JP2019158690A - レーダ装置およびレーダ装置の調整方法 - Google Patents

レーダ装置およびレーダ装置の調整方法 Download PDF

Info

Publication number
JP2019158690A
JP2019158690A JP2018047367A JP2018047367A JP2019158690A JP 2019158690 A JP2019158690 A JP 2019158690A JP 2018047367 A JP2018047367 A JP 2018047367A JP 2018047367 A JP2018047367 A JP 2018047367A JP 2019158690 A JP2019158690 A JP 2019158690A
Authority
JP
Japan
Prior art keywords
signal
calibration
correction
unit
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018047367A
Other languages
English (en)
Inventor
大貴 竹嶋
Daiki Takeshima
大貴 竹嶋
寛裕 矢野
Hirosuke Yano
寛裕 矢野
広大 久木田
Kodai Kukita
広大 久木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2018047367A priority Critical patent/JP2019158690A/ja
Publication of JP2019158690A publication Critical patent/JP2019158690A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】回路構成を複雑化することなく、IQインバランスを補正すること。【解決手段】送信信号を対象物に向けて送信する送信手段と、受信信号を受信する受信手段と、受信信号を直交位相検波する直交位相検波手段と、直交位相検波手段から出力される信号の振幅および位相の少なくとも一方を補正する補正手段と、補正手段によって補正がなされた信号に基づいて対象物を検出する検出手段と、所定のタイミングにおいて、所定の位相差および振幅差の少なくとも一方を有する少なくとも2種類の較正信号を直交位相検波手段に供給し、直交位相検波手段から出力される信号に基づいて補正手段が使用する補正値を算出する算出手段と、算出手段によって算出された補正値を補正手段に対して設定する設定手段と、を有することを特徴とする。【選択図】図1

