JP2019158388A - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
JP2019158388A
JP2019158388A JP2018041728A JP2018041728A JP2019158388A JP 2019158388 A JP2019158388 A JP 2019158388A JP 2018041728 A JP2018041728 A JP 2018041728A JP 2018041728 A JP2018041728 A JP 2018041728A JP 2019158388 A JP2019158388 A JP 2019158388A
Authority
JP
Japan
Prior art keywords
width
laser
light
reflected
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018041728A
Other languages
English (en)
Other versions
JP7021569B2 (ja
Inventor
陽介 山口
Yosuke Yamaguchi
陽介 山口
直丈 松田
Naotake Matsuda
直丈 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2018041728A priority Critical patent/JP7021569B2/ja
Publication of JP2019158388A publication Critical patent/JP2019158388A/ja
Application granted granted Critical
Publication of JP7021569B2 publication Critical patent/JP7021569B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】 レーザ光が地面に対して平行であることを常時確認することができるレーザレーダ装置の提供【解決手段】 レーザ光の幅を垂直方向に第1広げ幅と第2広げ幅に広げ地面で反射させる(S16、S20)。反射光から第1広げ幅で反射した地面までの距離と第2広げ幅で反射した地面までの距離とを求める(S18、S22)。第1広げ幅の伏角と求めた距離と、第2広げ幅の伏角と求めた距離から、地面の傾きを算出する(S24)。そして、傾きが所定閾値を超える場合(S28:Yes)、信号を出力する(S34)。【選択図】 図6

Description

本発明は、レーザレーダ装置に関するものである。
従来より、レーザ光を用いて検出物体までの距離や方位を検出する技術として例えば特許文献1のような装置が提供されている。この特許文献1の装置では、レーザ光発生手段からのレーザ光の光軸上に、レーザ光を透過させ、かつ検出物体からの反射光を検出手段に向けて反射する光アイソレータを設けている。さらに、光アイソレータを透過するレーザ光の光軸上において当該光軸方向の中心軸を中心として回動する凹面鏡を設け、この凹面鏡によってレーザ光を空間に向けて反射させると共に、検出物体からの反射光を光アイソレータに向けて反射させることで360°の水平走査を可能としている。
特開平10−20035号公報
ところで、上記二次元平面を測距可能な二次元レーザレーダ装置は、地面や床面に対して平行にレーザスキャン出来るように設置されていることが、機能を発揮する上で望ましい。設置時、平行にレーザスキャン出来るように調整されていても、装置経年劣化、通行車両からの振動、地震、設置柱の傾き等の原因で、レーザ光が地面に対して平行であることが保てなくなることがある。レーザ光が地面に対して平行であることの確認には、作業員が設置姿勢を操作・調整するもので、人件費などの面から頻繁に行えるものではない。
本発明は、上述した課題を解決するためになされたものであり、レーザ光が地面に対して平行であることを常時確認することができるレーザレーダ装置を提供することを目的とする。
請求項1の発明は、レーザ光を発生するレーザ光発生手段と、
前記レーザ光発生手段からの前記レーザ光を平行光に変換するレンズと、
前記レーザ光発生手段から前記レーザ光が発生したときに、当該レーザ光が検出物体にて反射した反射光を検出する光検出手段と、
所定の中心軸を中心として回動可能に構成された偏向手段を備えるとともに、前記偏向手段により前記レーザ光を空間に向けて偏向させ、かつ前記反射光を前記光検出手段に向けて偏向する回動偏向手段と、
前記偏向手段にて偏向された前記反射光を前記光検出手段へと導く反射光誘導部と、
前記回動偏向手段を駆動する駆動手段と、
を備えたレーザレーダ装置であって、
レーザ光の幅を垂直方向に第1の幅と第2の幅に広げ、地面又は床面へレーザ光を照射させる幅拡張手段と、
