JP2019173073A - フェライト系ステンレス鋼板およびその製造方法、ならびに燃料電池用部材 - Google Patents
フェライト系ステンレス鋼板およびその製造方法、ならびに燃料電池用部材 Download PDFInfo
- Publication number
- JP2019173073A JP2019173073A JP2018060884A JP2018060884A JP2019173073A JP 2019173073 A JP2019173073 A JP 2019173073A JP 2018060884 A JP2018060884 A JP 2018060884A JP 2018060884 A JP2018060884 A JP 2018060884A JP 2019173073 A JP2019173073 A JP 2019173073A
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- ferritic stainless
- mass
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
更に、このような高温運転下の燃料電池においては、多量の水蒸気、二酸化炭素、一酸化炭素に加え、多量の水素や、炭化水素系燃料由来の硫化水素を微量含んだ雰囲気(以下、浸炭性/還元性/硫化性環境、という。)の下に曝されることとなる。このような雰囲気中に、例えば鋼材料が曝されると、材料表面の浸炭、硫化による腐食が進行する状況になり、動作環境としては過酷な状況となる。
更に、SOFCシステムやPEFCシステムの場合、燃料電池の運転温度が高温となるため、前記の酸化特性に加え、高温強度のさらなる向上も求められる。
[1]質量%にて、
Cr:12.0〜16.0%、
C:0.020%以下、
Si:2.50%以下、
Mn:1.00%以下、
P:0.050%以下、
S:0.0030%以下、
Al:2.50%以下、
N:0.030%以下、
Nb:0.001〜1.00%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
Sb:0〜0.5%、
W:0〜1.0%、
Co:0〜0.5%、
V:0〜0.5%、
Ti:0〜0.5%、
Zr:0〜0.5%、
La:0〜0.1%、
Y:0〜0.1%、
Hf:0〜0.1%、
REM:0〜0.1%、
を含み、
B:0.0200%以下、
Sn:0.20%以下、
Ga:0.0200%以下、
Mg:0.0200%以下、
Ca:0.0100%以下
の2種以上を含み、かつ下記式(1)を満たし、残部がFeおよび不純物からなり、
鋼板表面から深さ30nmまで領域であって不働態皮膜を含む表層部において、Cr、AlおよびSiの各最大濃度Crm、Alm、Sim(質量%)が、下記式(2)および下記式(3)を満たすことを特徴とするフェライト系ステンレス鋼板。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
15.0<Crm(質量%)<55.0 ・・・(2)
3.0<Alm+Sim(質量%)<30.0 ・・・(3)
なお、上記式(1)中の各元素記号は、鋼中の各元素の含有量(質量%)を示す。
[2]質量%にて、前記B:0.0002%以上であることを特徴とする上記[1]に記載のフェライト系ステンレス鋼板。
[3]質量%にて、前記Si:0.5%以上、前記Al:1%以上、前記Nb:0.15%以上であることを特徴とする上記[1]または[2]に記載のフェライト系ステンレス鋼板。
[4]質量%にて、更に、Ni:0.10〜1.0%、Cu:0.10〜1.0%、Mo:0.10〜1.0%、Sb:0.01〜0.5%、W:0.10〜1.0%、Co:0.10〜0.5%、V:0.10〜0.5%、Ti:0.01〜0.5%、Zr:0.01〜0.5%、La:0.001〜0.1%以下、Y:0.001〜0.1%、Hf:0.001〜0.1%、REM:0.001〜0.1%の1種または2種以上含有していることを特徴とする上記[1]〜上記[3]の何れか一項に記載のフェライト系ステンレス鋼板。
[5]7939eVの硬X線を用いた硬X線光電子分光法で測定したとき、
Al1s軌道の光電子スペクトルにおいて、前記不働態皮膜中における酸化物ピークと、前記不働態皮膜下の母材中における金属ピークとの結合エネルギーの差ΔEAl(eV)が1.5<ΔEAl<3.0であり、
