JP2019171408A - Filler metal for welding ferritic stainless steel - Google Patents

Filler metal for welding ferritic stainless steel Download PDF

Info

Publication number
JP2019171408A
JP2019171408A JP2018060888A JP2018060888A JP2019171408A JP 2019171408 A JP2019171408 A JP 2019171408A JP 2018060888 A JP2018060888 A JP 2018060888A JP 2018060888 A JP2018060888 A JP 2018060888A JP 2019171408 A JP2019171408 A JP 2019171408A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
welding
filler metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018060888A
Other languages
Japanese (ja)
Other versions
JP7055050B2 (en
Inventor
秦野 正治
Masaharu Hatano
正治 秦野
三月 菅生
Mitsuki Sugeoi
三月 菅生
工 西本
Takumi Nishimoto
工 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018060888A priority Critical patent/JP7055050B2/en
Publication of JP2019171408A publication Critical patent/JP2019171408A/en
Application granted granted Critical
Publication of JP7055050B2 publication Critical patent/JP7055050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a filler metal for welding a ferritic stainless steel which combines high oxidation resistance and excellent high temperature strength with excellent structural stability allowing for suppression of σ phase deposition and 475°C brittleness even in a reductive/carburization/sulfidation environment.SOLUTION: The filler metal for welding a ferritic stainless steel is provided that contains, by mass% based on the total mass of filler metal, Cr of 12.0 to 16.0%, C of 0.020% or less, Si of 0.60 to 2.50%, Mn of 0.30% or less, P of 0.020% or less, S of 0.0030% or less, Al of 1.00 to 2.50%, Nb of 0.001 to 1.00%, N of 0.030% or less, O of 0.010% or less, B of 0 to 0.0100%, Sn of 0 to 0.20%, Ga of 0 to 0.0200%, Mg of 0 to 0.0200%, Ca of 0 to 0.0100% and the balance Fe with impurities.SELECTED DRAWING: None

Description

本発明は、フェライト系ステンレス鋼溶接用溶加材に関し、特に、燃料電池高温部材に用いられるAl含有フェライト系ステンレス鋼のTIG溶接やプラズマ溶接用のフェライト系ステンレス鋼溶加材に関する。   The present invention relates to a filler material for welding a ferritic stainless steel, and more particularly to a ferritic stainless steel filler material for TIG welding or plasma welding of Al-containing ferritic stainless steel used for a fuel cell high temperature member.

最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, the spread of new systems replacing conventional power generation systems is accelerating due to problems such as depletion of fossil fuels such as petroleum and global warming due to CO 2 emissions. As one of them, “fuel cell”, which has high practical value as a distributed power source and a power source for automobiles, is attracting attention. There are several types of fuel cells. Among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) have high energy efficiency, and are expected to expand in the future.

燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、燃料となる水素(燃料水素)を必要とする。燃料水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。   A fuel cell is a device that generates electric power through a reaction process opposite to that of water electrolysis, and requires hydrogen as a fuel (fuel hydrogen). Fuel hydrogen is produced by reforming a hydrocarbon fuel such as city gas (LNG), methane, natural gas, propane, kerosene, gasoline, etc. in the presence of a catalyst. Above all, a fuel cell using city gas as a raw fuel has an advantage that hydrogen can be produced in an area where city gas piping is provided.

燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜900℃の高温で運転される。また、燃料改質器以外でも、改質器を加熱する燃焼器や、熱交換器、電池本体部等も運転温度が非常に高温となる。
更に、このような高温運転下の燃料電池において、多量の水蒸気、二酸化炭素、一酸化炭素に加え、多量の水素や、炭化水素系燃料由来の硫化水素を微量含んだ雰囲気(以下、浸炭性/還元性/硫化性環境、という。)の下に曝されることとなる。このような雰囲気中に、例えば鋼材料が曝されると、材料表面の浸炭、硫化による腐食が進行する状況になり、動作環境としては過酷な状況となる。
The fuel reformer is usually operated at a high temperature of 200 to 900 ° C. in order to ensure the amount of heat necessary for the hydrogen reforming reaction. In addition to the fuel reformer, the operating temperature of the combustor, the heat exchanger, the battery body, and the like that heat the reformer is very high.
Furthermore, in such a fuel cell under high temperature operation, in addition to a large amount of water vapor, carbon dioxide and carbon monoxide, an atmosphere containing a large amount of hydrogen and a small amount of hydrogen sulfide derived from hydrocarbon fuel (hereinafter referred to as carburizing / Reducing / sulfiding environment). When a steel material is exposed to such an atmosphere, for example, the surface of the material is corroded by carburization and sulfidation, and the operating environment is severe.

ここで、燃料電池における高温部材用途では、改質ガス環境下においても良好な耐久性を発揮させるべく、Al系酸化物層(Al系酸化皮膜)の高い耐酸化性を利用したAl含有フェライト系ステンレス鋼が種々検討されている。   Here, in high-temperature member applications in fuel cells, Al-containing ferrite systems that utilize the high oxidation resistance of Al-based oxide layers (Al-based oxide films) in order to exhibit good durability even under reformed gas environments Various stainless steels have been studied.

一方、フェライト系ステンレス鋼溶接用ワイヤは、従来から実用化されており、例えば特許文献1〜特許文献4には、耐熱性、耐食性、耐酸化性、高温環境下における耐久性等に優れた溶接金属が得られるフェライト系ステンレス鋼溶接用ワイヤの開示がある。   On the other hand, ferritic stainless steel welding wires have been put into practical use. For example, in Patent Documents 1 to 4, welding excellent in heat resistance, corrosion resistance, oxidation resistance, durability in a high temperature environment, and the like. There is a disclosure of a ferritic stainless steel welding wire from which a metal is obtained.

しかし、特許文献1〜特許文献4に記載のフェライト系ステンレス鋼溶接用ワイヤは、Ar−COまたはAr−Oのガスシールド中でのMAG溶接であり、スパッタの発生量が多く、溶接ビード表面に剥離性不良なスラグが生成するという問題点があった。また、Alの含有量が少ないので、溶接金属表面にAlを主体とする酸化被膜を形成させることができないので耐高温酸化性が不十分であった。 However, the ferritic stainless steel welding wires described in Patent Literature 1 to Patent Literature 4 are MAG welding in an Ar—CO 2 or Ar—O 2 gas shield, and a large amount of spatter is generated. There was a problem that slag with poor peelability was generated on the surface. In addition, since the Al content is small, an oxide film mainly composed of Al 2 O 3 cannot be formed on the surface of the weld metal, so that the high-temperature oxidation resistance is insufficient.

一方、フェライト系ステンレス鋼のTIG溶接用ワイヤ(溶加材)も実用化されており、例えば特許文献5には、溶接用ワイヤにMgとAlを適量含有させてOと結合させることによって溶接金属の組織を微細にして、溶接部の延性及び靭性を改善する技術の開示がある。しかし、特許文献5に記載の技術では、Mgを含んでいるので溶接ビード表面に剥離性不良なスラグが点在する。また、Al含有量が最大でも0.5重量%と少ないので、溶接金属表面にAlを主体とする酸化被膜を形成させることができないので耐高温酸化性が不十分であった。 On the other hand, a TIG welding wire (filler material) of ferritic stainless steel has also been put into practical use. For example, Patent Document 5 discloses a weld metal by containing appropriate amounts of Mg and Al in a welding wire and combining with O. There is a disclosure of a technique for improving the ductility and toughness of a welded portion by making the structure of the steel finer. However, in the technique described in Patent Document 5, since Mg is contained, slag with poor peelability is scattered on the surface of the weld bead. Further, since the Al content is as small as 0.5% by weight at the maximum, an oxide film mainly composed of Al 2 O 3 cannot be formed on the surface of the weld metal, so that the high-temperature oxidation resistance is insufficient.

また、特許文献6には、溶接用ワイヤのTiとAlの比を限定することによって、溶け込み深さを増大するとともに、NbとTiで溶接金属のC及びNを炭窒化物として固定し粒界腐食を防止する技術の開示がある。しかし、特許文献6に記載の溶接用ワイヤは、Alの含有量が最大でも0.060質量%と少ないので、溶接金属表面にAlを主体とする酸化被膜を形成させることができないので耐高温酸化性が不十分であった。 Further, in Patent Document 6, by limiting the ratio of Ti and Al of the welding wire, the penetration depth is increased, and C and N of the weld metal are fixed as carbonitride with Nb and Ti, and the grain boundary is set. There is a disclosure of technology for preventing corrosion. However, since the welding wire described in Patent Document 6 has an Al content as small as 0.060% by mass at the maximum, an oxide film mainly composed of Al 2 O 3 cannot be formed on the weld metal surface. High temperature oxidation resistance was insufficient.

さらに、特許文献7には、溶接ワイヤのNbとTiの合計とCとNの合計との比やMo、Cu成分の限定と共に、ワイヤ表面に付着した不純物を低減することによって、溶接部の耐食性に優れた溶接金属を得るという技術の開示がある。しかし、特許文献7に記載の溶接用ワイヤでは、Alが含まれていないので、溶接金属表面にAlを主体とする酸化被膜を形成させることができないので耐高温酸化性が不十分であるという問題点があった。 Furthermore, in Patent Document 7, the corrosion resistance of the welded portion is reduced by reducing impurities adhering to the wire surface as well as the ratio of the sum of Nb and Ti of the welding wire to the sum of C and N and the limitations of the Mo and Cu components. There is a disclosure of a technique for obtaining an excellent weld metal. However, since the welding wire described in Patent Document 7 does not contain Al, an oxide film mainly composed of Al 2 O 3 cannot be formed on the surface of the weld metal, so that the high-temperature oxidation resistance is insufficient. There was a problem that there was.

