれるMR素子220Aと領域R12に含まれるMR素子220Bを含んでいる。第2の抵抗部62と第4の抵抗部64の各々は、領域R21に含まれるMR素子220Aと領域R22に含まれるMR素子220Bを含んでいる。
図22には、構造起因磁界に起因するMR素子220の自由層224の磁化の傾きを示している。ここでは、第1の磁界成分Hzの強度が0であるものとしている。図22において、MR素子220に重なるように描かれた矢印は、そのMR素子220の自由層224の磁化の方向を表している。
構造起因磁界の影響によって、図22に示したように、領域R11に含まれる第1の抵抗部61の第1のMR素子220Aと、領域R21に含まれる第2の抵抗部62の第1のMR素子220Aでは、自由層224の磁化の方向は、Y方向に平行な方向からX方向に向かって傾く。また、領域R12に含まれる第1の抵抗部61の第2のMR素子220Bと、領域R22に含まれる第2の抵抗部62の第2のMR素子220Bでは、自由層224の磁化の方向は、Y方向に平行な方向から−X方向に向かって傾く。
また、領域R11に含まれる第3の抵抗部63の第1のMR素子220Aと、領域R21に含まれる第4の抵抗部64の第1のMR素子220Aでは、自由層224の磁化の方向は、Y方向に平行な方向から−X方向に向かって傾く。また、領域R12に含まれる第3の抵抗部63の第2のMR素子220Bと、領域R22に含まれる第4の抵抗部64の第2のMR素子220Bでは、自由層224の磁化の方向は、Y方向に平行な方向からX方向に向かって傾く。
このように、本実施の形態では、第1ないし第4の抵抗部61〜64のいずれにおいても、構造起因磁界の影響によって、第1のMR素子220Aと第2のMR素子220Bでは、自由層224の磁化の方向が互いに反対方向に傾く。これにより、第1ないし第4の抵抗部61〜64のいずれにおいても、第1のMR素子220Aと第2のMR素子220Bが受ける構造起因磁界の影響を相殺することができる。これは、第1のMR素子220Aと第2のMR素子220Bが、中央断面Cに対して面対称の位置に配置されているためである。このようにして、本実施の形態によれば、磁界検出部60が受ける構造起因磁界の影響を低減することができる。すなわち、本実施の形態によれば、比較例の第1の問題点を解決することができる。
また、本実施の形態では、上記の作用により、構造起因磁界の影響によって生じる第1および第2の出力ポートE1,E2の中点電位のずれ量は、比較例に比べて小さくなる。また、本実施の形態では、ヨーク51の位置が長手方向に直交する方向であるX方向にばらついても、第1ないし第4の抵抗部61〜64のいずれにおいても、構造起因磁界の影響によって生じる第1のMR素子220Aの自由層224の磁化の傾きの大きさと、構造起因磁界の影響によって生じる第2のMR素子220Bの自由層224の磁化の傾きの大きさは、ほぼ等しくなる。その結果、本実施の形態では、ヨーク51の位置のばらつきに起因する中点電位のばらつきは、比較例に比べて小さくなる。
次に、本実施の形態によれば、比較例の第2の問題点を解決できることについて説明する。本実施の形態におけるシールド71,72は、上方から見たときに、長手方向がX方向に平行な方向に向く姿勢で配置されている。このような配置のシールド71,72では、上方から見たときに、長手方向がY方向に平行な方向に向く姿勢でシールド71,72が配置された場合と比べて、第2の磁界成分Hyの方向についてのシールド71,72の寸法が小さくなり、第2の磁界成分Hyに対する反磁界が大きくなる。これにより、本実施の形態によれば、シールド71,72による第2の磁界成分Hyの吸収能力を向上させることができる。すなわち、本実施の形態によれば、比較例の第2の問題点を解決することができる。
以上のことから、本実施の形態によれば、比較例の第1の問題点と第2の問題点を、同時に解決することができる。
以下、第2の磁界成分Hyの方向についてのシールド71,72の寸法が小さい方が、シールド71,72による第2の磁界成分Hyの吸収能力が向上することを示す実験の結果について説明する。
実験では、本実施の形態に係る磁気センサ30におけるシールド71,72の形状を互いに異ならせた第1ないし第3の試料を用いた。第1および第2の試料は、図7および図8に示した磁気センサ30に対応する試料である。第1の試料におけるシールド71,72の各々のY方向の寸法は100μmである。第2の試料におけるシールド71,72の各々のY方向の寸法は90μmである。
第3の試料は、図7および図8に示した磁気センサ30において、1つのシールド71の代わりに、互いに分離されてY方向に並ぶ2つのシールド71を設け、1つのシールド72の代わりに、互いに分離されてY方向に並ぶ2つのシールド72を設けた試料である。第3の試料において、2つのシールド71と2つのシールド72の各々のY方向の寸法は50μmである。なお、第1ないし第3の試料のいずれにおいても、シールド71,72の各々のX方向の寸法は180μmである。
