JP2019169463A - 管−検出器システムにおけるx線管の高電圧発生器の較正方法 - Google Patents

管−検出器システムにおけるx線管の高電圧発生器の較正方法 Download PDF

Info

Publication number
JP2019169463A
JP2019169463A JP2018241037A JP2018241037A JP2019169463A JP 2019169463 A JP2019169463 A JP 2019169463A JP 2018241037 A JP2018241037 A JP 2018241037A JP 2018241037 A JP2018241037 A JP 2018241037A JP 2019169463 A JP2019169463 A JP 2019169463A
Authority
JP
Japan
Prior art keywords
high voltage
ray
filter
voltage
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018241037A
Other languages
English (en)
Inventor
シュー,アンドレ
Schu Andre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yxlon International GmbH
Original Assignee
Yxlon International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yxlon International GmbH filed Critical Yxlon International GmbH
Publication of JP2019169463A publication Critical patent/JP2019169463A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/265Measurements of current, voltage or power

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Abstract

【課題】費用がかかる高電圧分圧器や高圧ケーブルを用いずに、X線源用高電圧発生器の電圧較正方法を提案する。【解決手段】異なる材料からなる少なくとも2つのフィルタを備えたフィルタセット4を、X線管1とX線検出器5との間のX線ビーム2内へと導入し、第1のフィルタ材料は、そのK端が高電圧の範囲外にあり、第2のフィルタ材料は、そのK端が高電圧の範囲内にあり、高電圧をX線管の高電圧発生器に設定すると共に、フィルタセットのX線画像を、X線検出器を通じて記録するステップと、高電圧の各個の名目値について、第1のフィルタ材料及び第2フィルタ材料についてのX線画像内の信号間の関係を形成するステップと、高電圧の名目値を、高電圧発生器における設定を参照して決定するステップと、高電圧の名目値との差に基づいて、高電圧の名目値を補正するステップとを備える。【選択図】図1