特開2003−320476号公報JP 2003-320476 A 特開2006−231404号公報JP 2006-231404 A 特開2012−11426号公報JP 2012-11426 A 特開2014−46358号公報JP 2014-46358 A 特開平9−225680号公報Japanese Patent Laid-Open No. 9-225680 特開2006−263811号公報JP 2006-263811 A 特開2008−132515号公報JP 2008-132515 A

前記した都市ガス等を原燃料とした燃料電池の改質ガスは、水蒸気、二酸化炭素、一酸化炭素に加えて、多量の水素、ならびに不純物もしくは付臭剤として添加された硫化成分を含む場合がある。しかし従来では、改質ガス中の多量の水素や硫化成分が及ぼす部材鋼材や溶接金属部の特性に及ぼす影響等は耐酸化性に及ぼす水素評価・検討されていない。すなわち、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む過酷な環境(浸炭性/還元性/硫化性環境)の下でのフェライト系ステンレス鋼の溶接部の酸化特性については不明である。
また、SOFCシステムやPEFCシステムの場合、燃料電池の運転温度が高温となるため、高温強度のさらなる向上が求められる。
さらには、燃料電池用部材として溶接構造を採用する場合には、475℃脆性やσ脆性に起因した溶接部の脆性破壊が回避可能な溶接構造であることも求められる。
これらのことから、近年では、Al含有のフェライト系ステンレス鋼を溶接溶加材を用いて溶接する場合、従来よりも耐酸化性、高温強度、耐脆化特性に優れたフェライト系ステンレス鋼溶接金属を得ることができる溶接溶加材が切望されている。
The reformed gas of the fuel cell using the above-mentioned city gas as a raw fuel may contain a large amount of hydrogen and a sulfur component added as an impurity or odorant in addition to water vapor, carbon dioxide and carbon monoxide. is there. However, in the past, the effects of a large amount of hydrogen and sulfide components in the reformed gas on the properties of member steels and weld metal parts have not been evaluated and studied on the oxidation resistance. In other words, the oxidation characteristics of welds of ferritic stainless steel under harsh environments (carburizing / reducing / sulfiding environments) containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and sulfide components are unknown. is there.
Further, in the case of the SOFC system and PEFC system, since the operating temperature of the fuel cell becomes high, further improvement in high temperature strength is required.
Furthermore, when a welded structure is employed as the fuel cell member, it is also required that the welded structure can avoid brittle fracture of the weld due to 475 ° C. brittleness or σ brittleness.
For these reasons, in recent years, when welding Al-containing ferritic stainless steel using a weld filler metal, the ferritic stainless steel weld metal has superior oxidation resistance, high-temperature strength, and brittleness resistance than before. There is a strong demand for a weld filler metal capable of obtaining the following.

本発明は、上述した課題を解消すべく案出されたものであり、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、溶接金属の高い耐酸化性と優れた高温強度、ならびに優れた脆性特性を兼備したフェライト系ステンレス鋼溶接用溶加材を提供するものである。   The present invention has been devised to solve the above-described problems, and is under an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfur component (a carburizing / reducing / sulfiding environment). However, the present invention provides a weld metal for ferritic stainless steel that combines the high oxidation resistance of weld metal, excellent high-temperature strength, and excellent brittleness characteristics.

本発明の要旨は、以下のとおりである。
[1]溶加材全質量に対する質量%で、
Cr:12.0〜16.0%、
C:0.020%以下、
Si:0.60〜2.50%、
Mn:0.30%以下、
P:0.020%以下、
S:0.0030%以下、
Al:1.00〜2.50%、
Nb:0.001〜1.00%、
N:0.030%以下、
O:0.010%以下、
B:0〜0.0100%、
Sn:0〜0.20%、
Ga:0〜0.0200%、
Mg:0〜0.0200%、
Ca:0〜0.0100%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
Sb:0〜0.5%、
W:0〜1.0%、
Co:0〜0.5%、
V:0〜0.5%、
Ti:0〜0.5%、
Zr:0〜0.10%、
Y:0〜0.10%、
La:0〜0.10%、
Hf:0〜0.10%、
REM:0〜0.10%
を含有し、残部がFeおよび不純物からなることを特徴とするフェライト系ステンレス鋼溶接用溶加材。
[2]溶加材全質量に対する質量%にて、B:0.0002〜0.0200%、Sn:0.005〜0.20%、Ga:0.0002〜0.0200%以下、Mg:0.0005〜0.0200%以下、Ca:0.0005〜0.0100%以下の1種以上を含み、かつ下記式(1)を満たすことを特徴とする上記[1]に記載のフェライト系ステンレス鋼溶接用溶加材。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
なお、式(1)中の各元素記号は、溶加材中の各元素の含有量(質量%)を示す。
[3] 溶加材全質量に対する質量%にて、更に、Ni:0.10〜1.0%、Cu:0.10〜1.0%、Mo:0.10〜1.0%、Sb:0.01〜0.5%、W:0.10〜1.0%、Co:0.10〜0.5%、V:0.10〜0.5%、Ti:0.01〜0.5%、Zr:0.0001〜0.10%、Y:0.0001〜0.10%、La:0.0001〜0.10%、Hf:0.0001〜0.10%、REM:0.001〜0.10%の1種または2種以上含有していることを特徴とする上記[1]又は[2]に記載のフェライト系ステンレス鋼溶接用溶加材。
The gist of the present invention is as follows.
[1]% by mass relative to the total mass of the filler metal,
Cr: 12.0 to 16.0%,
C: 0.020% or less,
Si: 0.60 to 2.50%,
Mn: 0.30% or less,
P: 0.020% or less,
S: 0.0030% or less,
Al: 1.00-2.50%,
Nb: 0.001 to 1.00%,
N: 0.030% or less,
O: 0.010% or less,
B: 0 to 0.0100%,
Sn: 0 to 0.20%,
Ga: 0 to 0.0200%,
Mg: 0 to 0.0200%,
Ca: 0 to 0.0100%,
Ni: 0 to 1.0%,
Cu: 0 to 1.0%
Mo: 0 to 1.0%,
Sb: 0 to 0.5%,
W: 0 to 1.0%
Co: 0 to 0.5%,
V: 0 to 0.5%
Ti: 0 to 0.5%,
Zr: 0 to 0.10%,
Y: 0 to 0.10%,
La: 0 to 0.10%,
Hf: 0 to 0.10%,
REM: 0 to 0.10%
A ferritic stainless steel welding filler material characterized by containing Fe and impurities.
[2] In mass% with respect to the total mass of the filler metal, B: 0.0002 to 0.0200%, Sn: 0.005 to 0.20%, Ga: 0.0002 to 0.0200% or less, Mg: The ferrite system according to the above [1], including one or more of 0.0005 to 0.0200% or less, Ca: 0.0005 to 0.0100% or less, and satisfying the following formula (1): Stainless steel welding material.
10 (B + Ga) + Sn + Mg + Ca> 0.020 (1)
In addition, each element symbol in Formula (1) shows content (mass%) of each element in a filler metal.
[3] In mass% with respect to the total mass of the filler metal, Ni: 0.10 to 1.0%, Cu: 0.10 to 1.0%, Mo: 0.10 to 1.0%, Sb : 0.01 to 0.5%, W: 0.10 to 1.0%, Co: 0.10 to 0.5%, V: 0.10 to 0.5%, Ti: 0.01 to 0 0.5%, Zr: 0.0001-0.10%, Y: 0.0001-0.10%, La: 0.0001-0.10%, Hf: 0.0001-0.10%, REM: The filler material for welding ferritic stainless steel according to the above [1] or [2], containing 0.001 to 0.10% of one or more.

本発明によれば、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、溶接金属の高い耐酸化性と優れた高温強度、ならびに優れた脆性特性を兼備したフェライト系ステンレス鋼溶接用溶加材を提供することができる。   According to the present invention, even in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfur component (carburizing / reducing / sulfiding environment), the weld metal has high oxidation resistance and excellent performance. It is possible to provide a ferritic stainless steel welding filler material having both high-temperature strength and excellent brittleness characteristics.

図1は、本発明の実施例における溶接試験の開先形状を示す図である。FIG. 1 is a diagram showing a groove shape of a welding test in an example of the present invention.

