JP2019143012A - ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法 - Google Patents

ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法 Download PDF

Info

Publication number
JP2019143012A
JP2019143012A JP2018027110A JP2018027110A JP2019143012A JP 2019143012 A JP2019143012 A JP 2019143012A JP 2018027110 A JP2018027110 A JP 2018027110A JP 2018027110 A JP2018027110 A JP 2018027110A JP 2019143012 A JP2019143012 A JP 2019143012A
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
oxygen concentration
facility
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018027110A
Other languages
English (en)
Other versions
JP7043285B2 (ja
Inventor
悠一郎 浦方
Yuichiro Urakata
悠一郎 浦方
潤 葛西
Jun Kasai
潤 葛西
幸治 西村
Koji Nishimura
幸治 西村
光一 田上
Koichi Tagami
光一 田上
中村 健太郎
Kentaro Nakamura
中村  健太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2018027110A priority Critical patent/JP7043285B2/ja
Publication of JP2019143012A publication Critical patent/JP2019143012A/ja
Application granted granted Critical
Publication of JP7043285B2 publication Critical patent/JP7043285B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】乾燥ガスとして微粉燃料機へ供給される排ガス中の酸素によって、貯留された微粉燃料の酸化昇温が生じることを抑制又は防止することを目的とする。【解決手段】ガス化炉設備は、石炭から生成ガスを生成するガス化炉を有し、石炭と、生成ガスの少なくとも一部を燃料ガスとして燃焼するガスタービンからの排ガスとが供給され、石炭を粉砕する微粉炭機4と、微粉炭機4で生成された微粉炭を捕集する微粉炭集塵器5と、微粉炭集塵器5へ窒素ガスを供給する窒素供給ライン22とを備え、微粉炭機4へ排ガスが供給されるとき、微粉炭機4及び微粉炭集塵器5を介してガス化炉までの系統の酸素濃度が所定の閾値を超える場合は、排ガスに含まれる酸素濃度が低減されるように、窒素供給ライン22から微粉炭集塵器5へ不活性ガスが供給される。【選択図】図2

Description

本発明は、ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法に関するものである。
従来、ガス化炉設備として、石炭等の炭素含有固体燃料をガス化炉内に供給し、炭素含有固体燃料を部分燃焼させてガス化することで、可燃性ガスを生成する炭素含有燃料ガス化設備(石炭ガス化設備)が知られている。以下、炭素含有固体燃料の一例として石炭を用いる場合について説明する。
ガス化炉の上流側に設置されている微粉炭機では、石炭が供給され、乾燥ガスによって石炭を加熱し、石炭中の水分を除去しながら石炭を細かい粒子状に粉砕することによって、微粉炭が製造される。