ここで、磁気センサ30の感度を、出力磁界成分に対応する磁束密度の変化に対する磁気センサ30の検出値の変化の比率と定義する。実験では、第1の磁界成分Hzに対応する磁束密度を−50mT〜50mTの範囲内で変化させて、磁気センサ30の感度を求めた。なお、第1の磁界成分Hzに対応する磁束密度については、第1の磁界成分Hzの方向がZ方向であるときには正の値で表し、第1の磁界成分Hzの方向が−Z方向であるときには負の値で表している。また、実験では、磁気センサ30に−Y方向の第2の磁界成分Hyを印加し、第2の磁界成分Hyに対応する磁束密度を0〜300mTの範囲内で変化させて、第2の磁界成分Hyに対応する磁束密度と磁気センサ30の感度との関係を求めた。
図23に、実験の結果を示す。図23において、横軸は第2の磁界成分Hyに対応する磁束密度を示している。また、図23において、縦軸は、規格化感度を示している。規格化感度とは、第2の磁界成分Hyに対応する磁束密度が任意の値のときの磁気センサ30の感度を、第2の磁界成分Hyに対応する磁束密度が0のときの磁気センサ30の感度で割って得られる値である。また、図23において、符号91を付した曲線は第1の試料の規格化感度を表し、符号92を付した曲線は第2の試料の規格化感度を表し、符号93を付した曲線は第3の試料の規格化感度を表している。
図23に示したように、第1ないし第3の試料のいずれにおいても、第2の磁界成分Hyに対応する磁束密度が0からある値までは、規格化感度はほぼ1であり、第2の磁界成分Hyに対応する磁束密度がある値よりも大きくなると、規格化感度が小さくなっている。第2の磁界成分Hyに対応する磁束密度を大きくしていったときに、シールド71,72の各々において磁束が飽和に達すると、規格化感度が小さくなり始めると考えられる。シールド71,72の各々において磁束が飽和すると、第2の磁界成分Hyのうちシールド71,72によって吸収しきれなかった分が磁界検出部60に印加され、その結果、規格化感度が低下する。従って、規格化感度が小さくなり始める磁束密度の値が大きいほど、シールド71,72による第2の磁界成分Hyの吸収能力が高いと言える。図23に示したように、規格化感度が小さくなり始める磁束密度の値は、第1の試料が最も小さくなり、第3の試料が最も大きくなる。この結果から理解されるように、Y方向、すなわち第2の磁界成分Hyの方向についてのシールド71,72の寸法が小さい方が、シールド71,72による第2の磁界成分Hyの吸収能力が向上する。
なお、上記のように、第2の磁界成分Hyの方向についてのシールド71,72の寸法が小さい方が、シールド71,72による第2の磁界成分Hyの吸収能力が向上するのは、第2の磁界成分Hyの方向についてのシールド71,72の寸法が小さくなるに従って、第2の磁界成分Hyによってシールド71,72に生じる反磁界の強度が大きくなるためと考えられる。
なお、ここまでは、コイル41(図1参照)の内側に配置された磁気センサ30と、コイル41の内側に配置された磁気センサ30を備えた磁気センサシステム101について説明してきた。以下、ここまで説明してきた磁気センサ30および磁気センサシステム101を第1の実施例の磁気センサおよび磁気センサシステムと言う。
図1ないし図3に示したカメラモジュール100では、第1の実施例の磁気センサおよび磁気センサシステムだけではなく、コイル43(図1参照)の内側に配置された磁気センサ30と、この磁気センサ30を備えた磁気センサシステムも、本実施の形態に係る磁気センサおよび磁気センサシステムと言える。以下、コイル43の内側に配置された磁気センサ30と、この磁気センサ30を備えた磁気センサシステムを、第2の実施例の磁気センサおよび磁気センサシステムと言う。
第2の実施例の磁気センサおよび磁気センサシステムの構成は、基本的には、第1の実施例の磁気センサおよび磁気センサシステムと同じである。ただし、第2の実施例では、X方向が本発明における第2の方向に対応し、Y方向が本発明における第3の方向に対応する。従って、第1の実施例の説明中の磁石31A、X方向およびY方向を、それぞれ磁石33A、Y方向およびX方向に置き換えれば、第2の実施例の説明になる。第2の実施例の磁気センサシステムは、X方向に平行な方向についての、磁気センサ30に対する磁石33Aの相対的な位置を検出するための位置検出装置である。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。始めに、図24を参照して、本実施の形態に係る磁気センサの構成について説明する。図24は、本実施の形態に係る磁気センサを示す平面図である。