Description

本発明は、レーダ装置およびレーダ装置の調整方法に関するものである。
対象物によって反射された反射波に基づいて対象物を検出するレーダ装置では、直交位相検波器としてのIQミキサを使用しているものがある。図12は従来のIQミキサの構成を示している。
図12に示すように、IQミキサは、分配部100、0/90°移相部101、ミキサ102,103によって構成されている。分配部100は、入力された高周波信号を2分配し、ミキサ102,103へそれぞれ供給する。0/90°移相部101は、入力された局部発振信号を2分配し、一方はそのままの位相でミキサ102に供給し、他方は位相を90°移相してミキサ103に供給する。ミキサ102は分配部100から供給される高周波信号と、0/90°移相部101から供給される移相されていない局部発振信号とを乗算してI信号として出力する。ミキサ103は分配部100から供給される高周波信号と、0/90°移相部101から供給される90°移相された局部発振信号とを乗算してQ信号として出力する。
ところで、このようなIQミキサがインバランス(不均衡)状態である場合、すなわち、I信号とQ信号の位相差が90°で、かつ、振幅が同じ理想状態からずれを生じている場合、信号強度に誤差を生じたり、検出角度に誤差を生じたりする場合がある。
特許文献1には、このようなIQインバランスを検出して解消するために、IQ平面上の複数の異なる位置に対応する出力信号をIQミキサに出力させるための調整信号を生成し、受信信号または局部発振信号としてIQミキサに供給する生成手段と、生成手段から調整信号がIQミキサに供給されている際に、IQミキサから出力されるIQ信号を入力し、IQミキサがバランスしている場合の軌跡からのずれに基づいて、IQミキサのインバランスを検出する検出手段とを有する技術が開示されている。
特開2013−185945号公報
ところで、特許文献1に開示された技術では、複数のスイッチと複数の位相部とが必要になることから、回路構成が複雑になるという問題点がある。
そこで、本発明は、回路構成を複雑化することなく、IQインバランスを補正することが可能なレーダ装置を提供することを目的としている。
上記課題を解決するために、本発明は、送信信号を対象物に向けて送信し、当該対象物によって反射される信号を受信信号として受信し、当該対象物を検出するレーダ装置において、前記送信信号を前記対象物に向けて送信する送信手段と、前記受信信号を受信する受信手段と、前記受信信号を直交位相検波する直交位相検波手段と、前記直交位相検波手段から出力される信号の振幅および位相の少なくとも一方を補正する補正手段と、前記補正手段によって補正がなされた信号に基づいて前記対象物を検出する検出手段と、所定のタイミングにおいて、所定の位相差および振幅差の少なくとも一方を有する少なくとも2種類の較正信号を前記直交位相検波手段に供給し、前記直交位相検波手段から出力される信号に基づいて前記補正手段が使用する補正値を算出する算出手段と、前記算出手段によって算出された前記補正値を前記補正手段に対して設定する設定手段と、を有することを特徴とする。
このような構成によれば、回路構成を複雑化することなく、IQインバランスを補正することが可能となる。
また、本発明は、前記所定のタイミングにおいて算出された前記補正値を記憶する記憶部を有し、前記設定手段は、前記記憶部に記憶された前記補正値を前記補正手段に対して設定する、ことを特徴とする。
このような構成によれば、記憶された補正値に基づいて、IQインバランスを補正することができる。
また、本発明は、前記算出手段は、位相差が既知の2種類の前記較正信号を前記直交位相検波手段に供給し、前記直交位相検波手段から出力される信号に基づいて、前記補正値を算出することを特徴とする。
このような構成によれば、簡易な計算によってIQインバランスを確実に補正することができる。
また、本発明は、前記算出手段は、前記対象物を検出する際に使用される周波数を有する前記較正信号と、前記周波数とは異なる周波数を有する前記較正信号を前記直交位相検波手段に供給し、前記直交位相検波手段から出力される信号に基づいて、前記補正値を算出することを特徴とする。
このような構成によれば、周波数を変更するだけでよいので回路構成を一層簡易化することができる。
また、本発明は、前記算出手段は、前記レーダ装置の周囲環境の所定のパラメータが前回の較正時に比較して所定の閾値以上変化した場合に、前記補正手段が使用する前記補正値を算出することを特徴とする。
このような構成によれば、IQインバランスが生じる可能性が高いタイミングで、IQインバランスの較正を行うことができる。
また、本発明は、前記算出手段は、前回の較正時から所定の時間が経過した場合に、前記補正手段が使用する前記補正値を算出することを特徴とする。
このような構成によれば、定期的にIQインバランスの補正を行うことができる。
また、本発明は、前記算出手段は、前記較正信号を送信アンテナおよび受信アンテナを介して前記直交位相検波手段に供給することを特徴とする。
このような構成によれば、送信アンテナから受信アンテナへの回り込みを利用してIQインバランスの較正を行うことができるので、回路構成を複雑化することなく、較正を実行できる。
また、本発明は、前記算出手段は、前記較正信号を送信アンテナおよび受信アンテナを介さずに前記直交位相検波手段に直接供給することを特徴とする。
このような構成によれば、レーダ装置の外部の影響を受けることなく、IQインバランスの較正を行うことができる。
また、本発明は、送信信号を対象物に向けて送信し、当該対象物によって反射される信号を受信信号として受信し、当該対象物を検出するレーダ装置の調整方法において、前記送信信号を前記対象物に向けて送信する送信ステップと、前記受信信号を受信する受信ステップと、前記受信信号を直交位相検波する直交位相検波ステップと、前記直交位相検波ステップから出力される信号の振幅および位相の少なくとも一方を補正する補正ステップと、前記補正ステップにおいて補正がなされた信号に基づいて前記対象物を検出する検出ステップと、所定のタイミングにおいて、所定の位相差および振幅差の少なくとも一方を有する少なくとも2種類の較正信号を前記直交位相検波ステップに供給し、前記直交位相検波ステップから出力される信号に基づいて前記補正ステップが使用する補正値を算出する算出ステップと、前記算出ステップによって算出された前記補正値を前記補正ステップに対して設定する設定ステップと、を有することを特徴とする。
このような方法によれば、回路構成を複雑化することなく、IQインバランスを補正することが可能となる。
本発明によれば、回路構成を複雑化することなく、IQインバランスを補正することが可能なレーダ装置およびレーダ装置の調整方法を提供することが可能となる。