石炭ガス化複合発電設備の場合、微粉炭機に供給される乾燥ガスは、ガス化炉の下流側に設置されたガスタービンや排熱回収ボイラから排出された排ガスの一部を用いる場合がある。下記の特許文献1では、石炭ガス化複合発電設備において、ガスタービンの排ガスや排熱回収ボイラから抽気した排ガスの一部を乾燥ガスとして微粉炭機に導入することが記載されている。
特開2013−170463号公報
ガス化複合発電設備では、内部が高圧であるガス化炉に微粉炭を供給する必要があるため、ホッパ内部を加圧してからガス化炉へ微粉炭を供給する。そのため、ホッパの圧力調整の間、一時的に微粉炭をガス化炉へ供給できないタイミングがあり、その間、微粉炭ビンなどで微粉炭を保有している。一方、上述したとおり、微粉炭の乾燥ガスとして排ガスが使用されており、石炭の種類など燃料の性状が変更された場合には、排ガス中の酸素(O)濃度が変わり、酸素濃度が高い場合には、微粉炭集塵器や微粉炭ビンに貯留された微粉炭が酸化昇温に至る。また、排ガス中の酸素濃度が爆発限界以上になると、微粉炭が発火するなどしてガス化複合発電設備が損傷するおそれがある。さらに、石炭の種類など燃料の性状に応じて爆発限界が異なる場合は、燃料の性状が変更されたとき、既に設定されている排ガスの酸素濃度の上限が変わることがある。
上記の特許文献1では、空気分離装置から窒素ガスを加圧搬送用ガスとしてホッパに導入し、微粉炭をホッパからガス化炉へ搬送することが開示されているが、微粉炭機に乾燥ガスとして供給される排ガス中の酸素濃度を調整する必要があることは記載されていない。
本発明は、このような事情に鑑みてなされたものであって、石炭の種類など燃料の性状を変更した際にも、乾燥ガスとして微粉燃料機へ供給される排ガス中の酸素によって、貯留された微粉燃料の酸化昇温が生じることを抑制又は防止することが可能なガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法を提供することを目的とする。
上記課題を解決するために、本発明のガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法は以下の手段を採用する。
すなわち、本発明に係るガス化複合発電設備は、炭素含有固体燃料から生成ガスを生成するガス化炉を有するガス化炉設備であって、前記炭素含有固体燃料と、前記ガス化炉で生成した生成ガスの少なくとも一部を燃料ガスとして燃焼するガスタービンからの排ガスとが供給され、前記炭素含有固体燃料を粉砕する微粉燃料機と、前記微粉燃料機で生成された微粉燃料を捕集する集塵器と、前記集塵器へ不活性ガスを供給する不活性ガス供給系統とを備え、前記微粉燃料機へ前記排ガスが供給されるとき、前記微粉燃料機及び前記集塵器を介して前記ガス化炉までの系統の酸素濃度が所定の閾値を超える場合は、前記排ガスに含まれる酸素濃度が低減されるように、前記不活性ガス供給系統から前記集塵器へ前記不活性ガスが供給される。
この構成によれば、炭素含有固体燃料からガス化炉設備で生成した生成ガスの少なくとも一部を燃料ガスとして燃焼しガスタービンで排ガスを生成して、微粉燃料機には、炭素含有固体燃料と、燃料ガスの燃焼によって生じた排ガスとが供給され、炭素含有固体燃料が排ガスの熱量によって乾燥されながら粉砕される。また、集塵器において、微粉燃料機で生成された微粉燃料が捕集される。さらに、微粉燃料機及び前記集塵器を介して前記ガス化炉までの系統の酸素濃度が所定の酸素濃度よりも高い場合には、不活性ガス供給系統から窒素等の不活性ガスが集塵器へ供給される。不活性ガス供給系統から集塵器へ不活性ガスが供給されるため、集塵器における酸素濃度が低減する。これにより、微粉燃料機へ供給される排ガス中の酸素によって、微粉燃料機の下流側の集塵器で貯留された微粉燃料の酸化昇温が生じることが抑制又は防止される。
例えば、集塵器における酸素濃度を炭素含有固体燃料で設定される爆発限界に基づいて設定することで、微粉燃料が酸化昇温に至る可能性を低減できる。