Description

本発明は、事前定義可能な高電圧の範囲における、管−検出器システム中のX線管の高電圧発生器の較正方法に関する。
X線管では、印加された高電圧が電子の運動エネルギーを規定し、そしてこの運動エネルギーがX線の最大エネルギーを規定する。X線のエネルギーが増加すると、材料中のX線の吸収が減少するため、このX線の最大エネルギーは、放射線防護にとって非常に重要である。鉛の厚さは、設定可能な最大高電圧に基づいて設計される。X線管内の中央揃えや焦点調節も同様に、高電圧に基づいて設定される。したがって、高電圧が高電圧発生器によって正確に設定されることは、非常に重要である。高電圧の試験は、例えば高電圧分圧器を使用して行われるが、これには高電圧分圧器をX線管と高電圧発生器との間に電気的に接続しなければならないため、多大な費用を伴う。すなわち、通常は2本の高電圧ケーブルを敷設する必要があるということである。そのような測定条件を構成するには、多大な調節費用がかかることになる。
本発明の目的は、X線管に印加された高電圧を試験可能な簡素な手段を提供することである。
上記目的は、請求項1の特徴を備えた方法によって達成される。これにより、以下のステップを備えた較正方法が提供される:a)種々異なる材料製の少なくとも2つのフィルタを備えたフィルタセットを、X線管とX線検出器との間のX線ビーム内へと導入するステップであって、第1のフィルタの第1の材料は、そのK端が事前定義可能な高電圧の範囲外にあり、第2のフィルタの第2の材料は、そのK端が事前定義可能な高電圧の範囲内にある、ステップ。b)高電圧の名目値をX線管に設定すると共に、フィルタセットのX線画像を、X線検出器を通じて記録するステップ。c)フィルタセットのさらなるX線画像を、X線管において、高電圧の他の名目値にて記録するステップ。d)高電圧の各個の名目値について、第1の材料及び第2の材料についてのX線画像内の信号間の関係を形成するステップ。e)関係が極値を有する際において、高電圧の名目値を決定するステップ。f)高電圧の名目値と第2の材料のK端の値との差を算出するステップ。g)算出された差によって、高電圧の名目値を補正するステップ。したがって、この測定方法は、必要な信号を同一の測定デバイスを用いて同時に測定することができるため、簡素化されている。使用される測定機器は、標準的なX線システムで利用可能である。
(フラットパネル)検出器が技術水準より知られる線量計の代わりに使用されるため、X線検出器の表面を個々のセグメントへと分割することができ、それによって、(本発明に係る少なくとも2つのフィルタよりも非常に多くの)一連の種々異なる(試験)フィルタをX線検出器の直前に配置することが可能となるため、複数の高電圧値の試験が、それらの間に測定条件の構成を変更する必要なく可能になるという利点が生じる。蛍光信号の代わりに材料の透過信号(第1のフィルタの透過信号)が測定され、その端エネルギーは第2のフィルタの端エネルギーから大きく離れており、そのK端は測定されることになる高電圧範囲にあるため、蛍光信号が使用される場合とは異なり、信号を散乱放射線から分離するための追加のシールドは必要ない。透過信号を使用する構成はまた、蛍光信号の場合よりも少ないスペースしか必要としない。材料試験設備の小さなキュービクルにおいて、空間を見つける必要があるという問題が、適切なシールドを用いて適切な距離で蛍光信号を測定できることによって回避される。フィルタセットはX線検出器の前にできるだけ近くに配置されるため、信号は、個々のフィルタの後ろにおける重なりが可能な限り少なくされる。したがって、測定条件の構成は、4つの部分と1つの測定装置にまで縮小される。本発明に従って得られる信号は、互いに関係して設定され、それぞれのフィルタの関係曲線及び既知の端エネルギーから、電子のエネルギーが決定される。
本発明の有利な発展形態は、X線管とX線検出器との間に、X線ビームのビーム硬化のためのプレフィルタが導入されることを提供する。これにより、信号の改善、ひいては結果のより精確な評価が達成される。
本発明のさらなる有利な発展形態は、プレフィルタが、鉄、銅又はアルミニウム製であることを提供する。これらのプレフィルタを用いることにより、X線を硬化させると同時に、X線検出器によって十分な明るさを達成することが可能となる。このビーム硬化によって、信号の改善が可能になり、それにより、電子の最大エネルギー、ひいては印加される高電圧のより良い決定のための光電効果について、より高速な検出が可能になる。
本発明のさらなる有利な発展形態は、プレフィルタが、0.1mm〜10mm、好ましくは0.1mm〜3mmの範囲の厚さを有することを提供する。プレフィルタはビーム硬化に用いられるものであり、試験される高電圧範囲に適合させる必要がある。40kV領域の電圧の場合には、試験フィルタとも称される第1のフィルタ及び参照フィルタとも称される第2のフィルタは、既に非常に強く吸収をするため、硬化は必要とされない。90kV領域の電圧の場合には、2〜3mmの鉄を備えたプレフィルタがあると、信号が大きく改善する。
本発明のさらなる有利な発展形態は、高電圧の名目値が、昇順又は降順のいずれかにて送られることを提供する。したがって、高電圧値を設定する際に、前後にジャンプする必要がない。
本発明のさらなる有利な発展形態は、フィルタセットの第2の材料が、ウラン、トリウム、ビスマス、鉛、タリウム、水銀、金、白金、イリジウム、タングステン、タンタル、エルビウム、ガドリニウム、ネオジム、セリウム、バリウム、テルル、スズ、銀、パラジウム、モリブデンからなる群より選択されることを提供する。したがって、高電圧発生器を約20kV〜約120kVの電圧範囲にて較正することが可能となる。ここでは、高電圧の測定精度は、±1%未満である。