Si1s軌道の光電子スペクトルにおいて、前記不働態皮膜における酸化物ピークと、前記不働態皮膜下の母材中における金属ピークとの結合エネルギーの差ΔESi(eV)が1.0<ΔESi<4.0であり、
前記Al1s軌道の光電子スペクトルの酸化物ピークの半価幅が2.5eV未満であり、
前記Si1s軌道の光電子スペクトルの酸化物ピークの半価幅が2.5eV未満であることを特徴とする上記[1]〜[4]の何れか一項に記載のフェライト系ステンレス鋼板。
[6]燃料改質器、熱交換器あるいは燃料電池部材に適用されること特徴とする上記[1]〜[5]の何れか一項に記載のフェライト系ステンレス鋼板。
[7]燃焼器、あるいはバーナーの部材に適用されること特徴とする上記[1]〜[6]5の何れか一項に記載のフェライト系ステンレス鋼板。
処理(A):10〜50質量%のH2SO4を含む90℃以下の硫酸水溶液中への浸漬
処理(B):1質量%以上のHNO3および0.5質量%以上のHFを含む90℃以下の硝フッ酸水溶液中への浸漬
[9]前記仕上げ焼鈍を800〜1150℃で行うことを特徴とする上記[8]に記載のフェライト系ステンレス鋼板の製造方法。
以下に本発明で得られた知見について説明する。
まず、成分の限定理由を以下に説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
Bは、粒界偏析することによって粒界すべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高め0.2%耐力を向上させることができる。Sn、Ga、Mg、Caは、表面近傍に濃化してAlの選択酸化を促進する作用がある。このような効果を得るために、B、Ga、Mg、Caそれぞれの含有量の下限は0.0002%以上、Snの下限は0.005%以上とすることが好ましい。一方、これら元素を過度に含有させることは、鋼の精錬コスト上昇を招くほか、製造性と鋼の耐食性を低下させる。このため、Caの含有量の上限は0.0100%以下、Snの上限は0.20%以下、B、Ga、Mgの上限はいずれも0.0200%以下とする。
10(B+Ga)+Sn+Mg+Ca>0.020% ・・・式(1)
なお、式(1)中の各元素記号は、鋼中の各元素の含有量(質量%)を示す。
なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
本実施形態のフェライト系ステンレス鋼板は、Al系酸化皮膜の生成促進を図り耐酸化性を高めるべく、鋼板表層部に、Cr、Al、Siを予め濃縮させるものとする。具体的には、鋼板表面から深さ30nmまでの領域(不働態皮膜および不働態皮膜直下を含む領域)である鋼板表層部において、Cr、Al、Siの濃度(カチオン分率)分布における各最大値(最大濃度)Crm、Alm、Simが、下記式(2)および下記式(3)を満たすものとする。
15.0<Crm(質量%)<55.0 ・・・(2)
3.0<Alm+Sim(質量%)<30.0 ・・・(3)
Crmが15%以下の場合、当該領域中のFe濃度が上昇してAl系酸化皮膜の生成を阻害するおそれがあるため、Crmは15.0%超とし、好ましくは、20.0%以上とする。一方、Crmが55.0%以上の場合、Crの選択酸化によりAl系酸化皮膜の生成が阻害されるおそれがあるため、Crmは55.0%未満とし、好ましくは、50.0%以下とする。
またSiは、Alとともに濃縮させることで、FeとCrの酸化を抑制し、Al系酸化皮膜の形成に対して有効に作用する。しかし、Alm+Simが3.0%以下の場合、FeとCrの酸化が進行して、Al系酸化皮膜の生成を阻害するおそれがあるため、Alm+Simは3.0%超とし、好ましくは5.0%以上とする。一方、Al系酸化皮膜の形成促進には、AlとSi濃度を高めることが効果的ではあるものの、Alm+Simを30.0%以上とした場合、改質ガス環境下での耐酸化性が飽和することに加え、生産性が劣化するおそれもある。よって、Alm+Simの上限は、コスト対効果の観点から30.0%未満とし、好ましくは25.0%以下とする。
なお、Nは表面に濃化することが無いため、またC,Oは汚染元素であるため、GDS分析で検出した後、これら3元素を除いてCr、Al、Si濃度を算出することにする。