上記発明において、前記集塵器から外部へ排出される前記排ガスが流通する排ガス排出系統と、前記排ガス排出系統を流通する前記排ガス中の酸素濃度を検出する酸素濃度検出部と、前記酸素濃度検出部によって検出された前記酸素濃度に基づいて、前記微粉燃料機へ供給される前記不活性ガスの供給量を調整する調整部とを更に備えてもよい。
この構成によれば、排ガス排出系統を介して集塵器から外部へ排ガスが排出される。また、酸素濃度検出部によって、排ガス排出系統を流通する排ガスに含まれる酸素の濃度が検出され、検出結果に基づいて、微粉燃料機へ供給される不活性ガスの供給量が調整される。これにより、不活性ガスが混合された排ガス中の酸素濃度を検出でき、かつ、酸化昇温が生じやすい集塵器における酸素濃度がより正確に把握されるため、微粉燃料の酸化昇温を確実に抑制又は防止できる。
上記発明において、前記集塵器から供給される前記微粉燃料を貯蔵する貯留装置と、前記貯留装置と前記排ガス排出系統とを接続し、前記酸素濃度検出部が設置される接続系統と、前記接続系統において、前記酸素濃度検出部の両側にそれぞれ一つずつ設置される二つの開閉弁とを更に備え、前記二つの開閉弁の開閉動作を切り替えることによって、前記酸素濃度検出部が、前記排ガス排出系統内部の酸素濃度と前記貯留装置内部の酸素濃度をそれぞれ検出してもよい。
この構成によれば、開閉弁の操作によって接続系統の接続先が切り替えられ、酸素濃度検出部によって、排ガス排出系統内部の酸素濃度と貯留装置内部の酸素濃度がそれぞれ個別に検出可能である。
上記発明において、前記不活性ガス供給系統は、前記微粉燃料機に前記不活性ガスを供給し、前記不活性ガスは、前記微粉燃料機の運転が停止している間における前記微粉燃料機内部のパージにも用いられてもよい。
この構成によれば、不活性ガス供給系統は、微粉燃料機の運転が停止している間、微粉燃料機内部のパージに用いられる不活性ガスを微粉燃料機に供給する。微粉燃料機は、一般に微粉燃料機内部のパージに不活性ガスが供給されるパージ用不活性ガス供給系統を有している。そのため、運転中排ガスに含まれる酸素濃度を低減する不活性ガス供給用として既設のプラントへ新たに不活性ガス供給系統を設置する必要がない。
上記発明において、前記ガスタービンの運転負荷を検出する負荷検出部と、前記負荷検出部によって検出された前記運転負荷に基づいて、前記微粉燃料機へ供給される前記不活性ガスの供給量を調整する調整部とを更に備えてもよい。
この構成によれば、負荷検出部によって、ガスタービンの運転負荷が検出され、検出結果に基づいて、微粉燃料機へ供給される不活性ガスの供給量が調整される。たとえば、ガスタービンの運転負荷が所定の閾値よりも低いとき、排ガス中の酸素濃度が高くなるため、不活性ガスの供給量を増加させて、微粉炭機に供給される排ガス中の酸素濃度を低減させる。ただし、不活性ガス使用量に余裕がある場合は、制御の煩雑さを避けるために、一定流量を投入する運用とすることも可能である。
上記発明において、前記ガス化複合発電設備の運転工程に基づいて、前記微粉燃料機へ供給される前記不活性ガスの供給量を調整する調整部を更に備えてもよい。
この構成によれば、ガス化複合発電設備の運転工程に基づいて、微粉燃料機へ供給される不活性ガスの供給量が調整される。
上記発明において、前記調整部によって調整される前記不活性ガスの供給量は、前記炭素含有固体燃料の種類、前記炭素含有固体燃料中の揮発分に応じて変更されてもよい。
この構成によれば、炭素含有固体燃料の種類、炭素含有固体燃料中の揮発分に応じて、調整部によって調整される不活性ガスの供給量が変更されるため、爆発限界が異なり酸化昇温が生じやすい炭素含有固体燃料に対して、より効果的に酸化昇温の発生を抑制又は防止できる。
本発明に係るガス化複合発電設備は、上記の前記ガス化炉設備と、前記ガス化炉設備で生成した生成ガスの少なくとも一部を燃焼させることで回転駆動する前記ガスタービンと、前記ガスタービンから排出されたタービン排ガスを導入する排熱回収ボイラで生成した蒸気により回転駆動する蒸気タービンと、前記ガスタービンおよび/または前記蒸気タービンと回転連結された発電機とを備える。