本発明のさらなる有利な発展形態は、フィルタセットが、指定された第2の材料の群からのさらなる2つのフィルタを有することを提供する。使用されるフィルタが多いほど、高電圧発生器の較正をフィルタセットの交換なしで実行可能な高電圧の範囲が広くなる。
本発明のさらなる有利な発展形態は、フィルタセットの第1の材料が銅であることを提供する。銅のK端は8.98kVであって、較正が実行される高電圧値の範囲内にある第2のフィルタ材料のK端から十分に離れている。
本発明のさらなる有利な発展形態は、フィルタセットのフィルタの少なくとも1つが、1μm〜10mmの範囲、好ましくは10μm〜2mmの間の厚さを有することを提供する。それぞれのフィルタの厚さは、信号強度がそれぞれのフィルタの後ろで十分に強くなるように選択される。例えば40kV領域のような低電圧の場合には、これらのエネルギーでは、X線は低い侵入深さしか有さないため、厚さ数百マイクロメートルの非常に薄いフィルタが必要とされる。例えば80kVのようなより高い電圧の場合には、フィルタはより厚く選択される必要がある。ここで選択される厚さは、通常数百マイクロメートルから数ミリメートルである。
本発明のさらなる利点及び詳細は、図面に表された実施形態の例を参照して説明される。
本発明に係る方法を実行するための構成の概略図である。 本発明に係る方法を実行するためのフィルタセットの上面図である。 第1及び第2のフィルタ材料の吸収係数を表す図である。
まず、X線管1の高電圧発生器について本発明に係る較正方法を実行するための装置の構成を、図1及び図2を参照して簡単に説明する。次に、本発明に係る較正方法の実施について、詳細に説明する。
図1は、本発明に係る方法を実施するための概略的構成を示す。X線管1は、X線ビーム2を放射する。X線ビーム2のエネルギー及び波長は、X線管1に実際に印加される高電圧に依存する。X線ビーム2内には、ビーム硬化に役立つプレフィルタ3が配置されている。X線検出器5(本実施形態例では、面検出器)の近傍には、X線検出器5の表面と平行に、フィルタセット4が配置されている。プレフィルタ3としては、例えば、厚さ2mmの小型の鉄板が使用可能である。
X線管では、印加された高電圧が電子の運動エネルギーを規定し、そしてこの運動エネルギーがX線の最大エネルギーを規定する。X線のエネルギーが増加すると、材料中のX線の吸収が減少するため、このX線の最大エネルギーは、放射線防護にとって非常に重要である。X線管1及び高電圧発生器は、分圧器に電気的に接続する必要があるため、高電圧の試験には、現在かなりの費用を伴う。
図2は、本発明に係る較正方法を実行するために必要とされるフィルタセット4の実施形態例の上面図を示す。X線ビーム2に対して可能な限り透明である剛性材料、例えば、炭素、プレキシガラス又は炭素繊維で作製されたキャリアプレート8上に、合計12個の(場合により)種々異なる材料で作製されたフィルタが取り付けられている。本発明によれば、第1の材料6が確実に必要であり、そのK端9は、X線ビーム2のエネルギーから大きく離れて、高電圧発生器が較正されることになる高電圧の値にある。
本実施形態例では、第1のフィルタ6の第1の材料6aとして、銅が用いられている。銅の吸収係数は、図3の右側に示されている。銅のK端9は、8.98keVの光子エネルギーにおいて、灰色で表される較正範囲10より明らかに下にある。合計6つの第1の材料6a製の第1のフィルタ6が存在し、それらはキャリアプレート8の右端及び下端に沿って配置されている。第1のフィルタ6は、25mm×25mmの大きさを有する。
残りの第2のフィルタ7は、6つの種々異なる第2の材料7a〜7f、すなわち、鉛、タングステン、ガドリニウム、金、エルビウム及びネオジムで作製されている。第2の材料7a〜7fは、それらのそれぞれのK端が較正範囲10内にあるという特性を有している必要がある。図3の左側に示されている第2の材料7aとしての鉛の吸収係数の経過から、鉛のK端9は88.0keVにあり、灰色で示されている較正範囲10に位置しているが、鉛の他の端は、より低い光子エネルギーにあり、この較正範囲10の明らかに外側にあることが見られる。他の第2の材料7b〜7fについても同様であり、それらのそれぞれのK端は、金(第2の材料7b)では80.7keV、タングステン(第2の材料7c)では69.5keV、エルビウム(第2の材料7d)では57.5keV、ガドリニウム(第2の材料7e)では50.24keV、ネオジム(第2の材料7f)では43.57keVである。第2のフィルタ7は、第1のフィルタ6と同じ大きさ、すなわち25mm×25mmである。
以下では、本発明に係る方法について、より詳細に説明する。本発明に係る較正方法を実行するため、図1に示すように、フィルタセット4がX線ビーム2中に導入される。この較正方法が完了した後、例えば鋳造品の非破壊検査の場合において機器の動作を中断させないために、フィルタセット4がX線ビーム2から除去される。