さらに、本実施形態のフェライト系ステンレス鋼板において、Al系酸化皮膜(Al2O3皮膜)の生成促進ならびに耐酸化性を高めるために、不働態皮膜中のAlとSiの存在状態(酸化物の価数)を制御することが好ましい。なお、「酸化物の価数」は酸化物ピークと金属ピークの結合エネルギーの差(eV、以下ΔEとする。)により求めることができる。
本実施形態では、硬X線を用いた硬X線光電子分光法で鋼板表面を測定したとき、Al1s軌道の光電子スペクトルにおいて、不働態皮膜中における酸化物ピークと、不働態皮膜下の母材中における金属ピークとの結合エネルギーの差ΔEAl(eV)を、1.5<ΔEAl<3.0とすることが好ましい。同様に、Si1s軌道の光電子スペクトルにおいては、不働態皮膜中における酸化物ピークと、不働態皮膜下の母材中における金属ピークとの結合エネルギーの差ΔESi(eV)を1.0<ΔESi<4.0とすることが好ましい。
・Al1s軌道:1555.0〜1565.0eV
・Si1s軌道:1835.0〜1850.0eV
・励起X線のエネルギー:7939eV
・光電子取り出し角度(TOA):80°
・アナライザースリット:curved0.5mm
・アナライザーパスエネルギー:200eV
次に、上述してきた本実施形態のフェライト系ステンレス鋼板の製造方法であるが、熱間加工、冷間加工及び各熱処理(焼鈍)を組み合わせることで製造でき、必要に応じて、適宜、研磨や酸浸漬によるデスケーリングを行ってよい。製造方法の一例として、製鋼−熱間圧延−焼鈍−冷間圧延−焼鈍(仕上げ焼鈍)−機械研磨−酸浸漬の各工程を有する製法を採用できる。
さらに、ガス配管の用途に適用する場合は、鋼板から製造した溶接管も含まれるが、配管は、溶接管に限定するものでなく,熱間加工により製造した継ぎ目無し管でもよい。
本実施形態のフェライト系ステンレス鋼板は、鋼板表層部のCr濃度、Al濃度およびSi濃度を上記範囲内に制御するためには、仕上げ焼鈍後に施す機械研磨、ならびに酸浸漬工程が重要であり、それ以外の工程、条件については本発明の効果を損なわない範囲で適宜決定してよい。具体的には、仕上げ焼鈍後、♯100以下の研磨材で研磨を施し、次いで、下記の処理(A)または処理(B)の少なくとも一方からなる酸浸漬工程を実施する。
処理(A):10〜50質量%のH2SO4を含む90℃以下の硫酸水溶液中への浸漬
処理(B):1質量%以上のHNO3および0.5質量%以上のHFを含む90℃以下の硝フッ酸水溶液中への浸漬
機械研磨は、100番以下の番手の研磨材を用い、例えばコイルグラインダーを1パス実施する。転位をより導入し、不働態皮膜中のCrやAl、Siの濃度を高める観点から、研磨材の番手は♯80以下が好ましく、♯30以下がより好ましい。
なお、機械研磨をせずに、上記処理(A)、(B)を実施しただけでは、上述した
原子の拡散促進効果を得られないまま酸浸漬を行うことなるため、不働態皮膜中のCr、AlおよびSiの濃化は達成できない。
なお、本実施形態において仕上げ焼鈍時の雰囲気は特に規定するものではないが、大気中、LNG燃料雰囲気、水素や窒素、アルゴン等を用いた無酸化性雰囲気(光輝焼鈍)であることが好ましい。
さらに、本実施形態によれば、成分組成の適正化を図ることで、σ相析出や475℃脆性を抑制可能とする優れた組織安定性をも享受することが可能となる。
そのため、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される燃料改質器、熱交換器などの燃料電池部材に好適であり、特に、運転温度が高温となる固体酸化物型燃料電池(SOFC)や固体高分子型燃料電池(PEFC)の高温部材に好適である。さらに、燃料電池の周辺部材、例えばバーナーや当該バーナーを格納する燃焼器等、改質ガスに接しかつ高温の環境下で使用される部材全般において好適に用いることができる。
なお、下記にて示す表中の下線は、本発明の範囲から外れているものを示す。
処理(B):1質量%以上のHNO3および0.5質量%以上のHFを含む90℃以下の硝フッ酸水溶液中への浸漬
なお、表2において「〇」は各処理を実施したこと、「−」は実施しなかったことを表している。