第1の幅と第2の幅に広げられた照射光から前記第1の幅で反射した地面又は床面までの距離と第2の幅で反射した地面又は床面までの距離とを求める距離算出手段と、
前記第1の幅のレーザ光の反射した地面又は床面に対する伏角と前記求めた距離と、前記第2の幅のレーザ光の反射した地面又は床面に対する伏角と前記求めた距離から、前記第1の幅で反射した地面又は床面と第2の幅で反射した地面又は床面との傾きを算出する傾き算出手段と、
前記算出した傾きが所定閾値を超えるか判断し、閾値を超える場合、閾値越えの信号を出力する出力手段と、を備えることを特徴とする。
請求項1の発明では、幅拡張手段が、レーザ光の幅を垂直方向に第1の幅と第2の幅に広げ、地面又は床面へレーザ光を照射させる。距離算出手段が、第1の幅と第2の幅に広げられた照射光から第1の幅で反射した地面又は床面までの距離と第2の幅で反射した地面又は床面までの距離とを求める。傾き算出手段が、第1の幅のレーザ光の反射した地面又は床面に対する伏角と求めた距離と、第2の幅のレーザ光の反射した地面又は床面に対する伏角と求めた距離から、第1の幅で反射した地面又は床面と第2の幅で反射した地面又は床面との傾きを算出する。そして、出力手段が、算出した傾きが所定閾値を超えるか判断し、閾値を超える場合、閾値越えの信号を出力する。このため、レーザレーダ装置が、通常監視時においてレーザ光が地面に対して平行であることを確認し、地面に対して平行で無い場合には信号を出力することができる。
請求項2の発明では、幅拡張手段、距離算出手段、傾き算出手段、出力手段による平行確認処理を複数の方向に対して行うため、レーザレーダ装置の走査範囲に沿って平行確認処理を行うことができる。
請求項3の発明では、幅拡張手段、距離算出手段、傾き算出手段、出力手段による平行確認処理を1の方向と、1の方向に対して直交する方向に対して行うため、レーザレーダ装置の走査範囲に沿って必要かつ十分な平行確認処理を行うことができる。
請求項4の発明は、レンズは一対のシリンドリカルレンズから成るため、シリンドリカルレンズの少なくとも一方をレーザ光の光軸に沿って移動させることで、レーザ光の幅を垂直方向に第1の幅と第2の幅に広げることができる。
請求項5の発明は、レンズは一対のシリンドリカルレンズから成るため、レーザレーダ装置の正面方向に対して、シリンドリカルレンズの一方をレーザ光の光軸に沿って移動させることで、レーザ光の幅を垂直方向に広げることができる。そして、レーザ光が光軸に沿って90゜回転する正面方向に直交する方向に対して、シリンドリカルレンズの他方をレーザ光の光軸に沿って移動させることで、レーザ光の幅を垂直方向に広げることができる。
第1実施形態に係るレーザレーダ装置の全体構成を概略的に例示する断面図である。 図2(A)は、第1実施形態のレーザレーダ装置によるレーザ光の地面に対する平行確認動作の説明図であり、図2(B)は座標算出動作の説明図である。 第1実施形態に係るレーザレーダ装置の投光スポットの回転を示す図である。 第1実施形態に係るレーザレーダ装置の投光スポットの縦拡張を示す図である。 第1実施形態に係るレーザレーダ装置の投光スポットの横拡張を示す図である。 第1実施形態のレーザレーダ装置による平行確認動作のフローチャートである。 第2実施形態に係るレーザレーダ装置の投光スポットの縦拡張を示す図である。
[第1実施形態]
以下、第1実施形態のレーザレーダ装置について、図面を参照して説明する。
(全体構成)
まず、図1を参照して第1実施形態に係るレーザレーダ装置の全体構成について説明する。
図1は、第1実施形態に係るレーザレーダ装置の全体構成を概略的に例示する断面図である。レーザレーダ装置1は、レーザダイオード10と、検出物体からの反射光L2を受光するフォトダイオード20とを備え、検出物体までの距離や方位を検出する装置として構成されている。
レーザダイオード10は、「レーザ光発生手段」の一例に相当するものであり、制御回路70の制御により、図示しない駆動回路からパルス電流を受け、このパルス電流に応じたパルスレーザ光(レーザ光L1)を間欠的に出射している。なお、第1実施形態では、レーザダイオード10から検出物体に至るまでのレーザ光を符号L1にて概念的に示し、検出物体からフォトダイオードに至るまでの反射光を符号L2にて概念的に示している。
フォトダイオード20は、「光検出手段」の一例に相当するものであり、例えばアバランシェフォトダイオード(avalanche photodiode)などによって構成されている。このフォトダイオード20は、レーザダイオード10からレーザ光L1が発生し、そのレーザ光L1が検出物体(図示略)にて反射したとき、その反射光L2を受光して電気信号に変換している。なお、検出物体からの反射光については所定領域のものが凹面鏡41に取り込まれる構成となっており、図1では、符号L2で示す2つのライン(二点鎖線)間の領域の反射光が取り込まれる例を示している。