本発明に係るガス化複合発電設備の運転方法は、炭素含有固体燃料から生成ガスを生成するガス化炉を有するガス化炉設備において、前記炭素含有固体燃料と、前記ガス化炉で生成した生成ガスの少なくとも一部を燃料ガスとして燃焼するガスタービンからの排ガスとが供給され、前記炭素含有固体燃料を粉砕する微粉燃料機と、前記微粉燃料機で生成された微粉燃料を捕集する集塵器と、前記集塵器へ不活性ガスを供給する不活性ガス供給系統とを備えるガス化炉設備の運転方法であって、前記微粉燃料機へ前記排ガスを供給するとき、前記微粉燃料機及び前記集塵器を介して前記ガス化炉までの系統の酸素濃度が所定の閾値を超える場合は、前記排ガスに含まれる酸素濃度が低減されるように、前記不活性ガス供給系統から前記集塵器へ前記不活性ガスを供給する。
本発明によれば、石炭の種類など燃料性状を変更した際にも、乾燥ガスとして微粉燃料機へ供給される排ガス中の酸素濃度を低減させることによって、排ガス中の酸素を原因として、貯留された微粉燃料の酸化昇温が生じることを抑制又は防止することができる。
本発明の一実施形態に係るガス化炉設備を適用した石炭ガス化複合発電設備を示す概略構成図である。 本発明の一実施形態に係るガス化炉設備の給炭設備を示す概略構成図である。 空気分離設備の通常運転時を上限にした場合の使用率と、ガス化炉設備の各工程との関係を示すグラフである。
本発明の一実施形態に係るガス化炉設備14が適用される石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)1は、空気を主とする酸化剤として用いており、ガス化炉設備14において、燃料から可燃性ガス(生成ガス)を生成する空気燃焼方式を採用している。そして、石炭ガス化複合発電設備1は、ガス化炉設備14で生成した生成ガスを、ガス精製設備16で精製して燃料ガスとした後、ガスタービン17に供給して発電を行っている。すなわち、実施形態1の石炭ガス化複合発電設備1は、空気燃焼方式(空気吹き)の発電設備となっている。ガス化炉設備14に供給する燃料としては、例えば、石炭等の炭素含有固体燃料が用いられる。
石炭ガス化複合発電設備(ガス化複合発電設備)1は、図1に示すように、給炭設備11と、ガス化炉設備14と、チャー回収設備15と、ガス精製設備16と、ガスタービン17と、蒸気タービン18と、発電機19と、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)20とを備えている。
給炭設備11は、原炭として炭素含有固体燃料である石炭が供給され、石炭を微粉炭機(微粉燃料機)4で粉砕することで、細かい粒子状に粉砕した微粉炭を製造する。給炭設備11で製造された微粉炭は、給炭ライン11a出口で後述する空気分離設備42から供給される搬送用イナートガスとしての窒素ガスによって加圧されて、ガス化炉設備14へ向けて供給される。イナートガスとは、酸素含有率が約5体積%以下の不活性ガスであり、窒素ガスや二酸化炭素ガスやアルゴンガスなどが代表例であるが、必ずしも約5体積%以下に制限されるものではない。
給炭設備11は、図1及び図2に示すように、例えば原炭バンカ3と、微粉炭機4と、微粉炭集塵器5と、微粉炭ビン(貯留装置)6と、微粉炭ホッパ7などを有する。
給炭設備11は、例えば、原料炭が備蓄されている原炭バンカ3と、原料炭を微粉砕する微粉炭機4と、微粉炭機4に粉砕された微粉炭内のダストを捕集する微粉炭集塵器5と、複数の微粉炭集塵器5から微粉炭が集約される微粉炭ビン6と、微粉炭を貯留する微粉炭ホッパ7などを備えている。
原炭バンカ3から微粉炭機4へと導かれた原炭(石炭)は、微粉炭機4によって数μm〜数百μmの微粉炭に粉砕される。微粉炭機4で粉砕された微粉炭は、微粉炭集塵器5によって捕集される。微粉炭集塵器5において捕集された微粉炭は、微粉炭を貯蔵する微粉炭ビン6を経て、微粉炭ホッパ7へと導かれる。