鋼板表層部(鋼板表面から深さ30nmまでの領域)におけるCr、Al、Siの最大濃度(Crm、Alm、Sim)は、グロー放電発光分光法(GDS分析法)によって、鋼板表面から深さ30nmまで、深さ方向への各元素の濃度プロファイルを測定して求めた。具体的には、まず、GDS分析によって検出したFe,Cr,Mn,Si,Al,Ti,Nb,C,N,Oのうち、C,N,Oを除いた各元素プロファイルを作成した。その上で、鋼板表面から30nm深さまでの領域の範囲内でCr、Al、Si濃度が最大値を示すそれぞれの各位置の値を「Cr最大濃度(Crm)」、「Al最大濃度(Alm)」、「Si最大濃度(Sim)」とした。
不働態皮膜における、AlとSiの存在状態を調べるべく、硬X線光電子分光法によって不働態皮膜を測定した。硬X線光電子分光法の測定は、硬X線光電子分光装置(Scienta Omicron社製「R−4000」)を用い、以下の条件にて行った。
得られたAl1s軌道とSi1s軌道それぞれの光電子スペクトルにおいて、不働態皮膜中における酸化物ピークと、不働態皮膜下の母材中における金属ピークとの結合エネルギーの差ΔEAl、ΔESi(eV)を求めた。具体的には、得られる光電子スペクトルにおいてピークを分離し、金属ピークと酸化物ピークの頂点(ピークトップ)のエネルギー差を求めることでΔEAl、ΔESi(eV)を算出できる。
また、Al1s軌道の酸化物ピークの半価幅(AlFWHM)、Si1s軌道の酸化物ピークの半価幅(SiFWHM)についてピークフィッティングにより求めた。ピークフィッティング(フィッティング関数;ガウス関数、ローレンツ関数)には、データ解析ソフト(アルバック・ファイ社製、「Multi Pack」)を用いた。
・励起X線のエネルギー:7939.06eV
・光電子取り出し角度(TOA):80°
・アナライザースリット:curved0.5mm
・アナライザーパスエネルギー:200eV
まず仕上げ鋼板から幅20mm、長さ25mmの酸化試験片を切り出し酸化試験に供した。酸化試験の雰囲気は、都市ガスを燃料とした改質ガスを想定した28体積%H2O−10%体積%CO−8体積%CO2−0.01%H2S−bal.H2の雰囲気とした。当該雰囲気において、酸化試験片を650℃もしくは800℃に加熱し、1000時間保持した後に室温まで冷却し、各温度における酸化増量ΔW(mg/cm2)を測定した。
650℃における耐酸化性、800℃における耐酸化性ともに、評価は以下の通りとした。
◎:重量増加ΔWが0.2mg/cm2未満。
〇:重量増加ΔWが0.2〜0.3mg/cm2。
×:重量増加ΔWが0.3mg/cm2超。
なお、耐酸化性は「◎」および「〇」の場合を合格と、いずれかでも「×」の場合を不合格した。
仕上げ鋼板から、圧延方向を長手方向とする板状の高温引張試験片(板厚0.8mm、平行部幅:10.5mm、平行部長さ:35mm)を作製し、750℃、および800℃それぞれにて高温引張試験を行った。具体的には、ひずみ速度を、0.2%耐力まで0.3%/min、以降3mm/minとして高温引張試験を行い、各温度における0.2%耐力(750℃耐力、800℃耐力)を測定した(JIS G 0567に準拠)。
高温強度の評価は、750℃耐力が120MPa超、かつ800℃耐力が40MPa超の場合を合格(「〇」)として評価し、いずか一方でも満たさない場合は不合格(「×」)として評価した。なお、750℃耐力が150MPa超、かつ800℃耐力が60MPa超の場合は高温強度が特に優れているものとして評価した(表2中で「◎」表記)。
仕上げ鋼板から、板面と垂直な断面上の中心(板厚中心部:t/2付近)を観察できるよう試料を2つ採取して、一方は、500℃×1000時間の熱処理(500℃熱処理)、もう一方は650℃×1000時間の熱処理(650℃熱処理)を行った。これら熱処理の雰囲気はともに大気中とした。次に、熱処理後の各試料を樹脂に埋め研磨した後、500℃熱処理後のビッカース硬さHv500℃、650℃熱処理後のビッカース硬さHv650℃それぞれをJIS Z 2244に準拠して荷重9.8Nで測定した。そして、熱処理前に予め測定しておいた熱処理前ビッカース硬さからの硬さ上昇量ΔHv500℃、ΔHv650℃を算出した。
組織安定性(σ脆性/475℃脆性)の評価は、ΔHv500℃、ΔHv650℃ともに20未満のものを合格(「〇」)として評価し、いずか一方でも20以上であった場合は熱処理後の硬さ上昇が大きく組織が不安定であるとして不合格(「×」)とした。
No.1、4〜13は、本発明で規定する成分および表層部の組成を満たし、すべての特性の評価は「○」あるいは「◎」となったものである。中でも、No.5、10、12は、表層部の組成に加え、不働態皮膜における、AlとSiの存在状態(ΔEAl、ΔESi、各半価幅)が本発明の好適な範囲内である場合であり、耐酸化性(800℃)の向上効果を顕著に発現でき、その評価は「◎」となった。
