JP2019156759A - 多糖組成物 - Google Patents

多糖組成物 Download PDF

Info

Publication number
JP2019156759A
JP2019156759A JP2018045690A JP2018045690A JP2019156759A JP 2019156759 A JP2019156759 A JP 2019156759A JP 2018045690 A JP2018045690 A JP 2018045690A JP 2018045690 A JP2018045690 A JP 2018045690A JP 2019156759 A JP2019156759 A JP 2019156759A
Authority
JP
Japan
Prior art keywords
fraction
polysaccharide
soybean
mol
peyer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018045690A
Other languages
English (en)
Inventor
寛章 清原
Hiroaki Kiyohara
寛章 清原
隆之 永井
Takayuki Nagai
隆之 永井
修治 回渕
Shuji Mawaribuchi
修治 回渕
利昭 熊澤
Toshiaki Kumazawa
利昭 熊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Institute of Industrial Science and Technology
Original Assignee
Kanagawa Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Institute of Industrial Science and Technology filed Critical Kanagawa Institute of Industrial Science and Technology
Priority to JP2018045690A priority Critical patent/JP2019156759A/ja
Priority to PCT/JP2019/011022 priority patent/WO2019177168A1/ja
Publication of JP2019156759A publication Critical patent/JP2019156759A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Nutrition Science (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Physiology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】骨髄細胞増殖促進活性を有するサイトカインのパイエル板での産生の亢進作用を有する新規な多糖組成物を提供すること。【解決手段】大豆から得られる多糖を含有する多糖組成物であって、当該多糖は、アラビノガラクタンを主成分とし、かつピーク分子量が20,000〜180,000の範囲内である、多糖組成物。【選択図】なし