名目値が高電圧発生器に設定された後、まず、フィルタセット4の後ろの送信信号が、各第1のフィルタ6(参照フィルタとも称される)及び各第2のフィルタ7(試験フィルタとも称される)について測定される。フィルタの厚さ及び材料の正確な規定は、実際に印加される高電圧におけるX線ビーム2のエネルギーに依存する。以下では、簡略化のために、第1の材料6a(銅)及び第2の材料7a(鉛)のみを備えたフィルタ6,7について説明する。これら2つの材料6a,7aに用いられる厚さは、例えば、鉛では0.5mm、銅では2mmである。印加される高電圧は、事前定義された増分の範囲、例えば、0.1kVの範囲で変化する。次に、測定される信号は互いに関係して設定され、高電圧の関数としてプロットされる。関係曲線の最大値が決定され、この最大値は鉛のK端9のエネルギーを表す。あるいは、この関係曲線から、近似によって2本の直線を決定することができる。1本は鉛のK端9より下の値についての直線であり、もう1本は鉛のK端9より上の値についての直線である。これら2本の直線は、試験フィルタ(第2のフィルタ7)すなわち鉛のK端9に対応するエネルギー(88.005keV)で交差する。
高電圧発生器の較正が広い電圧範囲、例えば、40kV〜95kVにわたって行われる場合には、この電圧範囲の種々異なる部分に対して、ちょうど一通りの該電圧範囲内にそれぞれのK端9がある様々な第2の材料7a〜7fについての、一定の第1の材料6aである銅に関係する関係値を使用することには意味がある。最初に、40kVの電圧及び10Wの目標出力が設定される。これらのフィルタのための送信信号が記録された後、電圧が、例えば(名目上、高電圧発生器において)0.1kVだけ増加させられて、送信信号が再び記録される。このことは、所望の最終電圧に至るまで行われる。したがって、例えば、45kVから55kVの範囲ではガドリニウム(50.24keVのK端9を備えた第2の材料7e)を、55kV〜65kVの範囲ではエルビウム(57.49keVのK端9を有する第2の材料7d)を、65kV〜75kVの範囲ではタングステン(69.53keVのK端9を有する第2の材料7c)を、75kV〜85kVの範囲では金(80.73keVのK端9を有する第2の材料7b)を、85kV〜95kVの範囲では鉛(88.00keVのK端9を有する第2の材料7a)を使用することができる。しかしながら、このことから、本発明に係る方法は、その可能な電圧範囲、特にその上限に関して制限されていることがわかる。第2のフィルタ7の材料として、ウランにまで至ることは可能であると考えられる。その場合、約115kVにて、試験可能な最高の高電圧に達することとなる。超ウラン元素をフィルタとして用いて測定範囲を広げることは可能であるものの、超ウラン元素の半減期は通常短すぎるため、意味をなさない。
加えて、プレフィルタ3の種々異なる電圧範囲に関しても、変更することができる。例えば、65kVの電圧まではプレフィルタ3を用いず、その後65kV〜75の電圧範囲では、2mmの鉄製のプレフィルタ3、及び、そのうえ3mmの鉄製のプレフィルタ3を用いることが可能である。したがって、より良好なビーム硬化が達成され、光電効果をより迅速に検出することができる。
本発明によれば、考慮された第2の材料7a〜fのK端9に属することが決定された、記録されたX線画像について、高電圧発生器に設定された高電圧の値(高電圧の名目値)について追加の算出が行われる。最後に、高電圧発生器における高電圧の該名目値が、この算出された差によって補正される。
要約すると、本発明に係る方法の基礎は、光電効果であると言える。本明細書では、高電圧発生器に実際に印加される高電圧を測定するために、様々な元素の材料固有の吸収端(特に、K端9)が使用される。この実際に印加される高電圧は、通常、名目的に示されている高電圧とは異なる。本明細書では、測定機器は、標準的なX線システム(X線検出器5及びX線管1)において利用可能な機器に限定されている。(ビーム硬化のための任意のプレフィルタ3とは別の)唯一の追加の測定機器は、様々な材料6a、7a〜7fのフィルタ6、7を包含するフィルタセット4である。様々なフィルタ6、7の後ろの信号が測定され、これらの測定データから、高電圧発生器に印加された実際の高電圧が決定される。高電圧発生器に設定された名目値から決定された実際の高電圧値を減算することにより、2つの値の間のオフセットを決定して、高電圧発生器の較正を実行することができる。
本発明に係る方法は、X線システムの高電圧を試験するための優れた方法を表している。分圧器による方法と比較した最大の利点は、測定機器の扱いやすさにある。分圧器による方法では、2本の高電圧ケーブル、分圧器及び電圧計が必要とされるのに対し、本発明に係る方法における200mm×130mm×10mmのサイズ及び約300gの重さを備えたフィルタセット4は、保管及び輸送が容易である。残りの測定機器は、システムにて利用可能である。さらに大きな利点は、K端9がいかなる状況下でも変化しない材料定数であるため、フィルタセット4を較正する必要がないことである。例えば、希土類元素が酸化したとしても、K端9の位置に変化はない。単に酸素のK端9が加えられるだけである。しかしながら、酸素のK端9は希土類のK端9から大きく離れているため、これは測定に影響を及ぼさないと考えられる。本発明に係る方法のさらなる利点は、必要とされる追加の機器、すなわちフィルタセット4が、現在市場で入手可能な任意の従来のシステムに組み込み可能であることである。これにより、高電圧の標準かつ完全自動の試験が行われ得る。放射線防護の観点からは、本方法では放射線漏れの要因となり得る不正確な過電圧が発見されるため、キュービクルの安全性が高くなる。また、得られたデータは、高電圧発生器の故障又は他の問題についての早期の指標として使用可能である。
1 X線管
2 X線ビーム
3 プレフィルタ
4 フィルタセット
5 X線検出器
6 フィルタ
6a 第1の材料
7 フィルタ
7a−f 第2の材料
8 キャリアプレート
9 K端
10 較正範囲