レーザダイオード10から出射されるレーザ光L1の光軸上にはレンズ60が設けられている。このレンズ60は、コリメートレンズとして構成されるものであり、レーザダイオード10からのレーザ光L1を平行光に変換している。レンズ60は、第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sとから成る。第1シリンドリカルレンズ60Fには、光軸に沿って位置を調整するための第1アクチュエータ62Fが取り付けられ、第2シリンドリカルレンズ60Sには、光軸に沿って位置を調整するための第2アクチュエータ62Sが取り付けられている。第1アクチュエータ62F、第2アクチュエータ62Sにより第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sの位置が調整されることで、後述するように投光ビーム形状を段階的に縦長に変化させる。第1アクチュエータ62F、第2アクチュエータ62Sは、「幅拡張手段」の一例に相当する。
レンズ60を通過したレーザ光L1の光路付近には、ミラー30が設けられている。このミラー30は、レーザ光L1の光軸に対し所定角度で傾斜してなる反射面30aと、反射面30aと交差する方向の貫通路32とを備えており、レーザダイオード10からのレーザ光L1を貫通路32を介して通過させる一方、検出物体からの反射光L2(より詳しくは凹面鏡41にて反射された反射光)をフォトダイオード20に向けて反射させている。なお、第1実施形態では、ミラー30が「反射光誘導部」の一例に相当し、「偏向手段」にて偏向された反射光L2をフォトダイオード20(光検出手段)へと導くように機能する。
また、ミラー30を通過するレーザ光L1の光軸上には、回動反射機構40が設けられている。回動反射機構40は、「回動偏向手段」の一例に相当するものであり、レーザ光L1の光軸方向に延びる中心軸42aを中心として回動可能に配設され、この中心軸42a上に焦点位置が設定される凹面鏡41と、この凹面鏡41に連結された軸部42と、この軸部42を回転可能に支持する図示しない軸受とを備えている。
凹面鏡41は、「偏向手段」の一例に相当するものであり、ミラー30を通過したレーザ光L1の光軸上に配置される凹状の反射面41aを備えると共に、中心軸42a(所定の中心軸)を中心として回動可能とされており、レーザダイオード10からのレーザ光L1をケース3外の空間に向けて偏向(反射)させ、且つケース3外の空間に存在する検出物体からの反射光L2をフォトダイオード20に向けて偏向(反射)させる構成をなしている。
また、凹面鏡41の回転中心となる中心軸42aの方向は、ミラー30を通過して当該凹面鏡41に入射するレーザ光L1の方向と略一致しており、レーザ光L1が凹面鏡41に入射する入射位置P1が中心軸42a上の位置とされている。また、第1実施形態では、凹面鏡41の反射面41aにおいて位置P1付近の部分が、垂直方向(反射面41aに入射するレーザ光L1の方向)に対して45°の角度で傾斜しており、凹面鏡41の反射面41aで反射したレーザ光L1が水平方向に照射されるようになっている。また、凹面鏡41は入射するレーザ光L1の方向と一致した方向の中心軸42aを中心として回転するため、凹面鏡41の回転位置に関係なくレーザ光L1の入射角度が常に45°で維持され、位置P1からのレーザ光L1の向きは絶えず水平方向(中心軸42aと直交する方向)となるように構成されている。なお、第1実施形態では、中心軸42aの方向を垂直方向(上下方向、縦方向)としており、中心軸42aと直交する平面方向を水平方向としている。
さらに、レーザレーダ装置1には、回動反射機構40を駆動するモータ50が設けられている。このモータ50は、「駆動手段」の一例に相当するものであり、軸部42を回転させることで、軸部42と連結された凹面鏡41を回転駆動している。なお、モータ50の具体的構成としては、例えばサーボモータ等を用いても良いし、定常回転するモータを用い、凹面鏡41が測距したい方向を向くタイミングに同期させてパルスレーザ光を出力することで、所望の方向の検出を可能としてもよい。また、第1実施形態では、図1に示すように、モータ50の軸部42の回転角度位置(即ち凹面鏡41の回転角度位置)を検出する回転角度センサ52が設けられている。回転角度センサ52は、ロータリーエンコーダなど、軸部42の回転角度位置を検出しうるものであれば様々な種類のものを使用できる。
第1実施形態に係るレーザレーダ装置1では、レーザダイオード10、フォトダイオード20、ミラー30、レンズ60、回動反射機構40、モータ50等がケース3内に収容され、防塵や衝撃保護が図られている。このケース3は、主ケース部5と透過板80とを備えており、全体として箱状に構成されている。主ケース部5は、一部が導光可能に開放された箱状形態をなしている。
この主ケース部5は、凹面鏡41の周囲に、レーザ光L1及び反射光L2の通過を可能とする窓部4が形成されている。この窓部4は、主ケース部5において光の出入りを可能とするように開口した部分であり、窓部4を閉塞するように透過板80が設けられている。