Description

本発明は、大豆から得られる多糖を含有する多糖組成物に関する。
パイエル板は上部腸管に存在する高度に機能化されたリンパ濾胞組織である。パイエル板は、抗原特異的・非特異的分泌型IgA産生形質芽細胞、抗原特異的・非特異的エフェクター及び制御性のT及びBリンパ球、抗原特異的Th17リンパ球などの誘導のための重要な出発点である誘導組織の1つとなっている。パイエル板は、腸管免疫系と呼ばれる局所粘膜免疫系、及び全身免疫系での生体防御に関わる免疫機構、並びに食物抗原及び自己抗原などの無害な抗原に対する免疫寛容に関わる免疫応答において重要な働きを担っていることが知られている。例えば、パイエル板のリンパ球は常時ホーミング現象により他の局所粘膜免疫系及び全身免疫系付属組織及び造血組織などにリクルートされ、免疫情報を伝搬させ、これらの生体機構を調節する機能を有する。
パイエル板免疫機能調節活性の一つとして、骨髄細胞増殖促進因子(例えば、サイトカイン)のパイエル板での産生が挙げられる。このような骨髄細胞増殖促進因子として、例えば、パイエル板で産生されるサイトカインであるIL−6及びGM−CSFが知られている(非特許文献1及び非特許文献2)。
一方、これまでに、キク科ホソバオケラ(Atractylodes lancea DC.)の根茎から得られた多糖、マメ科ナイモウオウギ(Astragalus mongholicus Bunge)の地上部から得られた多糖、及びユリ科チモ(Anemarrhena asphodeloides Bunge)の根茎から得られた多糖にパイエル板免疫機能調節活性があることが報告されている(非特許文献2及び非特許文献3)。
T.Hong、T.Matsumoto、H.Kiyohara and H.Yamada:Enhanced production of hematopoietic growth factors through T cell activation in Peyer’s patches by oral administration of Kampo(Japanese herbal) medicines、‘Juzen−taiho−to’、Phytomedicine、5巻、353〜360頁(1998年) Hiroaki Kiyohara、Toshiake Matsuzaki、Haruki Yamada:Intestinal Peyer’s patch−immunomodulating glucomannans from rhizomes of Anemarrhena asphodeloides Bunge、Phytochemistry、96巻、337〜346頁(2013年) Hiroaki Kiyohara、Toshiake Matsuzaki、Tsukasa Matsumoto、Takayuki Nagai、Haruki Yamada:Yakugaku Zasshi、128巻、5号、709〜719頁(2008年)
マメ科ダイズ属の一年草であるダイズ(Glycine max)の種子(以下、「大豆」ともいう。)に由来する機能性成分はイソフラボン及びソヤサポニン類を主としてこれまでにいくつか知られているものの、パイエル板免疫機能調節活性を有する成分、例えば、骨髄細胞増殖促進活性を有するサイトカインのパイエル板での産生の亢進作用(以下、本作用を「パイエル板活性化作用」ともいう。)を有する成分、はこれまで知られていない。
パイエル板免疫機能調節を人為的に可能とすれば、腸管免疫系を通じて全身での生体防御及び免疫寛容に関わる免疫機構の調節が可能となり有益である。上述の通り、パイエル板免疫機能調節活性を有する物質がこれまでにいくつか知られている。しかし、需要者の多様なニーズに応えるためには未だ充分なレパートリーがあるとは言えない。
本発明は、上記事情に鑑み、骨髄細胞増殖促進活性を有するサイトカインのパイエル板での産生の亢進作用を有する新規な多糖組成物を提供することを目的とする。
本発明者らは、大豆ミールから得られた大豆水溶性多糖画分、及び当該大豆水溶性多糖画分から精製されたアラビノガラクタン画分が、骨髄細胞増殖促進活性を有するサイトカインのパイエル板での産生の亢進作用を有することを見出し、本発明を完成させた。
すなわち、本発明は、大豆から得られる多糖を含有する多糖組成物であって、当該多糖は、アラビノガラクタンを主成分とし、かつ20,000〜180,000の範囲内にピーク分子量を有する、多糖組成物を提供する。
本発明の多糖組成物は、骨髄細胞増殖促進活性を有するサイトカイン(例えば、IL−6、IFN−γ)のパイエル板での産生の亢進作用を少なくとも有する。したがって、パイエル板での上記サイトカイン産生の調節により、パイエル板免疫機能調節活性を発揮することができる。また、大豆は古来より食品として使用されているものの一つであるため、本発明の多糖組成物はより安全性が高い。
本明細書において「分子量分布曲線」とは、被験試料の分子量を、高速ゲルろ過クロマトグラフィー(HPSEC)で分析したときに得られる分布曲線を意味する。分子量は、例えば、標準多糖(pullulan P−1600、P−800、P−400、P−200、P−100、P−50、P−20、P−10及びP−5、昭和電工)のHPSECでの保持時間より分子量対保持時間係数(Kav)の検量線を作成し、被験試料の保持時間から算出することができる。また、HPSECの条件は、例えば、以下のように設定することができる。
カラム:Asahi−pak GS520HQ及びAsahi−pak GS320HQ(各0.75i.d.×30cm)(昭和電工)の連結カラム
送液装置:JASCO PV−980(日本分光)
検出器:Shodex RI SE−62(昭和電工)(感度:×2)
溶出液:0.2M NaCl(0.8mL/min)
本明細書において「ピーク分子量」とは、上述の「分子量分布曲線」におけるピークのピークトップに対応する分子量を意味する。
上記多糖は、全構成糖に占めるアラビノースの割合が25〜48モル%、ガラクトースの割合が20〜45モル%、及びガラクツロン酸の割合が1〜19モル%であってもよい。これにより、より優れたパイエル板活性化作用を発揮することができる。
上記多糖はまた、非還元末端アラビノースの割合が5〜30モル%、4又は5結合のアラビノースの割合が5〜25モル%、非還元末端ガラクトースの割合が1〜18モル%、及び3,6−分岐ガラクトースの割合が5〜25モル%であってもよい。これにより、より一層優れたパイエル板活性化作用を発揮することができる。
上記アラビノガラクタンは、β−D−グルコシル−ヤリブ抗原との反応性を示す構造を有するものであってよい。
本発明の多糖組成物は、大豆水溶性高分子画分を含むものであってもよい。大豆水溶性高分子画分は、上述した大豆から得られる多糖を含有するものである。大豆水溶性高分子画分は、大豆の水性溶媒エキスのエタノール沈殿物であってよく、また大豆の水性溶媒エキスのタンパク質除去かつエタノール沈殿物であってもよい。
本発明の多糖組成物は、パイエル板活性化作用を有することから、医薬組成物として好適に使用することができる。医薬組成物は、例えば、パイエル板活性化用医薬組成物(パイエル板活性化剤)、腸管免疫調節用医薬組成物(腸管免疫亢進剤等の腸管免疫調節剤)、パイエル板におけるサイトカイン産生促進用医薬品組成物(パイエル板におけるサイトカイン産生促進剤)、又はパイエル板の活性化により治療又は予防される疾患又は障害の治療薬又は予防薬であってもよい。
また、本発明の多糖組成物は、食品組成物又は飼料組成物として使用してもよい。食品組成物又は飼料組成物は、例えば、パイエル板活性化用食品組成物又は飼料組成物(パイエル板活性化剤)、腸管免疫調節用食品組成物又は飼料組成物(腸管免疫亢進剤等の腸管免疫調節剤)、パイエル板におけるサイトカイン産生促進用食品組成物又は飼料組成物(パイエル板におけるサイトカイン産生促進剤)であってもよい。
本明細書において、「パイエル板活性化」とは、パイエル板活性化作用(骨髄細胞増殖促進活性を有するサイトカインのパイエル板での産生の亢進作用)を介して、パイエル板における免疫調節機能を高めることを意味する。「パイエル板活性化」には、CD8陽性T細胞(キラーT細胞)、CD4陽性T細胞(ヘルパーT細胞)及び制御性Tリンパ球の増殖及び活性化、NK細胞の増殖、分化及び活性化、単球・マクロファージの活性化、抗ウイルス効果、NK細胞、CTL及びマクロファージの細胞障害活性の増強、MHCクラスII分子の発現の促進、Th2細胞の抑制によるIgE抗体産生抑制、並びにB細胞の発生及び分化促進から選ばれる少なくとも1つが含まれる。
本発明はまた、大豆原料を水性溶媒に浸漬し、大豆の水性溶媒エキスを得る工程と、得られた水性溶媒エキスをエタノールと混合し、エタノール沈殿物を得る工程と、を含む、上記多糖組成物の製造方法を提供する。
本発明によれば、骨髄細胞増殖促進活性を有するサイトカインのパイエル板での産生の亢進作用を有する新規な多糖組成物が提供される。本発明によれば、大豆から得られる多糖(例えば、大豆水溶性多糖画分、アラビノガラクタン画分)を有効成分として含有する多糖組成物を哺乳動物に投与(例えば、経口投与)することにより、例えば、パイエル板でのサイトカイン(例えば、骨随細胞増殖促進因子としてのIL−6など)産生の亢進作用を奏することができる。これにより、例えば、腸管免疫亢進を通じて、生体防御に関わる免疫機構を亢進させることが可能である。
また、本発明の多糖組成物は、古来よりヒトが食してきた大豆に由来するものであるため、ヒト又はヒトが食用とする家畜若しくは家禽などの産業動物の健康を害することもなく、安全である。
実施例1におけるパイエル板活性化作用試験の結果を示すグラフである。 製造例2のカラムクロマトグラフィーにおけるアラビノガラクタン画分(画分A、画分B及び画分C)の溶出パターンを示すグラフである。 実施例2におけるアラビノガラクタン画分(画分A、画分B及び画分C)の分子量分布の測定結果を示すHPSECチャートである。 実施例3におけるパイエル板活性化作用試験の結果を示すグラフである。 実施例4におけるマウスへの多糖組成物の経口投与によるパイエル板活性化作用試験の結果を示すグラフである。 実施例5におけるマウスへの多糖組成物の経口投与による脾臓免疫細胞活性化作用試験の結果を示すグラフである。
以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
〔多糖組成物〕
本実施形態の多糖組成物は、大豆から得られる多糖を含有する。当該多糖は、アラビノガラクタンを主成分とし、かつ20,000〜180,000の範囲内にピーク分子量を有するものである。
多糖のピーク分子量は、上述の「分子量分布曲線」におけるピークのピークトップに対応する分子量を意味する。多糖のピーク分子量は、20,000〜180,000の範囲内にあればよく、110,000〜150,000、20,000〜50,000、又は140,000〜180,000の範囲内にあるのが好ましい。
本発明における多糖は、全構成糖に占めるアラビノースの割合が25〜48モル%、ガラクトースの割合が20〜45モル%、及びガラクツロン酸の割合が1〜19モル%であってもよい。これにより、より優れたパイエル板活性化作用を発揮することができる。
全構成糖に占めるアラビノースの割合は、30〜45モル%であってもよく、38〜48モル%であってもよく、25〜35モル%であってもよい。全構成糖に占めるガラクトースの割合は、30〜40モル%であってもよく、35〜45モル%であってもよく、20〜30モル%であってもよい。全構成糖に占めるガラクツロン酸の割合は、1〜5モル%であってもよく、9〜19モル%であってもよい。
また、本発明における多糖は、構成糖として、キシロース又はマンノースを含んでいてもよい。
本発明における多糖は、非還元末端アラビノースの割合が5〜30モル%、4又は5結合のアラビノースの割合が5〜25モル%、非還元末端ガラクトースの割合が1〜18モル%、及び3,6−分岐ガラクトースの割合が5〜25モル%であってもよい。これにより、より一層優れたパイエル板活性化作用を発揮することができる。
多糖における非還元末端アラビノースの割合は、10〜20モル%であってもよく、20〜30モル%であってもよく、5〜15モル%であってもよい。多糖における4又は5結合のアラビノースの割合は、10〜25モル%であってもよく、5〜15モル%であってもよい。多糖における非還元末端ガラクトースの割合は、6〜18モル%であってもよく、1〜10モル%であってもよく、1〜12モル%であってもよい。
また、本発明における多糖は、3結合ガラクトース、3,6分岐ガラクトース、又はガラクツロン酸を含んでいてもよい。さらに、本発明における多糖がガラクツロン酸を含む場合、ガラクツロン酸の主要結合は4結合であってよく、場合により3,4分岐ガラクツロン酸、又は2,4分岐ガラクツロン酸を含んでいてもよい。
本発明における多糖の主成分であるアラビノガラクタンは、β−D−グルコシル−ヤリブ抗原との反応性を示す構造を有するものであってよい。また、本発明における多糖は、β−D−グルコシルヤリブ抗原にて検出されるアラビノ−3,6−ガラクタン構造と総称される糖鎖を主要な糖鎖構造(20〜100重量%)として含有していてもよい。
(大豆水溶性高分子画分)
本実施形態の多糖組成物は、大豆水溶性高分子画分を含むものであってよい。大豆水溶性高分子画分は、本発明における多糖を含有する。大豆水溶性高分子画分は、大豆原料から後述する製造方法により製造することができる。大豆水溶性高分子画分は、例えば、大豆の水性溶媒エキスのエタノール沈殿物(エタノール沈殿画分)、大豆の水性溶媒エキスのタンパク質除去物(タンパク質除去画分)、大豆の水性溶媒エキスのタンパク質除去かつエタノール沈殿物(大豆水溶性多糖画分)、又は大豆の水性溶媒エキスの陰イオン交換樹脂精製物(アラビノガラクタン画分)であってもよい。