本発明の第1実施形態に係るレーダ装置の構成例を示すブロック図である。 図1に示すIQミキサの詳細な構成例を示すブロック図である。 図1に示す制御処理部サの詳細な構成例を示すブロック図である。 IQミキサがバランスしている場合とインバランスが生じている場合の出力信号の状態を示す図である。 −1〜1dBの範囲で振幅のインバランスが生じた場合に発生する角度誤差を示す図である。 −1〜1degの範囲で位相のインバランスが生じた場合に発生する角度誤差を示す図である。 レーダ装置に温度ストレスを印加した場合における振幅のインバランスの発生を示す図である。 低温時における角度誤差の5σを示す図である。 図1に示す実施形態において実行される処理の一例を説明するためのフローチャートである。 本発明の第2実施形態の構成例を示すブロック図である。 本発明の変形実施形態の構成例を示すブロック図である。 従来のIQミキサの構成例を示すブロック図である。
次に、本発明の実施形態について説明する。
(A)第1実施形態の構成の説明
図1は、本発明の第1実施形態に係るレーダ装置の構成例を示す図である。この図に示すように、本発明の第1実施形態に係るレーダ装置1は、制御処理部10、高周波発振部20、分配部21、切換スイッチ22、送信アンテナ23、受信アンテナ24、較正信号生成部25、IQミキサ26、受信アンプ27、および、A/D(Analog to Digital)変換部28を有しており、例えば、自動四輪車、自動二輪車等の車両等に搭載され、対向車両、歩行者、障害物等の対象物を検出する。なお、分配部21と切換スイッチ22の間には、パルス信号を生成するための半導体によるスイッチが実際には設けられているが、図1では説明を簡略化するために省略している。
ここで、制御処理部10は、高周波パルス信号の送受信の制御を行うとともに、対象物からの反射波に対する各種演算処理を行い、対象物を検出する。また、制御処理部10は、後述する処理によって検出されたIQインバランスを補正する処理を実行する。なお、制御処理部10は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)や、FPGA(Field Programmable Gate Array)等によって構成される。
高周波発振部20は、周波数fcの高周波信号を生成し、分配部21に供給する。分配部21は高周波発振部20から出力される高周波信号を分配し、一方を切換スイッチ22に供給し、他方をIQミキサ26に供給する。送信アンテナ23は、切換スイッチ22から供給される高周波信号を空間に向けて放射する。
受信アンテナ24は、送信アンテナ23から放射されて対象物(ターゲット)によって反射された反射波を受信してIQミキサ26に受信信号として供給する。なお、図1の例では、1つの受信アンテナ24を有しているが、複数の受信アンテナを設け、これらをスイッチで切り換えて受信するようにしてもよい。そのような構成によれば、受信アンテナ間の位相差に基づいて、対象物の存在する角度を検出することができる。
較正信号生成部25は、IQミキサ26のインバランスを較正するための較正信号を生成して出力する。
IQミキサ26は、受信アンテナ24によって受信された受信信号を、分配部21から供給される高周波信号で直交位相検波して同位相のI信号と、位相が90度ずれたQ信号とを出力する。受信アンプ27は、IQミキサ26から出力されるI信号、Q信号に含まれている高調波成分を減衰するとともに、高調波成分以外の信号を所定のゲインで増幅して出力する。A/D変換部28は、受信アンプ27から出力されるI信号、Q信号を制御処理部10の制御に応じてサンプリングし、制御処理部10にデジタル信号として出力する。
図2は、図1に示す切換スイッチ22およびIQミキサ26の詳細な構成例を示す図である。この図2に示すように、切換スイッチ22は、制御処理部10によって制御され、分配部21および較正信号生成部25の出力のいずれか一方を選択して送信アンテナ23に供給する構成とされている。
IQミキサ26は、分配部26a、0/90°移相部26b、および、ミキサ26c,26dを有している。ここで、分配部26aは、受信アンテナ24から供給される受信信号を2分配してミキサ26cおよびミキサ26dにそれぞれ供給する。0/90°移相部26bは、分配部21から供給される高周波信号の位相を0°移相してミキサ26cに供給し、90°移相してミキサ26dに供給する。ミキサ26cは分配部26aから供給される受信信号と0/90°移相部26bから供給される高周波信号(局部発振信号)とを乗算し、得られた信号をI信号として受信アンプ27に出力する。ミキサ26dは分配部26aから供給される受信信号と0/90°移相部26bから供給される90°移相された高周波信号とを乗算し、得られた信号をQ信号として受信アンプ27に出力する。
図3は、図1に示す制御処理部10の詳細な構成例を示す図である。図3の例では、制御処理部10は、信号選択部11、較正処理部12、補正値記憶部13、受信信号補正処理部14、対象物検出処理部15、切換制御部16、および、検出部17を有している。なお、これらの機能ブロックは、前述したROMまたはRAMに格納されているプログラムを実行することにより実現される。
ここで、較正処理部12は、IQインバランスを解消するための較正処理が実行される場合には、較正信号生成部25から出力される2種類の較正信号に基づいて、IQミキサ26のインバランスを検出し、インバランスを補正するための補正値を求めて補正値記憶部13に供給する。
補正値記憶部13は、較正処理部12から供給される補正値を記憶し、受信信号補正処理部14に供給する。
受信信号補正処理部14は、対象物を検出する処理が実行される場合には、補正値記憶部13から供給される補正値に基づいて、信号選択部11から供給される受信信号に対して、IQインバランスを解消するための補正処理を施して出力する。
対象物検出処理部15は、受信信号補正処理部14から供給される信号に基づいて対象物を検出する処理を実行し、検出結果を、図示しない上位の装置(例えば、ECU(Electric Control Unit))に供給する。なお、破線で囲まれた、補正値記憶部13、受信信号補正処理部14、および、対象物検出処理部15は、対象物を検出する処理を実行するレーダ処理部を示している。
切換制御部16は、較正処理を実行する場合には、信号選択部11を制御して、A/D変換部28から出力される信号を較正処理部12に供給し、対象物検出処理を実行する場合にはA/D変換部28から出力される信号を受信信号補正処理部14に供給する。また、切換制御部16は、較正処理を実行する場合には、較正信号生成部25を制御して較正信号を生成させるとともに、切換スイッチ22を制御して、較正信号を送信アンテナ23から送信させる。