本発明者らは、種々の成分系のフェライト系ステンレス鋼溶接溶加材を用い溶接し、得られた溶接金属の改質ガス中における耐酸化性、高温強度、耐脆化特性を調べ、それらに及ぼす溶接溶加材の成分元素の影響を検討した。その結果、溶加材の成分組成を所定の範囲内に制御することによって、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、優れた耐酸化性、耐脆化特性を発揮することができ、さらには、750〜800℃付近の高温域においても優れた0.2%耐力を発揮できることを見出した。なお、本実施形態でいう「高温強度」とは、750〜800℃付近の高温域においても優れた0.2%耐力を発揮できる特性であり、「耐酸化性」とは二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む改質ガス環境(浸炭性/還元性/硫化性環境)下における酸化特性を意味する。また「脆化特性」とは、σ脆性と475℃脆性が抑制可能となる組織の安定性を示す。
以下に本発明で得られた知見について説明する。
The present inventors welded using various types of ferritic stainless steel welding filler materials, and investigated the oxidation resistance, high-temperature strength, and embrittlement resistance properties of the obtained weld metal in the reformed gas. The effect of the constituent elements of the weld filler metal on the weld was investigated. As a result, by controlling the component composition of the filler metal within a predetermined range, in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfur component (carburizing / reducing / sulfiding environment). Even in such a case, it has been found that excellent oxidation resistance and embrittlement resistance can be exhibited, and furthermore, excellent 0.2% proof stress can be exhibited even in a high temperature region around 750 to 800 ° C. The “high temperature strength” in the present embodiment is a characteristic that can exhibit excellent 0.2% proof stress even in a high temperature region around 750 to 800 ° C., and “oxidation resistance” means carbon dioxide, monoxide It means oxidation characteristics in a reformed gas environment (carburizing / reducing / sulfiding environment) containing carbon, a large amount of hydrogen, and sulfur components. Further, the “brittleness characteristic” indicates the stability of a structure in which σ brittleness and 475 ° C. brittleness can be suppressed.
The knowledge obtained by the present invention will be described below.

「脆化特性について」
(a)通常、Al含有フェライト系ステンレス鋼の溶接金属部は柱状晶の成長により構成されるため、Alを含有していないフェライト系ステンレス鋼に対して粗大となる傾向にある。溶接金属部の結晶粒が粗大化すると、475℃脆性およびσ脆性起因の破壊を招くおそれがある。しかしながら、溶接金属中の化学成分の制御により、Nb(C,N)から成る炭窒化物を生成させることで等軸晶の形成が助長され、溶接組織の微細化が可能となることがわかった。
"About embrittlement characteristics"
(A) Usually, since the weld metal part of Al-containing ferritic stainless steel is constituted by the growth of columnar crystals, it tends to be coarser than ferritic stainless steel not containing Al. When the crystal grains of the weld metal part become coarse, there is a risk of causing breakage due to 475 ° C. brittleness and σ brittleness. However, it has been found that the formation of equiaxed crystals is promoted by the formation of carbonitrides composed of Nb (C, N) by controlling the chemical composition in the weld metal, and the weld structure can be refined. .

(b)炭窒化物Nb(C,N)による等軸晶の形成促進効果を得るためには、溶接金属部の化学成分において、10(B+Ga)+Sn+Mg+Caを0.020超とすることが好ましいことが分かった。溶接金属の場合、Mg、Ca、Gaは酸化物や硫化物を生成し、結晶粒界の清浄度を高めることができる。加えて、Mg、Ca、GaはNb(C,N)の核生成サイトとしても有効に作用するため、溶接金属の等軸晶の形成を促進させることができる。 (B) In order to obtain the effect of promoting the formation of equiaxed crystals by carbonitride Nb (C, N), it is preferable that 10 (B + Ga) + Sn + Mg + Ca be more than 0.020 in the chemical component of the weld metal part. I understood. In the case of a weld metal, Mg, Ca, and Ga can generate oxides and sulfides, and can increase the cleanliness of crystal grain boundaries. In addition, since Mg, Ca, and Ga effectively act as Nb (C, N) nucleation sites, formation of equiaxed crystals of the weld metal can be promoted.

(c)また、溶加材の成分組成において、Cr、Si、Nb、Alの含有量を調整することが、得られる溶接金属部の耐脆化特性、特に金属間化合物σ相の析出(σ脆性)と475℃脆性自体の抑制に効果的であることが分かった。σ脆性と475℃脆性は、Crを主体としてSiやAlを含む金属間化合物の生成に由来し、その生成サイトは結晶粒界であることが多い。すなわち、σ脆性と475℃脆性を抑制するには、金属間化合物自体の生成を抑制するとともに、その生成サイトを低減することが効果的といえる。これらについて本発明者らがさらに検討したところ、Cr量の制限によって金属間化合物の生成自体を抑制するとともに、Nbの結晶粒界への偏析によって生成サイトを抑制することで組織を安定化させることができ、その結果、σ脆性と475℃脆性が抑制可能であることを見出した。さらに、Cr量の制限とNbの添加により、SiやAlを含む金属間化合物の生成を抑制できることから、後述する耐酸化性に寄与するSiとAl量を確保できるため、耐酸化性と組織安定性を両立することもできる。 (C) Further, in the component composition of the filler metal, adjusting the content of Cr, Si, Nb, Al can improve the embrittlement resistance characteristics of the obtained weld metal part, particularly the precipitation of intermetallic compound σ phase (σ It has been found effective in suppressing brittleness) and 475 ° C brittleness itself. σ brittleness and 475 ° C. brittleness are derived from the formation of intermetallic compounds mainly containing Cr and containing Si and Al, and the production sites are often grain boundaries. That is, in order to suppress the σ brittleness and the 475 ° C. brittleness, it can be said that it is effective to suppress the generation of the intermetallic compound itself and to reduce the generation site. As a result of further investigation by the present inventors, the formation of intermetallic compounds is suppressed by limiting the amount of Cr, and the structure is stabilized by suppressing generation sites by segregation to the crystal grain boundaries of Nb. As a result, it was found that σ brittleness and 475 ° C brittleness can be suppressed. Furthermore, since the formation of intermetallic compounds containing Si and Al can be suppressed by limiting the amount of Cr and adding Nb, the amount of Si and Al contributing to the oxidation resistance described later can be secured, so that the oxidation resistance and the tissue stability can be secured. It is also possible to balance sex.

「高温強度について」
(d)通常、750〜800℃付近の高温域で運転中の構造体で課題となる変形を抑止するには、材料であるフェライト系ステンレス鋼ならびに溶接部の高温強度、特に750℃付近における0.2%耐力を高め、かつ800℃付近における0.2%耐力の低下を抑制することが有効である。
"High temperature strength"
(D) Usually, in order to suppress deformation which becomes a problem in a structure operating in a high temperature range near 750 to 800 ° C., the high temperature strength of the ferritic stainless steel as a material and the welded portion, particularly 0 at around 750 ° C. It is effective to increase the 2% proof stress and suppress the decrease of the 0.2% proof stress in the vicinity of 800 ° C.

(e)上述した高温域での0.2%耐力の向上および低下の抑制は、B、Nb、Sn、Mg、Ca、Gaの微量添加およびその添加量の調整により著しく向上することを見出した。すなわち、フェライト系ステンレス鋼の溶接金属部において、750℃付近における0.2%耐力を高め、かつ800℃付近における0.2%耐力の低下を抑制するという特性は、溶加材へのこれら微量元素の添加により達成できるという新たな知見が得られた。このような高温強度の向上作用については未だ不明な点も多いが、実験事実に基づいて以下に述べるような作用機構を推察している。 (E) It has been found that the improvement of 0.2% proof stress and the suppression of the decrease in the above-described high temperature range are remarkably improved by adding a small amount of B, Nb, Sn, Mg, Ca, Ga and adjusting the addition amount. . That is, in the welded metal part of ferritic stainless steel, the characteristics of increasing the 0.2% proof stress near 750 ° C. and suppressing the decrease of the 0.2% proof strength near 800 ° C. New knowledge was obtained that this can be achieved by adding elements. Although there are still many unclear points regarding the action of improving the high-temperature strength, the action mechanism described below is inferred based on experimental facts.

(f)Bの微量添加は、750〜800℃での耐力や引張強度の上昇に対して少なからず寄与し、特に0.2%耐力を大幅に向上させる作用効果を持つ。Bの微量添加は、Bが粒界偏析することによって、結晶粒界を起点に発生するキャビティ(ナノサイズの隙間)の生成を抑制して粒界すべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高める作用効果がある。またこれらBの作用効果は、Nb添加鋼で顕著となる新規な知見を見出した。 (F) The addition of a small amount of B contributes to the increase in yield strength and tensile strength at 750 to 800 ° C., and has the effect of significantly improving the 0.2% yield strength. The addition of a small amount of B suppresses the formation of cavities (nano-sized gaps) generated from the grain boundaries as a result of B segregating at the grain boundaries, delaying the grain boundary sliding, and dislocation density within the crystal grains. This has the effect of increasing the internal stress associated with the rise of. Moreover, the novel effect which the effect of these B becomes remarkable with Nb addition steel was discovered.

(g)上述したNb添加鋼で顕著となるBの作用効果は、Mg、Ca、Gaの複合添加により重畳する。Mg、Caは非金属介在物や硫化物を生成し、結晶粒界の清浄度を高めてBの粒界偏析を促進して、前記したBの作用効果をより効率的に発現させる。またGaも鋼の清浄度を向上させるため、Bとの複合添加により前記したBの作用効果を効率的に発現させることができる。 (G) The effect of B that becomes remarkable in the above-described Nb-added steel is superimposed by the combined addition of Mg, Ca, and Ga. Mg and Ca generate non-metallic inclusions and sulfides, enhance the cleanliness of the crystal grain boundaries and promote the grain boundary segregation of B, and more efficiently express the above-described effects of B. Moreover, since Ga also improves the cleanliness of steel, the above-described effects of B can be efficiently expressed by the combined addition with B.