エタノール沈殿画分は、大豆の水性溶媒エキスをエタノール沈殿して得られる沈殿物である。エタノール沈殿画分は、得られた沈殿物から透析又は膜処理により低分子量の物質を除去して得られる画分であってもよい。
タンパク質除去画分は、大豆の水性溶媒エキスからタンパク質を除去して得られるものである。タンパク質の除去は、酸沈殿により行ってもよく、タンパク質分解酵素で処理することにより行ってもよく、又はこれらを組み合わせて行ってもよい。タンパク質除去画分は、タンパク質の除去後、透析又は膜処理により低分子量の物質を除去して得られる画分であってもよい。
大豆水溶性多糖画分は、大豆の水性溶媒エキスをエタノール沈殿して得られる沈殿物からタンパク質を除去して得られるものであってもよく、大豆の水性溶媒エキスからタンパク質を除去して得られる溶液をエタノール沈殿して得られる沈殿物であってもよい。大豆水溶性多糖画分は、更に透析又は膜処理により低分子量の物質を除去して得られる画分であってもよい。
アラビノガラクタン画分は、大豆の水性溶媒エキス(好ましくは、エタノール沈殿画分、タンパク質除去画分、又は大豆水溶性多糖画分)を、担体として陰イオン交換樹脂を充填したカラムに通液し、陰イオン交換樹脂に対し吸着した成分を低〜高イオン強度の溶出溶媒で溶出して得られる溶出画分、又はそれを更にゲルろ過して得られる画分であってよい。アラビノガラクタン画分は、例えば、上述したエタノール沈殿画分、タンパク質除去画分、又は大豆水溶性多糖画分から中性多糖が除去されたものであってよい。
アラビノガラクタン画分は、例えば、エタノール沈殿画分、タンパク質除去画分、又は大豆水溶性多糖画分を、担体として水で平衡化した陰イオン交換樹脂を充填したカラムに通液し、上記陰イオン交換樹脂に吸着された成分を、0.11M NaClで溶出した後に、0.309M NaClで溶出して得られる各溶出画分、又は得られた溶出画分を更に分画分子量2×10〜4×10Daのゲルろ過カラムに通液して得られる溶出液であって、該ゲルろ過HPLCによる分析において、上述のピーク分子量の範囲の多糖成分が溶出する溶出容積に相当する画分であってもよい。
(大豆水溶性高分子画分の製造方法)
大豆水溶性高分子画分の製造方法は、大豆原料から水性溶媒エキスを得る工程(水性溶媒エキス取得工程)を含む。当該製造方法は、更に水性溶媒エキスのエタノール沈殿物を得る工程(エタノール沈殿画分取得工程)、水性溶媒エキスのタンパク質除去物を得る工程(タンパク質除去画分取得工程)、水性溶媒エキスのタンパク質除去かつエタノール沈殿物を得る工程(大豆水溶性多糖画分取得工程)、又は水性溶媒エキスの陰イオン交換樹脂精製物を得る工程(アラビノガラクタン画分取得工程)を含むものであってよい。
<大豆原料>
大豆原料は、水溶性高分子を含むものであれば特に制限されず、例えば、大豆(丸大豆)、大豆ミール(脱脂大豆)、大豆ペプチドの製造工程で得られるペプチドを除去した後の抽出物であってよい。本明細書において、「大豆」は、食用に付される大豆であれば特に限定されるものではなく、加熱処理を行ったものであってもよく、非加熱のものであってもよい。大豆ミールは、大豆油を搾った後に残る搾り粕である。大豆油の製造法には圧搾法と抽出法が用いられ、前者は生の大豆を圧搾してダイズ油を製造する方法である。一方、抽出法はヘキサンなどの有機溶剤を用い、大豆を処理することにより種子の油分を抽出する方法である。これらのいずれの方法により得られた大豆ミールにもパイエル板活性化作用を有する多糖画分が含まれることから、本発明における大豆水溶性高分子画分は、いずれの製造法により得られた大豆ミールを用いても製造することができる。
大豆は通常トリプシンインヒビター、アミラーゼインヒビター、レクチンなどの有害成分を含むため、加熱したものを使用するが、本発明の大豆水溶性高分子画分は、非加熱の大豆から製造することもできる。また、ダイズはアジアを原産とするが、現在では世界中で栽培されている。主要産地は米国、ブラジル、アルゼンチン、中国、インド、パラグアイ、カナダ、ボリビア、ウクライナ、ウルグアイ、インドネシア、ロシア、ナイジェリア、南アフリカ、イタリアなどで、本発明にはいずれの産地の大豆も用いることができる。
<水性溶媒エキス取得工程>
水性溶媒エキス取得工程は、大豆原料から水性溶媒エキスを得る工程である。水性溶媒エキス取得工程は、例えば、大豆原料を水性溶媒に浸漬することで、水性溶媒エキスを得るステップを含むものであってよい。水性溶媒としては、例えば、水(例えば、飲料用水、工業用水、純水、超純水)、含水の炭素原子数1〜3の低級アルコール(例えば、メタノール、エタノール、イソプロパノール、n−プロパノール)、及びこれらの混合溶媒であってよい。
水性溶媒エキスを得る際の水性溶媒の温度は、特に制限されず、低温又は室温であってもよいが、水性溶媒エキスの抽出効率を高める観点から、水性溶媒を加熱するのが好ましい。例えば、大豆原料を水性溶媒に浸漬し、水性溶媒が約半量になるまで直火で煎出してもよい。水性溶媒エキスは、大豆原料の水抽出物(冷水抽出物、熱水抽出物等)であるのが好ましい。大豆の加熱調製物や豆腐の製造工程で排出される煮汁は大豆ホエーと呼ばれる。該大豆ホエー中にもパイエル板活性化作用を有する多糖画分が含まれることから、本発明における水性溶媒エキスとして、大豆ホエーを用いることもできる。
水性溶媒エキス取得工程は、大豆原料を水性溶媒に浸漬することで、水性溶媒エキスを得るステップの後、必要に応じて、ろ紙等を用いてろ過するステップ、減圧濃縮するステップを含むものであってもよい。ろ過するステップにより、不溶性の固形成分を除去することができる。減圧濃縮するステップにより、以後の工程に要する装置等をコンパクト化することができる。
<エタノール沈殿画分取得工程>
エタノール沈殿画分取得工程は、水性溶媒エキスのエタノール沈殿物を得る工程である。エタノール沈殿画分取得工程は、例えば、大豆の水性溶媒エキスにエタノールを加えて、エタノール沈殿させ、沈殿を得るステップを含むものであってよい。エタノール沈殿は常法に従って実施することができる。
エタノール沈殿画分取得工程は、沈殿を得るステップの後、得られた沈殿から透析又は膜処理により低分子量の物質を除去するステップを含むものであってもよい。透析には、一般に脱塩に用いられる透析膜を用いることができる。また、膜処理には、脱塩及び単糖類除去などに用いられるUF膜を用いることができる。
<タンパク質除去画分取得工程>
タンパク質除去画分取得工程は、水性溶媒エキスのタンパク質除去物を得る工程である。大豆の水性溶媒エキス中には、酸性条件にて不溶化するタンパク質等のタンパク質が多量に含まれているため、タンパク質を除去することが好ましい。タンパク質の除去は、例えば、酸沈殿による方法、タンパク質分解酵素で処理する方法、又はこれらを組み合わせる方法により実施することができる。酸沈殿は、例えば、大豆の水性溶媒エキスのpHを4〜5付近に調整することで、タンパク質を不溶化させて沈殿させることにより行うことができる。生じた沈殿は自然沈降、遠心分離又はろ過などの公知の方法を用いて除去できる。タンパク質分解酵素処理は、例えば、緩衝液(pH8.0)中、タンパク質分解酵素(例えば、プロナーゼAC並びにアクチナーゼE)を添加して37℃で1〜7日間インキュベートすることにより行うことができる。必要に応じて、更に、タンパク質分解酵素処理後のサンプルを沸騰水浴中で5分間加熱後、氷水中で急冷して、タンパク質分解酵素を失活させてもよい。
タンパク質除去画分取得工程は、例えば、酸沈殿、タンパク質分解処理及びこれらの組み合わせからなる群より選択される方法により、水性溶媒エキスを処理し、タンパク質を除去するステップを含むものであってよい。タンパク質除去画分取得工程は、タンパク質を除去するステップの後、処理物から透析又は膜処理により低分子量の物質を除去するステップを含むものであってもよい。透析には、一般に脱塩に用いられる透析膜を用いることができる。また、膜処理には、脱塩及び単糖類除去などに用いられるUF膜を用いることができる。透析は、例えば、精製水を用いて3〜17日間行ってもよい。
<大豆水溶性多糖画分取得工程>
大豆水溶性多糖画分取得工程は、水性溶媒エキスのタンパク質除去かつエタノール沈殿物を得る工程である。大豆水溶性多糖画分取得工程は、水性溶媒エキスのタンパク質除去物を得るステップと、得られたタンパク質除去物のエタノール沈殿物を得るステップとを含む工程であってもよく、水性溶媒エキスのエタノール沈殿物を得るステップと、得られたエタノール沈殿物のタンパク質除去物を得るステップとを含む工程であってもよい。すなわち、水性溶媒エキスに対して、エタノール沈殿とタンパク質除去を実施する順番は任意である。
大豆水溶性多糖画分取得工程における、水性溶媒エキス又はエタノール沈殿物のタンパク質除去物を得るステップは、タンパク質除去画分取得工程に準じて実施することができる。同様に、大豆水溶性多糖画分取得工程における、水性溶媒エキス又はタンパク質除去物のエタノール沈殿物を得るステップは、エタノール沈殿画分取得工程に準じて実施することができる。
水性溶媒エキスに対して、エタノール沈殿とタンパク質除去を実施して得られる画分を、本明細書では「大豆水溶性多糖画分」と呼ぶ。
<アラビノガラクタン画分取得工程>
アラビノガラクタン画分取得工程は、水性溶媒エキスの陰イオン交換樹脂精製物を得る工程である。大豆の水性溶媒エキスには、強いパイエル板活性化作用を有する画分(後述の画分A、画分B及び画分C)が含まれる。アラビノガラクタン画分取得工程は、画分A、画分B及び/又は画分Cを陰イオン交換樹脂精製物として得る工程であってもよく、画分A、画分B及び/又は画分Cを含む画分を陰イオン交換樹脂精製物として得る工程であってもよい。本明細書では、画分A、画分B及び画分C、並びに画分A、画分B及び画分Cを含む陰イオン交換樹脂精製物としての画分を総称して「アラビノガラクタン画分」と呼ぶ。
アラビノガラクタン画分取得工程は、例えば、原料溶液を、担体として陰イオン交換樹脂を充填したカラムに通液し、陰イオン交換樹脂に対し吸着した成分を低〜高イオン強度の溶出溶媒で溶出して溶出画分を得るステップを含むものであってよい。また、得られた溶出画分を更にゲルろ過してろ過画分を得るステップを含んでいてもよい。
原料溶液は、上述した大豆の水性溶媒エキス、エタノール沈殿画分、タンパク質除去画分又は大豆水溶性多糖画分であってよいが、大豆水溶性多糖画分を用いることが好ましい。以下、原料溶液として大豆水溶性多糖画分を用いる場合を例にとり、アラビノガラクタン画分の精製方法を説明する。
まず、大豆水溶性多糖画分の水溶液を、担体として陰イオン交換樹脂を充填したカラムに通液し、成分を吸着させる。陰イオン交換樹脂としては弱イオン交換樹脂が好ましい。例えば、DEAE基を有する樹脂を用いることができる。このような担体を備えるカラムの具体例としては、DEAE−Sepharose Fast Flow(FF)等を挙げることができる。これらの樹脂担体は、水で平衡化しておくことが好ましい。例えば、DEAE−Sepharose FFの場合、2Mの塩化ナトリウムに浸漬することによりDEAE基を活性化させ(Sepharoseに共有結合させた3級アミノ基にカウンターイオンの塩素イオンを結合させる、すなわちCl型にする)、次いで水で洗浄することにより残存する塩化ナトリウムを除去した後、水での懸濁状態(水で平衡化)にする。
次に、上記担体に吸着された成分を段階的にイオン強度が高くなるように溶出溶媒を通液し、溶出する。溶出溶媒としては、NaCl、NHHCO又はHCOONHなど、陰イオンの塩を溶解した水溶液を用いることが好ましい。
アラビノガラクタン画分は、低〜高イオン強度の溶出溶媒で溶出して得られる溶出画分から得ることができる。低イオン強度の溶出溶媒としては、例えば、陰イオンとしてClを用いた場合、当該陰イオンの濃度が100〜200mMである溶出溶媒を用いることができ、100〜120mMである溶出溶媒がより好ましい。また、中イオン強度の溶出溶媒としては、当該陰イオンの濃度が200mMから350mMである溶出溶媒を用いることができ、300〜350mMである溶出溶媒がより好ましい。さらに、高イオン強度の溶出溶媒としては、当該陰イオンの濃度が400mMから550mMである溶出溶媒を用いることができ、450mM〜500mMである溶出溶媒がより好ましい。
アラビノガラクタン画分は、例えば、陰イオン濃度が110mM〜120mMの溶出溶媒で溶出して得られる溶出画分(画分a)、陰イオン濃度が300mM〜350mMの溶出溶媒で溶出して得られる溶出画分(画分b)、及び陰イオン濃度が490mM〜510mMである溶出溶媒で溶出して得られる溶出画分(画分c)とに分けて精製した後、これらを組み合わせたものとして得ることもできる。
アラビノガラクタン画分はまた、陰イオン交換樹脂に成分を吸着させた後、まず、水を通液して中性成分を溶出させて除去し、次いで陰イオン濃度が500mM以上の溶出溶媒で溶出して得られる溶出画分として得ることもできる。当該溶出画分は、酸性画分を一括して溶出させた酸性アラビノガラクタン画分である。
得られた溶出画分(画分a、画分b、画分c又は酸性アラビノガラクタン画分)は、更に精製工程に付することもできる。得られた溶出画分は、必要に応じて、透析膜(例えば、Visking tube、分子量カットオフ:12,000−14,000)を用いて透析した後、透析内液を凍結乾燥してから次の工程に用いてもよい。