透過板80は、例えば、透明の樹脂板、ガラス板などによって構成されており、凹面鏡41の周囲においてほぼ全周に亘り窓部4を閉塞する構成で配置されている。この透過板80は、凹面鏡41からのレーザ光L1の走査経路上において周方向に配置されており、上記窓部4を閉塞すると共に凹面鏡41から投射されたレーザ光L1を透過させる構成をなしている。
次ぎに、図2(A)を参照して第1実施形態のレーザレーダ装置1によるレーザ光の地面に対する平行確認動作を説明する。
図2(a0)は、通常監視時のレーザ光L1のビーム幅を示す。レーザ光L1は、地面(又は床面)Gに対してほぼ平行な平行光(実際にはわずかに広がる)としてレーザレーダ装置1から出射されている。
図2(a1)は、平行確認動作時のレーザ光L1のビーム幅を示す。レーザ光L1は、地面(又は床面)Gの第1地点PFで反射するように縦方向にビーム幅が第1広げ幅(伏角θ1)まで広げられている。ここで、第1地点PFは、第1広げ幅(伏角θ1)のレーザ光L1で反射が生じた点を意味する。
図2(a2)は、平行確認動作時のレーザ光L1のビーム幅を示す。レーザ光L1は、地面(又は床面)Gの第2地点PSで反射するように縦方向にビーム幅が第2広げ幅(伏角θ2)まで第1広げ幅(伏角θ1)よりも更に広げられている。ここで、第2地点PSは、第2広げ幅(伏角θ2)のレーザ光L1で反射が生じた点を意味する。
図2(B)は、レーザレーダ装置1による座標算出動作の説明図である。
地面第1例EX1、地面第2例EX2、地面第3例EX3は、高さの異なる地面を模式的に示している。即ち、地面第1例EX1は相対的に高く、地面第2例EX2は中間で、地面第3例EX3は相対的に低くなっている。
地面第1例EX1では、第1広げ幅(伏角θ1)において第1点P1Fでレーザ光が反射し、第2広げ幅(伏角θ2)において第2点P1Sでレーザ光が反射している。第1点P1Fまでの距離d1F、第2点P1Sまでの距離d1Sはレーザ光L1の反射光波形(反射時間)から算出される。また、第1広げ幅の伏角θ1、第2広げ幅の伏角θ2は、既知の所定値である。このため、第1点P1Fまでの距離d1F、及び、第1広げ幅の伏角θ1に基づき、レーザレーダ装置1を原点(0.0)とするレーザ光に沿った垂直面に地面上の第1点P1Fの極座標が算出される。第2点P1Sまでの距離d1S、及び、第2広げ幅の伏角θ2に基づき第2点P1Sの極座標が算出される。第1点P1Fの極座標と第2点P1Sの極座標とから、レーザレーダ装置1のレーザ光と地面とのズレを計算する。例えば、レーザレーダ装置1は、第1点P1Fの極座標と第2点P1Sの極座標から、第1点P1Fと第2点P1Sとの傾斜角度を求め、その傾斜角度が設置時に設定された傾斜角度から所定閾値よりもズレていないかを判断する。
ここで、レーザレーダ装置1が300mの範囲で、高さ1.6mの人体を検出するためには、地面に対して±0.05゜以下の誤差(ズレ量)である必要がある。例えば、レーザレーダ装置1は、第1点P1Fとして250m先の座標を求め、第2点P1Sとして150m先の座標を求め、2点間の傾斜角度が±0.05゜の閾値よりもズレていないかを判断する。
同様にして、地面第2例EX2に対して、第1点P2Fの極座標と第2点P2Sの極座標が求められ、第1点P2Fの極座標と第2点P2Sの極座標とから、レーザレーダ装置1のレーザ光と地面第2例EX2の地面とのズレが求められる。地面第3例EX3に対して、第1点P3Fの極座標と第2点P3Sの極座標が求められ、第1点P3Fの極座標と第2点P3Sの極座標とから、レーザレーダ装置1のレーザ光と地面第3例EX3の地面とのズレが求められる。上述された例では、地面に対して2点の極座標を求めたが、3点以上の極座標も求め、ズレを判断することも可能である。
図3は、第1実施形態に係る投光スポットの回転を示す図である。
図1を参照して上述したように、レーザダイオード10から垂直(光軸方向に延びる中心軸42a)方向に出射されたレーザ光L1は、垂直方向に対して45°の角度で傾斜する凹面鏡41により水平方向(中心軸42aと直交する方向)とされると共に、中心軸42aを中心とする凹面鏡41の回転により水平方向に360゜回転(360゜の水平走査)する。そして、この凹面鏡41の360゜回転により、レーザ光L1も光軸に沿って360゜回転する。
図3中でレーザレーダ装置1の正面方向FSに照射されるレーザ光は、時計回りに90゜回転し正面方向FSに対して直交する右横方向RSに照射される際に、凹面鏡41(図1参照)で反射されると光軸に沿って90゜回転する。ここで、正面方向FSとは、後述するレンズ60の調整で、投光スポットSP2を垂直方向に広げられるレーザレーダ装置1のレーザ照射方向を意味する。正面方向FSに対して180゜回転して逆方向の真後ろ方向BSに照射されるレーザ光は、光軸に沿って180゜回転している。正面方向FSに対して270゜回転して、正面方向FSに対して直交する左横方向LSに照射されるレーザ光は、光軸に沿って270゜回転している。即ち、正面方向FS対して90゜の角度差がある右横方向RS、左横方向LSに照射されるレーザ光は、光軸に沿って90゜回転している。