微粉炭ホッパ7内の微粉炭は、上述したとおり、搬送用イナートガスとしての窒素ガスによって加圧され、その後一定流量ずつガス化炉設備14へと搬送される。また、微粉炭ホッパ7内には、窒素ガスが供給されることによって加圧状態となっている。しかし、微粉炭ホッパ7内の微粉炭が全てガス化炉設備14へと供給されて、微粉炭ホッパ7が空になった場合には、微粉炭ホッパ7内を減圧・排気する必要がある。そこで、空になった微粉炭ホッパ7に接続されている減圧排気系統の弁(図示せず。)を開くことにより微粉炭ホッパ7内の減圧・排気を行う。
ガス化炉設備14は、給炭設備11で製造された微粉炭が供給されると共に、再利用を目的としてチャー回収設備15で回収されたチャー(石炭の未反応分と灰分)が供給されている。
また、ガス化炉設備14には、ガスタービン17(圧縮機61)からの圧縮空気供給ライン41が接続されており、ガスタービン17の圧縮機61で圧縮された圧縮空気の一部が昇圧機68で所定圧力に昇圧されてガス化炉設備14に供給可能となっている。空気分離設備(ASU)42は、大気中の空気から窒素と酸素を分離生成するものであり、第1窒素供給ライン43によって空気分離設備42とガス化炉設備14とが接続されている。そして、この第1窒素供給ライン43には、給炭設備11からの給炭ライン11aが接続されている。また、第1窒素供給ライン43から分岐する第2窒素供給ライン45もガス化炉設備14に接続されており、この第2窒素供給ライン45には、チャー回収設備15からのチャー戻しライン46が接続されている。更に、空気分離設備42は、酸素供給ライン47によって、圧縮空気供給ライン41と接続されている。そして、空気分離設備42によって分離された窒素は、第1窒素供給ライン43及び第2窒素供給ライン45を流通することで、石炭やチャーの搬送用ガスとして利用される。また、空気分離設備42によって分離された酸素は、酸素供給ライン47及び圧縮空気供給ライン41を流通することで、ガス化炉設備14において酸化剤として利用される。
ガス化炉設備14は、例えば、2段噴流床形式のガス化炉(図示せず。)を備えている。ガス化炉設備14は、内部に供給された石炭(微粉炭)およびチャーを酸化剤(空気、酸素)により部分燃焼させることでガス化させ生成ガスとする。なお、ガス化炉設備14は、微粉炭に混入した異物(スラグ)を除去する異物除去設備48が設けられている。そして、このガス化炉設備14には、チャー回収設備15に向けて生成ガスを供給するガス生成ライン49が接続されており、チャーを含む生成ガスが排出可能となっている。この場合、ガス生成ライン49にシンガスクーラ(ガス冷却器)(図示せず。)を設けることで、生成ガスを所定温度まで冷却してからチャー回収設備15に供給してもよい。
チャー回収設備15は、集塵設備51と供給ホッパ52とを備えている。この場合、集塵設備51は、1つまたは複数のサイクロンやポーラスフィルタにより構成され、ガス化炉設備14で生成された生成ガスに含有するチャーを分離することができる。そして、チャーが分離された生成ガスは、ガス排出ライン53を通してガス精製設備16に送られる。供給ホッパ52は、集塵設備51で生成ガスから分離されたチャーを貯留するものである。なお、集塵設備51と供給ホッパ52との間にビンを配置し、このビンに複数の供給ホッパ52を接続するように構成してもよい。そして、供給ホッパ52からのチャー戻しライン46が第2窒素供給ライン45に接続されている。
ガス精製設備16は、チャー回収設備15によりチャーが分離された生成ガスに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製設備16は、生成ガスを精製して燃料ガスを製造し、これをガスタービン17に供給する。なお、チャーが分離された生成ガス中にはまだ硫黄分(HSなど)が含まれているため、このガス精製設備16では、アミン吸収液などによって硫黄分を除去回収して、有効利用する。