アラビノガラクタン画分は、必要に応じて、上記溶出画分をゲルろ過カラムを用いて分子量により分画したアラビノガラクタン画分として得てもよい。例えば、画分aについて、分画分子量2×10〜4×10Daのゲルろ過カラムを用い、ゲルろ過HPLCによる分析でピーク分子量が125,000を示すピークが流出する画分(画分A)を得てもよい。また、画分bについて、分画分子量2×10〜4×10Daのゲルろ過カラムを用い、ゲルろ過HPLCによる分析でピーク分子量が33,000を示すピークが流出する画分(画分B)を回収してもよい。また、画分cについて、例えば、分画分子量2×10〜4×10Daのゲルろ過カラムを用い、ゲルろ過HPLCによる分析でピーク分子量が156,000を示すピークが溶出する画分(画分C)を回収してもよい。また、ゲルろ過の際の溶出画分について、糖(492nm)、ウロン酸(520nm)及び280nmでのUV吸収に基づいて溶出パターンを作成し、上記画分a及び画分bの当該分子量画分(画分A及び画分B)を回収してもよい。また、同様の操作により上記画分cの当該分子量画分(画分C)を回収してもよい。
分画分子量2×10〜4×10Daのゲルろ過カラムとしては、例えば、Sephacryl S−300、Superose 12等を用いることができる。
アラビノガラクタン画分としては、画分a、画分b、及び画分cからゲルろ過して得られたそれぞれの画分(画分A、画分B、及び画分C)を個々に用いることができ、または、これらを組み合わせて用いることもできる。得られたアラビノガラクタン画分は更に常法に従い透析した後、凍結乾燥してもよい。
本実施形態の多糖組成物は、上述した大豆水溶性高分子画分を含むものであることが好ましい。本実施形態の多糖組成物は、上述した大豆水溶性高分子画分のみからなるものであってもよく、また上述した大豆水溶性高分子画分に加えて、添加物を含むものであってもよい。
添加物としては、特に制限されることなく、多糖組成物の用途等に応じて、適宜選択することができる。具体的には、例えば、食品、医薬部外品又は医薬品に許容される成分を添加してもよい。食品、医薬部外品又は医薬品に許容される成分としては、特に制限されるものではないが、例えば、アミノ酸、タンパク質、炭水化物、油脂、甘味料、ミネラル、ビタミン、香料、賦形剤、結合剤、滑沢剤、崩壊剤、乳化剤、界面活性剤、基剤、溶解補助剤、懸濁化剤等が挙げられる。
〔医薬組成物、食品組成物及び飼料組成物〕
本発明の多糖組成物は、医薬組成物、食品組成物又は飼料組成物として使用することができる。
本実施形態の医薬組成物、食品組成物又は飼料組成物の形状は特に限定されないが、液状又は粉末状でもよく、又は通常用いられる製剤用担体を使用し固形製剤若しくは液体製剤としてもよい。これらの製剤化の方法は公知である。このようにして得られた医薬組成物、食品組成物又は飼料組成物は、液状又は粉末状で保存することができる。保存は、特に液状の場合、冷蔵保存が好ましい。
本実施形態の医薬組成物、食品組成物又は飼料組成物が固形製剤である場合、例えば有効成分である本発明の大豆から得られる多糖、又は大豆水溶性高分子画分にデキストリン、コーンスターチ又は脱脂米糠を混和し調製してもよい。これらの製剤化の方法は公知である。
本実施形態の医薬組成物は、例えば、静脈内投与用、点滴剤などの形態の非経口投与用医薬組成物、又は経口投与用医薬組成物として調製することができる。本実施形態の医薬組成物は、薬理学的に許容される担体(製剤用添加物)を含有していてもよい。医薬組成物の製造に用いられる製剤用添加物の種類、有効成分に対する製剤用添加物の割合、又は医薬組成物の製造方法は、医薬組成物の形態に応じて当業者が適宜選択することが可能である。
本実施形態の医薬組成物は、パイエル板活性化作用を有することから、例えば、パイエル板活性化用医薬組成物(パイエル板活性化剤)、腸管免疫亢進用医薬組成物(腸管免疫亢進剤)、腸管免疫調節用医薬組成物(腸管免疫調節剤)、腸管感染症改善用医薬組成物(腸管感染症改善剤)、抗炎症用医薬組成物(抗炎症剤)、ウイルス感染症改善用医薬組成物(ウイルス感染症改善剤)、細菌感染症改善用医薬組成物(細菌感染症改善剤)、糖尿病改善用医薬組成物(糖尿病改善剤)、肥満症改善用医薬組成物(肥満症改善剤)、気分障害改善用医薬組成物(気分障害改善剤)又はそれらの疾患の予防用医薬組成物(予防剤)等として使用することもできる。
本実施形態の医薬組成物は、パイエル板の活性化により治療又は予防される疾患又は障害の治療薬又は予防薬として使用することもできる。当該疾患又は障害としては、感染症、炎症性疾患、又は自己免疫疾患を挙げることができる。ある疾患又は障害が、パイエル板の活性化により治療又は予防される疾患又は障害であるかどうかは、例えば、Spi−B遺伝子の発現抑制により増悪化する疾患若しくは障害であるか、又はRANKLの投与により改善する疾患又は障害(Kanaya Tら, Nat Immunol. 2012 ;13(8):729−736)であれば、パイエル板の活性化により治療又は予防される疾患又は障害であるとして確認することができる。
本実施形態の医薬組成物は、腸管免疫亢進作用を通じて、IFN−γ、IL−4又はIL−5が関与する疾患又は障害の予防又は治療に用いることができる。
本実施形態の医薬組成物は、本発明の多糖組成物に含まれる大豆から得られる多糖を唯一の有効成分として含有していてもよく、また当該多糖に加えて、他の有効成分を更に含有していてもよい。
本実施形態の医薬組成物の投与時期は、特に限定されない。本実施形態の医薬組成物の投与量は、製剤形態、対象とするヒト又は非ヒト動物の種類、健康状態、年齢及び成長の度合いなどにより異なるため、特に限定されない。例えば、有効成分である上記多糖に換算して体重1kg当たり1日に1〜1,000mgを投与することができる。
本実施形態の医薬組成物の投与形態は特に限定されないが、例えば経口、経腸及び経鼻の方法で投与することができる。また、口腔内に貯留しやすい形状(チューインガムなども含む)にて投与することもできる。
投与される対象は、哺乳動物であれば特に限定されないが、例えば、ヒト、イヌ、ネコ、ウサギ、ラット、マウス、ウシ、ブタ、ヒツジ、ヤギ、ウマを含み、好ましくは、ヒトである。
本実施形態の食品組成物又は飼料組成物の投与時期、投与形態及び投与対象等は、食品用途及び飼料用途に応じて、上述した本実施形態の医薬組成物の投与時期、投与形態及び投与対象等に準じて適宜設定することができる。
以上説明した本発明は、例えば、パイエル板活性化用等の医薬組成物の製造のための、本発明の大豆から得られる多糖の使用と捉えることもできる。また、パイエル板活性化等の用途に使用するための、本発明の大豆から得られる多糖と捉えることもできる。さらに、有効量の本発明の大豆から得られる多糖をそれを必要とする対象に投与することを含む、パイエル板の活性化方法、又はパイエル板の活性化により治療若しくは予防される疾患の治療方法若しくは予防方法と捉えることもできる。さらにまた、本発明の大豆から得られる多糖のパイエル板を活性化するための使用と捉えることもできる。
以下、実施例及び製造例に基づいて本発明をより具体的に説明する。ただし、本発明はこれらの実施例及び製造例に限定されるものではない。なお、本明細書全体を通して引用される全文献は参照によりそのまま本明細書に組み込まれる。
<統計学的検定>
実施例及び製造例における全ての結果は、in vitro試験では平均値±S.D.、in vivo試験では平均値±S.E.で示した。対照及び被験試料間の統計学的有意差は、ANOVAの検定後、FisherのPLSDにより検定した。
〔製造例1:大豆水溶性多糖画分の調製〕
(1)大豆の水性溶媒エキスのエタノール沈殿画分の調製
大豆ミール(200g)に精製水(4L)を加えて、液量が半量になるまで煎出した。煎出後、減圧ろ過により抽出液を得た。抽出残渣に対して再度同条件で煎出を繰り返した。得られた抽出液を合わせて大豆の水性溶媒エキスとした。大豆由来水性溶媒エキスを1Lになるまで減圧濃縮した後、攪拌しながら4倍量のエタノール(4000mL)を徐々に加え、室温にて一晩撹拌した。生じた沈殿を遠心分離(6,000rpm,4℃,30分間)により分取し、水に再溶解させた後、精製水を用いて7日間透析(分子量カットオフ:12,000−14,000)を行った。得られた透析内液を遠心分離(6,000rpm,4℃,30分間)することにより、不溶解物を除去した後、上清を凍結乾燥することにより、大豆の水性溶媒エキスのエタノール沈殿画分を得た。
(2)大豆水溶性多糖画分の調製
(2−1)エタノール沈殿画分の酸沈殿によるタンパク質の除去
上記(1)で調製したエタノール沈殿画分(10g)を精製水50mLに溶解させ、攪拌しながら濃塩酸を用いてpH4.5に調製した。生じた沈殿を遠心分離(6,000rpm,4℃,30分間)により除去し、上清を回収した。精製水を用いて上清を7日間透析(分子量カットオフ:12,000−14,000)し、得られた透析内液を凍結乾燥することにより除タンパク大豆水溶性高分子画分(収量:2g、収率:20%)を得た。
(2−2)除タンパク大豆水溶性高分子画分のタンパク質分解酵素処理
(2−2−1)少量調製(アクチナーゼE処理)
上記(2−1)で調製した除タンパク大豆水溶性高分子画分(100mg)を10mM塩化カルシウム及び0.05%アジ化ナトリウムを含有する50mMのトリス−塩酸緩衝液(pH8.0,10mL)に溶解させた後、アクチナーゼE(5mg、科研製薬)を加え、37℃にて3日間タンパク質分解酵素処理を行った。次いで、反応溶液を濃塩酸を用いて中和した後、沸騰水浴中で5分間加熱することによりタンパク質分解酵素を失活させた。本反応液を精製水を用いて7日間透析(分子量カットオフ:12,000−14,000)した。透析内液を減圧濃縮した後、遠心分離(13,000rpm、4℃,30分間)を行い、得られた上清を凍結乾燥することで大豆水溶性多糖画分(除タンパク大豆水溶性高分子画分アクチナーゼE処理物)(収量:32.7mg、収率:31.8%)を得た。
(2−2−2)少量調製(プロナーゼAC処理)
タンパク質分解酵素として、アクチナーゼEに代えてプロナーゼAC(5mg、科研製薬)を使用したこと以外は、(2−2−1)と同様の方法により、大豆水溶性多糖画分(除タンパク大豆水溶性高分子画分プロナーゼAC処理物)(収量:20.8mg、収率:20.6%)を得た。
(2−2−3)大量調製
上記(2−1)で調製した除タンパク大豆水溶性高分子画分(11.18g)を10mM塩化カルシウム及び0.05%アジ化ナトリウムを含有する50mMのトリス−塩酸緩衝液(pH8.0,1118mL)に溶解させた後、アクチナーゼE(555mg、科研製薬)を加え、37℃にて3日間タンパク質分解酵素処理を行った。次いで、反応溶液を濃塩酸を用いて中和した後、沸騰水浴中で5分間加熱することによりタンパク質分解酵素を失活させた。本反応液を精製水を用いて7日間透析(分子量カットオフ:12,000−14,000)した。透析内液を減圧濃縮した後、遠心分離(13,000rpm,4℃,30分間)を行い、得られた上清を凍結乾燥することで大豆水溶性多糖画分(収量:3.39g、収率:30.3%)を得た。
〔実施例1:大豆水溶性多糖画分によるパイエル板活性化作用試験〕
(1)マウスパイエル板細胞の調製及び培養
C3H/HeJマウスをイソフルラン(エスカイン吸入麻酔薬、マイラン製薬)を用いて安楽死後、眼科用ハサミを用いて小腸よりパイエル板を切り出した。このパイエル板を氷冷した5%ウシ胎児血清(FBS)含有RPMI1640培地(2mL)を加えた滅菌シャーレにとり、ステンレスメッシュ(200mesh)上で5mLのディスポーサブル注射器の内筒のゴムラバー部を用いて圧砕することでパイエル板細胞を遊離させた。遊離細胞の懸濁液を50mLファルコンチューブに移し、ボルテックスミキサーで短時間撹拌した。次いで、細胞懸濁液をステンレスメッシュ(150mesh)によりろ過後、遠心分離(1,500rpm、4℃、7分間)し、培地をデカンテーションすることによりパイエル板細胞を得た。得られた細胞について5%FBS含有RPMI1640培地(10mL)を用いて計4回同様の操作を繰り返すことにより細胞を洗浄後、ステンレスメッシュ(200mesh)によりろ過した。この細胞懸濁液(20μL)を用いてセルカウンターで細胞数を計数後、5%FBS含有RPMI1640培地を用いて1〜2×10cells/mLのパイエル板細胞懸濁液を調製した。
得られたパイエル板細胞懸濁液(180μL/well)、及び製造例1の(2−2−1)及び(2−2−2)で調製した大豆水溶性多糖画分(除タンパク大豆水溶性高分子画分アクチナーゼE処理物、及び除タンパク大豆水溶性高分子画分プロナーゼAC処理物)(20μL/well、大豆水溶性多糖画分終濃度:〜100μg/mL)を96穴培養プレート(3072、FALCON)に添加し、5%CO−95%空気下、37℃で2〜6日間培養した。培養上清を別の96穴培養プレートに移し、−20℃にて使用まで保存した。大豆水溶性多糖画分の代わりに注射用水(20μL/well)を加えて培養することにより得た培養上清を対照として用いた。また、ナイモウオウギから得られた多糖画分(AMOL−1:Kiyohara,H.ら,Phytochemistry,71,280−293,2010)を加えて培養することにより得た培養上清を陽性対照として用いた。
(2)マウス骨髄細胞の調製
C3H/HeJマウス(7週齢、雌)をイソフルランを用いて安楽死させた後、大腿骨を摘出した。骨髄細胞は、23G注射針を装着した5mL注射器を用いて5%FBS含有RPMI1640培地(5mL)を大腿骨に注入して押し出すことにより採取した。得られた骨髄細胞をボルテックスミキサーにより分散後、ステンレスメッシュ(200mesh)でろ過し、次いで遠心分離(1,200rpm、4℃、7分間)を行うことにより骨髄細胞を回収した。同様の操作を3回繰り返して細胞を洗浄後、骨髄細胞を5%FBS含有RPMI1640培地(10mL)に懸濁し、セルカウンターで細胞数を計数後、5%FBS含有RPMI1640培地を用いて骨髄細胞懸濁液(5×10cells/mL)を調製した。
(3)パイエル板活性化作用試験