(h)更に、前記(f)で述べた、粒内の転位密度の上昇に伴う内部応力を高める作用効果をより発揮させるためには、Snとの複合添加が効果的である。Snは粒界偏析元素ではあるものの、Bとの複合添加において、結晶粒内の固溶強化元素としての作用も大きくなり、内部応力の上昇に伴う高温強度を高めることに効果的である。 (H) Furthermore, in order to exert the effect of increasing the internal stress accompanying the increase in the dislocation density in the grains described in (f) above, the combined addition with Sn is effective. Although Sn is a grain boundary segregation element, the combined action with B increases the effect as a solid solution strengthening element in the crystal grains, and is effective in increasing the high-temperature strength accompanying an increase in internal stress.

「耐酸化性について」
(i)また、前述した水素および硫化成分を含む改質ガス環境下の溶接金属部の耐酸化性を高めるには、溶加材中のSi、Al、Nb、Mnの含有量を所定の範囲内に調整することで、Al系酸化皮膜の形成の促進と、当該皮膜の保護性を高めることが効果的である。さらに、フェライト系ステンレス鋼溶加材におけるB、Nb、Sn、Mg、Ca、Gaの添加は、改質ガス環境下の耐酸化性を損なわせるおそれはなく、むしろMg、Snの微量添加はAl系酸化皮膜の保護性をより高め耐酸化性の効果も奏する。なお、SiはAlと同様に、溶接組織の柱状晶化を促進させる元素でもあるため、Al系酸化皮膜の形成促進の観点からSi量を高めると、一方で溶接金属部の粗大化が懸念される。しかし、Nb、Sn、Mg、Ca、Gaの微量添加によって、溶接組織の柱状晶化を十分に抑制できることから、本実施形態のように、Si量の比較的高い場合でも、Al系酸化皮膜の形成促進と、溶接金属部の粗大化の抑制を両立させることが可能となる。ここで、本実施形態においては、高温の改質ガス環境下に曝される前の表面皮膜を「不働態皮膜」、高温の改質ガス環境下に曝され不働態皮膜が種々の反応によって組成が変化したものを「Al系酸化皮膜」と区別し説明する。
"Oxidation resistance"
(I) Moreover, in order to improve the oxidation resistance of the weld metal part under the reformed gas environment containing the hydrogen and sulfide components described above, the contents of Si, Al, Nb, and Mn in the filler metal are set within a predetermined range. By adjusting the inside, it is effective to promote the formation of an Al-based oxide film and to enhance the protection of the film. Furthermore, the addition of B, Nb, Sn, Mg, Ca, and Ga in the ferritic stainless steel filler material does not impair the oxidation resistance in the reformed gas environment, but rather a small amount of Mg and Sn is added in the Al content. The protective property of the system oxide film is further increased and the effect of oxidation resistance is also exhibited. Si, like Al, is also an element that promotes columnar crystallization of the weld structure. Therefore, if the Si content is increased from the viewpoint of promoting the formation of an Al-based oxide film, there is a concern about the coarsening of the weld metal part. The However, since the columnar crystallization of the welded structure can be sufficiently suppressed by adding a small amount of Nb, Sn, Mg, Ca, and Ga, even when the Si amount is relatively high as in this embodiment, the Al-based oxide film It becomes possible to achieve both formation promotion and suppression of the coarsening of the weld metal part. Here, in this embodiment, the surface film before being exposed to a high temperature reformed gas environment is a “passive film”, and the passive film exposed to a high temperature reformed gas environment is composed by various reactions. This is described by distinguishing it from “Al-based oxide film”.

(j)前記した改質ガス環境(浸炭性/還元性/硫化性環境)は、大気や水素を含まない水蒸気酸化環境と比較して、Al系酸化皮膜の欠陥を生成し易い。改質ガス環境が酸化皮膜の欠陥生成を容易とする原因は明らかではないが、硫化成分を含む改質ガス下で生成される硫化物が、酸化皮膜に何らかの悪影響を及ぼしていると推測される。改質ガス環境下でAl系酸化皮膜に欠陥が生じると、露出された鋼表面ではCrやFeの酸化が進行するおそれがある。このような改質ガス中における酸化促進に対して、MgはAl系酸化皮膜への固溶、Snは母材表面への偏析作用によりCrやFeの外方拡散を遅延させることにより、Al系酸化皮膜の保護性をより高めることができる。その結果、フェライト系ステンレス鋼の耐酸化性を向上させることができる。 (J) The above-described reformed gas environment (carburizing / reducing / sulfiding environment) tends to generate defects in the Al-based oxide film as compared with a steam oxidation environment that does not contain air or hydrogen. The reason why the reformed gas environment facilitates the generation of defects in the oxide film is not clear, but it is speculated that sulfides generated under the reformed gas containing sulfide components have some adverse effects on the oxide film. . If a defect occurs in the Al-based oxide film in a modified gas environment, oxidation of Cr and Fe may proceed on the exposed steel surface. For such oxidation promotion in the reformed gas, Mg is dissolved in the Al-based oxide film, and Sn is segregated on the surface of the base material to delay the outward diffusion of Cr and Fe, so that the Al-based The protective property of the oxide film can be further increased. As a result, the oxidation resistance of the ferritic stainless steel can be improved.

以下、本発明を適用したフェライト系ステンレス鋼溶接用溶加材(以下、単に溶加材ともいう。)の成分と、その成分の含有率及び各成分の限定理由について説明する。なお、各成分の含有量は、フェライト系ステンレス鋼溶接用溶加材全質量に対する質量%で表すこととし、その質量%を表わすときには単に%と記載して表すこととする。   Hereinafter, the components of the ferritic stainless steel welding filler material (hereinafter also simply referred to as a filler material) to which the present invention is applied, the content of the components, and the reasons for the limitation of each component will be described. The content of each component is expressed by mass% with respect to the total mass of the ferritic stainless steel welding filler metal, and when expressing the mass%, it is simply expressed as%.

<Cr:12.0〜16.0%>
Crは、ステンレス溶接金属に必要な耐食性を向上する。またCrは、溶接金属表面のAl系酸化皮膜の密着性を良好なものにして耐酸化性を向上させる効果がある上、高温強度の向上にも寄与する元素でもある。これら効果を得るためには12.0%以上のCr量が必要である。好ましくは13.0%以上である。一方、過度にCrを含有させることは、475℃脆性起因の著しい材料硬化に加え、高温雰囲気に曝された際、脆化相であるσ相の生成を助長する。また、合金コストの上昇とCr蒸発を助長する場合があるため上限は16.0%以下とする。好ましくは、15.0%以下とする。
<Cr: 12.0 to 16.0%>
Cr improves the corrosion resistance required for stainless steel weld metal. In addition, Cr has an effect of improving the oxidation resistance by improving the adhesion of the Al-based oxide film on the surface of the weld metal, and is also an element contributing to the improvement of the high temperature strength. In order to obtain these effects, a Cr amount of 12.0% or more is required. Preferably it is 13.0% or more. On the other hand, when Cr is excessively contained, in addition to remarkable material hardening due to brittleness at 475 ° C., the formation of a σ phase which is an embrittlement phase when exposed to a high temperature atmosphere is promoted. Moreover, since an increase in alloy cost and Cr evaporation may be promoted, the upper limit is made 16.0% or less. Preferably, it is 15.0% or less.

<C:0.020%以下>
Cは、溶加材中に不可避に含まれ、溶接金属中のフェライト相に固溶あるいはCr炭化物を形成して耐酸化性を阻害する。また、C量が過剰になると溶接金属に高温割れが生じやすくなるとともに、溶接金属の延性が低下して加工性が不良となる。このため、C量は少ないほどよく、上限を0.020%以下とする。好ましくは0.015%以下である。但し、過度な低減は精錬コストの上昇に繋がるため、C量の下限は0.001%以上とすることが好ましい。より好ましくは0.002%以上である。
<C: 0.020% or less>
C is inevitably contained in the filler metal, and inhibits oxidation resistance by forming a solid solution or Cr carbide in the ferrite phase in the weld metal. On the other hand, when the amount of C is excessive, hot cracking is likely to occur in the weld metal, and the ductility of the weld metal is lowered, resulting in poor workability. For this reason, the smaller the amount of C, the better, and the upper limit is made 0.020% or less. Preferably it is 0.015% or less. However, since excessive reduction leads to an increase in refining costs, the lower limit of the C amount is preferably set to 0.001% or more. More preferably, it is 0.002% or more.

<Si:0.60〜2.50%>
Siは、溶接金属と母材とのなじみを良好にするとともに、耐酸化性を確保する上で重要な元素である。Siは、Al系酸化皮膜中へ僅かに固溶するとともに、酸化皮膜直下/鋼界面にも濃化し、改質ガス環境下の耐酸化性を向上させる。これら効果を得るために下限は0.60%以上とする。好ましくは0.70%以上である。一方、Siを過度に含有させることは、耐475℃脆性を低下させたり、接時に剥離性が不良なスラグが生成したりするおそれがある。また、鋼の靭性や加工性の低下ならびにAl系酸化皮膜の形成を阻害する場合もあるため、Si量の上限は2.50%以下とする。好ましい上限は2.00%以下である。
<Si: 0.60 to 2.50%>
Si is an important element for improving the compatibility between the weld metal and the base material and ensuring oxidation resistance. Si slightly dissolves in the Al-based oxide film and also concentrates directly under the oxide film / steel interface to improve the oxidation resistance under the reformed gas environment. In order to obtain these effects, the lower limit is made 0.60% or more. Preferably it is 0.70% or more. On the other hand, when Si is excessively contained, the 475 ° C. brittleness resistance may be reduced, or a slag having poor peelability may be produced when contacting. Moreover, since the toughness of steel, workability fall, and formation of Al type oxide film may be inhibited, the upper limit of Si amount is made into 2.50% or less. A preferable upper limit is 2.00% or less.