ガスタービン17は、圧縮機61、燃焼器62、タービン63を備えており、圧縮機61とタービン63とは、回転軸64により連結されている。燃焼器62には、圧縮機61からの圧縮空気供給ライン65が接続されると共に、ガス精製設備16からの燃料ガス供給ライン66が接続され、また、タービン63に向かって延びる燃焼ガス供給ライン67が接続されている。また、ガスタービン17は、圧縮機61からガス化炉設備14に延びる圧縮空気供給ライン41が設けられており、中途部に昇圧機68が設けられている。従って、燃焼器62では、圧縮機61から供給された圧縮空気の一部とガス精製設備16から供給された燃料ガスの少なくとも一部とを混合して燃焼させることで燃焼ガスを発生させ、発生させた燃焼ガスをタービン63へ向けて供給する。そして、タービン63は、供給された燃焼ガスにより回転軸64を回転駆動させることで発電機19を回転駆動させる。
蒸気タービン18は、ガスタービン17の回転軸64に連結されるタービン69を備えており、発電機19は、この回転軸64の基端部に連結されている。排熱回収ボイラ20は、ガスタービン17(タービン63)からの排ガスライン70が接続されており、排熱回収ボイラ20への給水とタービン63の排ガスとの間で熱交換を行うことで、蒸気を生成するものである。そして、排熱回収ボイラ20は、蒸気タービン18のタービン69との間に蒸気供給ライン71が設けられると共に蒸気回収ライン72が設けられ、蒸気回収ライン72に復水器73が設けられている。また、排熱回収ボイラ20で生成する蒸気には、ガス化炉のシンガスクーラで生成ガスと熱交換して生成された蒸気を含んでもよい。従って、蒸気タービン18では、排熱回収ボイラ20から供給された蒸気によりタービン69が回転駆動し、回転軸64を回転させることで発電機19を回転駆動させる。
そして、排熱回収ボイラ20の出口から煙突75までには、ガス浄化設備74を備えている。
ここで、本実施形態の石炭ガス化複合発電設備1の作動について説明する。
本実施形態の石炭ガス化複合発電設備1において、給炭設備11に原炭(石炭)が供給されると、石炭は、給炭設備11において細かい粒子状に粉砕されることで微粉炭となる。給炭設備11で製造された微粉炭は、空気分離設備42から供給される窒素により第1窒素供給ライン43を流通してガス化炉設備14に供給される。また、後述するチャー回収設備15で回収されたチャーが、空気分離設備42から供給される窒素により第2窒素供給ライン45を流通してガス化炉設備14に供給される。更に、後述するガスタービン17から抽気された圧縮空気が昇圧機68で昇圧された後、空気分離設備42から供給される酸素と共に圧縮空気供給ライン41を通してガス化炉設備14に供給される。
ガス化炉設備14では、供給された微粉炭及びチャーが圧縮空気(酸素)により燃焼し、微粉炭及びチャーがガス化することで、生成ガスを生成する。そして、この生成ガスは、ガス化炉設備14からガス生成ライン49を通って排出され、チャー回収設備15に送られる。
このチャー回収設備15にて、生成ガスは、まず、集塵設備51に供給されることで、生成ガスに含有する微粒のチャーが分離される。そして、チャーが分離された生成ガスは、ガス排出ライン53を通してガス精製設備16に送られる。一方、生成ガスから分離した微粒のチャーは、供給ホッパ52に堆積され、チャー戻しライン46を通ってガス化炉設備14に戻されてリサイクルされる。
チャー回収設備15によりチャーが分離された生成ガスは、ガス精製設備16にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガスが製造される。圧縮機61が圧縮空気を生成して燃焼器62に供給する。この燃焼器62は、圧縮機61から供給される圧縮空気と、ガス精製設備16から供給される燃料ガスとを混合し、燃焼することで燃焼ガスを生成する。この燃焼ガスによりタービン63を回転駆動することで、回転軸64を介して圧縮機61及び発電機19を回転駆動する。このようにして、ガスタービン17は発電を行うことができる。