上記(1)で得た培養上清(50μL/well)、上記(2)で得た骨髄細胞懸濁液(5×10cells/mL、100μL/well)、及び5%FBS含有RPMI1640培地(50μL/well)を96穴培養プレートに加えて、5%CO−95%空気下、37℃にて6日間培養した。培養した骨髄細胞培養懸濁液にAlamar Blue(20μL/well、Biosource)を添加し、5%CO−95%空気下、37℃で6〜24時間培養後、生じた蛍光物質量を蛍光プレートリーダー(Infinite M200、Tecan、励起波長:544nm、測定波長:590nm)にて測定し、得られた相対蛍光強度としての増殖骨髄細胞数を骨髄細胞増殖促進因子量とした。
(4)結果
図1に、大豆水溶性多糖画分(除タンパク大豆水溶性高分子画分アクチナーゼE処理物、及び除タンパク大豆水溶性高分子画分プロナーゼAC処理物)のパイエル板活性化作用試験の結果を示す。骨髄細胞増殖促進因子量をパイエル板活性化作用として示した。異なるタンパク分解酵素で調製した大豆水溶性多糖画分には、いずれもパイエル板活性化作用が認められた(図1)。
〔製造例2:大豆由来のアラビノガラクタン画分の調製〕
(1)大豆水溶性多糖画分の分画
試験例1の(2−2−3)で調製した大豆水溶性多糖画分(1.002g)を精製水100mLで溶解後、DEAE−Sepharose FF(Cl型)カラム(5.5×48cm)に添加し、未吸着画分を除去した。次いで、吸着画分を0.114M NaCl(2L、画分a)、及び0.309M NaCl(2L、画分b)で順次溶出し、各吸着画分を得た。各吸着画分を透析膜(分子量カットオフ:12,000〜14,000)を用いて透析した後、透析内液を凍結乾燥して、画分a(収量:118.04mg、収率:11.8%)、及び画分b(収量:336.97mg、収率:33.7%)を得た。
(2)アラビノガラクタン画分(画分A、画分B及び画分C)の調製
得られた画分a(118.04mg)及び画分b(336.97mg)を各々0.2M NaCl水溶液で平衡化したSephacryl S−300(内径2.6cm×95cm、GE Healthcare Bioscience)に添加し、同水溶液で溶出させた。溶出画分について、波長520nm(ウロン酸)、492nm(糖)及び280nmの吸光度を分析した(図2)。図2(A)は、画分aの溶出パターンを示し、図2(B)は、画分bの溶出パターンを示す。溶出パターンに従い、画分aから画分A及び画分Bを分取した(図2(A)参照)。また、画分bから画分Cを分取した(図2(B)参照)。分取した画分は各々精製水を用いて常法に従い透析(分子量カットオフ:12,000−14,000)した。次いで、透析内液を凍結乾燥して、アラビノガラクタン画分(画分A、画分B及び画分C)を得た。画分Aは46.89mg(収率:39.7%)、画分Bは47.78mg(収率:40.5%)、画分Cは118.12mg(収率:33.2%)であった。
〔実施例2:アラビノガラクタン画分(画分A、画分B及び画分C)の分析〕
(1)分子量分布の測定
製造例2で得られたアラビノガラクタン画分(画分A、画分B及び画分C)の分子量分布を、Asahi−pak GS520HQ及びAsahi−pak GS320HQ(各0.75 i.d.×30cm)(昭和電工)の連結カラムを用いた高速ゲルろ過クロマトグラフィー(HPSEC)により分析した。分子量は、標準多糖(pullulan P−1600、P−800、P−400、P−200、P−100、P−50、P−20、P−10及びP−5、昭和電工)のHPSECでの保持時間より分子量対保持時間係数(Kav)の検量線を作成し、被験試料の保持時間から算出した。
HPSECの条件は以下の通りである。
送液装置;JASCO PV−980(日本分光)
検出器;Shodex RI SE−62(昭和電工)(感度:×2)
溶出液;0.2M NaCl(0.8−1.0mL/min)
(2)比色定量
全糖量はフェノール−HSO法、ウロン酸量はm−ヒドロキシビフェニル法、タンパク質量はブラッドフォード法を用いて測定した。標品としては、フェノール−HSO法にはガラクトースを、m−ヒドロキシビフェニル法にはガラクツロン酸を、ブラッドフォード法はウシガンマグロブリン(Bio−Rad)を用いた。
(3)β−D−(1→3,6)−ガラクタン含量の測定
アラビノガラクタン画分(画分A、画分B及び画分C)中のβ−D−(1→3,6)−ガラクタン含量は、Holst及びClarkeにより報告されたβ−D−グルコシル−ヤリブ抗原を用いた一元ゲル拡散法を用いて測定した。
1%アガロース、0.15M塩化ナトリウム、0.02%アジ化ナトリウム、及び10μg/mLのβ−D−グルコシル−ヤリブ抗原(Megazyme)を含むアガロースゲル(7mL)を7.6×5.1cmのスライドグラス上に重層後、モイスチャーチャンバー内で冷却し、固化させた。ゲルに直径約2mmの穴を作成後、被験試料水溶液(1mg/mL、10μL)を加え、モイスチャーチャンバー内で室温にて1晩インキュベーションした。ゲルをろ紙を用いて乾固させ、生じた赤色沈降リングの直径を計測した。標準β−D−(1→3,6)−ガラクタンとしてアカシアアラビノガラクタン(1mg/mL、10μL、Megazyme)を用いて同様の操作を行い、β−D−(1→3,6)−ガラクタン(10μg)にて形成される赤色沈降リングの直径を計測した。検量線は標準β−D−(1→3,6)−ガラクタンにより形成された赤色沈降リング直径の2乗値とβ−D−(1→3,6)−ガラクタン量(10μg)から作成し、被験試料のβ−D−(1→3,6)−ガラクタン量を算出した。
(4)構成糖分析
アラビノガラクタン画分(画分A、画分B及び画分C)の構成糖分析は、TMSメチルグリコシド法により行った。
単糖の標準品混合物(Glc、Gal、GlcA、GalA、Ara、Fuc、Xyl、Man、Rha、各5μg)及び被験試料(各50〜100μg)を13mmネジ口試験管に分取し、さらにmyo−イノシトール(内部標準:20μg)を加えた。各試験管に1M HCl−MeOH溶液(100〜300μL、和光純薬工業)を加え、密封下メタノリシス(80℃、15時間)を行った。反応溶液にtert−BuOH(5μL)を加え窒素気流下(40℃)で溶媒を留去した後、Tri−Sil試薬(100μL、Pierce)を加えて密封下反応(80℃、20分間)させた。試薬を窒素気流下(40℃)で留去した後、反応生成物にヘキサン(2mL)を加え数秒間超音波処理することによりTMS誘導体を抽出した。抽出物中の不溶物を遠心分離(2,000rpm、4℃、5分間)により除去後、溶媒を窒素気流下(40℃)で留去し、得られたTMS誘導体のヘキサン溶液をガスクロマトグラフィー(GLC)により分析した。各単糖誘導体の同定は標準品の誘導体の保持時間との比較から行い、含有率比(モル%)はピーク面積と各実験毎に得られる各単糖誘導体のFID検出器に対する応答係数から算出した。
GLCの条件は以下の通りである。
機器:HP5890 Series II gas chromatograph(Hewlett Packard)
カラム:DB−1 capillary column(0.25mm i.d.×30m、液膜厚0.25μm、J&W Scientific Inc.)
キャリアガス:He(総流量:80mL/min、カラム入口圧:21psi、ガス純度:99.9999%)
注入口温度:250℃
検出器温度:280℃
オーブン温度プログラム:60℃(1分間)、60℃→170℃(30℃/min)、170℃→190℃(1℃/min)、190℃→300℃(30℃/min)、300℃(5分間)
(5)メチル化分析
糖結合様式解析のためのメチル化分析は以下に示すように箱守法とWaegheらの方法を改変した方法に従って行った。
(メチルスルフィニルカルバニオンナトリウムを用いる多糖のメチル化)
被験試料(500μg)をネジ口試験管(15 i.d.×100mm)にとり、一晩デシケーター中で減圧乾燥させた後、無水ジメチルスルホキシド(dry DMSO、Sigma)を加え、窒素気流下密封条件で15分間超音波処理し、試料が完全に溶解するまで(数時間〜一昼夜)50〜60℃で加温した。試料溶液に常法にて自家調製したメチルスルフィニルカルバニオンナトリウム(500μL)を加え、窒素気流下1時間超音波処理を行った後、3時間室温で反応させた。反応後、少量の反応液(5〜10μL)を用い、トリフェニルメタン試薬(和光純薬工業)により、過剰のメチルスルフィニルカルバニオンナトリウムの残存を確認した。メチルスルフィニルカルバニオンナトリウムが不十分の場合、さらにメチルスルフィニルカルバニオンナトリウムを追加し、上記操作をメチルスルフィニルカルバニオンナトリウムの過剰量が残存するまで繰り返した。反応混合液を凍結後に、CHI(ヨードメタン、柳島製薬株式会社、特級、1mL)を加え、窒素気流下で密封条件にて15分間超音波処理を行い、室温で4時間以上反応させた。反応終了後、反応液中のCHIを減圧留去し、氷冷下凍結させ、使用したジメチルスルホキシド及びメチルスルフィニルカルバニオンの総容量と等容量の精製水を加え、残存するメチルスルフィニルカルバニオンを分解し、反応を停止させた。さらに、反応液にその黄色が消えるまで飽和チオ硫酸ナトリウム(約250μL〜)を加えた。
(完全メチル化多糖の回収)
Sep−pak C18カートリッジ(1mL、Waters Associate Inc.)を蒸留エタノール(10mL×4回)、次いで水(2mL×3回)を用いて洗浄後、上記メチル化反応混合液を本カートリッジへ通過させ、メチル化多糖をカートリッジに吸着させた。カートリッジを50%ジメチルスルホキシド(2mL×5回)、次いで水(2mL×5回)により洗浄後、蒸留エタノール(2mL×3回)を用いてメチル化多糖を溶出後、減圧乾固することにより完全メチル化多糖を得た。
(メチル化多糖中のウロン酸のカルボキシル基の還元)
完全メチル化多糖中のウロン酸残基のカルボキシルメチルエステル基は以下に示した方法により、重水素化一級アルコールに還元した。すなわち、完全メチル化多糖試料を95%エタノール(0.21mL)及びテトラヒドロフラン(THF、0.51mL)で溶解後、重水素化ホウ素ナトリウム(NaBD、1.8mg)を加えて混和した後18時間以上室温で反応させ、さらに70℃で1時間加温させることによりカルボキシメチルエステル基を還元した。反応液を酢酸を用いて中和し、さらに7〜8滴の酢酸を加えて反応を停止させた。反応溶液を減圧乾固後、生成したホウ酸を除去するため、反応生成物に蒸留メタノール(1mL)を加えて減圧乾固する操作を少なくとも4回繰り返した。本反応混合物の50%ジメチルスルホキシド溶液について、(完全メチル化多糖の回収)欄に記載した方法と同様の操作によりカルボキシル還元完全メチル化多糖を回収した。
(完全メチル化多糖から部分メチル化アルジトールアセテート体への誘導体化と分析)
得られたカルボキシル還元完全メチル化多糖をネジ口試験管(15 i.d.×100mm)中、2Mトリフルオロ酢酸(TFA、1mL)を用いて密封下121℃で1時間加熱することにより加水分解を行った。反応終了後、室温に冷却した反応溶液を減圧乾固し、さらにデシケーターで30分間減圧乾燥することにより残存するトリフルオロ酢酸を除去した。得られた加水分解物を95%エタノール(蒸留、1mL)に溶解させ、25%アンモニア水を7〜8滴添加しアンモニアアルカリ性にした後、過剰の水素化ホウ素ナトリウム(NaBH)を加え室温で4時間以上反応させた。反応液に酢酸溶液を滴加し、残存する水素化ホウ素ナトリウムを分解した後、さらに7〜8滴加え、溶媒を減圧乾固により留去した。反応生成物にメタノール(1mL)を加え、減圧乾固する操作を4回繰り返すことにより生成したホウ酸を除去した。反応生成物をデシケーター中で1時間減圧乾燥後、無水酢酸を加え、密封下121℃、3時間加熱反応させることによりアセチル化を行った。反応溶液を室温になるまで放置した後、トルエン(1mL)を加えて混和し、40℃で空気気流下、無水酢酸を除去した。反応生成物に水(1mL)及びクロロホルム(CHCl、2mL)を加え液−液分配し、遠心分離(4℃、2,500rpm、5分間)した後、上層の水層を吸引除去した。さらにクロロホルム層は水(1mL)を用いて4〜5回程洗浄後、クロロホルムを減圧留去し、部分メチル化アルジトールアセテート誘導体を得た。本誘導体は以下に示す条件によりガスクロマトグラフィー(GLC)及びガスクロマトグラフィー/質量分析(GLC−MS)を用いて分析した。メチル化アルジトールアセテートの同定は標品のフラグメントイオンとの比較及び2,3,4,6−tetra−OMe−1,5−di−OAc−ガラクチトールに対する相対保持時間との比較により行った。メチル化糖の構成モル比(%)はピーク面積と水素炎イオン検出器(FID)に対する応答係数により求めた。
GLC:
装置:HP5890 SeriesII gas chromatogragh(Hewlett Packard)
キャピラリカラム:SP−2380 capillary column(0.25mmi.d.×30m、液膜厚0.25μm、SPELCO/ALDRICH)
キャリアガス:He(総流量:80mL/min、カラム入口圧:10psi、ガス純度:99.9999%)
注入口温度:250℃
検出器:250℃
オーブン温度:60℃(1min)、60℃→150℃(30℃/min)、150℃→250℃(1.5℃/min)、250℃(1min)
MS:
Mass spectrometer:HP5970B Mass Selective Detector(70eV、280℃)
(6)結果
アラビノガラクタン画分(画分A、画分B及び画分C)の化学的性状を表1に、糖結合様式を表2に示す。また、アラビノガラクタン画分(画分A、画分B及び画分C)の分子量分布の測定結果を図3に示す。