検出部17は、周囲環境の状況を示すパラメータを検出し、切換制御部16に通知する。より詳細には、検出部17は、例えば、周囲の温度、湿度を検出して切換制御部16に通知する。また、検出部17は、計時回路を有し、所定のタイミングからの経過時間を検出して切換制御部16に通知する。
(B)第1実施形態の動作の説明
つぎに、本発明の第1実施形態の動作について説明する。第1本実施形態では、レーダ装置1は、2つの動作モードを有している。動作モードの1つは、対象物を検出する動作モード(以下、「対象物検出動作モード」と称する)である。動作モードの他の1つは、IQインバランスを較正するための動作モード(以下、「較正動作モード」と称する)である。以下では、較正動作モードについて説明し、その後に対象物検出動作モードについて説明する。
較正動作モードでは、IQミキサ26のインバランスを解消する動作を実行する。図4は、インバランスを説明する図である。図4において、実線はIQミキサ26のバランスが取れた状態(インバランスが生じていない状態)を示している。また、破線はIQミキサ26がインバランス状態である場合を示している。IQミキサ26がインバランス状態でない理想的な状態である場合には、IQ平面上にプロットされるIQ信号の軌跡は、図4に実線で示すように原点を中心とする真円となるが、インバランス状態である場合には図4に破線で示すような、例えば、楕円となる。
図5および図6は、IQインバランスが生じた場合において、レーダ装置1で発生する対象物の角度誤差を示す図である。より詳細には、図5は、−1〜1dBの範囲で振幅のインバランスが生じた場合に発生する角度誤差を示す図である。図6は、−1〜1degの範囲で位相のインバランスが生じた場合に発生する角度誤差を示す図である。なお、図5および図6において、横軸は、レーダ装置1の正面方向を0degとして、実際に対象物が存在する角度θを示し、縦軸は角度θと、レーダ装置1が検出した対象物の角度との差であるΔθを示す。図5に示すように、1dBの振幅のインバランスが発生すると、−45degより広角方向で2deg程度の誤差が発生する。また、図6に示すように、1degの位相のインバランスが発生した場合、最大で0.5deg程度の誤差が発生する。
図7は、レーダ装置1に温度ストレスを印加した場合における振幅のインバランスの発生を示す図である。図7の例では、−10℃と+60℃の雰囲気下において、通電暖気状態でレーダ装置1の振幅インバランスを測定した結果を示している。図7に示すように、低温時には高温時に比較して、約3倍の振幅インバランスが発生している。低温時における、角度誤差の5σを図8に示す。図8に示すように、低温時(−10℃)においては、−45degより広角方向で約2.5degの角度誤差が発生している。なお、図8において、横軸は、レーダ装置1の正面方向を0degとして、実際に対象物が存在する角度θを示し、縦軸は角度θと、レーダ装置1が検出した対象物の角度との差であるΔθを示す。
従来においては、レーダ装置の出荷時にIQミキサのインバランスの調整を行い、出荷後はインバランスの調整を行うことはなかった。しかしながら、前述したように、例えば、温度変化によってインバランスが生じる場合があるので、本実施形態では、レーダ装置1の出荷後に、レーダ装置1の稼働中において、所定のタイミングで(例えば、温度が所定の閾値以上になった場合には)、レーダ装置1が較正動作モードになり、インバランスの調整を自動的に実施する。
インバランスの調整について、以下に詳細に説明する。IQミキサ26のバランスが取れた状態では、IQミキサ26からは以下の式(1)および式(2)に示すI信号およびQ信号(以下、適宜「IQ信号」と称する)が出力される。ここで、Aは振幅を示し、θは位相を示す。
Figure 2019158690
Figure 2019158690
IQミキサ26にインバランスが発生した場合、以上の式(1)および式(2)は以下の式(3)および式(4)となる。
Figure 2019158690
Figure 2019158690
ここで、Gはインバランスよって発生する振幅の誤差(増減値)を示し、φは位相の誤差(増減値)を示す。
IQインバランスが生じて、式(3)および式(4)に示す状態になった場合、インバランス項であるGおよびφを求め、これらのインバランス項を相殺するように補正することで、角度誤差の発生を抑制することができる。
より詳細には、本実施形態に係るレーダ装置1では、例えば、周囲環境の所定のパラメータ(例えば、温度、湿度等)が前回の較正実施時に比較して、所定の閾値以上増減した場合には、較正動作モードに移行する。較正動作モードに移行すると、切換制御部16が、切換スイッチ22を制御して、較正信号生成部25の出力を選択させる。この結果、較正信号生成部25から出力される信号が、切換スイッチ22を介して送信アンテナ23に供給される。また、切換制御部16は、信号選択部11を制御して、A/D変換部28の出力を較正処理部12に供給する。
切換スイッチ22の切換が完了すると、較正信号生成部25は、位相差がαである2種類の較正信号を生成して出力する。より詳細には、較正信号生成部25は、第1較正信号と、第1較正信号に比較して、位相差がαである第2較正信号を順次生成して出力する。このような第1較正信号および第2較正信号は、切換スイッチ22を介して送信アンテナ23から送信された後、例えば、基板上を伝播する等によって送信アンテナから受信アンテナに直接入力される回り込み信号によって、同じ基板上にある受信アンテナ24によって受信される。
受信アンテナ24によって受信された第1較正信号および第2較正信号は、IQミキサ26に供給される。その結果、IQミキサ26からは、第1較正信号の入力に対応して式(5)および式(6)に示す信号が出力され、第2較正信号の入力に対応して式(7)および式(8)に示す信号が出力される。
Figure 2019158690
Figure 2019158690
Figure 2019158690
Figure 2019158690
IQミキサ26から出力されたIQ信号は、受信アンプ27によって増幅された後、A/D変換部28によってデジタル信号に変換される。切換制御部16は、信号選択部11を制御して、較正処理部12を選択しているので、A/D変換部28から出力されたデジタル信号は、較正処理部12に供給される。
較正処理部12は、前述した、第1較正信号および第2較正信号に対応するデジタル信号を入力し、以下の式(9)〜式(14)に基づいて、インバランス項であるGとφを求める。
Figure 2019158690
Figure 2019158690
Figure 2019158690
Figure 2019158690
Figure 2019158690
Figure 2019158690