Claims (10)
- 質量%にて、
Cr:12.0〜16.0%、
C:0.020%以下、
Si:2.50%以下、
Mn:1.00%以下、
P:0.050%以下、
S:0.0030%以下、
Al:2.50%以下、
N:0.030%以下、
Nb:0.001〜1.00%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
Sb:0〜0.5%、
W:0〜1.0%、
Co:0〜0.5%、
V:0〜0.5%、
Ti:0〜0.5%、
Zr:0〜0.5%、
La:0〜0.1%、
Y:0〜0.1%、
Hf:0〜0.1%、
REM:0〜0.1%、
を含み、
B:0.0200%以下、
Sn:0.20%以下、
Ga:0.0200%以下、
Mg:0.0200%以下、
Ca:0.0100%以下
の2種以上を含み、かつ下記式(1)を満たし、残部がFeおよび不純物からなり、
鋼板表面から深さ30nmまで領域であって不働態皮膜を含む表層部において、Cr、AlおよびSiの各最大濃度Crm、Alm、Sim(質量%)が、下記式(2)および下記式(3)を満たすことを特徴とするフェライト系ステンレス鋼板。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
15.0<Crm(質量%)<55.0 ・・・(2)
3.0<Alm+Sim(質量%)<30.0 ・・・(3)
なお、上記式(1)中の各元素記号は、鋼中の各元素の含有量(質量%)を示す。 - 質量%にて、前記B:0.0002%以上であることを特徴とする請求項1に記載のフェライト系ステンレス鋼板。
- 質量%にて、前記Si:0.5%以上、前記Al:1%以上、前記Nb:0.15%以上であることを特徴とする請求項1または2に記載のフェライト系ステンレス鋼板。
- 質量%にて、更に、Ni:0.10〜1.0%、Cu:0.10〜1.0%、Mo:0.10〜1.0%、Sb:0.01〜0.5%、W:0.10〜1.0%、Co:0.10〜0.5%、V:0.10〜0.5%、Ti:0.01〜0.5%、Zr:0.01〜0.5%、La:0.001〜0.1%以下、Y:0.001〜0.1%、Hf:0.001〜0.1%、REM:0.001〜0.1%の1種または2種以上含有していることを特徴とする請求項1〜3の何れか一項に記載のフェライト系ステンレス鋼板。
- 7939eVの硬X線を用いた硬X線光電子分光法で測定したとき、
Al1s軌道の光電子スペクトルにおいて、前記不働態皮膜中における酸化物ピークと、前記不働態皮膜下の母材中における金属ピークとの結合エネルギーの差ΔEAl(eV)が1.5<ΔEAl<3.0であり、
Si1s軌道の光電子スペクトルにおいて、前記不働態皮膜における酸化物ピークと、前記不働態皮膜下の母材中における金属ピークとの結合エネルギーの差ΔESi(eV)が1.0<ΔESi<4.0であり、
前記Al1s軌道の光電子スペクトルの酸化物ピークの半価幅が2.5eV未満であり、
前記Si1s軌道の光電子スペクトルの酸化物ピークの半価幅が2.5eV未満であることを特徴とする請求項1〜4の何れか一項に記載のフェライト系ステンレス鋼板。 - 燃料改質器、熱交換器あるいは燃料電池部材に適用されること特徴とする請求項1〜5の何れか一項に記載のフェライト系ステンレス鋼板。
- 燃焼器、あるいはバーナーの部材に適用されること特徴とする請求項1〜6の何れか一項に記載のフェライト系ステンレス鋼板。
- 請求項1〜4のいずれか1項に記載する組成を有するステンレス鋼材を冷間圧延し、仕上げ焼鈍した後、♯100以下の研磨材で研磨を施し、次いで、下記の処理(A)または処理(B)の少なくとも一方を実施することを特徴とする請求項1〜7の何れか一項に記載のフェライト系ステンレス鋼板の製造方法。
処理(A):10〜50質量%のH2SO4を含む90℃以下の硫酸水溶液中への浸漬
処理(B):1質量%以上のHNO3および0.5質量%以上のHFを含む90℃以下の硝フッ酸水溶液中への浸漬 - 前記仕上げ焼鈍を800〜1150℃で行うことを特徴とする請求項8に記載のフェライト系ステンレス鋼板の製造方法。