表1及び図3に示すように、画分Aは、ピーク分子量が125,000であり、分子量が30,000〜160,000の範囲に分布していた。画分Bは、ピーク分子量が33,000であり、分子量が10,000〜40,000の範囲に分布していた。画分Cは、ピーク分子量が156,000であり、分子量が30,000〜300,000の範囲に分布していた。画分Aは、構成糖に占めるアラビノース、マンノース、及びガラクトースの割合は、それぞれ約38モル%、12モル%、及び36モル%であった。画分Bは、構成糖に占めるアラビノース、及びガラクトースの割合は、それぞれ約43モル%、及び41モル%であった。また、画分Cは、構成糖に占めるアラビノース、ラムノース、キシロース、ガラクツロン酸、及びガラクトースの割合は、それぞれ約30モル%、8モル%、12モル%、14モル%、及び27モル%であった。これらのアラビノガラクタン画分のうち、画分Cは中性糖とウロン酸からなる糖を主成分として含有する多糖画分であり、画分A及び画分Bは中性糖からなる糖を主成分とする多糖画分であった。
表2に示すように、画分Aは、非還元末端のアラビノフラノース(約14モル%)、4又は5結合のアラビノース(約18モル%)、非還元末端ガラクトース(約13モル%)、及び3,6分岐ガラクトース(約11モル%)を多く含むという特徴があった。また、画分Bは、非還元末端のアラビノフラノース(約25モル%)、4又は5結合のアラビノース(約18モル%)、及び3,6分岐ガラクトース(約20モル%)を多く含むという特徴があった。さらに画分Cは、非還元末端アラビノフラノース(約10モル%)、4又は5結合のアラビノース(約10モル%)、3,4又は3,5分岐アラビノース(約9モル%)、4結合のキシロース(約12モル%)、及び4結合のガラクツロン酸(約10モル%)を多く含むという特徴があった。加えて、表1に示すように、画分A、画分B及び画分Cは、β−D−グルコシル−ヤリブ抗原で検出可能なβ−D−(1→3、6)−ガラクタン構造を、それぞれ約58%、100%、及び25%含む特徴を有していた。
〔実施例3:アラビノガラクタン画分によるパイエル板活性化作用試験〕
製造例2で調製したアラビノガラクタン画分(画分A、画分B及び画分C)を用い、実施例1と同様にパイエル板活性化作用試験を行った。また、注射用水(20μL/well)を加えて培養することにより得た培養上清を対照として用いた。さらに、ナイモウオウギから得られた多糖画分(AMOL−1)を加えて培養することにより得た培養上清、及び製造例1の(3−3)で得られた大豆水溶性多糖画分を加えて培養することにより得た培養上清をそれぞれ陽性対照として用いた。
図4にパイエル板活性化作用試験の結果を示す。骨髄細胞増殖促進因子量をパイエル板活性化作用として示した。アラビノガラクタン画分(画分A、画分B及び画分C)はいずれも対照群と比較して有意に強いパイエル板活性化作用を示し、大豆水溶性多糖画分と比較して同程度又は強いパイエル板活性化作用を示した。
〔実施例4:大豆水溶性多糖画分の経口投与によるパイエル板活性化作用試験〕
(1)マウスへの大豆水溶性多糖画分の投与
BALB/cマウス(7週齢、雌、日本SLC)にFTY720水溶液(1.25mg/kg/day)を3日間経口投与し、パイエル板からのリンパ球の遊出を阻害した。FTY720処置マウスにFTY720投与3時間以上後に、製造例1の(2−2−3)で得られた大豆水溶性多糖画分(25,50又は100mg/kg/day)を3日間経口投与した。対照群として、FTY720処置マウスに水を同期間経口投与した。投与開始4日目にマウスをイソフルラン(マイラン製薬)麻酔下、安楽死後、眼科用ハサミを用いて小腸からパイエル板を採取した。
(2)マウスパイエル板細胞の調製及び培養
得られたパイエル板を氷冷した5%ウシ胎児血清(FBS)含有RPMI1640培地(2mL)を加えた滅菌シャーレにとり、ステンレスメッシュ(200mesh)上で5mLのディスポーサブル注射器の内筒のゴムラバー部を用いて圧砕することでパイエル板細胞を遊離させた。遊離細胞の懸濁液を50mLファルコンチューブに移し、ボルテックスミキサーで短時間撹拌した。次いで、細胞懸濁液をステンレスメッシュ(150mesh)によりろ過後、遠心分離(1,500rpm、4℃、7分間)し、培地をデカンテーションすることによりパイエル板細胞を得た。得られた細胞について5%FBS含有RPMI1640培地(10mL)を用いて計4回同様の操作を繰り返すことにより細胞を洗浄後、ステンレスメッシュ(200mesh)によりろ過した。この細胞懸濁液(20μL)を用いてセルカウンターで細胞数を計数後、5%FBS含有RPMI1640培地を用いて2×10cells/mLのパイエル板細胞懸濁液を調製した。
24穴培養プレート(3047、FALCON)に上記で得たパイエル板細胞懸濁液(500μL/well)及びコンカナバリンA(50μg/mL、50μL、終濃度:5μg/mL、Sigma−Aldrich)を添加したTリンパ球刺激条件下で、5%CO−95%空気下、37℃にて3日間培養した。培養上清を別の24穴培養プレートに移し、−20℃にて使用まで保存した。
(3)酵素免疫測定法(ELISA)によるサイトカイン(IFN−γ、IL−4及びIL−6)の測定
ELISA用プレート(Immuno−Maxisorp、Nunc)に50mM carbonate−bicarbonate buffer(pH9.6)で1μg/mLに希釈した抗マウスサイトカイン一次抗体(抗IFN−γ、IL−4又はIL−6抗体、100μL/well)を分注し、4℃で一昼夜インキュベーションした。本プレートを0.05% Tween20含有リン酸緩衝化生理食塩水(PBST)(300μL/well)で3回洗浄後、1%スキムミルク(SM)含有PBST(SM−PBST)(100μL/well)を用いて37℃で1時間インキュベーションした。プレートをPBST(300μL/well)で4回洗浄後、1%SM−PBST(50μL/well)を加えて10分間室温にてプレインキュベーションし、次いで、パイエル板培養上清(50μL/well)を加え、4℃で1晩インキュベーションした。プレートをPBST(300μL/well)で3回洗浄し、1%SM−PBST(100μL/well)を用いて10分間室温にてプレインキュベーションした。さらにプレートに1%SM−PBSTで希釈した一次抗体に対応するビオチン標識抗サイトカイン二次抗体(1:1000、50μL/well)を加え37℃で1時間インキュベーション後、PBST(300μL/well)で3回洗浄した。プレートを1%SM−PBST(100μL/well)を用いて10分間室温にてプレインキュベーション後、1%SM−PBSTで希釈したアルカリフォスファターゼ標識ストレプトアビジン(1:1000、100μL/well)を加え37℃で1時間インキュベーションした。プレートをPBST(300μL/well)で5回洗浄後、基質溶液[p−ニトロフェニルリン酸二ナトリウムの10%ジエタノールアミン緩衝液(pH9.8)溶液(1mg/mL、150μL/well)を加え、室温でインキュベーションした。発色した黄色をマイクロプレートリーダー(Multiskan JX、Thermo Electron Corp.)を用いて測定した(測定波長:405nm、ブランク波長:492nm)。
(4)結果
図5に、FTY720処置マウスへの大豆水溶性多糖画分の経口投与によるパイエル板Tリンパ球からのIFN−γ、IL−4及びIL−6の産生変化についての試験結果を示す。25,50又は100mg/kg/dayの用量の大豆水溶性多糖画分の経口投与により、パイエル板Tリンパ球からのIL−6の産生は用量依存的に顕著に増強されていた(図5(C))。また、IFN−γでは50及び100mg/kg/dayの用量で産生が有意に増強され、50mg/kg/dayの用量での増強作用が最も顕著であった(図5(A))。IL−4では50mg/kg/dayの用量で産生が有意に増強された(図5(B))。IL−6及びIFN−γは感染防御に関与する液性因子として報告されている。このことから、大豆水溶性多糖画分に含まれるアラビノガラクタンが、パイエル板でのこれらのサイトカイン産生に関与するTリンパ球を誘導することにより、これらのサイトカインの関与する病態の改善につながると考えられる。
〔実施例5:大豆水溶性多糖画分の経口投与による脾臓免疫細胞活性化作用試験〕
パイエル板で活性化されたリンパ球はホーミング(帰巣)受容体依存的にパイエル板外の種々の免疫・非免疫組織に移送され、移送先の組織内のリンパ球、マクロファージ及び繊維芽細胞等と相互作用し、これらの免疫細胞の機能を調節することが知られている。大豆水溶性多糖画分の経口投与で誘導されたパイエル板リンパ球によるパイエル板外の組織(脾臓)における免疫学的変化を解析した。
(1)マウスへの大豆水溶性多糖画分の投与
BALB/cマウス(7週齢、雌、日本SLC)に、製造例1の(2−2−3)で得られた大豆水溶性多糖画分(25,50又は100mg/kg/day)を13日間経口投与した。対照群としては、マウスに水を同期間経口投与した。投与開始14日目にマウスをイソフルラン(マイラン製薬)麻酔下、安楽死後、眼科用ハサミを用いて脾臓を採取した。
(2)マウス脾臓細胞の調製及び培養
得られた脾臓を氷冷した10%ウシ胎児血清(FBS)含有RPMI1640培地(2mL)を加えた滅菌シャーレにとり、ステンレスメッシュ(200mesh)上で5mLのディスポーサブル注射器の内筒のゴムラバー部を用いて圧砕することで脾臓細胞を遊離させた。遊離細胞の懸濁液をステンレスメッシュ(200mesh)により50mLファルコンチューブ内へろ過後、遠心分離(1,500rpm、4℃、7分間)し、培地をデカンテーションすることにより脾臓細胞を得た。得られた細胞について混入する赤血球を低浸透破壊後、10%FBS含有RPMI1640培地(各10mL)を用いて上記と同様の操作を3回繰り返すことにより細胞を洗浄し、ステンレスメッシュ(200mesh)によりろ過した。この細胞懸濁液(20μL)を用いてセルカウンターで細胞数を計数後、10%FBS含有RPMI1640培地を用いて2×10cells/mLの脾臓細胞懸濁液を調製した。
24穴培養プレート(3047、FALCON)に上記で得た脾臓細胞懸濁液(500μL/well)を添加し、更にコンカナバリンA(50μg/mL、50μL、終濃度:5μg/mL、Sigma−Aldrich)を添加したTリンパ球刺激条件下、又はLPS(1mg/mL、2.5μL、終濃度:5μg/mL、Escherichia coli O127:B8、Sigma)を添加したBリンパ球/マクロファージ刺激条件下で、5%CO−95%空気下、37℃にて3日間培養した。培養上清を別の24穴培養プレートに移し、−20℃にて使用まで保存した。
(3)酵素免疫測定法(ELISA)によるサイトカイン(IL−6)の測定
ELISA用プレート(Immuno−Maxisorp、Nunc)に50mM carbonate−bicarbonate buffer(pH9.6)で1μg/mLに希釈した抗マウスIL−6一次抗体(100μL/well)を分注し、4℃で一昼夜インキュベーションした。本プレートを0.05% Tween20含有リン酸緩衝化生理食塩水(PBST)(300μL/well)で3回洗浄後、1%スキムミルク(SM)含有PBST(SM−PBST)(100μL/well)を用いて37℃で1時間インキュベーションした。プレートをPBST(300μL/well)で4回洗浄後、1%SM−PBST(50μL/well)を加えて10分間室温にてプレインキュベーションし、次いで、脾臓細胞培養上清(50μL/well)を加え、4℃で1晩インキュベーションした。プレートをPBST(300μL/well)で3回洗浄し、1%SM−PBST(100μL/well)を用いて10分間室温にてプレインキュベーションした。さらにプレートに1%SM−PBSTで希釈したビオチン標識抗マウスIL−6二次抗体(1:1000、50μL/well)を加え37℃で1時間インキュベーション後、PBST(300μL/well)で3回洗浄した。プレートを1%SM−PBST(100μL/well)を用いて10分間室温にてプレインキュベーション後、1%SM−PBSTで希釈したアルカリフォスファターゼ標識ストレプトアビジン(1:1000、100μL/well)を加え37℃で1時間インキュベーションした。プレートをPBST(300μL/well)で5回洗浄後、基質溶液[p−ニトロフェニルリン酸二ナトリウムの10%ジエタノールアミン緩衝液(pH9.8)溶液(1mg/mL、150μL/well)を加え、室温でインキュベーションした。発色した黄色をマイクロプレートリーダー(Multiskan JX、Thermo Electron Corp.)を用いて測定した(測定波長:405nm、ブランク波長:492nm)。
(4)結果
図6に、BALB/cマウスへの大豆水溶性多糖画分の経口投与による脾臓Tリンパ球又はBリンパ球/マクロファージからのIL−6の産生変化についての試験結果を示す。25,50又は100mg/kg/dayの用量の大豆水溶性多糖画分の経口投与により、脾臓Tリンパ球からのIL−6の産生は顕著に増強されていた(図6(A))。また、LPS刺激条件でBリンパ球/マクロファージからのIL−6の産生も100mg/kg/dayの大豆水溶性多糖画分の投与により著明に増加した(図6(B))。IL−6は感染防御やBリンパ球の増殖、若しくは造血系活性化に関与する液性因子として報告されている。このことから、大豆水溶性多糖画分に含まれるアラビノガラクタンが、パイエル板リンパ球を活性化し、パイエル板外の末梢組織や造血組織においてIL−6の産生を誘導することにより、IL−6産生低下に基づく病態の改善につながると考えられる。