本実施の形態に係る磁気センサ30では、第1ないし第4の抵抗部61〜64の各々は、第1の実施の形態における複数のMR素子220の代わりに、少なくとも1つのMR素子230を含んでいる。図24に示した例では、第1ないし第4の抵抗部61〜64の各々は、4つのMR素子230を含んでいる。第1の実施の形態における1つの素子列は、1つのMR素子230に置き換えられている。1つのヨーク51に対して2つのMR素子230が対応する。複数のMR素子230の各々は、Y方向に平行な方向に長い形状を有している。1つのヨーク51に対応する2つのMR素子230は、1つのヨーク51の−Z方向の端部の近傍において、X方向における1つのヨーク51の両側に配置されている。図24に示した例では、ヨーク51の数は8であり、MR素子230の数は16である。
第1の実施の形態と同様に、上方から見たときにシールド72と重なる領域をシールド投影領域と言う。また、シールド投影領域のうち、X方向における中央から−X方向の端までの部分を左側領域と言い、X方向における中央からX方向の端までの部分を右側領域と言う。図24に示した例では、8つのヨーク51のうちの4つのヨーク51は左側領域に配置され、残りの4つのヨーク51は右側領域に配置されている。
第1の抵抗部61と第3の抵抗部63を構成する複数のMR素子230は、左側領域に配置されている。第2の抵抗部62と第4の抵抗部64を構成する複数のMR素子230は、右側領域に配置されている。図24では、第3の抵抗部63を構成する複数のMR素子220と第4の抵抗部64を構成する複数のMR素子230にハッチングを付している。
第1の抵抗部61と第3の抵抗部63を構成する複数のMR素子230は、左側領域に配置された4つのヨーク51に対応する。1つのヨーク51に対応する第1の抵抗部61の1つのMR素子230は、そのヨーク51における−X側に配置されている。1つのヨーク51に対応する第3の抵抗部63の1つのMR素子230は、そのヨーク51におけるX側に配置されている。
第2の抵抗部62と第4の抵抗部64を構成する複数のMR素子230は、右側領域に配置された4つのヨーク51に対応する。1つのヨーク51に対応する第2の抵抗部62の1つのMR素子230は、そのヨーク51における−X側に配置されている。1つのヨーク51に対応する第4の抵抗部64の1つのMR素子230は、そのヨーク51におけるX側に配置されている。
第1の実施の形態と同様に、第1の抵抗部61は第1の部分61Aと第2の部分61Bを含み、第2の抵抗部62は第1の部分62Aと第2の部分62Bを含み、第3の抵抗部63は第1の部分63Aと第2の部分63Bを含み、第4の抵抗部64は第1の部分64Aと第2の部分64Bを含んでいる。従って、磁界検出部60は、4つの第1の部分と4つの第2の部分を含んでいる。本実施の形態では、第1ないし第4の抵抗部61〜64の各々における第1の部分と第2の部分は、少なくとも1つのMR素子230(図24に示した例では4つのMR素子230)における互いに異なる部分である。
前述の左側領域は、領域R11と領域R12を含み、前述の右側領域は、領域R21と領域R22を含んでいる。領域R11,R12,R21,R22の定義は、第1の実施の形態と同じである。第1の抵抗部61の第1の部分61Aと第3の抵抗部63の第1の部分63Aは、領域R11に含まれている。第1の抵抗部61の第2の部分61Bと第3の抵抗部63の第2の部分63Bは、領域R12に含まれている。第2の抵抗部62の第1の部分62Aと第4の抵抗部64の第1の部分64Aは、領域R21に含まれている。第2の抵抗部62の第2の部分62Bと第4の抵抗部64の第2の部分64Bは、領域R22に含まれている。
第1ないし第4の抵抗部61〜64の各々において、第1の部分と第2の部分は、Y方向における少なくとも1つのヨーク51の中心を通りY方向に垂直な断面である中央断面Cに対して面対称の位置に配置されている。図24に示した例では、中央断面Cは、全てのヨーク51の中心を通る。
以下、MR素子230の構成の一例について説明する。MR素子230は、第1の実施の形態におけるMR素子220と同様に、所定の方向の磁化を有する磁化固定層と、印加される磁界に応じて方向が変化可能な磁化を有する自由層と、磁化固定層と自由層の間に配置されたギャップ層と、反強磁性層とを含んでいる。本実施の形態では特に、MR素子230は、磁気的信号検出用のセンス電流を、MR素子230を構成する各層の面に対してほぼ平行な方向に流すCIP(Current In Plane)タイプのGMR素子である。ギャップ層は、非磁性導電層である。
本実施の形態では、第1の抵抗部61と第3の抵抗部63の各々における複数のMR素子230の磁化固定層の磁化の方向は、X方向である。第2の抵抗部62と第4の抵抗部64の各々における複数のMR素子220の磁化固定層の磁化の方向は、−X方向である。
次に、本実施の形態に係る磁気センサ30の作用および効果について説明する。本実施の形態では、第1ないし第4の抵抗部61〜64のいずれにおいても、第1の部分と第2の部分が受ける構造起因磁界の影響を相殺することができる。これは、第1の部分と第2の部分が、中央断面Cに対して面対称の位置に配置されているためである。このようにして、本実施の形態によれば、磁界検出部60が受ける構造起因磁界の影響を低減することができる。