較正処理部12は、以上のようにして求めたインバランス項であるGおよびφを打ち消す補正値(例えば、−Gおよび−φ)を、補正値記憶部13に供給する。補正値記憶部13は、較正処理部12から供給された補正値を記憶(更新)する。
以上の処理により、較正動作が完了する。較正動作が完了すると、レーダ装置1は、通常動作である対象物検出動作モードに移行する。対象物検出動作モードでは、切換制御部16は、切換スイッチ22を制御して、分配部21の出力を選択させるとともに、信号選択部11を制御してA/D変換部28の出力先として受信信号補正処理部14を選択させる。
対象物検出動作モードでは、高周波発振部20から出力される周波数がfcの信号は、分配部21および切換スイッチ22を介して送信アンテナ23から電波として送信される。送信アンテナ23から送信された電波は、図示しない対象物によって反射され、受信アンテナ24によって受信される。受信アンテナ24によって受信された電波は、電気信号に変換され、IQミキサ26に供給される。
IQミキサ26は、受信アンテナ24から供給される受信信号を、分配部21から供給され、0/90°位相部26bによって90°の位相差を有する信号によって直交位相検波し、IQ信号を出力する。
IQミキサ26から出力されたIQ信号は、受信アンプ27によって所定のゲインで増幅された後、A/D変換部28によってデジタル信号に変換される。A/D変換部28によってデジタル信号に変換されたIQ信号は、信号選択部11を介して受信信号補正処理部14に供給される。
受信信号補正処理部14は、信号選択部11から供給されたデジタル化されたIQ信号を入力し、補正値記憶部13に記憶されている補正値に基づいて、IQインバランスを相殺する補正を行う。より詳細には、振幅に対して−Gの補正を行うとともに、位相に対して−φの補正を行う。このような補正により、インバランスが相殺されるので、図4に示す破線の状態から、実線の状態になるようにインバランスを低減できる。
受信信号補正処理部14によって補正されたIQ信号は、対象物検出処理部15に供給され、対象物を検出する処理が実行される。より詳細には、対象物検出処理部15は、IQ信号に対して、プリサム処理、FFT処理、対象物検出処理、クラスタリング処理、および、トラッキング処理等を実行し、得られたデータを、例えば、上位のECU等に供給する。
つぎに、図9を参照して、第1実施形態において実行される処理の詳細について説明する。図9に示す処理は、例えば、レーダ装置1が搭載された車両のエンジンが始動された場合に実行される。図9に示すフローチャートが開始されると、以下のステップが実行される。
ステップS10では、制御処理部10の切換制御部16は、IQインバランスの較正を実行するか否かを判定し、較正を実行すると判定した場合(ステップS10:Y)にはステップS11に進み、それ以外の場合(ステップS10:N)にはステップS18に進む。例えば、検出部17の出力を参照して、前回較正時よりも、温度が所定の閾値以上増減した場合には、Yと判定してステップS11に進む。例えば、較正処理の前回実行時に比較して、温度が、例えば、20℃以上増加した場合、または、温度が20℃以上減少した場合には、Yと判定してステップS11に進むことができる。なお、温度だけでなく、湿度が、例えば、30%以上増減した場合に較正処理を実行するようにしたり、較正処理の前回実行時から、例えば、数ヶ月が経過している場合に較正処理を実行したりするようにしてもよい。もちろん、これら以外のトリガによって、較正処理を実行するようにしてもよい。なお、前述した温度、湿度、経過時間の閾値は一例であって、前述した以外の閾値を用いるようにしてもよい。
ステップS11では、切換制御部16は、較正動作モードへ移行する。より詳細には、切換制御部16は、切換スイッチ22を制御して較正信号生成部25を選択させる。また、切換制御部16は、信号選択部11を制御して、A/D変換部28の出力先として較正処理部12を選択させる。
ステップS12では、切換制御部16は、第1較正信号を送受信させる。より詳細には、切換制御部16は、較正信号生成部25を制御して第1較正信号を出力させる。この結果、第1較正信号は、切換スイッチ22を介して送信アンテナ23に供給され電波として送信される。送信アンテナ23から送信された電波は、回り込みによって、同じ回路基板上に配置されている受信アンテナ24によって受信され、IQミキサ26に供給される。IQミキサ26は、受信アンテナ24から供給される受信信号を、分配部21から供給される高周波信号によって直交位相検波し、IQ信号を生成して受信アンプ27に出力する。受信アンプ27は、IQ信号を所定のゲインで増幅して出力する。A/D変換部28は、受信アンプ27から供給されるIQ信号をデジタル信号に変換して出力する。A/D変換部28から出力されるIQ信号は、信号選択部11を介して、較正処理部12に供給される。
ステップS13では、較正処理部12は、第1較正信号に係るIQ信号を記憶する。すなわち、較正処理部12は、A/D変換部28から供給される第1較正信号に係るIQ信号の値(式(5)および式(6)に関する値)を記憶する。
ステップS14では、切換制御部16は、第2較正信号を送受信させる。より詳細には、切換制御部16は、較正信号生成部25を制御して、第1較正信号とはαの位相差を有する第2較正信号を出力させる。この結果、第2較正信号は、切換スイッチ22を介して送信アンテナ23に供給され電波として送信される。送信アンテナ23から送信された電波は同じ回路基板上に配置されている受信アンテナ24によって受信され、IQミキサ26に供給される。IQミキサ26は、受信アンテナ24から供給される受信信号を、分配部21から供給される高周波信号によって直交位相検波し、IQ信号を生成して受信アンプ27に出力する。受信アンプ27は、IQ信号を所定のゲインで増幅して出力する。A/D変換部28は、受信アンプ27から供給されるIQ信号をデジタル信号に変換して出力する。A/D変換部28から出力されるIQ信号は、信号選択部11を介して、較正処理部12に供給される。
ステップS15では、較正処理部12は、第2較正信号に係るIQ信号を記憶する。すなわち、較正処理部12は、A/D変換部28から供給される第2較正信号に係るIQ信号の値(式(7)および式(8)に関する値)を記憶する。
ステップS16では、較正処理部12は、前述した式(9)〜式(14)に基づいて、補正値を算出する処理を実行する。この結果、インバランス項Gおよびφに関する補正値を得る。
ステップS17では、較正処理部12は、ステップS16で算出した補正値を、補正値記憶部13に対して供給して記憶させる。なお、このようにして、補正値記憶部13に記憶された補正値は、受信信号補正処理部14に供給される。そして、ステップS18に示す対象物検出動作モードに移行した場合には、これらの補正値を用いてA/D変換部28から出力されるIQ信号に対して補正処理が実行され、インバランスが解消される。