図4は、第1実施形態に係るレーザレーダ装置の投光スポットの縦拡張を示す図である。図4(A)は、レーザダイオード10から出射されたレーザ光を第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sとにより平行光に変換し、正四角形の投光スポットSP1を得ている状態を示す。この状態が、図2(A)の(a0)を参照して上述したように通常監視時のレーザ光L1のビーム幅を形成する。
図4(B)は、レーザダイオード10から出射されたレーザ光から第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sとにより、縦長四角形の投光スポットSP2を得ている状態を示す。ここでは、図1中に示される第1アクチュエータ62Fによって、第1シリンドリカルレンズ60Fを光軸に沿ってレーザダイオード10に近づくように位置調整が成されている。この状態で、図2(A)の(a1)を参照して上述したように平行確認動作時のレーザ光L1は、地面(又は床面)Gの第1地点PFで反射するように縦方向にビーム幅が第1広げ幅(伏角θ1)まで広げられる。第1アクチュエータ62Fによって、第1シリンドリカルレンズ60Fを光軸に沿ってレーザダイオード10に更に近づけられ、図2(A)の(a2)を参照して上述したように平行確認動作時のレーザ光L1は、地面(又は床面)Gの第2地点PSで反射するように縦方向にビーム幅が第2広げ幅(伏角θ2)まで広げられる。
図5は、第1実施形態に係るレーザレーダ装置の投光スポットの横拡張を示す図である。図5(A)は、図4(A)と同様に、レーザダイオード10から出射されたレーザ光を第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sとにより平行光に変換し、正四角形の投光スポットSP1を得ている状態を示す。
図5(B)は、レーザダイオード10から出射されたレーザ光から第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sとにより、横長四角形の投光スポットSP3を得ている状態を示す。ここでは、図1中に示される第2アクチュエータ62Sによって、第2シリンドリカルレンズ60Sを光軸に沿ってレーザダイオード10に遠ざけるように位置調整が成されている。この状態で、図3を参照して上述したように、正面方向FSに対して直交する右横方向RS、左横方向LSに照射されるレーザ光は、凹面鏡41(図1参照)で反射される際に光軸に沿って90゜回転し、図5(B)中に示される横長四角形の投光スポットSP3は、縦長四角形の投光スポットに成る。これにより、図2(A)の(a1)を参照して上述したと同様に平行確認動作時のレーザ光L1は、地面(又は床面)Gの第1地点PFで反射するように縦方向にビーム幅が第1広げ幅(伏角θ1)まで広げられる。
第1実施形態のレーザダイオード10は、平行確認は、図3中に示される正面方向FS、正面方向FSに対して直交する右横方向RS、左横方向LSに対して行われる。この3方向では、垂直方向に正確にビーム幅が第1広げ幅(伏角θ1)、第2広げ幅(伏角θ2)まで広げられ、平行確認動作、演算処理が容易であるからである。また、レーザダイオード10の平行確認は正面方向FS、右横方向RS、左横方向LSの3方向、又は、真後ろ方向BSを含む4方向を行えば必要かつ十分であり、360゜行う必要性は低い。
図6は第1実施形態のレーザレーダ装置による平行確認動作のフローチャートである。
図1中に示される制御回路70は、ズレ計測タイミングか判断する(S12)。例えば、1日に1回平行確認を行うとすれば、ズレ計測タイミングになるまで(S12:No)、レーザによる通常監視を継続する(S32)。
1日に1回のズレ計測タイミングになると(S12:Yes)、ズレ確認作業をスケジュールに則り開始する(S14)。先ず、図3を参照して上述したように正面方向FSに対して、図4(B)を参照して上述した第1アクチュエータ62F(図1参照)によって、第1シリンドリカルレンズ60Fが光軸に沿ってレーザダイオード10に近づけられ、図2(A)の(a1)を参照して上述したように平行確認動作時のレーザ光L1は、地面(又は床面)Gの第1地点PFで反射するように縦方向にビーム幅が第1広げ幅(伏角θ1)まで広げられ、走査が実行される(S16)。得られた反射光波形(反射時間)から第1地点PFまで距離が測定される(S18)。次ぎに、第1シリンドリカルレンズ60Fが光軸に沿ってレーザダイオード10に更に近づけられ、図2(A)の(a2)を参照して上述したように平行確認動作時のレーザ光L1は、地面(又は床面)Gの第2地点PSで反射するように縦方向にビーム幅が第2広げ幅(伏角θ2)まで広げられ、走査が実行される(S20)。得られた反射光波形(反射時間)から第2地点PSまで距離が測定される(S22)。広げ幅角度(伏角θ1,θ2)と第1地点PF、第2地点PSまでの距離から、正面方向FSに対する装置と地面のズレが計算される(S24)。