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、請求の範囲の要件を満たす限り、MR素子、ヨークおよびシールドの形状、数および配置は、各実施の形態に示した例に限られず、任意である。
また、磁界検出部60は、電源ポートV、グランドポートG、第1の出力ポートE1、第1の抵抗部61および第2の抵抗部62を含むが、第2の出力ポートE2、第3の抵抗部63、第4の抵抗部64を含まない構成であってもよい。この場合、検出値は、第1の出力ポートE1の電位に依存する。
3…駆動装置、5…レンズ、6…筐体、7…基板、14…第1の保持部材、15…第2の保持部材、30…磁気センサ、31A…磁石、50…磁界変換部、51…ヨーク、60…磁界検出部、61…第1の抵抗部、62…第2の抵抗部、63…第3の抵抗部、64…第4の抵抗部、71,72…シールド、80…配線部、81…下部電極、82…上部電極、100…カメラモジュール、101…磁気センサシステム、220…MR素子。
次に、図1および図5を参照して、本実施の形態に係る磁気センサシステムの概略の構成について説明する。本実施の形態に係る磁気センサシステムは、本実施の形態に係る磁気センサと、所定の磁界を発生する磁界発生部とを備えている。本実施の形態では、コイル41の内側に配置された磁気センサ30、または、コイル44の内側に配置された磁気センサ30が、本実施の形態に係る磁気センサに対応する。コイル41の内側に配置された磁気センサ30を備えた磁気センサシステムでは、磁石31Aが、磁界発生部に対応する。コイル44の内側に配置された磁気センサ30を備えた磁気センサシステムでは、磁石34Aが、磁界発生部に対応する。
比較例の磁気センサシステムは、比較例の磁気センサ130と、磁界発生部である磁石31Aとを備えている。磁気センサ130と磁石31Aとの位置関係は、図6に示した、本実施の形態に係る磁気センサ30と磁石31Aとの位置関係と同じである。磁気センサ130と磁石31Aは、磁石31Aが発生する磁界の一部である部分磁界が磁気センサ130に印加されるように構成されている。この部分磁界は、Z方向に平行な第1の磁界成分Hzと、Y方向に平行な第2の磁界成分Hyとを含んでいる。
図18に示した4つの領域R101,R102,R103,R104は、前述の4つの領域R11,R12,R21,R22に対応している。第1および第3の抵抗部61,63を構成する複数のMR素子220のうちの半数のMR素子220は、領域R101に含まれている。第1および第3の抵抗部61,63を構成する複数のMR素子220のうちの残りの半数のMR素子220は、領域R102に含まれている。第2および第4の抵抗部62,64を構成する複数のMR素子220のうちの半数のMR素子220は、領域R103に含まれている。第2および第4の抵抗部62,64を構成する複数のMR素子220のうちの残りの半数のMR素子220は、領域R104に含まれている。
次に、比較例の磁気センサ130を、シールド71,72の長手方向がY方向に平行な方向に向く姿勢で配置した場合について考える。このような配置のシールド71,72では、長手方向がX方向に平行な方向に向く姿勢でシールド71,72が配置された場合と比べて、第2の磁界成分Hyの方向についてのシールド71,72の寸法が大きくなり、第2の磁界成分Hyに対する反磁界が小さくなる。その結果、シールド71,72による第2の磁界成分Hyの吸収能力が低下する。以下、これを比較例の第2の問題点という。比較例では、第1の問題点と第2の問題点を同時に解決することはできない。
図1ないし図3に示したカメラモジュール100では、第1の実施例の磁気センサおよび磁気センサシステムだけではなく、コイル44(図1参照)の内側に配置された磁気センサ30と、この磁気センサ30を備えた磁気センサシステムも、本実施の形態に係る磁気センサおよび磁気センサシステムと言える。以下、コイル44の内側に配置された磁気センサ30と、この磁気センサ30を備えた磁気センサシステムを、第2の実施例の磁気センサおよび磁気センサシステムと言う。
第2の実施例の磁気センサおよび磁気センサシステムの構成は、基本的には、第1の実施例の磁気センサおよび磁気センサシステムと同じである。ただし、第2の実施例では、X方向が本発明における第2の方向に対応し、Y方向が本発明における第3の方向に対応する。従って、第1の実施例の説明中の磁石31A、X方向およびY方向を、それぞれ磁石34A、Y方向およびX方向に置き換えれば、第2の実施例の説明になる。第2の実施例の磁気センサシステムは、X方向に平行な方向についての、磁気センサ30に対する磁石34Aの相対的な位置を検出するための位置検出装置である。