そして、排熱回収ボイラ20は、ガスタービン17におけるタービン63から排出された排ガスと排熱回収ボイラ20への給水とで熱交換を行うことにより蒸気を生成し、この生成した蒸気を蒸気タービン18に供給する。蒸気タービン18では、排熱回収ボイラ20から供給された蒸気によりタービン69を回転駆動することで、回転軸64を介して発電機19を回転駆動し、発電を行うことができる。
なお、ガスタービン17と蒸気タービン18は同一軸として1つの発電機19を回転駆動しなくてもよく、別の軸として複数の発電機を回転駆動しても良い。
その後、ガス浄化設備74では、排熱回収ボイラ20から排出された排気ガスの有害物質が除去され、浄化された排気ガスが煙突75から大気へ放出される。
次に、図1及び図2を参照して、微粉炭機4内の微粉炭の乾燥ガスとして用いられる排ガスに対する酸素濃度の調整に関する構成について説明する。ガスタービン17におけるタービン63から排出された排ガスは、排熱回収ボイラ20で抽気されて、この排ガスが微粉炭機4へ供給される。
ガス化炉設備14の原料である石炭の種類など燃料の性状を変更した場合や、ガスタービン17の運転負荷が変化した場合などで、排ガス中の酸素(O)濃度が変わる場合がある。また、石炭の種類など燃料の性状を変更した場合などで、従来の炭種での爆発限界が異なり排ガス中の酸素濃度の許容値が異なる場合がある。すなわち、爆発限界が異なることで排ガスの酸素濃度の許容上限値が変わる場合がある。
微粉炭集塵器5は複数(本実施形態では、例えば2つ)設けられ、排ガス排出ライン(排ガス検出系統)8は、一端が少なくとも1つの微粉炭集塵器5に接続され、他端が排熱回収ボイラ20に接続される。微粉炭を乾燥するため微粉炭機4に導入された排ガスは、微粉炭集塵器5を通過した後、排ガス排出ライン8を介して排熱回収ボイラ20へ供給され、排ガスが外部へ排出される。
接続ライン(接続系統)9は、一端が微粉炭ビン6に接続され、他端が排ガス排出ライン8に接続される。接続ライン9には、開閉弁12,13と酸素濃度計(酸素濃度検出部)21が設置され、開閉弁12,13は、酸素濃度計21の微粉炭ビン6側と排ガス排出ライン8側にそれぞれ一つずつ設置される。酸素濃度計21よりも微粉炭ビン6側の開閉弁12を開放し、排ガス排出ライン8側の開閉弁13を閉じることで、酸素濃度計21は、微粉炭ビン6の酸素濃度を測定できる。一方、微粉炭ビン6側の開閉弁12を閉じ、排ガス排出ライン8側の開閉弁13を開放することで、酸素濃度計21は、排ガス排出ライン8側の酸素濃度を測定できる。
微粉炭ビン6は、乾燥が進み微粉炭の酸化昇温が生じやすい環境にあるので、試運転調整時など必要時には酸素濃度を測定して確認することが好ましい。一方、微粉炭ビン6の微粉炭の貯留部分では、粉砕された微粉炭の流動性を向上させて加圧搬送に用いられる図示しない窒素ガスをさらに導入する場合がある。微粉炭ビン6での酸素濃度よりも、排ガス排出ライン8側の微粉炭集塵器5における酸素濃度が若干高い酸素濃度を示す場合がある。
本実施形態では、微粉炭を乾燥するための排ガス中の酸素濃度を検出でき、かつ、微粉炭の酸化昇温が生じやすい微粉炭集塵器5における酸素濃度がより正確に把握されるため、排ガスにより乾燥される微粉炭の酸化昇温を確実に抑制又は防止できる。本実施形態では、微粉炭集塵器5における酸素濃度の計測が適切としているが、微粉炭集塵器5に限定するものでない。ガス化炉設備14の燃料側供給系で、酸素濃度が高くなり、酸素濃度計21での検出が可能であるものは、微粉炭集塵器5に代えて酸素濃度を計測してもよい。
上述したとおり、開閉弁12,13の開閉動作を切り替えることによって、酸素濃度計21が、排ガス排出ライン8内部の酸素濃度と微粉炭ビン6内部の酸素濃度をそれぞれ検出する。これにより、開閉弁12,13によって接続ライン9の接続先が切り替えられ、一つの酸素濃度計21によって、排ガス排出ライン8内部の酸素濃度と微粉炭ビン6内部の酸素濃度がそれぞれ個別に検出可能である。