そして、正面方向FS、右横方向RS、左横方向LSの3方向に対して装置と地面のズレが計算されたかが判断される(S26)。ここでは、右横方向RS、左横方向LSの計算が済んでいないので(S26:No)、S16に戻り、右横方向RSへのS16〜S24の処理が行われる。ここで、右横方向RSへ図2(A)の(a1)を参照して上述したように平行確認動作時のレーザ光L1の縦方向にビーム幅が第1広げ幅(伏角θ1)、第2広げ幅(伏角θ2)まで広げられる際には、図5(B)を参照して上述したように、第2アクチュエータ62S(図1参照)によって、第2シリンドリカルレンズ60Sが、光軸に沿ってレーザダイオード10に近づくように位置調整が成される。この状態で、図2(A)の(a1)(a2)を参照して上述したように平行確認動作時のレーザ光L1は、地面(又は床面)Gの第1地点PF、第2地点PSで反射するように縦方向にビーム幅が第1広げ幅(伏角θ1)、第2広げ幅(伏角θ2)まで広げられる。同様にして、左横方向LSへのS16〜S24の処理が行われる。
正面方向FS、右横方向RS、左横方向LSの3方向に対して装置と地面のズレが計算されると(S26:Yes)、正面方向FS、右横方向RS、左横方向LSの3方向のそれぞれに対して装置と地面のズレが所定閾値を超えていないか判断される(S28:Yes)。ズレが所定閾値を超えていない場合(S28:Yes)。広げたビーム幅をレーザによる通常監視時の幅まで戻し(S30)、通常監視を継続する(S32)。他方、右横方向RS、左横方向LSの3方向のいずれかが、装置と地面のズレが所定閾値を超えた場合(S28:Yes)、角度ズレ断定信号を出力し(S34)、図示しない表示器に角度ズレの警告を表示する。
第1実施形態のレーザレーダ装置では、レーザ光の幅を垂直方向に第1広げ幅と第2広げ幅に広げ、地面又は床面へレーザ光を照射させる(幅拡張手段:S16、S20)。第1広げ幅と第2広げ幅に広げられた照射光から第1広げ幅で反射した地面又は床面までの距離と第2広げ幅で反射した地面又は床面までの距離とを求める(距離算出手段:S18、S22)。第1広げ幅のレーザ光の反射した地面又は床面に対する伏角と求めた距離と、第2広げ幅のレーザ光の反射した地面又は床面に対する伏角と求めた距離から、第1広げ幅で反射した地面又は床面と第2広げ幅で反射した地面又は床面との傾きを算出する(傾き算出手段:S24)。そして、算出した傾きが所定閾値を超えるか判断し(出力手段:S28)、閾値を超える場合(S28:Yes)、閾値越えの信号を出力する(出力手段:S34)。このため、レーザレーダ装置が、レーザ光が地面に対して平行であることを常時確認し、地面に対して平行で無い場合には信号を出力することができる。
[第2実施形態]
図7は、第2実施形態に係るレーザレーダ装置の投光スポットの縦拡張を示す図である。図7(A)は、図4(A)と同様にレーザダイオード10から出射されたレーザ光が、第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sとにより平行光に変換され、正四角形の投光スポットSP1を得ている状態を示す。この状態が、図2(A)の(a0)を参照して上述したように通常監視時のレーザ光L1のビーム幅を形成する。
図7(B)は、レーザダイオード10から出射されたレーザ光から第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60S、第3シリンドリカルレンズ60Tとにより、縦長四角形の投光スポットSP2を得ている状態を示す。ここでは、第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sとの間に第3シリンドリカルレンズ60Tが差し入れられる。この状態で、平行確認動作時のレーザ光L1は、地面(又は床面)Gの第1地点PFで反射するように縦方向にビーム幅が第1広げ幅(伏角θ1)まで広げられる。
同様にして、図7(A)に示すレーザ光を第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sとによりレーザ光L1を平行光に変換している状態から、第2シリンドリカルレンズ60Sの前に図示しない第4シリンドリカルレンズが差し入れられ、図5(B)を参照して上述した第1実施形態と同様に、横長四角形の投光スポットSP3が得られる。
第2実施形態のレーザレーダ装置は、レーザ光を拡張する機械的機構を除き、図1に示された機械的構成、及び、図6示された平行確認動作は同様である。第2実施形態のレーザレーダ装置は、第1シリンドリカルレンズ60Fと第2シリンドリカルレンズ60Sとを移動さないため、光学系にズレが生じ難い。
10…レーザダイオード(レーザ光発生手段)
20…フォトダイオード(光検出手段)
30…ミラー
40…回動反射機構(回動偏向手段)
41…凹面鏡(偏向手段)
42a…中心軸
50…モータ(駆動手段)