第1の抵抗部61と第3の抵抗部63を構成する複数のMR素子230は、左側領域に配置されている。第2の抵抗部62と第4の抵抗部64を構成する複数のMR素子230は、右側領域に配置されている。図24では、第3の抵抗部63を構成する複数のMR素子230と第4の抵抗部64を構成する複数のMR素子230にハッチングを付している。
本実施の形態では、第1の抵抗部61と第3の抵抗部63の各々における複数のMR素子230の磁化固定層の磁化の方向は、X方向である。第2の抵抗部62と第4の抵抗部64の各々における複数のMR素子230の磁化固定層の磁化の方向は、−X方向である。

Claims (13)

  1. 磁界変換部と、磁界検出部と、軟磁性体よりなる少なくとも1つのシールドとを備えた磁気センサであって、
    前記磁界変換部は、軟磁性体よりなる少なくとも1つのヨークを含み、
    前記少なくとも1つのヨークは、前記磁気センサに対する入力磁界を受けて、出力磁界を発生するように構成され、
    前記入力磁界は、第1の方向に平行な方向の入力磁界成分を含み、
    前記少なくとも1つのヨークは、前記第1の方向に平行な方向に見たときに、前記第1の方向と交差する第2の方向に長い形状を有し、
    前記出力磁界は、前記第1の方向および第2の方向と交差する第3の方向に平行な方向の出力磁界成分であって前記入力磁界成分に応じて変化する出力磁界成分を含み、
    前記磁界検出部は、前記出力磁界を受けて、前記出力磁界成分に応じて変化する検出値を生成し、
    前記少なくとも1つのシールドは、前記第1の方向に平行な方向に見たときに、前記第2の方向における最大の寸法が前記第3の方向における最大の寸法よりも小さい形状を有し、且つ前記磁界変換部および前記磁界検出部と重なる位置に配置されていることを特徴とする磁気センサ。
  2. 前記第1の方向に平行な方向に見たときに、前記磁界変換部および前記磁界検出部は、前記少なくとも1つのシールドの外縁の内側に位置することを特徴とする請求項1記載の磁気センサ。
  3. 前記第1の方向、第2の方向および第3の方向は、互いに直交することを特徴とする請求項1または2記載の磁気センサ。
  4. 前記磁界検出部は、少なくとも1つの磁気抵抗効果素子を含み、
    前記少なくとも1つの磁気抵抗効果素子は、所定の方向の磁化を有する磁化固定層と、印加される磁界に応じて方向が変化可能な磁化を有する自由層とを含み、
    前記検出値は、前記自由層の磁化の方向が前記磁化固定層の磁化の方向に対してなす角度に応じて変化することを特徴とする請求項1ないし3のいずれかに記載の磁気センサ。
  5. 前記磁化固定層の磁化の方向は、前記第3の方向に平行な方向であることを特徴とする請求項4記載の磁気センサ。
  6. 前記磁界検出部は、第1の部分と第2の部分を含み、
    前記第1の部分と第2の部分は、前記第2の方向における前記少なくとも1つのヨークの中心を通り前記第2の方向に垂直な断面である中央断面に対して面対称の位置に配置されていることを特徴とする請求項4または5記載の磁気センサ。
  7. 前記少なくとも1つの磁気抵抗効果素子は、前記第1の部分に含まれる第1の磁気抵抗効果素子と、前記第2の部分に含まれる第2の磁気抵抗効果素子とを含み、
    前記第1の磁気抵抗効果素子と第2の磁気抵抗効果素子は、前記中央断面に対して面対称の位置に配置され、且つ直列に接続されていることを特徴とする請求項6記載の磁気センサ。
  8. 前記第1の部分と第2の部分は、前記少なくとも1つの磁気抵抗効果素子における互いに異なる部分であることを特徴とする請求項6記載の磁気センサ。
  9. 前記磁界検出部は、所定の電圧が印加される電源ポートと、グランドに接続されるグランドポートと、出力ポートと、前記電源ポートと前記出力ポートの間に設けられた第1の抵抗部と、前記出力ポートと前記グランドポートの間に設けられた第2の抵抗部とを含み、
    前記第1および第2の抵抗部の各々は、第1の部分と第2の部分を含み、
    前記第1の部分と第2の部分は、前記第2の方向における前記少なくとも1つのヨークの中心を通り前記第2の方向に垂直な断面である中央断面に対して面対称の位置に配置され、
    前記第1および第2の抵抗部の各々は、少なくとも1つの磁気抵抗効果素子を含み、
    前記少なくとも1つの磁気抵抗効果素子は、所定の方向の磁化を有する磁化固定層と、印加される磁界に応じて方向が変化可能な磁化を有する自由層とを含み、
    前記検出値は、前記出力ポートの電位に依存することを特徴とする請求項1ないし3のいずれかに記載の磁気センサ。
  10. 前記磁界検出部は、所定の電圧が印加される電源ポートと、グランドに接続されるグランドポートと、第1の出力ポートと、第2の出力ポートと、前記電源ポートと前記第1の出力ポートの間に設けられた第1の抵抗部と、前記第1の出力ポートと前記グランドポートの間に設けられた第2の抵抗部と、前記電源ポートと前記第2の出力ポートの間に設けられた第3の抵抗部と、前記第2の出力ポートと前記グランドポートの間に設けられた第4の抵抗部とを含み、