<Mn:0.30%以下>
Mnは、改質ガス環境下でSiとともにAl系酸化皮膜中またはその直下に固溶して保護性を高め耐酸化性の向上に寄与しうる。また、溶接金属の耐高温割れ性を良好にする効果がある。これら効果を得るために下限は0.05%とすることが好ましい。一方、過度に含有させることは、鋼の耐食性やAl系酸化皮膜の形成を阻害するほか、溶接時に剥離性が不良なスラグが生成するため、上限は0.30%以下とする。好ましくは0.2%以下とする。
<Mn: 0.30% or less>
Mn can be dissolved in or directly under the Al-based oxide film together with Si in the reformed gas environment to increase the protection and contribute to the improvement of the oxidation resistance. Moreover, there exists an effect which makes the hot cracking resistance of a weld metal favorable. In order to obtain these effects, the lower limit is preferably 0.05%. On the other hand, excessive inclusion inhibits the corrosion resistance of steel and the formation of an Al-based oxide film, and generates slag with poor peelability during welding, so the upper limit is made 0.30% or less. Preferably it is 0.2% or less.

<Al:1.00〜2.50%>
Alは、改質ガス雰囲気下で溶接金属表面にAl系酸化皮膜を形成して耐酸化性の向上に寄与する元素である。本実施形態においては、Al量が1.00%未満ではこれら効果が得られないため、下限は1.00%以上とする。好ましくは1.20%以上である。しかし、過度にAlを含有させることは、溶接金属の延性が低下して加工性が不良となり、さらに溶接部における脆性破壊を助長するため、上限は、2.50%以下とする。好ましくは2.30%以下である。
<Al: 1.00-2.50%>
Al is an element that contributes to the improvement of oxidation resistance by forming an Al-based oxide film on the surface of the weld metal in a reformed gas atmosphere. In the present embodiment, these effects cannot be obtained if the Al content is less than 1.00%, so the lower limit is made 1.00% or more. Preferably it is 1.20% or more. However, if Al is contained excessively, the ductility of the weld metal is lowered, the workability becomes poor, and further brittle fracture in the welded portion is promoted, so the upper limit is made 2.50% or less. Preferably it is 2.30% or less.

<Nb:0.001〜1.00%>
Nbは、溶接金属中のC,Nを固定する安定化元素であり、溶接時のCr炭化物生成抑制、Al系酸化皮膜の密着性の向上に寄与する。さらに、σ脆性と475℃脆性の要因となる金属間化合物は、主に結晶粒界を生成サイトとして析出が進行するが、Nbが結晶粒界へ偏析することによってこの生成サイトが低減されるため、組織の安定性が増し、結果、溶接金属のσ脆性と475℃脆性を抑制することができる。これら効果を得るためにNbの下限は0.001%以上とし、0.15%以上とすることが好ましい。一方、Nbを過度に含有させることは合金コストの上昇に加え、溶接金属の延性を低下して加工性が不良となる上、脆性破壊を助長するため、Nbの上限は1.00%以下とする。好ましくは0.6%以下とする。
<Nb: 0.001 to 1.00%>
Nb is a stabilizing element that fixes C and N in the weld metal, and contributes to suppressing the formation of Cr carbide during welding and improving the adhesion of the Al-based oxide film. Further, intermetallic compounds that cause σ brittleness and 475 ° C. brittleness mainly precipitate with the grain boundary as a production site, but this production site is reduced by the segregation of Nb to the crystal grain boundary. The stability of the structure is increased, and as a result, the σ brittleness and 475 ° C. brittleness of the weld metal can be suppressed. In order to obtain these effects, the lower limit of Nb is 0.001% or more, preferably 0.15% or more. On the other hand, when Nb is excessively contained, in addition to an increase in the alloy cost, the ductility of the weld metal is lowered, the workability becomes poor, and brittle fracture is promoted. Therefore, the upper limit of Nb is 1.00% or less. To do. Preferably it is 0.6% or less.

<P:0.020%以下>
Pは、製造性や溶接性を阻害し、溶接部における粒界強度を低下させる元素である。その含有量は少ないほどよいため、上限は0.020%以下とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%以上とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.005〜0.015%である。
<P: 0.020% or less>
P is an element that impedes manufacturability and weldability and lowers the grain boundary strength at the weld. The lower the content, the better, so the upper limit is made 0.020% or less. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.003% or more. From the viewpoint of manufacturability and weldability, the preferred range is 0.005 to 0.015%.

<S:0.0030%以下>
Sは、鋼中に不可避に含まれる不純物元素であり、Al系酸化皮膜の保護性を低下させる。特に、Mn系介在物や固溶Sの存在は、高温・長時間使用におけるAl系酸化皮膜の破壊起点としても作用する。また、溶接部における粒界強度を低下させる元素でもある。従って、S量は低いほどよいため、上限は0.0030%以下とする。但し、過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%以上とすることが好ましい。製造性と耐酸化性、耐475℃脆性の観点から、好ましい範囲は0.0001〜0.0010%である。
<S: 0.0030% or less>
S is an impurity element inevitably contained in the steel, and lowers the protective properties of the Al-based oxide film. In particular, the presence of Mn-based inclusions and solute S also acts as a fracture starting point for Al-based oxide films when used at high temperatures for long periods of time. It is also an element that lowers the grain boundary strength in the weld zone. Therefore, the lower the amount of S, the better. Therefore, the upper limit is made 0.0030% or less. However, excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is preferably 0.0001% or more. From the viewpoint of manufacturability, oxidation resistance, and 475 ° C. brittleness, the preferred range is 0.0001 to 0.0010%.

<O:0.010%以下>
Oは、不可避に混入する不純物であるが、O含有量が0.010%を超えると溶接時にSi、Mn、Alを酸化して、剥離性が不良なスラグを生成する。したがって、Oは0.010%以下とする。
<O: 0.010% or less>
O is an impurity that is inevitably mixed, but if the O content exceeds 0.010%, Si, Mn, and Al are oxidized during welding to generate slag with poor peelability. Therefore, O is set to 0.010% or less.

<N:0.030%以下>
Nは、Cと同様に耐酸化性を阻害する元素である。また、溶接金属の延性を低下して加工性の劣化を招く元素でもある。これらのことから、N量は少ないほどよく、上限を0.030%以下とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%以上とすることが好ましい。耐酸化性と製造性の点から、好ましい範囲は0.002〜0.020%である。
<N: 0.030% or less>
N, like C, is an element that inhibits oxidation resistance. Moreover, it is an element which reduces the ductility of a weld metal and causes deterioration of workability. For these reasons, the smaller the amount of N, the better, and the upper limit is made 0.030% or less. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.001% or more. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.002 to 0.020%.

本実施形態に係る溶加材は、上述してきた元素以外(残部)は、Fe及び不純物からなるが、後述する任意元素についても含有させることができる。よって、B、Sn、Ga、Mg、Ca、Ni、Cu、Mo、Sb、W、Co、V、Ti、Zr、Y、La、Hf、Ta、REMの含有量の下限は0%以上である。
なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
The filler material according to the present embodiment is composed of Fe and impurities other than the above-described elements (remainder), but can also contain arbitrary elements described later. Therefore, the lower limit of the content of B, Sn, Ga, Mg, Ca, Ni, Cu, Mo, Sb, W, Co, V, Ti, Zr, Y, La, Hf, Ta, and REM is 0% or more. .
The “impurities” in the present embodiment are components that are mixed due to various factors in the manufacturing process including raw materials such as ores and scraps when industrially manufacturing steel, and are inevitably mixed. Including ingredients.

本実施形態に係る継手の溶接金属部の化学組成は、必要に応じて、B:0.0002〜0.0200%、Sn:0.005〜0.20%、Ga:0.0002〜0.0200%以下、Mg:0.0005〜0.0200%以下、Ca:0.0005〜0.0100%以下の1種以上を含み、かつ下記式(1)を満たすよう含有させてよい。   The chemical composition of the weld metal part of the joint according to this embodiment is as follows: B: 0.0002 to 0.0200%, Sn: 0.005 to 0.20%, Ga: 0.0002 to 0.00. One or more of 0200% or less, Mg: 0.0005 to 0.0200% or less, Ca: 0.0005 to 0.0100% or less, and may be contained so as to satisfy the following formula (1).

<B、Sn、Ga、Mg、Ca>
B、Sn、Ga、Mg、Caは、上述したように、高温強度を高める効果をより発現させることができる元素である。さらにこれらの元素は、Al系酸化皮膜の形成を促進して耐酸化性の向上に寄与する元素でもある。また、Sn、Ga、Mg、Caは、表面近傍に濃化してAlの選択酸化を促進する作用がある。そのため、上記成分組成に加え、B、Sn、Ga、Mg、Caのうちの1種または2種以上を含有することが好ましい。
Bは、粒界偏析することによって粒界すべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高め0.2%耐力を向上させることができる。Mg、Caは鋼の清浄度や熱間加工性を高めるのに有効な元素である。また、溶接時にMgO、CaOなどから成る介在物を生成させることで等軸晶の形成が助長され、溶接組織の微細化に寄与する元素でもある。これら効果を得るため、Snは0.005%以上、B、Ga、Mg、Caはそれぞれ0.0002%以上含むことが好ましい。一方、これらの元素を過度に含有させることは、鋼の精錬コスト上昇を招くほか、製造性の低下を招くため、Snは0.20%以下、B、Ga、Mgは0.0200%以下、Caは0.0100%以下とすることが好ましい。
<B, Sn, Ga, Mg, Ca>
B, Sn, Ga, Mg, and Ca are elements that can express the effect of increasing the high-temperature strength more as described above. Furthermore, these elements are elements that contribute to the improvement of oxidation resistance by promoting the formation of an Al-based oxide film. Sn, Ga, Mg, and Ca have an action of concentrating near the surface and promoting selective oxidation of Al. Therefore, it is preferable to contain one or more of B, Sn, Ga, Mg, and Ca in addition to the above component composition.
B segregates at the grain boundary due to segregation at the grain boundary, and can increase the internal stress accompanying the increase in the dislocation density in the crystal grains and improve the 0.2% yield strength. Mg and Ca are effective elements for enhancing the cleanliness and hot workability of steel. In addition, by forming inclusions made of MgO, CaO or the like during welding, formation of equiaxed crystals is promoted, and it is also an element contributing to refinement of the weld structure. In order to obtain these effects, it is preferable that Sn is contained by 0.005% or more, and B, Ga, Mg, and Ca are each contained by 0.0002% or more. On the other hand, excessive inclusion of these elements leads to an increase in the refining cost of the steel and also a decrease in manufacturability, so that Sn is 0.20% or less, B, Ga, and Mg are 0.0200% or less, Ca is preferably 0.0100% or less.

B、Sn、Ga、Mg、Caの1種もしくは2種以上を含有させる場合には、以下の式(1)を満たすものとする。
10(B+Ga)+Sn+Mg+Ca>0.020% ・・・式(1)
なお、式(1)中の各元素記号は、溶加材中の各元素の含有量(質量%)を示す。
When one or more of B, Sn, Ga, Mg, and Ca are contained, the following formula (1) is satisfied.
10 (B + Ga) + Sn + Mg + Ca> 0.020% Formula (1)
In addition, each element symbol in Formula (1) shows content (mass%) of each element in a filler metal.

高温強度および耐酸化性を向上させる視点から、式(1)は、0.025%以上が好ましく、より好ましくは0.035%以上とする。なお、式(1)の上限は、B、Sn、Ga、Mg、Caの上限値で特に規定するものでないが、高温強度と製造性の視点から0.2%とすることが好ましい。   From the viewpoint of improving the high temperature strength and oxidation resistance, the formula (1) is preferably 0.025% or more, more preferably 0.035% or more. In addition, although the upper limit of Formula (1) is not specifically prescribed | regulated by the upper limit of B, Sn, Ga, Mg, Ca, it is preferable to set it as 0.2% from a viewpoint of high temperature strength and manufacturability.

本実施形態に係る溶加材の化学組成は、必要に応じて、Ni:0.10〜1.0%、Cu:0.10〜1.0%、Mo:0.10〜1.0%、Sb:0.01〜0.5%、W:0.10〜1.0%、Co:0.10〜0.5%、V:0.10〜0.5%、Ti:0.01〜0.5%、Zr:0.0001〜0.10%、Y:0.0001〜0.10%、La:0.0001〜0.10%、Hf:0.0001〜0.10%、REM:0.001〜0.10%の1種または2種以上を含有しているものであってもよい。   The chemical composition of the filler metal according to this embodiment is as follows: Ni: 0.10 to 1.0%, Cu: 0.10 to 1.0%, Mo: 0.10 to 1.0% , Sb: 0.01 to 0.5%, W: 0.10 to 1.0%, Co: 0.10 to 0.5%, V: 0.10 to 0.5%, Ti: 0.01 -0.5%, Zr: 0.0001-0.10%, Y: 0.0001-0.10%, La: 0.0001-0.10%, Hf: 0.0001-0.10%, REM: 0.001-0.10% of 1 type or 2 types or more may be contained.

Ni、Cu、Mo、Sb、W、Co、V、Tiは、溶接部の高温強度と耐食性を高めるのに有効な元素であり、必要に応じて含有してよい。但し、過度に含有させると合金コストの上昇や製造性を阻害することに繋がるため、Ni、Cu、Wの上限は1.0%以下とする。Moは熱膨張係数の低下による高温変形の抑制にも有効な元素であることから、上限は1.0%以下とした上で含有することが好ましい。Sbは、鋼表面近傍に濃化してAlの選択酸化を促進し耐食性の向上効果を持つ元素であるため、上限は0.5%以下とした上で含有することが好ましい。Co、Ti、Vの上限は0.5%以下とする。Ni、Cu、Mo、W、Co、Vのいずれの元素も好ましい含有量の下限は0.10%以上とする。Sb、Tiの好ましい含有量の下限は0.01%以上とする。   Ni, Cu, Mo, Sb, W, Co, V, and Ti are effective elements for increasing the high-temperature strength and corrosion resistance of the welded portion, and may be contained as necessary. However, if excessively contained, it will lead to an increase in alloy costs and obstruct manufacturability, so the upper limit of Ni, Cu, W is 1.0% or less. Since Mo is an element effective for suppressing high-temperature deformation due to a decrease in the thermal expansion coefficient, it is preferable to contain Mo after setting the upper limit to 1.0% or less. Since Sb is an element that concentrates in the vicinity of the steel surface to promote selective oxidation of Al and has an effect of improving corrosion resistance, the upper limit is preferably set to 0.5% or less. The upper limit of Co, Ti, and V is 0.5% or less. The lower limit of the preferable content of any element of Ni, Cu, Mo, W, Co, and V is 0.10% or more. The minimum of preferable content of Sb and Ti shall be 0.01% or more.

Zr、La、Y、Hf、REMは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対しても、従来から有効な元素であり、必要に応じて含有させてよい。但し、本発明の技術思想と合金コストの低減から、これら元素の添加効果に頼るものではい。Zr、La、Y、Hf、REMを含有させる場合、Zr、La、Y、Hf、REMの上限はそれぞれ0.1%とする。Zr、La、Y、Hf、REMの好ましい下限は0.001%とする。ここで、REMはLa、Yを除く原子番号58〜71に帰属する元素およびSc(スカンジウム)とし、例えば、Ce、Pr、Nd等である。また本実施形態でいうREMとは、原子番号58〜71に帰属する元素およびScから選択される1種以上で構成されるものであり、REM量とは、これらの合計量である。   Zr, La, Y, Hf, and REM are elements that have been conventionally effective for improving hot workability and steel cleanliness and improving oxidation resistance, and may be contained as necessary. However, from the technical idea of the present invention and the reduction of alloy costs, it does not depend on the effect of addition of these elements. When Zr, La, Y, Hf, and REM are contained, the upper limit of Zr, La, Y, Hf, and REM is 0.1%. A preferable lower limit of Zr, La, Y, Hf, and REM is 0.001%. Here, REM is an element belonging to atomic numbers 58 to 71 excluding La and Y and Sc (scandium), and is, for example, Ce, Pr, Nd, or the like. Moreover, REM as used in this embodiment is comprised by 1 or more types selected from the element which belongs to atomic number 58-71, and Sc, and REM amount is these total amounts.

本実施形態に係るフェライト系ステンレス鋼溶加材は、上述してきた元素以外は、Fe及び不純物(不可避的不純物を含む)からなるが、以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることができる。一般的な不純物元素である前述のP、Sを始め、Bi、Se等は可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Se≦100ppmの1種以上を含有していてもよい。   The ferritic stainless steel filler metal according to the present embodiment is composed of Fe and impurities (including unavoidable impurities) other than the elements described above. In addition to the elements described above, the effect of the present invention is also achieved. It can contain in the range which does not impair. It is preferable to reduce as much as possible Bi, Se, etc. as well as the aforementioned P and S, which are general impurity elements. On the other hand, the content ratio of these elements is controlled to the extent that the problems of the present invention are solved, and may contain one or more of Bi ≦ 100 ppm and Se ≦ 100 ppm as necessary.

ここで、本実施形態のフェライト系ステンレス鋼溶加材の金属組織はフェライト単相組織よりなる。これはオーステナイト相やマルテンサイト組織を含まないことを意味している。オーステナイト相やマルテンサイト組織を含む場合は、原料コストが高くなることに加えて、製造時に耳割れ等の歩留まり低下が起こりやすくなるため、金属組織はフェライト単相組織とする。なお鋼中に炭窒化物等の析出物が存在するが、本発明の効果を大きく左右するものではないためこれらは考慮せず、上記は主相の組織について述べている。   Here, the metal structure of the ferritic stainless steel filler material of the present embodiment is a ferrite single phase structure. This means that an austenite phase and a martensite structure are not included. When an austenite phase or a martensite structure is included, in addition to an increase in raw material cost, a yield reduction such as an ear crack is likely to occur at the time of manufacture, so the metal structure is a ferrite single phase structure. Although precipitates such as carbonitrides are present in the steel, they do not take account of the effects of the present invention, so these are not considered, and the above describes the structure of the main phase.

なお本実施形態に係る溶加材は、TIG溶接やプラズマ溶接などの溶接法に溶接ワイヤとして使用することができる。これらは、フェライト系ステンレス鋼の溶接に適用するとともに、それら構造物の補修、フェライト系ステンレスと普通鋼・低合金鋼などとの異材溶接などにも適用できる。
また、本実施形態に係る溶加材を用いてAl含有フェライト系ステンレス鋼を溶接すると、高い耐酸化性と優れた高温強度、ならびに優れた脆性特性を兼備した溶接金属を得ることができる。そのため、本実施形態の溶加材は、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される燃料改質器、熱交換器などの燃料電池部材を製造する際の溶接時に好適に使用でき、特に、運転温度が高温となる固体酸化物型燃料電池(SOFC)や固体高分子型燃料電池(PEFC)の高温部材の製造(溶接)時に好適である。さらに、燃料電池の周辺部材、例えばバーナーや当該バーナーを格納する燃焼器等、改質ガスに接しかつ高温の環境下で使用される部材全般の製造時において好適に用いることができる。
In addition, the filler material which concerns on this embodiment can be used as welding wires for welding methods, such as TIG welding and plasma welding. These are applicable not only to the welding of ferritic stainless steel, but also to the repair of those structures and the welding of different materials between ferritic stainless steel and ordinary steel / low alloy steel.
Further, when the Al-containing ferritic stainless steel is welded using the filler material according to the present embodiment, a weld metal having both high oxidation resistance, excellent high-temperature strength, and excellent brittleness characteristics can be obtained. Therefore, the filler material of this embodiment is a fuel reformer, a heat exchanger, etc. used when reforming hydrocarbon-based fuels such as city gas, methane, natural gas, propane, kerosene, and gasoline into hydrogen. Can be suitably used for welding when manufacturing a fuel cell member of the present invention, and in particular, manufacturing of a high temperature member of a solid oxide fuel cell (SOFC) or a polymer electrolyte fuel cell (PEFC) that has a high operating temperature (welding) ). Further, it can be suitably used in the manufacture of all members that are in contact with the reformed gas and used in a high-temperature environment, such as fuel cell peripheral members such as a burner and a combustor that stores the burner.

次に本発明の実施例を示すが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
なお、下記にて示す表中の下線は、本発明の範囲から外れているものを示す。
Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used to confirm the feasibility and effects of the present invention, and the present invention was used in the following examples. It is not limited to the conditions. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
In addition, the underline in the table | surface shown below shows what has remove | deviated from the scope of the present invention.

表1に示す各種成分の溶加材W1〜W16を試作して1.5mm径まで伸線して15kgのスプール巻きとした。   The filler materials W1 to W16 having various components shown in Table 1 were prototyped and drawn to a diameter of 1.5 mm to form a 15 kg spool.

溶接試験は、図1に示すように板厚tが1.5mmの鋼板1間においてギャップなしのI開先3を形成させ、裏面に銅当金2を当てた試験体により行った。鋼板1を構成する各成分は、表2に示すとおりとし、溶加材W1〜W16を用いて表3に示す溶接条件でTIG溶接した。溶接後のビード外観、スラグの生成状態及び高温割れの有無を外観観察により調査した。その結果、TIG溶接後のビード外観は全て良好であったが、表4に結果を示す通り、MnとOの含有量が本発明の範囲外であるNo,11、16ではスラグが生成し、SとPの含有量が本発明の範囲外であるNo,12、15では高温割れが発生した。   As shown in FIG. 1, the welding test was performed using a test body in which an I groove 3 without a gap was formed between steel plates 1 having a plate thickness t of 1.5 mm, and a copper alloy 2 was applied to the back surface. Each component which comprises the steel plate 1 was as shown in Table 2, and TIG welding was carried out on the welding conditions shown in Table 3 using the filler materials W1-W16. The appearance of the bead after welding, the state of slag formation, and the presence or absence of hot cracking were investigated by appearance observation. As a result, the bead appearance after TIG welding was all good, but as shown in Table 4, the slag was produced in Nos. 11, 16 where the contents of Mn and O were outside the scope of the present invention. In Nos. 12, 15 where the contents of S and P are outside the scope of the present invention, hot cracking occurred.

次に、上記TIG溶接後の継手において、以下の各特性について調査した。   Next, the following characteristics were investigated in the joint after TIG welding.

[耐酸化性]
酸化試験は、まず、溶接部から、幅20mm、長さ25mmの酸化試験片を切り出した。このとき、酸化試験片の幅中央に溶接線が配置されるよう、すなわち試験片長手方向とビード方向が平行となるよう切り出した。なお、溶接部のビードは研磨除去せず、ビードまま(余盛つき)として次の酸化試験に供した。次に、都市ガスを燃料とした改質ガスを想定し、28体積%HO−10%体積%CO−8体積%CO−0.01%HS−bal.Hの雰囲気において、酸化試験片を650℃に加熱し、1000時間保持した後に室温まで冷却し、酸化増量ΔW(mg/cm)を測定した。
耐酸化性の評価は以下の通りとした。
◎:重量増加ΔWが0.2mg/cm未満。
〇:重量増加ΔWが0.2〜0.3mg/cm
×:重量増加ΔWが0.3mg/cm超。
なお、耐酸化性は「◎」および「〇」の場合を合格とした。
[Oxidation resistance]
In the oxidation test, first, an oxidation test piece having a width of 20 mm and a length of 25 mm was cut out from the weld. At this time, it cut out so that a welding line may be arrange | positioned in the width center of an oxidation test piece, ie, a test piece longitudinal direction and a bead direction may become parallel. In addition, the bead of the welded part was not polished and removed, and was subjected to the next oxidation test as it was (with surplus). Next, assuming a reformed gas using city gas as fuel, 28 volume% H 2 O—10% volume% CO—8 volume% CO 2 —0.01% H 2 S-bal. In an atmosphere of H 2 , the oxidation test piece was heated to 650 ° C., held for 1000 hours, then cooled to room temperature, and an oxidation increase ΔW (mg / cm 2 ) was measured.
The evaluation of oxidation resistance was as follows.
A: Weight increase ΔW is less than 0.2 mg / cm 2 .
A: Weight increase ΔW is 0.2 to 0.3 mg / cm 2 .
X: Weight increase ΔW exceeds 0.3 mg / cm 2 .
In addition, as for oxidation resistance, the case of "(double-circle)" and "(circle)" was set as the pass.

[高温強度]
高温引張試験は、まず、溶接部の余盛を除去した上で、継手から板状の高温引張試験片(板厚:1.5mm、平行部幅:10.5mm、平行部長さ:35mm)を切り出した。このとき、引張試験片の長手方向中央(平行部中央)に溶接金属部が配置されるよう切り出した。次に、750℃、および800℃それぞれにて、ひずみ速度は、0.2%耐力まで0.3%/min、以降3mm/minとして高温引張試験を行い、各温度における0.2%耐力(750℃耐力、800℃耐力)を測定した(JIS G 0567に準拠)。
高温強度の評価は、750℃耐力が120MPa超、かつ800℃耐力が40MPa超の場合を合格(「〇」)として評価し、いずか一方でも満たさない場合は不合格(「×」)として評価した。なお、750℃耐力が150MPa超、かつ800℃耐力が60MPa超の場合は高温強度が特に優れているものとして評価した(表中で「◎」表記)。
[High temperature strength]
In the high-temperature tensile test, first, after removing the welded portion, a plate-like high-temperature tensile test piece (plate thickness: 1.5 mm, parallel part width: 10.5 mm, parallel part length: 35 mm) is removed from the joint. Cut out. At this time, it cut out so that a weld metal part may be arrange | positioned in the longitudinal direction center (parallel part center) of a tensile test piece. Next, at each of 750 ° C. and 800 ° C., the strain rate was 0.3% / min up to 0.2% proof stress, and thereafter 3 mm / min. 750 ° C. proof strength, 800 ° C. proof strength) were measured (according to JIS G 0567).
Evaluation of high-temperature strength is evaluated as a pass (“◯”) when the 750 ° C. yield strength is over 120 MPa and the 800 ° C. yield strength is over 40 MPa, and is rejected (“×”) when neither is satisfied. evaluated. When the 750 ° C. yield strength exceeded 150 MPa and the 800 ° C. yield strength exceeded 60 MPa, it was evaluated that the high-temperature strength was particularly excellent (indicated by “」 ”in the table).

[組織安定性(σ脆性/475℃脆性)]
溶接金属部から、板面と垂直な断面上の中心(板厚中心部:t/2付近)を観察できるよう試料を2つ採取して、一方は、500℃×1000時間の熱処理(500℃熱処理)、もう一方は650℃×1000時間の熱処理(600℃熱処理)を行った。これら熱処理の雰囲気はともに大気中とした。次に、熱処理後の各試料を樹脂に埋め研磨した後、500℃熱処理後のビッカース硬さHv500℃、650℃熱処理後のビッカース硬さHv650℃それぞれをJIS Z 2244に準拠して荷重9.8Nで測定し、熱処理前に予め測定しておいた熱処理前ビッカース硬さからの硬さ上昇量ΔHv500℃、ΔHv650℃を算出した。
組織安定性(σ脆性/475℃脆性)の評価は、ΔHv500℃、ΔHv650℃ともに20未満のものを合格(「〇」)として評価し、いずか一方でも20以上であった場合は熱処理後の硬さ上昇が大きく組織が不安定であるとして不合格(「×」)とした。
[Structure stability (σ brittleness / 475 ° C brittleness)]
Two samples were taken from the weld metal so that the center on the cross section perpendicular to the plate surface (plate thickness center: around t / 2) could be observed, one of which was heat-treated at 500 ° C. × 1000 hours (500 ° C. Heat treatment), and the other was heat treated at 650 ° C. for 1000 hours (heat treatment at 600 ° C.). The atmosphere for these heat treatments was in the air. Next, after each heat-treated sample was buried in a resin and polished, the Vickers hardness Hv after 500 ° C. heat treatment was 500 ° C. , and the Vickers hardness after heat treatment at 650 ° C. was Hv 650 ° C. according to JIS Z 2244. Measured at .8N, the amount of increase in hardness ΔHv 500 ° C. and ΔHv 650 ° C. from pre-heat-treatment Vickers hardness measured in advance before heat treatment was calculated.
The evaluation of the structural stability (σ brittleness / 475 ° C brittleness) was evaluated as a pass (“◯”) when both ΔHv 500 ° C and ΔHv 650 ° C were less than 20, and when either was 20 or more It was rejected ("x") because the hardness increase after heat treatment was large and the structure was unstable.

表4に試験結果を示す。No.1〜9は、溶加材成分が本発明で規定する成分を満たし、すべての特性の評価は「○」あるいは「◎」となったものである。   Table 4 shows the test results. No. In Nos. 1 to 9, the filler material component satisfies the components specified in the present invention, and all the evaluations of the properties are “◯” or “◎”.

一方、No.10〜16は、溶加材成分が本発明で規定する成分から外れるものであり、本発明の目標とする各特性を満足することができず、いずれかの評価が「×」となった。   On the other hand, no. In Nos. 10 to 16, the filler material component deviates from the components specified in the present invention, and the respective characteristics targeted by the present invention could not be satisfied, and either evaluation was “x”.

Figure 2019171408
Figure 2019171408

Figure 2019171408
Figure 2019171408

Figure 2019171408
Figure 2019171408

Figure 2019171408
Figure 2019171408

1・・・鋼板、2・・・銅当金、3・・・I開先 DESCRIPTION OF SYMBOLS 1 ... Steel plate, 2 ... Copper alloy, 3 ... I groove

Claims (3)

溶加材全質量に対する質量%で、
Cr:12.0〜16.0%、
C:0.020%以下、
Si:0.60〜2.50%、
Mn:0.30%以下、
P:0.020%以下、
S:0.0030%以下、
Al:1.00〜2.50%、
Nb:0.001〜1.00%、
N:0.030%以下、
O:0.010%以下、
B:0〜0.0100%、
Sn:0〜0.20%、
Ga:0〜0.0200%、
Mg:0〜0.0200%、
Ca:0〜0.0100%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
Sb:0〜0.5%、
W:0〜1.0%、
Co:0〜0.5%、
V:0〜0.5%、
Ti:0〜0.5%、
Zr:0〜0.10%、
Y:0〜0.10%、
La:0〜0.10%、
Hf:0〜0.10%、
REM:0〜0.10%
を含有し、残部がFeおよび不純物からなることを特徴とするフェライト系ステンレス鋼溶接用溶加材。
% By mass relative to the total mass of the filler metal
Cr: 12.0 to 16.0%,
C: 0.020% or less,
Si: 0.60 to 2.50%,
Mn: 0.30% or less,
P: 0.020% or less,
S: 0.0030% or less,
Al: 1.00-2.50%,
Nb: 0.001 to 1.00%,
N: 0.030% or less,
O: 0.010% or less,
B: 0 to 0.0100%,
Sn: 0 to 0.20%,
Ga: 0 to 0.0200%,
Mg: 0 to 0.0200%,
Ca: 0 to 0.0100%,
Ni: 0 to 1.0%,
Cu: 0 to 1.0%
Mo: 0 to 1.0%,
Sb: 0 to 0.5%,
W: 0 to 1.0%
Co: 0 to 0.5%,
V: 0 to 0.5%
Ti: 0 to 0.5%,
Zr: 0 to 0.10%,
Y: 0 to 0.10%,
La: 0 to 0.10%,
Hf: 0 to 0.10%,
REM: 0 to 0.10%
A ferritic stainless steel welding filler material characterized by containing Fe and impurities.
溶加材全質量に対する質量%にて、B:0.0002〜0.0200%、Sn:0.005〜0.20%、Ga:0.0002〜0.0200%以下、Mg:0.0005〜0.0200%以下、Ca:0.0005〜0.0100%以下の1種以上を含み、かつ下記式(1)を満たすことを特徴とする請求項1に記載のフェライト系ステンレス鋼溶接用溶加材。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
なお、式(1)中の各元素記号は、溶加材中の各元素の含有量(質量%)を示す。
In mass% with respect to the total mass of the filler metal, B: 0.0002 to 0.0200%, Sn: 0.005 to 0.20%, Ga: 0.0002 to 0.0200% or less, Mg: 0.0005 The ferritic stainless steel welding according to claim 1, wherein the ferritic stainless steel welding includes at least one of ≦ 0.0200% and Ca: 0.0005 to 0.0100% and satisfies the following formula (1): Filler material.
10 (B + Ga) + Sn + Mg + Ca> 0.020 (1)
In addition, each element symbol in Formula (1) shows content (mass%) of each element in a filler metal.
溶加材全質量に対する質量%にて、更に、Ni:0.10〜1.0%、Cu:0.10〜1.0%、Mo:0.10〜1.0%、Sb:0.01〜0.5%、W:0.10〜1.0%、Co:0.10〜0.5%、V:0.10〜0.5%、Ti:0.01〜0.5%、Zr:0.0001〜0.10%、Y:0.0001〜0.10%、La:0.0001〜0.10%、Hf:0.0001〜0.10%、REM:0.001〜0.10%の1種または2種以上含有していることを特徴とする請求項1又は2に記載のフェライト系ステンレス鋼溶接用溶加材。   Further, Ni: 0.10 to 1.0%, Cu: 0.10 to 1.0%, Mo: 0.10 to 1.0%, Sb: 0.0% by mass% with respect to the total mass of the filler metal. 01 to 0.5%, W: 0.10 to 1.0%, Co: 0.10 to 0.5%, V: 0.10 to 0.5%, Ti: 0.01 to 0.5% , Zr: 0.0001-0.10%, Y: 0.0001-0.10%, La: 0.0001-0.10%, Hf: 0.0001-0.10%, REM: 0.001 The filler material for ferritic stainless steel welding according to claim 1 or 2, characterized by containing 0.10% or one or more of 0.10%.
JP2018060888A 2018-03-27 2018-03-27 Ferritic stainless steel welding filler material Active JP7055050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018060888A JP7055050B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel welding filler material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018060888A JP7055050B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel welding filler material

Publications (2)

Publication Number Publication Date
JP2019171408A true JP2019171408A (en) 2019-10-10
JP7055050B2 JP7055050B2 (en) 2022-04-15

Family

ID=68166152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018060888A Active JP7055050B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel welding filler material

Country Status (1)

Country Link
JP (1) JP7055050B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238480A (en) * 1993-02-15 1994-08-30 Nippon Steel Corp Coated electrode for high-cr ferritic heat resisting steel
JP2006231404A (en) * 2005-01-26 2006-09-07 Nippon Welding Rod Kk Ferritic stainless steel welding wire and manufacturing method thereof
WO2014050016A1 (en) * 2012-09-25 2014-04-03 Jfeスチール株式会社 Ferritic stainless steel
JP2016215280A (en) * 2015-05-15 2016-12-22 日鐵住金溶接工業株式会社 Filler metal for welding ferritic stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238480A (en) * 1993-02-15 1994-08-30 Nippon Steel Corp Coated electrode for high-cr ferritic heat resisting steel
JP2006231404A (en) * 2005-01-26 2006-09-07 Nippon Welding Rod Kk Ferritic stainless steel welding wire and manufacturing method thereof
WO2014050016A1 (en) * 2012-09-25 2014-04-03 Jfeスチール株式会社 Ferritic stainless steel
JP2016215280A (en) * 2015-05-15 2016-12-22 日鐵住金溶接工業株式会社 Filler metal for welding ferritic stainless steel

Also Published As

Publication number Publication date
JP7055050B2 (en) 2022-04-15

Similar Documents

Publication Publication Date Title
CA2711415C (en) Carburization resistant metal material
US10233523B2 (en) Carburization resistant metal material
JP5902253B2 (en) Ferritic stainless steel for fuel cells and method for producing the same
JP6190498B2 (en) Ferritic stainless steel and manufacturing method thereof
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP6300841B2 (en) Al-containing ferritic stainless steel with excellent high-temperature strength
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
JP6006759B2 (en) Ferritic stainless steel for fuel reformer of fuel cell or heat exchanger of fuel cell and method for producing the same
JP2016204709A (en) Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method of manufacturing the same
JP4062190B2 (en) Austenitic stainless steel pipe for nuclear power
JP6462231B2 (en) Welding wire and method of manufacturing welded structure using the same
JP6006893B2 (en) Ferritic stainless steel for fuel cells
JP6494745B2 (en) Stainless steel for stainless steel welded joints and fuel reformers
JP6767831B2 (en) Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP7055050B2 (en) Ferritic stainless steel welding filler material
JP7233195B2 (en) Ferritic stainless steel, manufacturing method thereof, and fuel cell member
JP6971185B2 (en) Ferritic stainless steel welded joints and fuel cell components
JP6937717B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP7076258B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP6937716B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
KR20240007212A (en) Ferritic stainless steel pipe and manufacturing method thereof, and fuel cell
JP4327073B2 (en) Steam oxidation resistant stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220405

R150 Certificate of patent or registration of utility model

Ref document number: 7055050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150