60…レンズ
60F…第1シリンドリカルレンズ
60S…第2シリンドリカルレンズ
L1…レーザ光

Claims (5)

  1. レーザ光を発生するレーザ光発生手段と、
    前記レーザ光発生手段からの前記レーザ光を平行光に変換するレンズと、
    前記レーザ光発生手段から前記レーザ光が発生したときに、当該レーザ光が検出物体にて反射した反射光を検出する光検出手段と、
    所定の中心軸を中心として回動可能に構成された偏向手段を備えるとともに、前記偏向手段により前記レーザ光を空間に向けて偏向させ、かつ前記反射光を前記光検出手段に向けて偏向する回動偏向手段と、
    前記偏向手段にて偏向された前記反射光を前記光検出手段へと導く反射光誘導部と、
    前記回動偏向手段を駆動する駆動手段と、
    を備えたレーザレーダ装置であって、
    レーザ光の幅を垂直方向に第1の幅と第2の幅に広げ、地面又は床面へレーザ光を照射させる幅拡張手段と、
    第1の幅と第2の幅に広げられた照射光から前記第1の幅で反射した地面又は床面までの距離と第2の幅で反射した地面又は床面までの距離とを求める距離算出手段と、
    前記第1の幅のレーザ光の反射した地面又は床面に対する伏角と前記求めた距離と、前記第2の幅のレーザ光の反射した地面又は床面に対する伏角と前記求めた距離から、前記第1の幅で反射した地面又は床面と第2の幅で反射した地面又は床面との傾きを算出する傾き算出手段と、
    前記算出した傾きが所定閾値を超えるか判断し、閾値を超える場合、閾値越えの信号を出力する出力手段と、を備えることを特徴とするレーザレーダ装置。
  2. 請求項1のレーザレーダ装置であって、
    前記幅拡張手段、前記距離算出手段、前記傾き算出手段、前記出力手段の処理を複数の方向に対して行うことを特徴とするレーザレーダ装置。
  3. 請求項2のレーザレーダ装置であって、
    前記幅拡張手段、前記距離算出手段、前記傾き算出手段、前記出力手段の処理を1の方向と、前記1の方向に対して直交する方向に対して行うことを特徴とするレーザレーダ装置。
  4. 請求項1のレーザレーダ装置であって、
    前記レンズは一対のシリンドリカルレンズから成り、
    前記幅拡張手段は、前記シリンドリカルレンズの少なくとも一方をレーザ光の光軸に沿って移動させることで、前記レーザ光の幅を垂直方向に前記第1の幅と前記第2の幅に広げる。
  5. 請求項4のレーザレーダ装置であって、
    前記レーザレーダ装置の正面方向に対して、前記幅拡張手段は、前記シリンドリカルレンズの一方をレーザ光の光軸に沿って移動させることで、前記レーザ光の幅を垂直方向に前記第1の幅と前記第2の幅に広げ、
    前記レーザレーダ装置の前記正面方向に直交する方向に対して、前記幅拡張手段は、前記シリンドリカルレンズの他方をレーザ光の光軸に沿って移動させることで、前記レーザ光の幅を垂直方向に前記第1の幅と前記第2の幅に広げる。
JP2018041728A 2018-03-08 2018-03-08 レーザレーダ装置 Active JP7021569B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018041728A JP7021569B2 (ja) 2018-03-08 2018-03-08 レーザレーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041728A JP7021569B2 (ja) 2018-03-08 2018-03-08 レーザレーダ装置

Publications (2)

Publication Number Publication Date
JP2019158388A true JP2019158388A (ja) 2019-09-19
JP7021569B2 JP7021569B2 (ja) 2022-02-17

Family

ID=67994674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041728A Active JP7021569B2 (ja) 2018-03-08 2018-03-08 レーザレーダ装置

Country Status (1)

Country Link
JP (1) JP7021569B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379670A (zh) * 2020-11-10 2021-02-19 京东数科海益信息科技有限公司 用于机器人的激光雷达视角扩展装置及机器人
WO2021140948A1 (ja) * 2020-01-09 2021-07-15 ソニーセミコンダクタソリューションズ株式会社 測距装置、および測距方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355390A (ja) * 1991-06-03 1992-12-09 Nissan Motor Co Ltd 距離計測装置