    前記第1ないし第4の抵抗部の各々は、第1の部分と第2の部分を含み、
    前記第1の部分と第2の部分は、前記第2の方向における前記少なくとも1つのヨークの中心を通り前記第2の方向に垂直な断面である中央断面に対して面対称の位置に配置され、
    前記第1ないし第4の抵抗部の各々は、少なくとも1つの磁気抵抗効果素子を含み、
    前記少なくとも1つの磁気抵抗効果素子は、所定の方向の磁化を有する磁化固定層と、印加される磁界に応じて方向が変化可能な磁化を有する自由層とを含み、
    前記検出値は、前記第1の出力ポートと前記第2の出力ポートの電位差に依存することを特徴とする請求項1ないし3のいずれかに記載の磁気センサ。
  11. 前記入力磁界は、前記入力磁界成分の他に、前記第2の方向に平行な方向の磁界成分を含むことを特徴とする請求項1ないし10のいずれかに記載の磁気センサ。
  12. 請求項1ないし10のいずれかに記載の磁気センサと、
    所定の磁界を発生する磁界発生部とを備えた磁気センサシステムであって、
    前記磁気センサと前記磁界発生部は、前記所定の磁界の一部である部分磁界が前記磁気センサに印加されるように構成され、
    前記部分磁界は、前記第1の方向に平行な方向の第1の磁界成分と、前記第2の方向に平行な方向の第2の磁界成分とを含み、
    前記入力磁界は、前記部分磁界であり、
    前記入力磁界成分は、前記第1の磁界成分であることを特徴とする磁気センサシステム。
  13. 前記磁気センサと前記磁界発生部は、前記磁気センサに対する前記磁界発生部の相対的な位置が変化すると、前記第1の磁界成分が変化するように構成されていることを特徴とする請求項12記載の磁気センサシステム。
JP2018060541A 2018-03-27 2018-03-27 磁気センサおよび磁気センサシステム Active JP6620834B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018060541A JP6620834B2 (ja) 2018-03-27 2018-03-27 磁気センサおよび磁気センサシステム
US16/165,254 US11320285B2 (en) 2018-03-27 2018-10-19 Magnetic sensor with yoke and shield
DE102018128868.9A DE102018128868A1 (de) 2018-03-27 2018-11-16 Magnetsensor und Magnetsensorsystem
CN201811459229.6A CN110308409B (zh) 2018-03-27 2018-11-30 磁传感器及磁传感器系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018060541A JP6620834B2 (ja) 2018-03-27 2018-03-27 磁気センサおよび磁気センサシステム

Publications (2)

Publication Number Publication Date
JP2019174196A true JP2019174196A (ja) 2019-10-10
JP6620834B2 JP6620834B2 (ja) 2019-12-18

Family

ID=67910063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018060541A Active JP6620834B2 (ja) 2018-03-27 2018-03-27 磁気センサおよび磁気センサシステム

Country Status (4)

Country Link
US (1) US11320285B2 (ja)
JP (1) JP6620834B2 (ja)
CN (1) CN110308409B (ja)
DE (1) DE102018128868A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022123321A (ja) * 2021-02-12 2022-08-24 Tdk株式会社 磁気センサ、位置検出装置及び電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658823B2 (ja) * 2018-08-24 2020-03-04 Tdk株式会社 磁気センサおよび磁気センサシステム
JP2022029354A (ja) * 2020-08-04 2022-02-17 Tdk株式会社 磁気センサシステムおよびレンズ位置検出装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130186A (en) * 1979-03-30 1980-10-08 Sony Corp Magnetoelectric transducer