ステップS18では、対象物検出動作モードへ移行する。より詳細には、切換制御部16は、切換スイッチ22を制御して分配部21を選択させる。また、切換制御部16は、信号選択部11を制御して、A/D変換部28の出力先として受信信号補正処理部14を選択させる。この結果、A/D変換部28から供給されるIQ信号は、信号選択部11を介して受信信号補正処理部14に供給される。受信信号補正処理部14では、補正値記憶部13に記憶されている補正値に基づいて、インバランスを解消するための補正処理をIQ信号に対して施して出力する。
ステップS19では、制御処理部10は、処理を終了するか否かを判定し、処理を終了すると判定した場合(ステップS19:Y)には処理を終了し、それ以外の場合(ステップS19:N)にはステップS10に戻って前述の場合と同様の処理を繰り返す。
以上の処理によれば、簡易な構成によって、IQミキサ26のIQインバランスを解消することができる。
(C)第2実施形態の構成の説明
つぎに、図10を参照して、本発明の第2実施形態について説明する。なお、図10において、図1と対応する部分には同一の符号を付してあるので、その説明を省略する。
図10では、図1と比較すると、切換スイッチ22が除外され、切換スイッチ30が新たに付加されている。それ以外の構成は図1と同様である。ここで、切換スイッチ30は、制御処理部10の切換制御部16によって制御され、受信アンテナ24および較正信号生成部25の出力のいずれか一方を選択してIQミキサ26に出力する。この結果、IQミキサ26には、受信アンテナ24から供給される受信信号および較正信号生成部25から出力される較正信号のいずれか一方が供給される。
(D)第2実施形態の動作の説明
つぎに、本発明の第2実施形態の動作について説明する。第2実施形態では、較正動作モードに移行すると、較正信号生成部25から出力される第1較正信号は、送信アンテナ23および受信アンテナ24を経由せずに、IQミキサ26に直接供給される。
IQミキサ26は、切換スイッチ30を介して較正信号生成部25から供給される第1較正信号および第2較正信号をそれぞれ入力し、直交位相検波した後、出力する。
なお、IQミキサ26以降の動作は、前述した場合と同様であるので省略する。
以上に説明したように、本発明の第2実施形態によれば、前述した第1実施形態と同様に、簡易な構成によって、IQインバランスを補正することができる。これにより、対象物の誤検出の発生を低減することができる。また、第2実施形態では、送信アンテナ23および受信アンテナ24を経由せずに、較正信号をIQミキサ26に直接供給することから、外部環境の影響を受けることなく、較正を実行することができる。
(E)変形実施形態の説明
以上の実施形態は一例であって、本発明が上述したような場合のみに限定されるものでないことはいうまでもない。例えば、以上の第1および第2実施形態では、第1較正信号および第2較正信号の2種類を用いるようにしたが、3種類以上の較正信号を用いるようにしてもよい。
また、以上の各実施形態では、第1較正信号と第2較正信号の位相差をαに設定するようにしたが、これ以外にも、例えば、振幅差を有する第1較正信号と第2較正信号を用いて較正を行うようにしてもよい。もちろん、位相差と振幅差の双方を有する第1較正信号および第2較正信号を用いて較正を行うようにしてもよい。
また、以上の各実施形態では、較正信号生成部25が第1較正信号および第2較正信号を生成するようにしたが、これ以外にも、例えば、図11に示すように、高周波発振部20を制御して、周波数、振幅、または、位相が異なる第1較正信号および第2較正信号を生成するようにしてもよい。図11の構成例では、高周波発振部20から第1較正信号および第2較正信号が出力される場合には、スイッチ30によって分配部21の出力を選択し、通常動作時には切換スイッチ30によって受信アンテナ24を選択する。なお、図11の例では、分配部21の出力と切換スイッチ30の一方とを配線によって直接接続するようにしたが、配線を除外して、送信アンテナ23および受信アンテナ24を介して較正信号を伝送するようにしてもよい。また、図1の場合も、較正信号生成部25および切換スイッチ22を除外し、高周波発振部20を制御して、周波数、振幅、または、位相が異なる第1較正信号および第2較正信号を生成するようにしてもよい。そのような較正によれば、装置の構成をさらに簡易化することができる。なお、周波数差を生成する場合には、高周波発振部20の周波数を変更し、例えば、対象物を検出する際に使用される周波数を有する較正信号と、これとは異なる周波数を有する較正信号を生成するようにすればよい。また、位相差を生成する場合には、例えば、遅延回路によって位相差を生成するようにしてもよい。また、振幅差を生成する場合には、例えば、増幅回路または減衰回路によって振幅差を生成するようにできる。
また、以上の各実施形態では、IQミキサ26に供給する信号としては、CW(Constant Wave)信号を用いるようにしたが、パルス信号を使用するようにしてもよい。そのような構成によっても前述の場合と同様に、インバランスを検出して補正することができる。
なお、パルス信号を使用する場合、図10に示す、切換スイッチ30を設けずに、分配部21の送信アンテナ23側の出力とIQミキサ26の入力とを配線によって直接接続するようにすることができる。このように直接接続することで、送信信号をIQミキサ26に入力することができる。なお、このように直接接続すると、レーダ装置として動作する場合に送信パルス信号が直接にIQミキサ26に入力されてしまうが、パルス信号の送信直後の受信信号は無視されるので、レーダ装置の動作に影響を与えることはない。
また、検出部17によって検出された周囲環境の状況を示すパラメータと、その周囲環境において得られた補正値とを対応付けして、例えば、テーブルとして補正値記憶部13に記憶しておき、検出時と同じ周囲環境の状況となった場合に、テーブルを参照して記憶済の補正値を選択し、受信信号補正処理部14に設定するようにしてもよい。そのような構成によれば、較正処理の実行回数を減らすことができる。
また、図1および図10に示す構成例は一例であって、図1および図10に示す回路要素以外を付加するようにしたり、既存の回路要素を除外したりするようにしてもよい。
1 レーダ装置
10 制御処理部
11 信号選択部
12 較正処理部
13 補正値記憶部
14 受信信号補正処理部
15 対象物検出処理部
16 切換制御部
17 検出部
20 高周波発振部
21 分配部
22 切換スイッチ
23 送信アンテナ
24 受信アンテナ
25 較正信号生成部
26 IQミキサ
26a 分配部
26c ミキサ
26d ミキサ
27 受信アンプ
28 A/D変換部
30 切換スイッチ