JP2003043147A (ja) * 2001-07-31 2003-02-13 Omron Corp 対象物検出装置および方法
JP2008216238A (ja) * 2007-02-06 2008-09-18 Denso Wave Inc レーザレーダ装置
US20120212727A1 (en) * 2011-02-22 2012-08-23 Sick Ag Optoelectronic sensor and method for detecting objects
JP2016206025A (ja) * 2015-04-23 2016-12-08 株式会社デンソー 姿勢推定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355390A (ja) * 1991-06-03 1992-12-09 Nissan Motor Co Ltd 距離計測装置
JP2003043147A (ja) * 2001-07-31 2003-02-13 Omron Corp 対象物検出装置および方法
JP2008216238A (ja) * 2007-02-06 2008-09-18 Denso Wave Inc レーザレーダ装置
US20120212727A1 (en) * 2011-02-22 2012-08-23 Sick Ag Optoelectronic sensor and method for detecting objects
JP2016206025A (ja) * 2015-04-23 2016-12-08 株式会社デンソー 姿勢推定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140948A1 (ja) * 2020-01-09 2021-07-15 ソニーセミコンダクタソリューションズ株式会社 測距装置、および測距方法
CN112379670A (zh) * 2020-11-10 2021-02-19 京东数科海益信息科技有限公司 用于机器人的激光雷达视角扩展装置及机器人

Also Published As

Publication number Publication date
JP7021569B2 (ja) 2022-02-17

Similar Documents

Publication Publication Date Title
JP6645960B2 (ja) 工作物へのレーザービームの進入深さを測定する方法、及び、レーザー加工装置
JP5310098B2 (ja) レーザ距離測定装置
JP5998808B2 (ja) レーザレーダ装置
JP5891893B2 (ja) レーザレーダ装置
US10012831B2 (en) Optical monitoring of scan parameters
JP3802339B2 (ja) 測距装置の軸調整方法
WO2017110574A1 (ja) 投受光ユニット及びレーダー
CN112424563A (zh) 用于精确计算动态对象的位置和方位的多维测量系统
JP4646165B2 (ja) 医科的対象物、特に歯牙標本の模型を検出する方法と装置
JP7021569B2 (ja) レーザレーダ装置
CN111982028A (zh) 一种激光雷达扫描振镜三维角度测量装置和方法
JP2013029375A (ja) 障害物検出方法及び障害物検出装置
JP2008292308A (ja) 光レーダ装置
JP5242940B2 (ja) 非接触形状測定装置
KR20220126786A (ko) Oct 용접 시임 모니터링을 위한 방법과 관련 레이저 가공 기계 및 컴퓨터 프로그램 제품
JP6525546B2 (ja) 位置計測装置
JP6920538B2 (ja) 走査装置及び測定装置
JP5533759B2 (ja) レーザレーダ装置
KR101309028B1 (ko) 레이저 스캔 촛점을 이용한 거리 측정장치.
JP2017156141A (ja) 光走査装置
US10753723B2 (en) Method and device for determining the spatial position of an object by means of interferometric length measurement
JP2011191076A (ja) たわみ計測装置、ならびにたわみおよび軸ねじれ計測装置
JP7109185B2 (ja) 非接触座標測定装置
JP5023382B2 (ja) 周辺監視装置
JP6749191B2 (ja) スキャナ装置および測量装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7021569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150