- 請求項1〜7のいずれか一項に記載のフェライト系ステンレス鋼板を用いた燃料電池用部材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018060884A JP7076258B2 (ja) | 2018-03-27 | 2018-03-27 | フェライト系ステンレス鋼板およびその製造方法、ならびに燃料電池用部材 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018060884A JP7076258B2 (ja) | 2018-03-27 | 2018-03-27 | フェライト系ステンレス鋼板およびその製造方法、ならびに燃料電池用部材 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019173073A true JP2019173073A (ja) | 2019-10-10 |
JP7076258B2 JP7076258B2 (ja) | 2022-05-27 |
Family
ID=68166527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018060884A Active JP7076258B2 (ja) | 2018-03-27 | 2018-03-27 | フェライト系ステンレス鋼板およびその製造方法、ならびに燃料電池用部材 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7076258B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115135807A (zh) * | 2020-03-12 | 2022-09-30 | 日铁不锈钢株式会社 | 铁素体系不锈钢及其制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112025A (ja) * | 2010-11-26 | 2012-06-14 | Nippon Steel & Sumikin Stainless Steel Corp | 尿素scrシステム部品用フェライト系ステンレス鋼板およびその製造方法 |
WO2014157578A1 (ja) * | 2013-03-27 | 2014-10-02 | 新日鐵住金ステンレス株式会社 | 研磨後の表面耐食性に優れるフェライト系ステンレス鋼及びその製造方法 |
JP2016030854A (ja) * | 2014-07-29 | 2016-03-07 | 新日鐵住金ステンレス株式会社 | 燃料電池用フェライト系ステンレス鋼およびその製造方法 |
JP2016084545A (ja) * | 2016-01-25 | 2016-05-19 | 新日鐵住金ステンレス株式会社 | 燃料電池用フェライト系ステンレス鋼 |
JP2017133075A (ja) * | 2016-01-28 | 2017-08-03 | 新日鐵住金ステンレス株式会社 | 高温強度に優れたAl含有フェライト系ステンレス鋼 |
-
2018
- 2018-03-27 JP JP2018060884A patent/JP7076258B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112025A (ja) * | 2010-11-26 | 2012-06-14 | Nippon Steel & Sumikin Stainless Steel Corp | 尿素scrシステム部品用フェライト系ステンレス鋼板およびその製造方法 |
WO2014157578A1 (ja) * | 2013-03-27 | 2014-10-02 | 新日鐵住金ステンレス株式会社 | 研磨後の表面耐食性に優れるフェライト系ステンレス鋼及びその製造方法 |
JP2016030854A (ja) * | 2014-07-29 | 2016-03-07 | 新日鐵住金ステンレス株式会社 | 燃料電池用フェライト系ステンレス鋼およびその製造方法 |
JP2016084545A (ja) * | 2016-01-25 | 2016-05-19 | 新日鐵住金ステンレス株式会社 | 燃料電池用フェライト系ステンレス鋼 |