Claims (9)

  1. 送信信号を対象物に向けて送信し、当該対象物によって反射される信号を受信信号として受信し、当該対象物を検出するレーダ装置において、
    前記送信信号を前記対象物に向けて送信する送信手段と、
    前記受信信号を受信する受信手段と、
    前記受信信号を直交位相検波する直交位相検波手段と、
    前記直交位相検波手段から出力される信号の振幅および位相の少なくとも一方を補正する補正手段と、
    前記補正手段によって補正がなされた信号に基づいて前記対象物を検出する検出手段と、
    所定のタイミングにおいて、所定の位相差および振幅差の少なくとも一方を有する少なくとも2種類の較正信号を前記直交位相検波手段に供給し、前記直交位相検波手段から出力される信号に基づいて前記補正手段が使用する補正値を算出する算出手段と、
    前記算出手段によって算出された前記補正値を前記補正手段に対して設定する設定手段と、
    を有することを特徴とするレーダ装置。
  2. 前記所定のタイミングにおいて算出された前記補正値を記憶する記憶部を有し、
    前記設定手段は、前記記憶部に記憶された前記補正値を前記補正手段に対して設定する、
    ことを特徴とする請求項1記載のレーダ装置。
  3. 前記算出手段は、位相差が既知の2種類の前記較正信号を前記直交位相検波手段に供給し、前記直交位相検波手段から出力される信号に基づいて、前記補正値を算出することを特徴とする請求項1に記載のレーダ装置。
  4. 前記算出手段は、前記対象物を検出する際に使用される周波数を有する前記較正信号と、前記周波数とは異なる周波数を有する前記較正信号を前記直交位相検波手段に供給し、前記直交位相検波手段から出力される信号に基づいて、前記補正値を算出することを特徴とする請求項2に記載のレーダ装置。
  5. 前記算出手段は、前記レーダ装置の周囲環境の所定のパラメータが前回の較正時に比較して所定の閾値以上変化した場合に、前記補正手段が使用する前記補正値を算出することを特徴とする請求項1乃至4のいずれか1項に記載のレーダ装置。
  6. 前記算出手段は、前回の較正時から所定の時間が経過した場合に、前記補正手段が使用する前記補正値を算出することを特徴とする請求項1乃至5のいずれか1項に記載のレーダ装置。
  7. 前記算出手段は、前記較正信号を送信アンテナおよび受信アンテナを介して前記直交位相検波手段に供給することを特徴とする請求項1乃至6のいずれか1項に記載のレーダ装置。
  8. 前記算出手段は、前記較正信号を送信アンテナおよび受信アンテナを介さずに前記直交位相検波手段に直接供給することを特徴とする請求項1乃至6のいずれか1項に記載のレーダ装置。
  9. 送信信号を対象物に向けて送信し、当該対象物によって反射される信号を受信信号として受信し、当該対象物を検出するレーダ装置の調整方法において、
    前記送信信号を前記対象物に向けて送信する送信ステップと、
    前記受信信号を受信する受信ステップと、
    前記受信信号を直交位相検波する直交位相検波ステップと、
    前記直交位相検波ステップから出力される信号の振幅および位相の少なくとも一方を補正する補正ステップと、
    前記補正ステップにおいて補正がなされた信号に基づいて前記対象物を検出する検出ステップと、
    所定のタイミングにおいて、所定の位相差および振幅差の少なくとも一方を有する少なくとも2種類の較正信号を前記直交位相検波ステップに供給し、前記直交位相検波ステップから出力される信号に基づいて前記補正ステップが使用する補正値を算出する算出ステップと、
    前記算出ステップによって算出された前記補正値を前記補正ステップに対して設定する設定ステップと、
    を有することを特徴とするレーダ装置の調整方法。
JP2018047367A 2018-03-14 2018-03-14 レーダ装置およびレーダ装置の調整方法 Pending JP2019158690A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047367A JP2019158690A (ja) 2018-03-14 2018-03-14 レーダ装置およびレーダ装置の調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047367A JP2019158690A (ja) 2018-03-14 2018-03-14 レーダ装置およびレーダ装置の調整方法

Publications (1)

Publication Number Publication Date
JP2019158690A true JP2019158690A (ja) 2019-09-19

Family

ID=67996081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047367A Pending JP2019158690A (ja) 2018-03-14 2018-03-14 レーダ装置およびレーダ装置の調整方法

Country Status (1)

Country Link
JP (1) JP2019158690A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030022A (ja) * 2004-07-16 2006-02-02 Japan Radio Co Ltd 電波を利用した距離測定装置及び距離測定方法
JP2007104522A (ja) * 2005-10-07 2007-04-19 Renesas Technology Corp 受信機
WO2012124586A1 (ja) * 2011-03-14 2012-09-20 古河電気工業株式会社 直交復調装置
JP2013185945A (ja) * 2012-03-07 2013-09-19 Furukawa Electric Co Ltd:The レーダ装置およびレーダ装置の調整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030022A (ja) * 2004-07-16 2006-02-02 Japan Radio Co Ltd 電波を利用した距離測定装置及び距離測定方法
JP2007104522A (ja) * 2005-10-07 2007-04-19 Renesas Technology Corp 受信機
WO2012124586A1 (ja) * 2011-03-14 2012-09-20 古河電気工業株式会社 直交復調装置
JP2013185945A (ja) * 2012-03-07 2013-09-19 Furukawa Electric Co Ltd:The レーダ装置およびレーダ装置の調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大石 昇 ほか: "広帯域レーダ信号の位相歪みによるインバランスの補正法", 電子情報通信学会技術研究報告, vol. 第108巻 第76号, JPN6022001250, 23 May 2008 (2008-05-23), JP, pages 29 - 34, ISSN: 0004683958 *

Similar Documents

Publication Publication Date Title
US7429947B2 (en) Radar apparatus for detecting distance or velocity with respect to an object
US9031163B2 (en) Phased array transmission device
JP6295011B2 (ja) 送信器、送信方法、位相調整装置、位相調整方法
JP6650599B2 (ja) フェーズドアレイ送信装置及びキャリアリーク補正方法
JP5736545B2 (ja) フェイズドアレーアンテナのブランチ間補正装置及びフェイズドアレーアンテナのブランチ間補正方法
JP2000230974A (ja) レーダ装置
JP7002257B2 (ja) 受信機試験
US11460542B2 (en) Phase rotator calibration of a multichannel radar transmitter
JP2017158086A (ja) アクティブフェーズドアレイ送信機、アクティブフェーズドアレイ受信機およびアクティブフェーズドアレイ送受信機
JP2011059083A (ja) レーダ装置
US11112486B2 (en) Radar apparatus
US20100056070A1 (en) Digital signal processor
EP3713081A2 (en) Phase shift module with an enhanced frequency multiplier and temperature compensation in local oscillator path
JP6116807B2 (ja) レーダ装置およびレーダ装置の調整方法
US10212011B2 (en) Wireless device and method for controlling phase
WO2019234900A1 (ja) レーダ装置
JP2017187406A (ja) 位相調整システム及び位相調整方法
JP2019158690A (ja) レーダ装置およびレーダ装置の調整方法
US9525581B2 (en) Wireless communication device and malfunction determining method
JP4850222B2 (ja) フェーズドアレイレーダにおけるオフセット量の補正方法
JP5293265B2 (ja) レーダ装置
JP5069021B2 (ja) 追尾アンテナ装置、追尾制御方法およびそのプログラム
JPH10332811A (ja) レーダ装置
WO2016084468A1 (ja) レーダ装置、レーダ出力調整システム、及びレーダ出力調整方法
US11435238B2 (en) Temperature detection device and temperature detection method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220712