JP2001345498A (ja) * 2000-06-02 2001-12-14 Yamaha Corp 磁気センサ及び同磁気センサの製造方法
WO2013129276A1 (ja) * 2012-03-02 2013-09-06 Tdk株式会社 磁気センサ素子
JP2015185889A (ja) * 2014-03-20 2015-10-22 三菱電機株式会社 磁気結合型アイソレータ
WO2017018056A1 (ja) * 2015-07-27 2017-02-02 株式会社村田製作所 磁気センサ、これを備える電流センサおよび電力変換装置
WO2017094889A1 (ja) * 2015-12-03 2017-06-08 アルプス電気株式会社 磁気検知装置およびその製造方法
WO2017158900A1 (ja) * 2016-03-17 2017-09-21 Tdk株式会社 磁気センサ
JP2017187429A (ja) * 2016-04-07 2017-10-12 アルプス電気株式会社 磁気センサおよびその製造方法
JP2018044789A (ja) * 2016-09-12 2018-03-22 日立金属株式会社 磁界検出装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2052855B (en) 1979-03-30 1983-05-18 Sony Corp Magnetoresistive transducers
WO2003098147A1 (en) * 2002-05-15 2003-11-27 American Electronic Components, Inc. Through the hole rotary position sensor
DE602004030160D1 (de) * 2004-02-19 2010-12-30 Mitsubishi Electric Corp Magnetfelddetektor und stromdetektionseinrichtung, positionsdetektionseinrichtung und rotationsdetektionseinrichtung mit dem magnetfelddetektor
JP2008270471A (ja) * 2007-04-19 2008-11-06 Yamaha Corp 磁気センサ及びその製造方法
JP5597206B2 (ja) * 2009-12-02 2014-10-01 アルプス電気株式会社 磁気センサ
DE102012220139A1 (de) * 2012-11-06 2014-05-08 Robert Bosch Gmbh Magnetische Messanordnung und korrespondierende Sensoranordnung zur Bewegungserfassung eines bewegten Bauteils
DE102013107821A1 (de) * 2013-07-22 2015-01-22 Sensitec Gmbh Mehrkomponenten-Magnetfeldsensor
JP6308784B2 (ja) 2014-01-08 2018-04-11 アルプス電気株式会社 磁気センサ
CN103913709B (zh) * 2014-03-28 2017-05-17 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
US9142271B1 (en) * 2014-06-24 2015-09-22 Intel Corporation Reference architecture in a cross-point memory
DE102014116953B4 (de) * 2014-11-19 2022-06-30 Sensitec Gmbh Verfahren und Vorrichtung zur Herstellung einer Magnetfeldsensorvorrichtung, sowie diesbezüglicheMagnetfeldsensorvorrichtung
CN104698409B (zh) * 2015-02-04 2017-11-10 江苏多维科技有限公司 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器
JP6503802B2 (ja) * 2015-03-12 2019-04-24 Tdk株式会社 磁気センサ
US9752877B2 (en) * 2015-04-23 2017-09-05 Apple Inc. Electronic device having electronic compass with demagnetizing coil and annular flux concentrating yokes
JP2018072026A (ja) * 2016-10-25 2018-05-10 Tdk株式会社 磁場検出装置
JP6544374B2 (ja) * 2017-03-24 2019-07-17 Tdk株式会社 磁気センサ
US11199424B2 (en) * 2018-01-31 2021-12-14 Allegro Microsystems, Llc Reducing angle error in a magnetic field angle sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130186A (en) * 1979-03-30 1980-10-08 Sony Corp Magnetoelectric transducer
JP2001345498A (ja) * 2000-06-02 2001-12-14 Yamaha Corp 磁気センサ及び同磁気センサの製造方法
WO2013129276A1 (ja) * 2012-03-02 2013-09-06 Tdk株式会社 磁気センサ素子
JP2015185889A (ja) * 2014-03-20 2015-10-22 三菱電機株式会社 磁気結合型アイソレータ
WO2017018056A1 (ja) * 2015-07-27 2017-02-02 株式会社村田製作所 磁気センサ、これを備える電流センサおよび電力変換装置
WO2017094889A1 (ja) * 2015-12-03 2017-06-08 アルプス電気株式会社 磁気検知装置およびその製造方法
WO2017158900A1 (ja) * 2016-03-17 2017-09-21 Tdk株式会社 磁気センサ
JP2017187429A (ja) * 2016-04-07 2017-10-12 アルプス電気株式会社 磁気センサおよびその製造方法
JP2018044789A (ja) * 2016-09-12 2018-03-22 日立金属株式会社 磁界検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022123321A (ja) * 2021-02-12 2022-08-24 Tdk株式会社 磁気センサ、位置検出装置及び電子機器
JP7284201B2 (ja) 2021-02-12 2023-05-30 Tdk株式会社 磁気センサ、位置検出装置及び電子機器
US11747409B2 (en) 2021-02-12 2023-09-05 Tdk Corporation Magnetic sensor, position detection apparatus and electronic device

Also Published As

Publication number Publication date
US11320285B2 (en) 2022-05-03
JP6620834B2 (ja) 2019-12-18
US20190301894A1 (en) 2019-10-03
CN110308409A (zh) 2019-10-08
DE102018128868A1 (de) 2019-10-02
CN110308409B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP6661215B2 (ja) 位置検出装置およびカメラモジュール
JP6365908B1 (ja) 位置検出装置
JP6597820B2 (ja) 磁気センサおよび位置検出装置
JP2018205241A (ja) 磁気センサ及びカメラモジュール
US11906602B2 (en) Magnetic sensor and magnetic sensor system
JP6620834B2 (ja) 磁気センサおよび磁気センサシステム
US20230324478A1 (en) Magnetic sensor device
US11493570B2 (en) Magnetic sensor device
JP7120264B2 (ja) 位置検出装置、レンズモジュールおよび撮像装置
JP7279834B2 (ja) 磁気センサ装置
JP7284201B2 (ja) 磁気センサ、位置検出装置及び電子機器
JP7088222B2 (ja) 位置検出装置、カメラモジュールおよびロータリアクチュエータ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R150 Certificate of patent or registration of utility model

Ref document number: 6620834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150