JP2017133075A (ja) * | 2016-01-28 | 2017-08-03 | 新日鐵住金ステンレス株式会社 | 高温強度に優れたAl含有フェライト系ステンレス鋼 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115135807A (zh) * | 2020-03-12 | 2022-09-30 | 日铁不锈钢株式会社 | 铁素体系不锈钢及其制造方法 |
CN115135807B (zh) * | 2020-03-12 | 2023-09-19 | 日铁不锈钢株式会社 | 铁素体系不锈钢及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7076258B2 (ja) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111902557B (zh) | 铁素体系不锈钢及其制造方法、铁素体系不锈钢板及其制造方法以及燃料电池用构件 | |
US10544490B2 (en) | Ferritic stainless steel for fuel cell and method for producing the same | |
JP5902253B2 (ja) | 燃料電池用フェライト系ステンレス鋼およびその製造方法 | |
JP7224141B2 (ja) | フェライト系ステンレス鋼板及びその製造方法、並びに燃料電池用部材 | |
JP6190498B2 (ja) | フェライト系ステンレス鋼およびその製造方法 | |
JP5977854B1 (ja) | 耐浸炭性及び耐酸化性に優れたフェライト系ステンレス鋼板及びその製造方法 | |
JP6006759B2 (ja) | 燃料電池の燃料改質器用または燃料電池の熱交換器用フェライト系ステンレス鋼およびその製造方法 | |
JP2017150016A (ja) | フェライト系ステンレス鋼およびその製造方法 | |
JP2016204709A (ja) | 耐浸炭性及び耐酸化性に優れたフェライト系ステンレス鋼板及びその製造方法 | |
EP3064606B1 (en) | Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel | |
JP6937717B2 (ja) | フェライト系ステンレス鋼板およびその製造方法、ならびに燃料電池用部材 | |
JP6006893B2 (ja) | 燃料電池用フェライト系ステンレス鋼 | |
JP7076258B2 (ja) | フェライト系ステンレス鋼板およびその製造方法、ならびに燃料電池用部材 | |
JP6367259B2 (ja) | 耐浸炭性及び耐酸化性に優れたフェライト系ステンレス鋼板 | |
JP7233195B2 (ja) | フェライト系ステンレス鋼及びその製造方法、並びに燃料電池用部材 | |
JP4184869B2 (ja) | 高耐食二相ステンレス鋼 | |
JP6971184B2 (ja) | フェライト系ステンレス鋼およびその製造方法、ならびに燃料電池用部材 | |
JP6937716B2 (ja) | フェライト系ステンレス鋼板およびその製造方法、ならびに燃料電池用部材 | |
JP2018016862A (ja) | 耐浸炭性及び耐酸化性に優れたフェライト系ステンレス鋼板及びその製造方法 | |
JP6971185B2 (ja) | フェライト系ステンレス鋼溶接接手および燃料電池用部材 | |
JP6504973B6 (ja) | 耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼およびその製造方法 | |
JP7055050B2 (ja) | フェライト系ステンレス鋼溶接用溶加材 | |
JP6873020B2 (ja) | フェライト系ステンレス鋼板およびその製造方法、ならびに燃料改質器および燃焼器の部材 | |
KR20240007212A (ko) | 페라이트계 스테인리스 강관 및 그 제조 방법, 그리고 연료 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220517 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7076258 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |