WO2014050016A1 - Ferritic stainless steel - Google Patents

Ferritic stainless steel Download PDF

Info

Publication number
WO2014050016A1
WO2014050016A1 PCT/JP2013/005486 JP2013005486W WO2014050016A1 WO 2014050016 A1 WO2014050016 A1 WO 2014050016A1 JP 2013005486 W JP2013005486 W JP 2013005486W WO 2014050016 A1 WO2014050016 A1 WO 2014050016A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
less
oxidation
content
steel
Prior art date
Application number
PCT/JP2013/005486
Other languages
French (fr)
Japanese (ja)
Inventor
徹之 中村
太田 裕樹
尾形 浩行
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US14/431,199 priority Critical patent/US20150218683A1/en
Priority to KR1020157009436A priority patent/KR101673217B1/en
Priority to ES13842192.0T priority patent/ES2693781T3/en
Priority to JP2014532184A priority patent/JP5700175B2/en
Priority to EP13842192.0A priority patent/EP2902523B1/en
Priority to CN201380049407.7A priority patent/CN104662188B/en
Publication of WO2014050016A1 publication Critical patent/WO2014050016A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the balance consists of Fe and inevitable impurities.
  • one or more selected from Nb and Cu are selected elements as follows. You may contain in the range of.
  • Nb 0.01 to 0.15%
  • Nb forms and fixes carbonitride with C and N, and has the effect of enhancing corrosion resistance, formability, and intergranular corrosion resistance of welds, and also significantly increases high-temperature strength to improve thermal fatigue characteristics and high-temperature fatigue. It is an element having the effect of improving the characteristics. In order to acquire the effect, containing 0.01% or more is preferable. However, if the content exceeds 0.15%, Nb is an expensive element and also raises the recrystallization temperature of the steel. Therefore, it is necessary to increase the annealing temperature, leading to an increase in production cost. Therefore, when Nb is contained, the amount is preferably in the range of 0.01 to 0.15%. More preferably, it is in the range of 0.02 to 0.12%. More preferably, it is in the range of 0.05 to 0.10%.
  • B 0.0002 to 0.0050%
  • B is an element that improves workability, particularly secondary working embrittlement.
  • the content is preferably 0.0002% or more.
  • the content exceeding 0.0050% lowers the workability and toughness of steel. Therefore, when B is contained, the content is preferably in the range of 0.0002 to 0.0050%. More preferably, it is in the range of 0.0002 to 0.0030%. More preferably, it is in the range of 0.0002 to 0.0010%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a ferritic stainless steel in which the content of Mo, W and Nb, which are expensive elements, is kept to a minimum and the content of Cu, which reduces oxidation resistance and workability, is kept to a minimum and which exhibits excellent thermal fatigue properties and oxidation resistance. This ferritic stainless steel is characterized in that it contains, in terms of mass %, not more than 0.020% of C, not more than 3.0% of Si, not more than 1.0% of Mn, not more than 0.040% of P, not more than 0.030% of S, at least 10.0% but less than 16.0% of Cr, not more than 0.020% of N, 1.4-4.0% of Al, more than 0.15% but not more than 0.5% of Ti and 0.05-0.5% of Ni, with remainder consisting of Fe and unavoidable impurities, and satisfies formula (1). Al%/Cr% ≥ 0.14… (1) In the formula, Al% and Cr% denote the content (mass %) of Al and Cr respectively.

Description

フェライト系ステンレス鋼Ferritic stainless steel
 本発明は、自動車やオートバイの排気管、触媒外筒材(コンバーターケースとも言う)や火力発電プラントの排気ダクト等の高温環境下で使用される排気系部材に用いて好適なフェライト系ステンレス鋼に関する。 The present invention relates to a ferritic stainless steel suitable for use in an exhaust system member used in a high temperature environment such as an exhaust pipe of an automobile or a motorcycle, a catalyst outer cylinder (also referred to as a converter case), or an exhaust duct of a thermal power plant. .
 自動車の排気系部材として使用されるエキゾーストマニホールド、排気パイプ、コンバーターケースおよびマフラー等の排気系部品には、熱疲労特性(thermal fatigue property)や耐酸化性(oxidation resistance)(以下、これらをまとめて「耐熱性(heat resistance property)」と呼ぶ。)に優れることが求められている。 Exhaust manifolds, exhaust pipes, converter cases, and mufflers used as exhaust system parts in automobiles have thermal fatigue characteristics (oxidation resistance) (hereinafter collectively referred to as oxidation resistance). (Referred to as “heat resistance (property)”).
 このような耐熱性が求められる用途には、現在、NbとSiを添加した鋼(例えば、JFE429EX(15質量%Cr-0.9質量%Si-0.4質量%Nb系)(以下Nb-Si複合添加鋼と呼ぶ))のようなCr含有鋼が多く使用されている。特にNbは耐熱性を大きく向上させることが知られている。さらには、Nbに加えて耐熱性を向上させるMoやWを添加した鋼(例えば、SUS444(18質量%Cr-2質量%Mo-0.5質量%Nb))も開発されており、より高い耐熱性が必要な部材に使用されている。 For applications requiring such heat resistance, steels containing Nb and Si (for example, JFE429EX (15 mass% Cr-0.9 mass% Si-0.4 mass% Nb system) (hereinafter referred to as Nb-) are used. A Cr-containing steel such as Si composite added steel)) is often used. In particular, Nb is known to greatly improve heat resistance. Furthermore, steel (for example, SUS444 (18 mass% Cr-2 mass% Mo-0.5 mass% Nb)) with Mo or W added to improve heat resistance in addition to Nb has been developed. Used for members that require heat resistance.
 また、特許文献1にはTi、Cu、Bを複合添加することで耐熱性を高めたステンレス鋼板が開示されている。特許文献2、特許文献3および特許文献4には、Alを添加した耐熱フェライト系ステンレス鋼が開示されている。特許文献5にもAlを添加した耐水蒸気酸化特性に優れたフェライト系ステンレス鋼が開示されている。 Further, Patent Document 1 discloses a stainless steel plate with improved heat resistance by adding Ti, Cu, and B in combination. Patent Document 2, Patent Document 3 and Patent Document 4 disclose heat-resistant ferritic stainless steel to which Al is added. Patent Document 5 also discloses a ferritic stainless steel excellent in steam oxidation resistance with Al added.
特開2010-248620号公報JP 2010-248620 A 特開2009-68113号公報JP 2009-68113 A 特開2004-307918号公報JP 2004-307918 A 特開2001-316773号公報JP 2001-316773 A 特開2009-167443号公報JP 2009-167443 A
 しかしながら、特許文献1に記載の技術では、Cuを添加しているので、連続酸化試験で異常酸化(abnormal oxidation、breakaway)が発生して必要な耐連続酸化性が得られないという問題がある。 However, in the technique described in Patent Document 1, since Cu is added, there is a problem in that abnormal oxidation (abnormal oxidation, breakaway) occurs in the continuous oxidation test and the necessary continuous oxidation resistance cannot be obtained.
 特許文献2および特許文献3に記載の技術は、Alは添加されているが、熱疲労特性が考慮されていないという問題がある。特許文献4に記載の技術にもAlは添加されているが、連続酸化試験で異常酸化が生たり、繰り返し酸化試験で酸化スケールの剥離が生じるなど、必要な耐酸化性が得られない場合があるという問題がある。特許文献5に記載の技術もAlを添加した耐水蒸気酸化特性に関するものであるが、繰り返し酸化で酸化スケールの剥離が生たり、優れた耐繰り返し酸化性が得られない場合があるという問題がある。 The techniques described in Patent Document 2 and Patent Document 3 have a problem that Al is added but thermal fatigue characteristics are not considered. Although Al is also added to the technique described in Patent Document 4, there may be cases where necessary oxidation resistance cannot be obtained, for example, abnormal oxidation occurs in the continuous oxidation test, or peeling of the oxide scale occurs in the repeated oxidation test. There is a problem that there is. The technique described in Patent Document 5 is also related to the steam oxidation resistance property with the addition of Al, but there is a problem that peeling of the oxide scale may occur due to repeated oxidation, or excellent repeated oxidation resistance may not be obtained. .
 一方、合金元素の視点からは、MoおよびWは高価な元素であるとともに、熱間加工性を低下させて表面欠陥を生じさせたり、加工性を低下させる問題がある。Nbも高価な元素であるのみならず、鋼の再結晶温度を高くするので焼鈍温度を上げる必要があり、製造コストが高くなるという問題がある。Cuについても耐酸化性や加工性を低下させるという問題がある。 On the other hand, from the viewpoint of alloying elements, Mo and W are expensive elements, and there are problems of reducing hot workability and causing surface defects or reducing workability. Nb is not only an expensive element, but also raises the recrystallization temperature of the steel, so that there is a problem that the annealing temperature needs to be raised and the manufacturing cost becomes high. Cu also has a problem of reducing oxidation resistance and workability.
 このため、上記した合金元素の添加量を極力抑えた上で高い耐熱性を有する鋼の開発が望まれている。 For this reason, it is desired to develop steel having high heat resistance while suppressing the addition amount of the above alloy elements as much as possible.
 本発明は、高価であるとともに各種特性を低下させるMo、WおよびNb、耐酸化性や加工性を低下させるCuの含有量を極力抑えた上で、熱疲労特性と耐酸化性に優れたフェライト系ステンレス鋼を提供することを目的とする。 The present invention is a ferrite that is excellent in thermal fatigue characteristics and oxidation resistance while minimizing the contents of Mo, W and Nb, which are expensive and deteriorate various properties, and Cu, which reduces oxidation resistance and workability. An object is to provide a stainless steel.
 発明者らは、熱疲労特性に及ぼすAl含有量の影響およびTi含有量の影響、さらには耐酸化性に及ぼすCrやNiの含有量およびAlとCrの含有量比の影響について鋭意研究を行い、Al、Ti、CrおよびNiの最適な含有量範囲を見出した。本発明は上記の知見に更に検討を加えてなされたもので、その要旨は、以下の通りである。 The inventors have conducted intensive research on the effects of Al content and Ti content on thermal fatigue properties, as well as the effects of Cr and Ni content and Al / Cr content ratio on oxidation resistance. The optimum content range of Al, Ti, Cr and Ni was found. The present invention has been made by further studying the above findings, and the gist thereof is as follows.
 [1] 質量%で、C:0.020%以下、Si:3.0%以下、Mn:1.0%以下、P:0.040%以下、S:0.030%以下、Cr:10.0%以上16.0%未満、N:0.020%以下、Al:1.4~4.0%、Ti:0.15%超0.5%以下、Ni:0.05~0.5%を含有し、残部がFeおよび不可避的不純物からなり、下記式(1)を満たすことを特徴とするフェライト系ステンレス鋼。
Al%/Cr%≧0.14・・・・・(1)
なお、式中のAl%、Cr%はそれぞれAl、Crの含有量(質量%)を表わす。
[1] By mass%, C: 0.020% or less, Si: 3.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr: 10 0.0% or more and less than 16.0%, N: 0.020% or less, Al: 1.4-4.0%, Ti: more than 0.15%, 0.5% or less, Ni: 0.05-0. A ferritic stainless steel containing 5%, the balance being Fe and inevitable impurities and satisfying the following formula (1).
Al% / Cr% ≧ 0.14 (1)
In the formula, Al% and Cr% represent the contents (mass%) of Al and Cr, respectively.
 [2] 更に、質量%で、Nb:0.01~0.15%、Cu:0.01%以上0.4%未満の中から選ばれる1種以上を含有することを特徴とする[1]に記載のフェライト系ステンレス鋼。 [2] Further, by mass%, it contains one or more selected from Nb: 0.01 to 0.15%, Cu: 0.01% or more and less than 0.4% [1] ] Ferritic stainless steel described in the above.
 [3] 更に、質量%で、Mo:0.02~0.5%、W:0.02~0.3%の中から選ばれる1種以上を含有することを特徴とする[1]または[2]に記載のフェライト系ステンレス鋼。 [3] Further, by mass%, it contains at least one selected from Mo: 0.02 to 0.5% and W: 0.02 to 0.3% [1] or The ferritic stainless steel according to [2].
 [4] 更に、質量%で、REM:0.001~0.1%、Zr:0.01~0.5%、V:0.01~0.5%、Co:0.01~0.5%の中から選ばれる1種以上を含有することを特徴とする[1]乃至[3]の何れかに記載のフェライト系ステンレス鋼。 [4] Further, in terms of mass%, REM: 0.001 to 0.1%, Zr: 0.01 to 0.5%, V: 0.01 to 0.5%, Co: 0.01 to 0. The ferritic stainless steel according to any one of [1] to [3], which contains at least one selected from 5%.
 [5] 更に、質量%で、B:0.0002~0.0050%、Mg:0.0002~0.0020%、Ca:0.0005~0.0030%の中から選ばれる1種以上を含有することを特徴とする[1]乃至[4]の何れかに記載のフェライト系ステンレス鋼。 [5] Further, by mass%, one or more selected from B: 0.0002 to 0.0050%, Mg: 0.0002 to 0.0020%, Ca: 0.0005 to 0.0030% The ferritic stainless steel according to any one of [1] to [4], which is contained.
 なお、耐酸化性は、耐連続酸化性と耐繰り返し酸化性の両方を意味し、耐連続酸化性は高温で等温保持した後の酸化増量で評価され、耐繰り返し酸化性は昇温と降温を繰り返した後の酸化増量と酸化スケールの剥離の有無で評価される。 In addition, oxidation resistance means both continuous oxidation resistance and repeated oxidation resistance. Continuous oxidation resistance is evaluated by an increase in oxidation after isothermal holding at high temperature, and repeated oxidation resistance is measured by increasing and decreasing temperature. The evaluation is based on the increase in oxidation after the repetition and the presence or absence of peeling of the oxide scale.
 耐連続酸化性が不足していると、高温使用中に酸化スケールが増大し、母材の肉厚が減少するため、優れた熱疲労特性は得られない。また、耐繰り返し酸化性が低いと、使用中に酸化スケールの剥離が生じ、下流のコンバーターなど他部材への影響が問題となる。 If the continuous oxidation resistance is insufficient, the oxide scale increases during high temperature use and the thickness of the base material decreases, so that excellent thermal fatigue characteristics cannot be obtained. In addition, when the resistance to repeated oxidation is low, the oxide scale peels off during use, and the influence on other members such as a downstream converter becomes a problem.
 本発明により、Mo、W、NbおよびCuの含有量を最小限として、Nb-Si複合添加鋼と同等以上の熱疲労特性と耐酸化性を有するフェライト系ステンレス鋼を得ることができるので、自動車用排気系部材に極めて有効である。 According to the present invention, a ferritic stainless steel having thermal fatigue characteristics and oxidation resistance equivalent to or better than those of a Nb—Si composite added steel can be obtained by minimizing the contents of Mo, W, Nb and Cu. It is extremely effective for exhaust system members.
熱疲労試験片を説明する図である。It is a figure explaining a thermal fatigue test piece. 熱疲労試験における温度、拘束条件を説明する図である。It is a figure explaining the temperature in a thermal fatigue test, and constraint conditions. 耐連続酸化性(酸化増量)に及ぼすAl(%)/Cr(%)の影響を表す図であるIt is a figure showing the influence of Al (%) / Cr (%) which has on continuous oxidation resistance (oxidation increase). 耐繰り返し酸化性(酸化増量とスケール剥離の有無)に及ぼすAl(%)/Cr(%)の影響を表す図であるIt is a figure showing the influence of Al (%) / Cr (%) which gives to the repeated oxidation resistance (oxidation increase and the presence or absence of scale peeling).
 以下に本発明の各構成要件の限定理由について説明する。 Hereinafter, the reasons for limitation of each component of the present invention will be described.
 1.成分組成について
 本発明のフェライト系ステンレス鋼の成分組成を規定した理由を説明する。なお、成分%は全て質量%を意味する。
1. About a component composition The reason which prescribed | regulated the component composition of the ferritic stainless steel of this invention is demonstrated. In addition, all component% means the mass%.
 C:0.020%以下
 Cは、鋼の強度を高めるのに有効な元素であるが、0.020%を超えて含有すると、靭性および成形性の低下が顕著となる。よって、本発明では、Cは0.020%以下とする。なお、成形性を確保する観点からは、Cは低いほど好ましく、0.015%以下とするのが望ましい。さらに望ましくは0.010%以下である。一方、排気系部材としての強度を確保するには、Cは0.001%以上であることが好ましく、より好ましくは、0.003%以上である。
C: 0.020% or less C is an element effective for increasing the strength of steel, but if it exceeds 0.020%, the toughness and formability are significantly reduced. Therefore, in the present invention, C is made 0.020% or less. In addition, from the viewpoint of ensuring moldability, C is preferably as low as possible, and is preferably 0.015% or less. More desirably, it is 0.010% or less. On the other hand, in order to ensure the strength as an exhaust system member, C is preferably 0.001% or more, and more preferably 0.003% or more.
 Si:3.0%以下
 Siは、耐酸化性向上のために重要な元素である。その効果は0.1%以上含有することで得られる。より優れた耐酸化性を必要とする場合は0.3%以上の含有が望ましい。ただし、3.0%を超える含有は、加工性を低下させるだけでなく酸化スケールが剥離しやすくなり耐繰り返し酸化性を低下させる。よって、Si量は3.0%以下とする。より好ましくは、0.3~2.0%の範囲である。さらに好ましくは0.5~1.0%の範囲である。
Si: 3.0% or less Si is an important element for improving oxidation resistance. The effect is acquired by containing 0.1% or more. When higher oxidation resistance is required, the content is preferably 0.3% or more. However, if the content exceeds 3.0%, not only the workability is lowered, but also the oxide scale is easily peeled off, and the repeated oxidation resistance is lowered. Therefore, the Si amount is 3.0% or less. More preferably, it is in the range of 0.3 to 2.0%. More preferably, it is in the range of 0.5 to 1.0%.
 Mn:1.0%以下
 Mnは、鋼の強度を高める元素であり、また、脱酸剤としての作用も有する。また、Siを添加した場合の酸化スケールの剥離を抑制する効果も有する。その効果を得るためには、0.1%以上が好ましい。しかし、過剰な含有は、酸化速度を著しく増加させてしまうのみならず、高温でγ相が生成しやすくなり耐熱性を低下させる。よって、本発明では、Mn量は1.0%以下とする。好ましくは、0.1~0.5%の範囲である。さらに好ましくは0.15~0.4%の範囲である。
Mn: 1.0% or less Mn is an element that increases the strength of steel and also has an action as a deoxidizer. It also has an effect of suppressing oxide scale peeling when Si is added. In order to acquire the effect, 0.1% or more is preferable. However, excessive inclusion not only significantly increases the oxidation rate, but also tends to form a γ phase at high temperatures, thus reducing heat resistance. Therefore, in the present invention, the amount of Mn is set to 1.0% or less. Preferably, it is in the range of 0.1 to 0.5%. More preferably, it is in the range of 0.15 to 0.4%.
 P:0.040%以下
 Pは、靭性を低下させる有害元素であり、可能な限り低減するのが望ましい。そこで、本発明では、P量は0.040%以下とする。好ましくは、0.030%以下である。
P: 0.040% or less P is a harmful element that lowers toughness, and is desirably reduced as much as possible. Therefore, in the present invention, the P amount is 0.040% or less. Preferably, it is 0.030% or less.
 S:0.030%以下
 Sは、伸びやr値(Lankford value)を低下させて、成形性に悪影響を及ぼすとともに、ステンレス鋼の基本特性である耐食性を低下させる有害元素でもあるため、できるだけ低減するのが望ましい。よって、本発明では、S量は0.030%以下とする。好ましくは、0.010%以下である。より好ましくは0.005%以下である。
S: 0.030% or less S is reduced as much as possible because it lowers the elongation and r value (Lankford value), adversely affects the formability, and is also a harmful element that lowers the corrosion resistance, which is a basic characteristic of stainless steel. It is desirable to do. Therefore, in the present invention, the S amount is 0.030% or less. Preferably, it is 0.010% or less. More preferably, it is 0.005% or less.
 Cr:10.0%以上16.0%未満
 Crは、ステンレス鋼の特徴である耐食性、耐酸化性を向上させるのに有効な重要元素であるが、10.0%未満では、十分な耐酸化性が得られない。一方、Crは、室温において鋼を固溶強化(solid solute strengthening)し、硬質化させ、延性を低下させる元素である。本発明のようなAl添加鋼においてはCrを16.0%以上含有すると、上記弊害が顕著となり複雑な形状、例えばエキゾーストマニホールドに加工するのが困難になる。よって、Cr量は、10.0%以上16.0%未満の範囲とする。より好ましくは、11.0~15.0%の範囲である。さらに好ましくは12.0~14.0%の範囲である。
Cr: 10.0% or more and less than 16.0% Cr is an important element effective for improving the corrosion resistance and oxidation resistance, which are the characteristics of stainless steel. If it is less than 10.0%, sufficient oxidation resistance is achieved. Sex cannot be obtained. On the other hand, Cr is an element that solidifies and strengthens steel at room temperature, hardens it, and reduces ductility. In the Al-added steel as in the present invention, when Cr is contained in an amount of 16.0% or more, the above-described adverse effects become remarkable and it becomes difficult to process into a complicated shape, for example, an exhaust manifold. Therefore, the Cr amount is in the range of 10.0% or more and less than 16.0%. More preferably, it is in the range of 11.0 to 15.0%. More preferably, it is in the range of 12.0 to 14.0%.
 N:0.020%以下
 Nは、鋼の靭性および成形性を低下させる元素であり、0.020%を超えて含有すると、成形性の低下が顕著となる。よって、N量は0.020%以下とする。なお、N量は、靭性および成形性を確保する観点からは、できるだけ低減するのが好ましく、0.015%以下とするのが望ましい。さらに好ましくは0.012%以下である。
N: 0.020% or less N is an element that lowers the toughness and formability of steel, and when it exceeds 0.020%, the decrease in formability becomes significant. Therefore, the N amount is 0.020% or less. The N content is preferably reduced as much as possible from the viewpoint of ensuring toughness and formability, and is preferably 0.015% or less. More preferably, it is 0.012% or less.
 Al:1.4~4.0%、Al%/Cr%≧0.14
 Alは、熱疲労特性を向上させる重要な元素である。Alは固溶強化元素として働き、特に最高温度が700℃を超える熱疲労試験において、大きく熱疲労特性を向上させる。その効果は1.4%以上含有することで得られる。
Al: 1.4 to 4.0%, Al% / Cr% ≧ 0.14
Al is an important element that improves thermal fatigue characteristics. Al acts as a solid solution strengthening element, and greatly improves thermal fatigue characteristics particularly in a thermal fatigue test in which the maximum temperature exceeds 700 ° C. The effect is acquired by containing 1.4% or more.
 さらに、Alは酸化スケールを緻密で安定なAlを主体としたものにして耐酸化性を向上させる。Al含有量が1.4%未満の場合には、酸化スケールはCr酸化物が主体であり、十分なAlは形成されない。1.4%以上のAlを含有させるとともに、Al%/Cr%≧0.14を満たすようにCrとAlを含有すると、緻密で安定なAlが生成して優れた耐酸化性が得られる。
後述する実施例1の結果のうち特に表2に示す鋼により、Al%/Cr%の耐酸化性に及ぼす影響を調査した。1050℃で400時間保持する連続酸化試験における酸化増量へのAl%/Cr%の影響を図3に示す。Al%/Cr%が0.14未満の場合、Alを1.4%以上含有しているにもかかわらず異常酸化(酸化増量≧50g/m)が発生している。一方で、Al%/Cr%が0.14以上の場合、異常酸化は発生していない。
Further, Al improves the oxidation resistance by making the oxide scale mainly composed of dense and stable Al 2 O 3 . When the Al content is less than 1.4%, the oxide scale is mainly composed of Cr oxide, and sufficient Al 2 O 3 is not formed. When not less than 1.4% Al is contained and Cr and Al are contained so as to satisfy Al% / Cr% ≧ 0.14, dense and stable Al 2 O 3 is generated and excellent oxidation resistance is obtained. can get.
Among the results of Example 1 to be described later, particularly the steel shown in Table 2, the influence on the oxidation resistance of Al% / Cr% was investigated. FIG. 3 shows the influence of Al% / Cr% on the increase in oxidation in the continuous oxidation test held at 1050 ° C. for 400 hours. When Al% / Cr% is less than 0.14, abnormal oxidation (oxidation increase ≧ 50 g / m 2 ) occurs despite containing 1.4% or more of Al. On the other hand, when Al% / Cr% is 0.14 or more, abnormal oxidation does not occur.
 さらに、1050℃で400サイクルの繰り返し酸化試験における酸化増量に対するAl%/Cr%の影響を図4に示す。Al%/Cr%が0.14未満の場合、Alを1.4%以上含有しているにもかかわらず異常酸化(酸化増量≧50g/m)が発生し、かつスケールの剥離が見られた。一方で、Al%/Cr%が0.14以上の場合、異常酸化もスケール剥離も発生していない。 Further, FIG. 4 shows the influence of Al% / Cr% on the increase in oxidation in the repeated oxidation test of 400 cycles at 1050 ° C. When Al% / Cr% is less than 0.14, abnormal oxidation (oxidation increase ≧ 50 g / m 2 ) occurs despite the Al content of 1.4% or more, and scale peeling is observed. It was. On the other hand, when Al% / Cr% is 0.14 or more, neither abnormal oxidation nor scale peeling occurs.
 これらは、Al%/Cr%の値が0.14より小さい場合、すなわちAl量に対してCr量の割合が大きい場合は、Cr酸化物が形成されてAl酸化皮膜の形成が阻害されて、優れた耐酸化性が得られなくなるためと考えられる。一方で、Al%/Cr%が0.14以上であれば、緻密で安定なAl酸化皮膜がCr酸化物よりも優先的に形成されるため、優れた耐酸化性が得られると考えられる。したがって、Al量とCr量は、Al%/Cr%≧0.14を満たすことが必要である。 When the value of Al% / Cr% is smaller than 0.14, that is, when the ratio of Cr amount is large with respect to Al amount, Cr oxide is formed and formation of Al 2 O 3 oxide film is inhibited. This is considered to be because excellent oxidation resistance cannot be obtained. On the other hand, if Al% / Cr% is 0.14 or more, a dense and stable Al 2 O 3 oxide film is formed preferentially over Cr oxide, and thus excellent oxidation resistance can be obtained. Conceivable. Therefore, the Al amount and the Cr amount must satisfy Al% / Cr% ≧ 0.14.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 以上のようにAlは熱疲労特性と耐酸化性を向上させる効果があるが、4.0%を超えて含有すると鋼が著しく硬質化し、加工性や靭性が大きく低下するのみならず熱疲労特性も低下する。従って、Al量は1.4~4.0%の範囲とする。好ましくは1.5%~3.5%の範囲である。さらに好ましくは2.0~3.0%の範囲である。 As described above, Al has the effect of improving the thermal fatigue characteristics and oxidation resistance. However, if it exceeds 4.0%, the steel becomes extremely hard and not only the workability and toughness are greatly reduced but also the thermal fatigue characteristics. Also decreases. Therefore, the Al content is in the range of 1.4 to 4.0%. Preferably, it is in the range of 1.5% to 3.5%. More preferably, it is in the range of 2.0 to 3.0%.
 Ti:0.15%超0.5%以下
 TiはC、Nを固定して、耐食性や成形性、溶接部の耐粒界腐食性(intergranular corrosion resistance)を向上させる作用を有する重要な元素である。さらに本発明のようにAlを1.4%以上含有する場合、熱疲労特性を向上させるAlがAlNとして析出して固溶強化元素として働かなくなるのを防止するために重要な元素である。AlNの形成を防止するには、Tiは0.15%を超えて含有する必要がある。Ti含有量がこれよりも少ない場合、AlがNと結びつき、AlNとして析出してAlの固溶量が低減し、優れた熱疲労特性が得られなくなる。
Ti: more than 0.15% and less than 0.5% Ti is an important element that has the effect of fixing C and N to improve the corrosion resistance, formability, and intergranular corrosion resistance of the weld. is there. Further, when Al is contained in an amount of 1.4% or more as in the present invention, it is an important element for preventing Al that improves thermal fatigue properties from being precipitated as AlN and not acting as a solid solution strengthening element. In order to prevent the formation of AlN, it is necessary to contain Ti exceeding 0.15%. When the Ti content is less than this, Al is combined with N, and is precipitated as AlN to reduce the solid solution amount of Al, so that excellent thermal fatigue characteristics cannot be obtained.
 さらに、Tiは0.15%を超えて含有すると、Ti(C,N)として析出するのみならず、FeTiPとして結晶粒界に微細析出する。Ti(C,N)は粗大に析出するため鋼の強化には寄与しないが、粒界に微細析出するFeTiPは、結晶粒界を強化して熱疲労特性を向上させる。従って、Tiは0.15%を超えて含有する。一方、過剰な含有は鋼の靭性と酸化スケールの密着性(耐繰り返し酸化性)を低下させるため、0.5%を上限とする。従って、Ti量は0.15%超0.5%以下の範囲とする。好ましくは0.18~0.4%の範囲である。さらに好ましくは0.20~0.3%の範囲である。良好なTi含有量は0.15%超0.50%以下の範囲であり、より良好には0.18~0.40%の範囲である。さらに良好には0.20~0.30%の範囲である。 Furthermore, when Ti is contained in an amount exceeding 0.15%, it not only precipitates as Ti (C, N) but also finely precipitates at the grain boundaries as FeTiP. Ti (C, N) precipitates coarsely and does not contribute to strengthening of the steel, but FeTiP finely precipitated at the grain boundaries strengthens the grain boundaries and improves thermal fatigue characteristics. Therefore, Ti contains more than 0.15%. On the other hand, excessive content lowers the toughness of the steel and the adhesion of the oxide scale (repetitive oxidation resistance), so the upper limit is 0.5%. Accordingly, the Ti content is set to a range of more than 0.15% and 0.5% or less. Preferably it is 0.18 to 0.4% of range. More preferably, it is in the range of 0.20 to 0.3%. Good Ti content is in the range of more than 0.15% and 0.50% or less, and more preferably in the range of 0.18 to 0.40%. More preferably, it is in the range of 0.20 to 0.30%.
 Ni:0.05~0.5%
 Niは本発明において重要な元素である。Niは鋼の靭性を向上させるのみならず、Ti含有鋼における耐酸化性、特に耐繰り返し酸化性を向上させる元素である。その効果を得るためには、0.05%以上含有する必要がある。Niが含有されていないか、またはNi量が0.05%より少ない場合、耐繰り返し酸化性が不足する。耐繰り返し酸化性が不足すると、昇温・降温のたびに酸化スケールが剥離することで酸化が進行して母材の板厚が減少したり、また、酸化スケールが剥離することで亀裂の起点となることにより優れた熱疲労特性が得られなくなる。一方、Niは高価な元素であり、また、強力なγ相形成元素であるため、過剰な含有は高温でγ相を生成し却って耐酸化性を低下させる。よって、上限を0.5%とする。好ましくは0.05~0.50%の範囲である。より好ましくは0.10~0.30%の範囲である。さらに好ましくは0.15~0.25%の範囲である。
Ni: 0.05 to 0.5%
Ni is an important element in the present invention. Ni is an element that not only improves the toughness of the steel but also improves the oxidation resistance, particularly the repeated oxidation resistance, in the Ti-containing steel. In order to acquire the effect, it is necessary to contain 0.05% or more. When Ni is not contained or when the amount of Ni is less than 0.05%, the repeated oxidation resistance is insufficient. If the resistance to repeated oxidation is insufficient, the oxide scale peels off each time the temperature rises or falls, the oxidation progresses and the thickness of the base metal decreases, or the oxide scale peels off and the crack starts. As a result, excellent thermal fatigue characteristics cannot be obtained. On the other hand, Ni is an expensive element and is a strong γ-phase forming element. Therefore, excessive inclusion generates a γ-phase at high temperatures and reduces oxidation resistance. Therefore, the upper limit is 0.5%. Preferably it is 0.05 to 0.50% of range. More preferably, it is in the range of 0.10 to 0.30%. More preferably, it is in the range of 0.15 to 0.25%.
 以上が本発明のフェライト系ステンレス鋼の基本化学成分であり、残部はFeおよび不可避不純物からなるが、更に、耐熱性向上の観点からNb、Cuの中から選ばれる1種以上を選択元素として下記の範囲で含有してもよい。 The above are the basic chemical components of the ferritic stainless steel of the present invention, and the balance consists of Fe and inevitable impurities. Further, from the viewpoint of improving heat resistance, one or more selected from Nb and Cu are selected elements as follows. You may contain in the range of.
 Nb:0.01~0.15%
 Nbは、CおよびNと炭窒化物を形成して固定し、耐食性や成形性、溶接部の耐粒界腐食性を高める作用を有するとともに、高温強度を著しく上昇させて熱疲労特性および高温疲労特性を向上させる効果を有する元素である。その効果を得るには、0.01%以上の含有が好ましい。しかし0.15%を超える含有は、Nbは高価な元素である上、鋼の再結晶温度を上昇させるので、焼鈍温度を高くする必要があり、製造コストの増加に繋がる。よってNbを含有する場合、その量は0.01~0.15%の範囲とすることが好ましい。より好ましくは0.02~0.12%の範囲である。さらに好ましくは0.05~0.10%の範囲である。
Nb: 0.01 to 0.15%
Nb forms and fixes carbonitride with C and N, and has the effect of enhancing corrosion resistance, formability, and intergranular corrosion resistance of welds, and also significantly increases high-temperature strength to improve thermal fatigue characteristics and high-temperature fatigue. It is an element having the effect of improving the characteristics. In order to acquire the effect, containing 0.01% or more is preferable. However, if the content exceeds 0.15%, Nb is an expensive element and also raises the recrystallization temperature of the steel. Therefore, it is necessary to increase the annealing temperature, leading to an increase in production cost. Therefore, when Nb is contained, the amount is preferably in the range of 0.01 to 0.15%. More preferably, it is in the range of 0.02 to 0.12%. More preferably, it is in the range of 0.05 to 0.10%.
 Cu:0.01%以上0.4%未満
 Cuは、熱疲労特性の向上に有効な元素である。その効果を得るには、0.01%以上の含有が好ましい。しかし、0.4%以上含有すると酸化スケールへのAl生成を阻害して耐酸化性を低下させる。従って、Cuを含有する場合は、その量は0.01%以上0.4%未満の範囲とすることが好ましい。より好ましくは0.01~0.2%の範囲である。さらに好ましくは0.01~0.1%の範囲である。良好なCu含有量は0.01%以上0.40%未満の範囲であり、より良好には0.01~0.20%の範囲である。さらに良好には0.01~0.10%の範囲である。
Cu: 0.01% or more and less than 0.4% Cu is an element effective for improving thermal fatigue characteristics. In order to acquire the effect, containing 0.01% or more is preferable. However, when the content is 0.4% or more, Al 2 O 3 production on the oxide scale is inhibited, and the oxidation resistance is lowered. Therefore, when it contains Cu, it is preferable to make the quantity into the range of 0.01% or more and less than 0.4%. More preferably, it is in the range of 0.01 to 0.2%. More preferably, it is in the range of 0.01 to 0.1%. Good Cu content is in the range of 0.01% or more and less than 0.40%, and more preferably in the range of 0.01 to 0.20%. More preferably, it is in the range of 0.01 to 0.10%.
 更に、耐熱性向上の観点からMo、Wの中から選ばれる1種以上を選択元素として下記の範囲で含有してもよい。 Furthermore, from the viewpoint of improving heat resistance, one or more selected from Mo and W may be contained in the following range as selective elements.
 Mo:0.02~0.5%
 Moは、固溶強化により鋼の強度を増加させることで耐熱性を向上させる元素である。その効果を得るには0.02%以上の含有が好ましい。しかしMoは高価な元素である上、0.5%を超える含有は、本発明のようにAlを1.4%以上含有した鋼においては耐酸化性を低下させる。よって、Moを含有する場合、その量は0.02~0.5%の範囲とすることが好ましい。より好ましくは0.02~0.3%の範囲である。さらに好ましくは0.02~0.1%の範囲である。良好なMo含有量は0.02~0.50%の範囲であり、より良好には0.02~0.30%の範囲である。さらに良好には0.02~0.10%の範囲である。
Mo: 0.02 to 0.5%
Mo is an element that improves the heat resistance by increasing the strength of the steel by solid solution strengthening. In order to acquire the effect, containing 0.02% or more is preferable. However, Mo is an expensive element, and a content exceeding 0.5% lowers the oxidation resistance in a steel containing 1.4% or more of Al as in the present invention. Therefore, when Mo is contained, the amount is preferably in the range of 0.02 to 0.5%. More preferably, it is in the range of 0.02 to 0.3%. More preferably, it is in the range of 0.02 to 0.1%. Good Mo content is in the range of 0.02 to 0.50%, and more preferably in the range of 0.02 to 0.30%. More preferably, it is in the range of 0.02 to 0.10%.
 W:0.02~0.3%
 Wは、Moと同様に固溶強化により鋼の強度を増加させることで耐熱性を向上させる元素である。その効果を得るには0.02%以上の含有が好ましい。しかしMoと同様に高価な元素である上、0.3%を超える含有は、焼鈍時に生成する酸化スケールを安定化させて冷延焼鈍後の酸洗で脱スケールしにくくする。よって、Wを含有する場合、その量は0.02~0.3%の範囲とすることが好ましい。より好ましくは0.02~0.1%の範囲である。良好なW含有量は0.02~0.30%の範囲であり、より良好には0.02~0.10%の範囲である。
W: 0.02-0.3%
W, like Mo, is an element that improves the heat resistance by increasing the strength of the steel by solid solution strengthening. In order to acquire the effect, containing 0.02% or more is preferable. However, in addition to being an expensive element like Mo, the content exceeding 0.3% stabilizes the oxide scale generated during annealing and makes it difficult to descal by pickling after cold rolling annealing. Therefore, when W is contained, the amount is preferably in the range of 0.02 to 0.3%. More preferably, it is in the range of 0.02 to 0.1%. A good W content is in the range of 0.02 to 0.30%, and more preferably in the range of 0.02 to 0.10%.
 更に、耐熱性向上の観点からREM、Zr、V、Coの中から選ばれる1種以上を選択元素として下記の範囲で含有してもよい。 Furthermore, from the viewpoint of improving heat resistance, one or more selected from REM, Zr, V, and Co may be contained as selected elements in the following range.
 REM:0.001~0.10%
 REM(希土類元素)は耐酸化性を改善する元素であり、本発明では、必要に応じて含有する。その効果を得るには、0.001%以上の含有が好ましい。しかし、REM量が0.10%を超えると鋼を脆化させる。よって、REMを添加する場合、その量は0.001~0.10%の範囲とするのが好ましい。より好ましくは0.005~0.06%の範囲である。さらに好ましくは0.01~0.05%の範囲である。良好なREM含有量は0.001~0.100%の範囲であり、より良好には0.005~0.060%の範囲である。さらに良好には0.010~0.050%の範囲である。
REM: 0.001 to 0.10%
REM (rare earth element) is an element that improves oxidation resistance, and is contained as necessary in the present invention. In order to acquire the effect, containing 0.001% or more is preferable. However, if the amount of REM exceeds 0.10%, the steel is embrittled. Therefore, when REM is added, the amount is preferably in the range of 0.001 to 0.10%. More preferably, it is in the range of 0.005 to 0.06%. More preferably, it is in the range of 0.01 to 0.05%. A good REM content is in the range of 0.001 to 0.100%, more preferably in the range of 0.005 to 0.060%. More preferably, it is in the range of 0.010 to 0.050%.
 Zr:0.01~0.5%
 Zrは耐酸化性を改善する元素であり、本発明では、必要に応じて含有する。その効果を得るには、0.01%以上の含有が好ましい。しかし、Zr量が0.5%を超えると、Zr金属間化合物が析出して鋼を脆化させる。よって、Zrを含有する場合、その量は0.01~0.5%の範囲とすることが好ましい。より好ましくは0.02~0.1%の範囲である。さらに好ましくは0.01~0.10%の範囲である。良好なZr含有量は0.01~0.50%の範囲であり、より良好には0.02~0.10%の範囲である。
Zr: 0.01 to 0.5%
Zr is an element that improves oxidation resistance, and is contained as necessary in the present invention. In order to acquire the effect, containing 0.01% or more is preferable. However, if the amount of Zr exceeds 0.5%, a Zr intermetallic compound precipitates and embrittles the steel. Therefore, when Zr is contained, the amount is preferably in the range of 0.01 to 0.5%. More preferably, it is in the range of 0.02 to 0.1%. More preferably, it is in the range of 0.01 to 0.10%. A good Zr content is in the range of 0.01 to 0.50%, and more preferably in the range of 0.02 to 0.10%.
 V:0.01~0.5%
 Vは、耐酸化性を向上させるのみならず、高温強度の向上に有効な元素である。その効果を得るには、0.01%以上の含有が好ましい。しかし、0.5%を超えると、粗大なV(C,N)を析出し靭性を低下させる。よって、Vを含有する場合、その量は0.01~0.5%の範囲とすることが好ましい。より好ましくは、0.05~0.4%の範囲である。さらに好ましくは0.10~0.25%の範囲である。良好なV含有量は0.01~0.50%の範囲であり、より良好には0.05~0.40%の範囲である。
V: 0.01 to 0.5%
V is an element effective not only for improving the oxidation resistance but also for improving the high temperature strength. In order to acquire the effect, containing 0.01% or more is preferable. However, if it exceeds 0.5%, coarse V (C, N) is precipitated and the toughness is lowered. Therefore, when V is contained, the amount is preferably in the range of 0.01 to 0.5%. More preferably, it is in the range of 0.05 to 0.4%. More preferably, it is in the range of 0.10 to 0.25%. A favorable V content is in the range of 0.01 to 0.50%, and more preferably in the range of 0.05 to 0.40%.
 Co:0.01~0.5%
 Coは、靭性の向上に有効な元素であるとともに、高温強度を向上させる元素である。その効果を得るには、0.01%以上の含有が好ましい。しかし、Coは、高価な元素であり、また、0.5%を超えて含有しても、上記効果は飽和する。よって、Coを含有する場合、その量は0.01~0.5%の範囲とすることが好ましい。より好ましくは、0.02~0.2%の範囲である。さらに好ましくは0.02~0.1%の範囲である。
良好なCo含有量は0.01~0.50%の範囲であり、より良好には0.02~0.20%の範囲である。さらに良好には0.02~0.10%の範囲である。
Co: 0.01 to 0.5%
Co is an element effective for improving toughness and an element for improving high-temperature strength. In order to acquire the effect, containing 0.01% or more is preferable. However, Co is an expensive element, and even if it contains more than 0.5%, the above effect is saturated. Therefore, when Co is contained, the amount is preferably in the range of 0.01 to 0.5%. More preferably, it is in the range of 0.02 to 0.2%. More preferably, it is in the range of 0.02 to 0.1%.
A good Co content is in the range of 0.01 to 0.50%, and better still in the range of 0.02 to 0.20%. More preferably, it is in the range of 0.02 to 0.10%.
 更に、加工性や製造性向上の観点からB、MgおよびCaの中から選ばれる1種以上を選択元素として下記の範囲で含有してもよい。 Furthermore, from the viewpoint of improving processability and manufacturability, one or more selected from B, Mg and Ca may be contained in the following ranges as selective elements.
 B:0.0002~0.0050%
 Bは、加工性、特に二次加工脆性(secondary working embrittlement)を改善させる元素である。その効果を得るには0.0002%以上の含有が好ましい。しかし、0.0050%を超える含有は鋼の加工性、靭性を低下させる。従ってBを含有する場合は0.0002~0.0050%の範囲とすることが好ましい。より好ましくは0.0002~0.0030%の範囲である。さらに好ましくは0.0002~0.0010%の範囲である。
B: 0.0002 to 0.0050%
B is an element that improves workability, particularly secondary working embrittlement. In order to obtain the effect, the content is preferably 0.0002% or more. However, the content exceeding 0.0050% lowers the workability and toughness of steel. Therefore, when B is contained, the content is preferably in the range of 0.0002 to 0.0050%. More preferably, it is in the range of 0.0002 to 0.0030%. More preferably, it is in the range of 0.0002 to 0.0010%.
 Mg:0.0002~0.0020%
 Mgはスラブの等軸晶率を向上させ、加工性や靭性の向上に有効な元素である。本発明のようにTiが添加されている鋼においては、Tiの炭窒化物の粗大化を抑制する効果も有する。その効果を得るには0.0002%以上の含有が好ましい。Ti炭窒化物が粗大化すると、脆性割れの起点となり鋼の靭性が大きく低下するからである。しかし、Mg量が0.0020%を超えると、鋼の表面性状を悪化させてしまう。したがって、Mgを含有する場合は0.0002~0.0020%の範囲とすることが好ましい。より好ましくは0.0002~0.0015%の範囲である。さらに好ましくは0.0004~0.0010%の範囲である。
Mg: 0.0002 to 0.0020%
Mg is an element that improves the equiaxed crystal ratio of the slab and is effective in improving workability and toughness. The steel to which Ti is added as in the present invention also has an effect of suppressing the coarsening of Ti carbonitride. In order to obtain the effect, the content is preferably 0.0002% or more. This is because when the Ti carbonitride is coarsened, it becomes a starting point for brittle cracking and the toughness of the steel is greatly reduced. However, if the Mg content exceeds 0.0020%, the surface properties of the steel are deteriorated. Therefore, when it contains Mg, it is preferable to set it as 0.0002 to 0.0020% of range. More preferably, it is in the range of 0.0002 to 0.0015%. More preferably, it is in the range of 0.0004 to 0.0010%.
 Ca:0.0005~0.0030%
 Caは、連続鋳造の際に発生しやすいTi系介在物の析出による鋳造用ノズルの閉塞を防止するのに有効な成分である。その効果を得るには0.0005%以上の含有が好ましい。しかし、表面欠陥を発生しやすくするので良好な表面性状を得るためには0.0030%以下とする必要がある。従って、Caを含有する場合は、Ca量は0.0005~0.0030%の範囲とすることが好ましい。より好ましくは0.0005%~0.0020%の範囲である。さらに好ましくは0.0005%~0.0015%の範囲である。
Ca: 0.0005 to 0.0030%
Ca is an effective component for preventing clogging of the casting nozzle due to precipitation of Ti inclusions that are likely to occur during continuous casting. In order to obtain the effect, the content is preferably 0.0005% or more. However, since surface defects are easily generated, it is necessary to be 0.0030% or less in order to obtain good surface properties. Therefore, when Ca is contained, the Ca content is preferably in the range of 0.0005 to 0.0030%. More preferably, it is in the range of 0.0005% to 0.0020%. More preferably, it is in the range of 0.0005% to 0.0015%.
 2.製造方法について
 次に、本発明のフェライト系ステンレス鋼の製造方法について説明する。
2. About a manufacturing method Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
 本発明のステンレス鋼の製造方法は、フェライト系ステンレス鋼の通常の製造方法であれば好適に用いることができ、特に限定されるものではない。例えば、転炉や電気炉等の公知の溶解炉(で鋼を溶製し、あるいはさらに取鍋精錬や真空精錬等の2次精錬を経て上述した本発明の成分組成を有する鋼とし、次いで、連続鋳造法あるいは造塊-分塊圧延法で鋼片(スラブ)とし、その後、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍および酸洗等の各工程を経て冷延焼鈍板とするのが好ましい。 The method for producing stainless steel of the present invention can be suitably used as long as it is an ordinary method for producing ferritic stainless steel, and is not particularly limited. For example, a steel having the above-described component composition of the present invention is obtained by melting a steel in a known melting furnace (such as a converter or an electric furnace), or further through secondary refining such as ladle refining or vacuum refining, It is made into a steel slab by continuous casting or ingot-bundling rolling, and then cold-rolled through various processes such as hot rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing and pickling. It is preferable to use an annealed plate.
 なお、上記冷間圧延は、1回または中間焼鈍を挟む2回以上の冷間圧延を行ってもよく、また、冷間圧延、仕上焼鈍および酸洗の各工程は、繰り返して行ってもよい。さらに、場合によっては、熱延板焼鈍は省略してもよく、鋼板表面の光沢性が要求される場合には、冷延後、あるいは仕上焼鈍後、スキンパス圧延を施してもよい。 In addition, the said cold rolling may perform cold rolling of 1 time or 2 times or more on both sides of intermediate annealing, and each process of cold rolling, finish annealing, and pickling may be performed repeatedly. . Furthermore, depending on the case, the hot-rolled sheet annealing may be omitted, and when the gloss of the steel sheet surface is required, skin pass rolling may be performed after cold rolling or after finish annealing.
 より好ましい製造方法は、熱間圧延工程および冷間圧延工程の一部条件を特定条件とするのが好ましい。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する溶鋼を、転炉あるいは電気炉等で溶製し、VOD法(Vacuum Oxygen Decarburization method)あるいはAOD法(Argon Oxygen Decarburization)により二次精錬を行うのが好ましい。溶製した溶鋼は、公知の製造方法にしたがって鋼素材とすることができるが、生産性および品質の観点から、連続鋳造法によるのが好ましい。 It is preferable that a more preferable manufacturing method uses specific conditions for a partial condition of the hot rolling process and the cold rolling process. In steelmaking, molten steel containing the above-mentioned essential components and components added as necessary is melted in a converter or an electric furnace, etc. It is preferable to perform secondary refining. The molten steel can be made into a steel material according to a known production method, but from the viewpoint of productivity and quality, it is preferable to use a continuous casting method.
 連続鋳造して得られた鋼素材は、例えば、1000~1250℃に加熱され、熱間圧延により所望の板厚の熱延板とされる。もちろん、板材以外として加工することもできる。この熱延板は、必要に応じて、600~900℃のバッチ式焼鈍(batch annealing、box annealing)あるいは850℃~1050℃の連続焼鈍を施した後、酸洗等により脱スケールされ熱延板製品となる。また、必要に応じて、酸洗の前にショットブラストによりスケールを除去してもよい。 The steel material obtained by continuous casting is heated to 1000 to 1250 ° C., for example, and hot rolled into a desired thickness by hot rolling. Of course, it can be processed as other than the plate material. This hot-rolled sheet is subjected to batch annealing (batch-annealing, box-annealing) at 600 to 900 ° C. or continuous annealing at 850 ° C. to 1050 ° C. as necessary, and then descaled by pickling etc. Become a product. If necessary, the scale may be removed by shot blasting before pickling.
 さらに、冷延焼鈍板を得るためには、上記で得られた熱延焼鈍板が、冷間圧延工程を経て冷延板とされる。この冷間圧延工程では、生産上の都合により、必要に応じて中間焼鈍を含む2回以上の冷間圧延を行ってもよい。1回または2回以上の冷間圧延からなる冷延工程の総圧下率を60%以上、好ましくは70%以上とする。 Furthermore, in order to obtain a cold-rolled annealed plate, the hot-rolled annealed plate obtained above is made into a cold-rolled plate through a cold rolling process. In this cold rolling process, two or more cold rollings including intermediate annealing may be performed as necessary for the convenience of production. The total rolling reduction of the cold rolling process comprising one or more cold rollings is set to 60% or more, preferably 70% or more.
 冷延板は、850~1000℃の連続焼鈍(仕上げ焼鈍)、次いで酸洗を施されて、冷延焼鈍板とされる。また、用途によっては、酸洗後に軽度の圧延(スキンパス圧延等)を加えて、鋼板の形状、品質調整を行うこともできる。 The cold-rolled sheet is subjected to continuous annealing (finish annealing) at 850 to 1000 ° C., followed by pickling to form a cold-rolled annealed sheet. Depending on the application, the shape and quality of the steel sheet can be adjusted by adding mild rolling (skin pass rolling or the like) after pickling.
 このようにして製造して得た熱延板製品、あるいは冷延焼鈍板製品を用い、それぞれの用途に応じた曲げ加工等を施し、自動車やオートバイの排気管、触媒外筒材および火力発電プラントの排気ダクトあるいは燃料電池関連部材(例えばセパレーター、インターコネクター、改質器等)に成形される。 Using the hot-rolled sheet product or cold-rolled annealed sheet product obtained in this way, bending according to each application, etc., exhaust pipes for automobiles and motorcycles, catalyst outer cylinder materials, and thermal power plants It is formed into an exhaust duct or a fuel cell-related member (for example, a separator, an interconnector, a reformer, etc.).
 これらの部材を溶接するための溶接方法は、特に限定されるものではなく、MIG(Metal Inert Gas)、MAG(Metal Active Gas)、TIG(Tungsten Inert Gas)等の通常のアーク溶接方法や、スポット溶接、シーム溶接等の抵抗溶接方法、および電縫溶接方法(などの高周波抵抗溶接、高周波誘導溶接が適用可能である。 The welding method for welding these members is not particularly limited, and a normal arc welding method such as MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas), or spot Resistance welding methods such as welding and seam welding, and electric resistance welding methods (such as high-frequency resistance welding and high-frequency induction welding are applicable.
 表1-1~表1-6に示す成分組成を有するNo.1~80の鋼(成分%は、全て質量%を意味する)を真空溶解炉で溶製、鋳造して30kg鋼塊とした。1170℃に加熱後、熱間圧延して厚さ35mm×幅150mmのシートバーとした。このシートバーを二分割し、うち一つを熱間鍛造により断面が30mm×30mmである角棒とし、850~1000℃の温度範囲で焼鈍後、機械加工により図1に示す寸法の熱疲労試験片を作製し、熱疲労試験に供した。なお、焼鈍温度については記載した範囲内で、組織を確認しながら成分ごとに設定した。 No. having the component composition shown in Table 1-1 to Table 1-6. 1 to 80 steel (component% means mass%) was melted and cast in a vacuum melting furnace to obtain a 30 kg steel ingot. After heating to 1170 ° C., hot rolling was performed to obtain a sheet bar having a thickness of 35 mm and a width of 150 mm. This sheet bar is divided into two parts, one of which is made into a square bar with a cross section of 30 mm x 30 mm by hot forging, annealed in the temperature range of 850 to 1000 ° C, and then machined to the thermal fatigue test with the dimensions shown in Fig. 1 A piece was prepared and subjected to a thermal fatigue test. In addition, about annealing temperature, it set for every component within the range described, confirming a structure | tissue.
 上記二分割したもう一方のシートバーを用い、1050℃に加熱後、熱間圧延を行い、板厚5mmの熱延板とした。その後850~1050℃の温度範囲で焼鈍を行い、酸洗または研磨により表面のスケールを除去した。この段階で鋼板の表面正常の有無を目視確認した。これを冷間圧延により板厚2mmとし、850~1000℃の温度範囲内で仕上げ焼鈍して冷延焼鈍板とした。この冷延焼鈍板から30mm長さ×20mm幅の寸法で試験片を切り出し、全6面を#320エメリー紙(emery paper)で研磨して、以下に示す連続酸化試験および繰り返し酸化試験に供した。 Using the other sheet bar divided into two, the sheet bar was heated to 1050 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 5 mm. Thereafter, annealing was performed in the temperature range of 850 to 1050 ° C., and the surface scale was removed by pickling or polishing. At this stage, the presence or absence of normal surface of the steel sheet was visually confirmed. This was cold-rolled to a plate thickness of 2 mm, and finish-annealed in a temperature range of 850 to 1000 ° C. to obtain a cold-rolled annealed plate. Test pieces were cut out from this cold-rolled annealed plate with dimensions of 30 mm length × 20 mm width, and all six surfaces were polished with # 320 emery paper, and subjected to the following continuous oxidation test and repeated oxidation test. .
 1.1 熱疲労試験について
 図2に熱疲労試験方法を示す。熱疲労試験片を100℃~850℃間で加熱速度10℃/s、冷却速度10℃/sで加熱および冷却を繰り返すと同時に、拘束率(restraint ratio)0.3で歪を繰り返し付与し、熱疲労寿命を測定した。100℃および850℃での保持時間はいずれも2minとした。
1.1 Thermal fatigue test Fig. 2 shows the thermal fatigue test method. The thermal fatigue test piece was repeatedly heated and cooled between 100 ° C. and 850 ° C. at a heating rate of 10 ° C./s and a cooling rate of 10 ° C./s, and at the same time, strain was repeatedly applied at a restraint ratio of 0.3, The thermal fatigue life was measured. The holding times at 100 ° C. and 850 ° C. were both 2 min.
 なお、上記熱疲労寿命は、日本材料学会標準(standard of the society of materials science, Japan)の高温低サイクル試験法標準(standard test method for high temperature and low-cycle fatigue Testing)に準拠し、100℃において検出された荷重を、図1に示した試験片の均熱平行部(gauged portion of the specimen)の断面積で割って応力を算出し、5サイクル目の応力に対して75%まで低下したサイクル数として定義した。なお、比較として、Nb-Si複合添加鋼(15質量%Cr-0.9質量%Si-0.4質量%Nb)についても、同様の試験を行った。
熱疲労試験の判定基準は、熱疲労寿命(thermal fatigue life)がNb-Si複合添加鋼(940サイクル)以上のものを合格、940サイクル未満を不合格とした。判定結果を表1-2、表1-4、表1-6に示す。
The thermal fatigue life is 100 ° C. in accordance with the standard test method for high temperature and low-cycle fatigue testing of the standard of the society of materials science, Japan. The stress was calculated by dividing the detected load by the cross-sectional area of the gauged portion of the specimen shown in FIG. 1, and the stress was reduced to 75% with respect to the stress at the fifth cycle. Defined as the number of cycles. For comparison, the same test was performed on Nb—Si composite added steel (15 mass% Cr-0.9 mass% Si-0.4 mass% Nb).
The criterion for the thermal fatigue test was that a thermal fatigue life of Nb—Si composite added steel (940 cycles) or more passed, and less than 940 cycles failed. The determination results are shown in Table 1-2, Table 1-4, and Table 1-6.
 1.2 連続酸化試験について
 上記酸化試験片を、1050℃に加熱された大気雰囲気の炉中に400時間保持し、保持前後の試験片の質量差を測定し、単位面積当たりの酸化増量(g/m)を求めた。試験は各2回実施した。
連続酸化試験の判定基準は、連続酸化試験後の酸化増量が50g/m未満のものを合格、50g/m以上の結果が1度でもあった場合は不合格とした。判定結果を表1-2、表1-4、表1-6に示す。
1.2 Continuous Oxidation Test The above oxidation test piece is held in an air atmosphere furnace heated to 1050 ° C. for 400 hours, the difference in mass between the test pieces before and after holding is measured, and the oxidation increase per unit area (g / M 2 ). Each test was performed twice.
Criteria for continuous oxidation test, if the oxidized amounts after the continuous oxidation test passes the test of less than 50 g / m 2, the 50 g / m 2 or more results were even once failed the test. The determination results are shown in Table 1-2, Table 1-4, and Table 1-6.
 1.3 繰り返し酸化試験について
 上記酸化試験片を用いて、大気中において、100℃×1minと1050℃×20minの温度に加熱・冷却を繰り返す熱処理を400サイクル行い、試験前後の試験片の質量差を測定し、単位面積当たりの酸化増量(g/m)を算出するとともに、試験片表面から剥離したスケールの有無を確認した。なお、上記試験における加熱速度および、冷却速度は、それぞれ5℃/sec、1.5℃/secで行った。
繰り返し酸化試験の判定結果は、繰り返し酸化試験後の試験片表面において、酸化スケールの剥離が見られなかったものを合格、剥離が見られたものを不合格、異常酸化(酸化増量が50g/m以上)を生じたものを不合格(異常酸化)とした。判定結果を表1-2、表1-4、表1-6に示す。
1.3 Repeated Oxidation Test Using the above-mentioned oxidation test piece, in the air, 400 cycles of heat treatment that repeats heating and cooling to temperatures of 100 ° C. × 1 min and 1050 ° C. × 20 min are performed, and the mass difference between the test piece before and after the test Was measured, and the increase in oxidation per unit area (g / m 2 ) was calculated, and the presence or absence of a scale peeled off from the surface of the test piece was confirmed. The heating rate and cooling rate in the above test were 5 ° C./sec and 1.5 ° C./sec, respectively.
The determination result of the repeated oxidation test is that the surface of the test piece after the repeated oxidation test passed if the oxide scale did not peel off, rejected if the peel was observed, abnormal oxidation (oxidation increase was 50 g / m 2 or more) was regarded as reject (abnormal oxidation). The determination results are shown in Table 1-2, Table 1-4, and Table 1-6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 表1-1~表1-6より、本発明例であるNo.1~17および31~75は全て熱疲労特性と耐連続酸化特性および耐繰り返し酸化特性に優れていた。また本発明例は全て熱延焼鈍酸洗板の表面に欠陥が無く、良好な表面性状であった。 From Table 1-1 to Table 1-6, the No. 1 to 17 and 31 to 75 were all excellent in thermal fatigue characteristics, continuous oxidation resistance and repeated oxidation resistance. In all of the examples of the present invention, the surface of the hot-rolled annealed pickling plate had no defects and had good surface properties.
 一方、比較例No.18はTiが0.14%と低いため、熱疲労特性が不合格であった。比較例No.19はNiが0.02%と低いため、耐繰り返し酸化特性が不合格であった。比較例No.20およびNo.76~80はAl%/Cr%の値が0.14未満と低いため、耐酸化性(連続、繰り返しのいずれも)が不合格であった。比較例No.21はAlが0.89%と低いため、熱疲労特性(850℃)が不合格であり、さらにAl%/Cr%の値が0.07と低いため、耐酸化性(連続、繰り返しのいずれも)も不合格であった。比較例No.22はAlが4.12%と高いため、熱疲労特性が不合格であった。比較例No.23はCrが9.4%と低いため、耐酸化性(連続、繰り返しのいずれも)が不合格であった。比較例No.24はCuが1.06%と高いため、耐酸化性(連続、繰り返しのいずれも)が不合格であった。 On the other hand, Comparative Example No. No. 18 had a low Ti content of 0.14%, so its thermal fatigue characteristics were unacceptable. Comparative Example No. No. 19 had a low Ni content of 0.02%, so its resistance to repeated oxidation was not acceptable. Comparative Example No. 20 and no. Since 76 to 80 had a low Al% / Cr% value of less than 0.14, the oxidation resistance (both continuous and repeated) failed. Comparative Example No. No. 21 has a low Al content of 0.89%, so its thermal fatigue property (850 ° C.) is not acceptable, and since the Al% / Cr% value is as low as 0.07, it has oxidation resistance (continuous or repeated). Was also rejected. Comparative Example No. No. 22 had a high Al content of 4.12%, so its thermal fatigue characteristics were unacceptable. Comparative Example No. No. 23 had a low Cr content of 9.4%, so its oxidation resistance (both continuous and repeated) failed. Comparative Example No. No. 24 had a high Cu content of 1.06%, so its oxidation resistance (both continuous and repeated) failed.
 比較例No.25はAl含有量およびTi含有量が少ないため熱疲労特性が不合格である上、Cuが1.25%と高いため耐酸化性(連続、繰り返しのいずれも)が不合格、またNiが添加されていないため繰り返し酸化特性が不合格であった。比較例No.26はTi含有量が低いため熱疲労特性が不合格であった。比較例No.27、およびNo.28はAl%/Cr%の値が小さいため、耐酸化性(連続、繰り返しのいずれも)が不合格であった。比較例No.29はNiを含有しないため繰り返し酸化特性が不合格であった。
従って、本発明範囲の鋼は、熱疲労特性及び耐酸化性に優れていることは明らかである。
Comparative Example No. 25 has low Al content and Ti content, so its thermal fatigue characteristics are unacceptable, and Cu is high at 1.25%, so its oxidation resistance (both continuous and repeated) fails, and Ni is added. As a result, the repeated oxidation characteristics were unacceptable. Comparative Example No. Since No. 26 had low Ti content, the thermal fatigue characteristic was disqualified. Comparative Example No. 27, and no. Since 28 had a small value of Al% / Cr%, the oxidation resistance (both continuous and repeated) failed. Comparative Example No. Since 29 did not contain Ni, its oxidation characteristics repeatedly failed.
Therefore, it is clear that the steels within the scope of the present invention are excellent in thermal fatigue characteristics and oxidation resistance.
 本発明の鋼は、自動車等の排気系部材用として好適であるだけでなく、同様の特性が要求される火力発電システムの排気系部材や固体酸化物タイプの燃料電池用部材としても好適に用いることができる。 The steel of the present invention is not only suitable for exhaust system members such as automobiles, but also suitably used as exhaust system members for thermal power generation systems and solid oxide fuel cell members that require similar characteristics. be able to.

Claims (5)

  1.  質量%で、C:0.020%以下、Si:3.0%以下、Mn:1.0%以下、P:0.040%以下、S:0.030%以下、Cr:10.0%以上16.0%未満、N:0.020%以下、Al:1.4~4.0%、Ti:0.15%超0.5%以下、Ni:0.05~0.5%を含有し、残部がFeおよび不可避的不純物からなり、下記式(1)を満たすことを特徴とするフェライト系ステンレス鋼。
    Al%/Cr%≧0.14・・・・・(1)
    なお、式中のAl%、Cr%はそれぞれAl、Crの含有量(質量%)を表わす。
    In mass%, C: 0.020% or less, Si: 3.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr: 10.0% More than less than 16.0%, N: 0.020% or less, Al: 1.4 to 4.0%, Ti: more than 0.15% and 0.5% or less, Ni: 0.05 to 0.5% Ferritic stainless steel which contains, the remainder consists of Fe and an inevitable impurity, and satisfy | fills following formula (1).
    Al% / Cr% ≧ 0.14 (1)
    In the formula, Al% and Cr% represent the contents (mass%) of Al and Cr, respectively.
  2.  更に、質量%で、Nb:0.01~0.15%、Cu:0.01%以上0.4%未満の中から選ばれる1種以上を含有することを特徴とする請求項1に記載のフェライト系ステンレス鋼。 2. The composition according to claim 1, further comprising one or more selected from Nb: 0.01 to 0.15% and Cu: 0.01% to less than 0.4% by mass%. Ferritic stainless steel.
  3.  更に、質量%で、Mo:0.02~0.5%、W:0.02~0.3%の中から選ばれる1種以上を含有することを特徴とする請求項1または請求項2に記載のフェライト系ステンレス鋼。 3. The composition according to claim 1, further comprising one or more selected from Mo: 0.02 to 0.5% and W: 0.02 to 0.3% by mass%. Ferritic stainless steel described in 1.
  4.  更に、質量%で、REM:0.001~0.10%、Zr:0.01~0.5%、V:0.01~0.5%、Co:0.01~0.5%の中から選ばれる1種以上を含有することを特徴とする請求項1乃至3の何れか1項に記載のフェライト系ステンレス鋼。 Further, in terms of mass%, REM: 0.001 to 0.10%, Zr: 0.01 to 0.5%, V: 0.01 to 0.5%, Co: 0.01 to 0.5% The ferritic stainless steel according to any one of claims 1 to 3, comprising at least one selected from the inside.
  5.  更に、質量%で、B:0.0002~0.0050%、Mg:0.0002~0.0020%、Ca:0.0005~0.0030%の中から選ばれる1種以上を含有することを特徴とする請求項1乃至4の何れか1項に記載のフェライト系ステンレス鋼。 Furthermore, it contains at least one selected from B: 0.0002 to 0.0050%, Mg: 0.0002 to 0.0020%, and Ca: 0.0005 to 0.0030% by mass%. The ferritic stainless steel according to any one of claims 1 to 4.
PCT/JP2013/005486 2012-09-25 2013-09-17 Ferritic stainless steel WO2014050016A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/431,199 US20150218683A1 (en) 2012-09-25 2013-09-17 Ferritic stainless steel
KR1020157009436A KR101673217B1 (en) 2012-09-25 2013-09-17 Ferritic stainless steel
ES13842192.0T ES2693781T3 (en) 2012-09-25 2013-09-17 Ferritic stainless steel
JP2014532184A JP5700175B2 (en) 2012-09-25 2013-09-17 Ferritic stainless steel
EP13842192.0A EP2902523B1 (en) 2012-09-25 2013-09-17 Ferritic stainless steel
CN201380049407.7A CN104662188B (en) 2012-09-25 2013-09-17 Ferrite-group stainless steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012210492 2012-09-25
JP2012-210492 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014050016A1 true WO2014050016A1 (en) 2014-04-03

Family

ID=50387459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005486 WO2014050016A1 (en) 2012-09-25 2013-09-17 Ferritic stainless steel

Country Status (9)

Country Link
US (1) US20150218683A1 (en)
EP (1) EP2902523B1 (en)
JP (1) JP5700175B2 (en)
KR (1) KR101673217B1 (en)
CN (1) CN104662188B (en)
ES (1) ES2693781T3 (en)
MY (1) MY175890A (en)
TW (1) TWI493057B (en)
WO (1) WO2014050016A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109820A (en) * 2014-07-29 2014-10-22 山东雅百特金属结构系统有限公司 Novel metal roofing board material
JP2016204709A (en) * 2015-04-23 2016-12-08 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method of manufacturing the same
JP6053994B1 (en) * 2015-10-29 2016-12-27 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
WO2017073093A1 (en) * 2015-10-29 2017-05-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
WO2018074405A1 (en) * 2016-10-17 2018-04-26 Jfeスチール株式会社 Stainless steel sheet and stainless steel foil
KR20180043359A (en) 2015-09-29 2018-04-27 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
JP2019171408A (en) * 2018-03-27 2019-10-10 日鉄ステンレス株式会社 Filler metal for welding ferritic stainless steel
JP2020147791A (en) * 2019-03-13 2020-09-17 日鉄ステンレス株式会社 Heat-resistant ferritic stainless steel sheet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404373A (en) * 2014-11-14 2015-03-11 无锡信大气象传感网科技有限公司 Copper-manganese alloy steel material for fan blades for wind power generation
JP7018315B2 (en) * 2014-12-11 2022-02-10 サンドビック インテレクチュアル プロパティー アクティエボラーグ Ferrite alloy
EP3369832A4 (en) * 2015-10-29 2019-05-22 Nippon Steel & Sumikin Stainless Steel Corporation Al-CONTAINING FERRITIC STAINLESS STEEL WITH EXCELLENT CREEP CHARACTERISTICS, MANUFACTURING METHOD THEREFOR, AND FUEL CELL MEMBER
EP3445884B1 (en) * 2016-04-22 2020-10-07 Sandvik Intellectual Property AB Ferritic alloy
JP6858056B2 (en) * 2017-03-30 2021-04-14 日鉄ステンレス株式会社 Low specific gravity ferritic stainless steel sheet and its manufacturing method
CN113322418B (en) * 2018-01-30 2023-03-17 杰富意钢铁株式会社 Fe-Cr alloy, method for producing same, and resistance heating element
KR102508125B1 (en) * 2018-01-31 2023-03-08 제이에프이 스틸 가부시키가이샤 ferritic stainless steel
TWI801538B (en) * 2018-03-27 2023-05-11 日商日鐵不銹鋼股份有限公司 Ferritic stainless steel, method for producing the same, ferritic stainless steel sheet, method for producing the same, and members for fuel cell
WO2019189872A1 (en) * 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferrite-based stainless steel sheet and production method thereof, and ferrite-based stainless member
CN113621897A (en) * 2020-05-08 2021-11-09 宝山钢铁股份有限公司 Rare earth-containing heat-resistant alloy steel and slab continuous casting process thereof
WO2023208274A1 (en) * 2022-04-25 2023-11-02 Vdm Metals International Gmbh Method for producing a support film for catalytic converters
CN116065096B (en) * 2023-03-05 2023-08-04 襄阳金耐特机械股份有限公司 Ferrite heat-resistant cast steel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316773A (en) 2000-05-02 2001-11-16 Nippon Steel Corp Heat resistant ferritic stainless steel for catalyst carrier excellent in weldability and workability
JP2004307918A (en) 2003-04-04 2004-11-04 Nippon Steel Corp Al-CONTAINING HEAT-RESISTANT FERRITIC STAINLESS STEEL SHEET SUPERIOR IN WORKABILITY AND OXIDATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP2008156692A (en) * 2006-12-22 2008-07-10 Nisshin Steel Co Ltd Ferritic stainless steel for high-temperature device of fuel cell
JP2009068113A (en) 2008-10-24 2009-04-02 Nippon Steel & Sumikin Stainless Steel Corp Al-CONTAINING HEAT-RESISTANT FERRITIC STAINLESS STEEL SHEET WITH EXCELLENT WORKABILITY AND OXIDATION RESISTANCE, AND ITS MANUFACTURING METHOD
JP2009167443A (en) 2008-01-11 2009-07-30 Nisshin Steel Co Ltd Ferritic stainless steel and manufacturing method therefor
JP2010248620A (en) 2009-03-24 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel plate excellent in heat resistance and workability
JP2011179088A (en) * 2010-03-02 2011-09-15 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary working brittleness resistance and weldability
JP2011256436A (en) * 2010-06-09 2011-12-22 Nisshin Steel Co Ltd Electrode member of spark plug

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414023A (en) * 1982-04-12 1983-11-08 Allegheny Ludlum Steel Corporation Iron-chromium-aluminum alloy and article and method therefor
JPH11279717A (en) * 1998-03-27 1999-10-12 Sanyo Special Steel Co Ltd Free cutting corrosion resistant soft magnetic material
JP2000160302A (en) * 1998-11-19 2000-06-13 Sanyo Special Steel Co Ltd Electromagnetic stainless steel excellent in cold forgeability
JP2001040456A (en) * 1999-07-29 2001-02-13 Sanyo Special Steel Co Ltd Electromagnetic material having excellent cold forgeability and weat resistance
CN102605262A (en) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 Ferritic stainless steel and method for manufacturing same
CN102650019B (en) * 2011-02-24 2014-09-24 宝山钢铁股份有限公司 High-strength and high-hardness medium-chromium ferritic stainless steel and manufacturing method thereof
JP5304935B2 (en) * 2011-10-14 2013-10-02 Jfeスチール株式会社 Ferritic stainless steel
CN102534425A (en) * 2012-01-29 2012-07-04 宝山钢铁股份有限公司 Low-cost high-strength ferritic stainless steel and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316773A (en) 2000-05-02 2001-11-16 Nippon Steel Corp Heat resistant ferritic stainless steel for catalyst carrier excellent in weldability and workability
JP2004307918A (en) 2003-04-04 2004-11-04 Nippon Steel Corp Al-CONTAINING HEAT-RESISTANT FERRITIC STAINLESS STEEL SHEET SUPERIOR IN WORKABILITY AND OXIDATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP2008156692A (en) * 2006-12-22 2008-07-10 Nisshin Steel Co Ltd Ferritic stainless steel for high-temperature device of fuel cell
JP2009167443A (en) 2008-01-11 2009-07-30 Nisshin Steel Co Ltd Ferritic stainless steel and manufacturing method therefor
JP2009068113A (en) 2008-10-24 2009-04-02 Nippon Steel & Sumikin Stainless Steel Corp Al-CONTAINING HEAT-RESISTANT FERRITIC STAINLESS STEEL SHEET WITH EXCELLENT WORKABILITY AND OXIDATION RESISTANCE, AND ITS MANUFACTURING METHOD
JP2010248620A (en) 2009-03-24 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel plate excellent in heat resistance and workability
JP2011179088A (en) * 2010-03-02 2011-09-15 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary working brittleness resistance and weldability
JP2011256436A (en) * 2010-06-09 2011-12-22 Nisshin Steel Co Ltd Electrode member of spark plug

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109820A (en) * 2014-07-29 2014-10-22 山东雅百特金属结构系统有限公司 Novel metal roofing board material
JP2016204709A (en) * 2015-04-23 2016-12-08 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method of manufacturing the same
US10975459B2 (en) 2015-09-29 2021-04-13 Jfe Steel Corporation Ferritic stainless steel
KR20180043359A (en) 2015-09-29 2018-04-27 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
JP6053994B1 (en) * 2015-10-29 2016-12-27 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
WO2017073093A1 (en) * 2015-10-29 2017-05-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
JP6319537B1 (en) * 2016-10-17 2018-05-09 Jfeスチール株式会社 Stainless steel plate and stainless steel foil
CN109844157A (en) * 2016-10-17 2019-06-04 杰富意钢铁株式会社 Stainless steel plate and stainless steel foil
WO2018074405A1 (en) * 2016-10-17 2018-04-26 Jfeスチール株式会社 Stainless steel sheet and stainless steel foil
US11008636B2 (en) 2016-10-17 2021-05-18 Jfe Steel Corporation Stainless steel sheet and stainless steel foil
JP2019171408A (en) * 2018-03-27 2019-10-10 日鉄ステンレス株式会社 Filler metal for welding ferritic stainless steel
JP7055050B2 (en) 2018-03-27 2022-04-15 日鉄ステンレス株式会社 Ferritic stainless steel welding filler material
JP2020147791A (en) * 2019-03-13 2020-09-17 日鉄ステンレス株式会社 Heat-resistant ferritic stainless steel sheet

Also Published As

Publication number Publication date
EP2902523A1 (en) 2015-08-05
US20150218683A1 (en) 2015-08-06
TWI493057B (en) 2015-07-21
JPWO2014050016A1 (en) 2016-08-22
EP2902523A4 (en) 2016-03-23
KR101673217B1 (en) 2016-11-07
CN104662188A (en) 2015-05-27
MY175890A (en) 2020-07-14
CN104662188B (en) 2017-09-15
EP2902523B1 (en) 2018-09-05
ES2693781T3 (en) 2018-12-13
KR20150055028A (en) 2015-05-20
TW201420782A (en) 2014-06-01
JP5700175B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5700175B2 (en) Ferritic stainless steel
JP6075349B2 (en) Ferritic stainless steel
JP5609571B2 (en) Ferritic stainless steel with excellent oxidation resistance
JP4702493B1 (en) Ferritic stainless steel with excellent heat resistance
KR101554835B1 (en) Ferritic stainless steel
JP5234214B2 (en) Ferritic stainless steel
JP6123964B1 (en) Ferritic stainless steel
JP5900714B1 (en) Ferritic stainless steel
WO2013179616A1 (en) Ferritic stainless steel
US10400318B2 (en) Ferritic stainless steel
JP6624345B1 (en) Ferritic stainless steel
JP6665936B2 (en) Ferritic stainless steel
WO2019151125A1 (en) Ferritic stainless steel
JP2023005308A (en) Ferritic stainless steel sheet and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014532184

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14431199

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157009436

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013842192

Country of ref document: EP