Claims (13)

  1. 大豆から得られる多糖を含有する多糖組成物であって、
    前記多糖は、アラビノガラクタンを主成分とし、かつ20,000〜180,000の範囲内にピーク分子量を有する、多糖組成物。
  2. 前記多糖は、全構成糖に占めるアラビノースの割合が25〜48モル%、ガラクトースの割合が20〜45モル%、及びガラクツロン酸の割合が1〜19モル%である、請求項1に記載の多糖組成物。
  3. 前記多糖は、非還元末端アラビノースの割合が5〜30モル%、4又は5結合のアラビノースの割合が5〜25モル%、非還元末端ガラクトースの割合が1〜18モル%、及び3,6−分岐ガラクトースの割合が5〜25モル%である、請求項1又は2に記載の多糖組成物。
  4. 前記アラビノガラクタンは、β−D−グルコシル−ヤリブ抗原との反応性を示す構造を有する、請求項1〜3のいずれか一項に記載の多糖組成物。
  5. 大豆水溶性高分子画分を含み、
    前記大豆水溶性高分子画分が、大豆の水性溶媒エキスのエタノール沈殿物である、請求項1〜4のいずれか一項に記載の多糖組成物。
  6. 大豆水溶性高分子画分を含み、
    前記大豆水溶性高分子画分が、大豆の水性溶媒エキスのタンパク質除去かつエタノール沈殿物である、請求項1〜4のいずれか一項に記載の多糖組成物。
  7. 医薬組成物である、請求項1〜6のいずれか一項に記載の多糖組成物。
  8. 食品組成物である、請求項1〜6のいずれか一項に記載の多糖組成物。
  9. 飼料組成物である、請求項1〜6のいずれか一項に記載の多糖組成物。
  10. パイエル板活性化用である、請求項1〜9のいずれか一項に記載の多糖組成物。
  11. 腸管免疫調節用である、請求項1〜10のいずれか一項に記載の多糖組成物。
  12. パイエル板におけるサイトカイン産生促進用である、請求項1〜11のいずれか一項に記載の多糖組成物。
  13. 大豆原料を水性溶媒に浸漬し、大豆の水性溶媒エキスを得る工程と、
    得られた水性溶媒エキスをエタノールと混合し、エタノール沈殿物を得る工程と、
    を含む、請求項1〜12のいずれか一項に記載の多糖組成物の製造方法。
JP2018045690A 2018-03-13 2018-03-13 多糖組成物 Pending JP2019156759A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018045690A JP2019156759A (ja) 2018-03-13 2018-03-13 多糖組成物
PCT/JP2019/011022 WO2019177168A1 (ja) 2018-03-13 2019-03-11 多糖組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045690A JP2019156759A (ja) 2018-03-13 2018-03-13 多糖組成物