Claims (9)

  1. 事前定義可能な高電圧の範囲における、管−検出器システム中のX線管(1)の高電圧発生器の較正方法であって、
    a)種々異なる材料(6a、7a〜f)製の少なくとも2つのフィルタ(6、7)を備えたフィルタセット(4)を、前記X線管(1)とX線検出器(5)との間のX線ビーム(2)内へと導入するステップであって、第1のフィルタ(6)の第1の材料(6a)は、そのK端(9)が前記事前定義可能な高電圧の範囲外にあり、第2のフィルタ(7)の第2の材料(7a〜f)は、そのK端(9)が前記事前定義可能な高電圧の範囲内にある、ステップと、
    b)前記高電圧の名目値を前記X線管(1)の前記高電圧発生器に設定すると共に、前記フィルタセット(4)のX線画像を、前記X線検出器(5)を通じて記録するステップと、
    c)前記フィルタセット(4)のさらなるX線画像を、前記X線管(1)の前記高電圧発生器において、前記高電圧の他の名目値にて記録するステップと、
    d)前記高電圧の各個の名目値について、前記第1の材料(6a)及び前記第2の材料(7a〜f)についての前記X線画像内の信号間の関係を形成するステップと、
    e)前記関係が極値を有する際において、前記高電圧の名目値を、前記高電圧発生器における設定を参照して決定するステップと、
    f)前記高電圧の名目値と前記第2の材料(7a〜f)のK端(9)の値との差を算出するステップと、
    g)算出された前記差によって、前記高電圧の名目値を補正するステップと
    を備えている、方法。
  2. X線管(1)とX線検出器(5)との間に、前記X線ビーム(2)のビーム硬化のためのプレフィルタ(3)が導入される、請求項1に記載の方法。
  3. 前記プレフィルタ(3)が、鉄、銅又はアルミニウム製である、請求項2に記載の方法。
  4. 前記プレフィルタ(3)が、0.1mm〜10mm、好ましくは0.1mm〜3mmの範囲の厚さを有する、請求項2又は3に記載の方法。
  5. 前記高電圧の名目値が、昇順又は降順のいずれかにて送られる、請求項1〜4のいずれか1項に記載の方法。
  6. 前記フィルタセット(4)の前記第2の材料(7a〜7f)が、ウラン、トリウム、ビスマス、鉛、タリウム、水銀、金、白金、イリジウム、タングステン、タンタル、エルビウム、ガドリニウム、ネオジム、セリウム、バリウム、テルル、スズ、銀、パラジウム、モリブデンからなる群より選択される、請求項1〜5のいずれか1項に記載の方法。
  7. 前記フィルタセット(4)が、指定された前記第2の材料(7a〜7f)の前記群からのさらなる2つのフィルタ(7)を有する、請求項6に記載の方法。
  8. 前記フィルタセット(4)の前記第1の材料(6a)が、銅である、請求項1〜7のいずれか1項に記載の方法。
  9. 前記フィルタセット(4)の前記フィルタ(6、7)の少なくとも1つが、1μm〜10mmの範囲、好ましくは10μm〜2mmの間の厚さを有する、請求項1〜8のいずれか1項に記載の方法。
JP2018241037A 2018-01-04 2018-12-25 管−検出器システムにおけるx線管の高電圧発生器の較正方法 Pending JP2019169463A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018100131.2 2018-01-04
DE102018100131.2A DE102018100131A1 (de) 2018-01-04 2018-01-04 Verfahren zur Kalibrierung eines Hochspannungsgenerators einer Röntgenröhre in einem Röhren-Detektor-System