Publications (1)

Publication Number Publication Date
JP2019156759A true JP2019156759A (ja) 2019-09-19

Family

ID=67908337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045690A Pending JP2019156759A (ja) 2018-03-13 2018-03-13 多糖組成物

Country Status (2)

Country Link
JP (1) JP2019156759A (ja)
WO (1) WO2019177168A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307921B (zh) * 2019-11-26 2022-11-25 中国工程物理研究院材料研究所 一种绝对量测量的四极质谱氢同位素气体丰度分析方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149682A (ja) * 1997-08-05 1999-02-23 Fuji Oil Co Ltd 酸化コレステロール吸着剤及びその製造法並びに酸化コレステロールを吸着する方法、及びコレステロール又は酸化コレステロールを含有する食品の製造法
US6838096B2 (en) * 2001-06-20 2005-01-04 Taipei Veterans General Hospital Black soybean polysaccharides
JP4470492B2 (ja) * 2002-04-24 2010-06-02 不二製油株式会社 ミネラル吸収促進剤
WO2010052883A1 (ja) * 2008-11-06 2010-05-14 不二製油株式会社 洗浄剤組成物
JP5757604B2 (ja) * 2010-02-05 2015-07-29 ヒガシマル醤油株式会社 ミエロペルオキシダーゼ阻害剤
JP5700763B2 (ja) * 2010-08-04 2015-04-15 ヒガシマル醤油株式会社 抗アレルギー剤

Also Published As

Publication number Publication date
WO2019177168A1 (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
Ding et al. Modulating effects of polysaccharides from the fruits of Lycium barbarum on the immune response and gut microbiota in cyclophosphamide-treated mice
Xiao et al. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far?
Xia et al. Partial characterization and immunomodulatory activity of polysaccharides from the stem of Dendrobium officinale (Tiepishihu) in vitro
Liu et al. Orally administered Dendrobium officinale and its polysaccharides enhance immune functions in BALB/c mice
Sander et al. Promising plant-derived adjuvants in the development of coccidial vaccines
US20100003275A1 (en) Immunostimulatory Composition comprising Lipoprotein in Microalgae Extract
TWI801925B (zh) 用於調節免疫恆定性之含有多醣及多酚之蘆薈基底組合物
Gupta et al. Immunological adjuvant effect of Boswellia serrata (BOS 2000) on specific antibody and cellular response to ovalbumin in mice
Shahbazi et al. Immunostimulants: types and functions
KR20030069974A (ko) 미세조류로부터 얻은 유효 면역자극제
Feng et al. Characterization of a polysaccharide HP-02 from Honeysuckle flowers and its immunoregulatory and anti-Aeromonas hydrophila effects in Cyprinus carpio L.
JP2011178679A (ja) 和漢生薬由来多糖体を有効成分とする免疫調節剤及び飲食品
AU2006243596B2 (en) A composition, its preparation method and its use
Wang et al. Structural characteristics and immunostimulatory activities of a new polysaccharide from Dendrobium fimbriatum Hook
KR102025632B1 (ko) 류마티스 관절염 억제제, 류마티스 관절염 예방제, 류마티스 관절염 치료제 및 류마티스 관절염 억제용 식품
Jain et al. Immunostimulants: concepts, types and functions
WO2019177168A1 (ja) 多糖組成物
JP2006070217A (ja) オウギ属植物地上部由来の多糖および生体防御機能賦活化剤
JPS6219525A (ja) 植物起源の生物活性物質の製造法および同物質含有組成物
WO2018174303A1 (ja) パイエル板活性化剤
Gupta et al. Adjuvant effect of biopolymeric fraction from Picrorhiza kurroa to promote both Th1 and Th2 immune responses
DONG et al. Adjuvant activities of seven natural polysaccharides on immune responses to ovalbumin in mice
JP2018162217A5 (ja)
Weng et al. Chemical composition and adjuvant properties of the macromolecules from cultivated Cistanche deserticola YC Ma as an immunopotentiator
Ma et al. Adjuvant properties of water extractable arabinoxylans with different structural features from wheat flour against model antigen ovalbumin