Publications (1)

Publication Number Publication Date
JP2019169463A true JP2019169463A (ja) 2019-10-03

Family

ID=64949060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018241037A Pending JP2019169463A (ja) 2018-01-04 2018-12-25 管−検出器システムにおけるx線管の高電圧発生器の較正方法

Country Status (5)

Country Link
US (1) US20190204462A1 (ja)
EP (1) EP3509074A1 (ja)
JP (1) JP2019169463A (ja)
CN (1) CN110006926A (ja)
DE (1) DE102018100131A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7361568B2 (ja) 2019-10-28 2023-10-16 キヤノンメディカルシステムズ株式会社 X線撮影装置および単色x線生成方法
CN111855709B (zh) * 2020-07-27 2023-03-24 湖北航天技术研究院计量测试技术研究所 微焦点X-ray检测仪的成像校正方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916727A (en) * 1988-04-22 1990-04-10 Keithley Instruments Inc. Apparatus for measuring the voltage applied to a radiation source
US5400387A (en) * 1994-03-01 1995-03-21 General Electric Company Indirect measurement of voltage applied to diagnostic x-ray tubes
US6454460B1 (en) * 1998-09-08 2002-09-24 Naganathasastrigal Ramanathan System and method for evaluating and calibrating a radiation generator

Also Published As

Publication number Publication date
EP3509074A1 (de) 2019-07-10
US20190204462A1 (en) 2019-07-04
CN110006926A (zh) 2019-07-12
DE102018100131A1 (de) 2019-07-04

Similar Documents

Publication Publication Date Title
EP3376959B1 (en) Detector in an imaging system
Lawson 88-Mev Gamma-Ray Cross Sections
JP5819024B1 (ja) 線量率測定装置
US4843619A (en) Apparatus for measuring the peak voltage applied to a radiation source
EP1747482A1 (de) Stabilisierung eines szintillationsdetektors
US8184766B2 (en) X-ray computer tomograph and method for investigating an object by means of X-ray computer tomography
JP2019169463A (ja) 管−検出器システムにおけるx線管の高電圧発生器の較正方法
EP3255461A1 (de) Diagnose von radiometrischen detektoren
GB1560845A (en) Quench determination in liquid scintillation counting systems
Ponchut Characterization of X-ray area detectors for synchrotron beamlines
JP2019197054A (ja) 残光検出装置及び残光検出方法
JP4241942B2 (ja) 撮像線量の測定方法および放射線像の撮像装置
EP0402578A2 (en) Improved apparatus for measuring the voltage applied to a radiation source
JPH01134291A (ja) シンチレーション式線量率計
JP2011196753A (ja) 放射線測定方法
Ryzhikov et al. A multi-energy method of nondestructive testing by determination of the effective atomic number of different materials
Halbert Fluorescent response of CsI (Tl) to energetic nitrogen ions
JP2007510150A (ja) ピクセル状固体検出器のための較正方法および装置
WO2020160106A1 (en) Radiation-based thickness gauge
Bae et al. Assessment of the implementation of a neutron measurement system during the commissioning of the jordan research and training reactor
US3688110A (en) Photographic emulsion silver gage
JP3333940B2 (ja) X線を使用して層の厚みを測定する装置の較正装置および較正方法
US5295176A (en) Method and apparatus for precisely measuring accelerating voltages applied to x-ray sources
JPS61191929A (ja) 温度測定方法及び装置
Wagner Studies on the performance of diagnostic ionisation air kerma meters in the United States