排ガスが微粉炭機4へ供給されるときは、酸素濃度計21によって、微粉炭集塵器5を通過する排ガス中の酸素濃度を測定できるように、接続ライン9における排ガス排出ライン8側の開閉弁13を開放し、微粉炭ビン6側の開閉弁12を閉じる。このことにより、微粉炭集塵器5の酸素濃度を容易に正確に計測することができる。
窒素供給ライン(不活性ガス供給系統)22は、例えば、微粉炭機4の上流側にて、排ガス供給ライン23に接続される。窒素供給ライン22は、空気分離設備42と直接接続されてもよいし、第1窒素供給ライン43又は第2窒素供給ライン45から分岐されてもよい。窒素供給ライン22には、例えば空気分離設備42で生成された窒素ガスが流通し、空気分離設備42から微粉炭機4へ窒素ガスが供給される。窒素供給ライン22を介して、排ガス供給ライン23によって供給される排ガスに対して窒素ガスを混合することができ、排ガス中の酸素を希釈して、排ガス中の酸素濃度を低減できる。また、窒素供給ライン22には、流量調整弁24(調整部)が設置される。
なお、本実施形態では、不活性ガスの一例として、窒素ガスを用いる場合について説明したが、本発明は、この例に限定されない。排ガスを希釈するための不活性ガスは、例えば、水蒸気、二酸化炭素(CO)、アルゴンガスなどでもよい。
なお、微粉炭機4の運転が停止している間は微粉炭機4の内部を窒素ガスで置換する。このため、窒素供給ライン22は、微粉炭機4の運転が停止している間は、微粉炭機4内部のパージに用いられる窒素ガスを微粉炭機4に供給することとしてもよい。微粉炭機4は、通常、微粉炭機4内部のパージによる窒素ガス置換に用いられる窒素ガスが供給されるパージ用窒素ガス系統(図示省略)を有している。既存のプラントに対して、本実施形態のように、排ガスに含まれる酸素濃度を低減する窒素ガスを供給しようとする場合、既設のパージ用窒素ガス系統を用いれば、新たに窒素供給ライン22を設置する必要がない。なお、既設のパージ用窒素ガス系統を窒素供給ライン22として用いる場合、パージ用窒素ガス系統に設置されているオリフィスの代わりに、流量調整弁24を設置する。
上述した例では、窒素供給ライン22は、排ガス供給ライン23に接続され、微粉炭機4の上流側で排ガスに窒素ガスが追加で供給される構成について説明したが、本発明はこの例に限定されない。窒素供給ライン22は、微粉炭機4と微粉炭集塵器5を結ぶラインに接続されて、微粉炭機4の下流側かつ微粉炭集塵器5の上流側で排ガスに窒素ガスが追加で供給され混合されるようにしてもよい。
流量調整弁24は、窒素供給ライン22を流れる窒素ガスの供給量を調整する。流量調整弁24の開度は、例えば、酸素濃度計21で検出された排ガス中の酸素濃度に基づいて、調整される。または、流量調整弁24の開度は、ガスタービン17の運転負荷や、ガス化炉設備14の運転工程に基づいて調整される。
排ガス供給ライン23は、一端が排熱回収ボイラ20に接続され、他端が微粉炭機4に接続される。排ガス供給ライン23には、排熱回収ボイラ20から微粉炭機4へ排ガスが流通する。排ガス供給ライン23を介して、排熱回収ボイラ20で抽気された排ガスが微粉炭機4へ供給されることによって、原炭バンカ3から微粉炭機4に供給される原炭(石炭)と粉砕された微粉炭を乾燥できる。
次に、本実施形態に係る乾燥ガスとして用いられる排ガスに対する酸素濃度の調整方法について説明する。
排ガス中の酸素濃度の調整は、ガス化炉設備14(または石炭ガス化複合発電設備1)の通常運転時、すなわち、微粉炭機4で原炭(石炭)を破砕し、生成された微粉炭が微粉炭集塵器5などを経由して、ガス化炉設備14に供給されるときに行われる。このとき、石炭を乾燥させるため、排熱回収ボイラ20から微粉炭機4へ排ガス供給ライン23を介して排ガスが供給される。
ガス化炉設備14の原料である石炭の種類など燃料の性状を変更した場合などで、排ガス中の酸素濃度が変わるとともに、爆発限界が異なることで排ガスの酸素濃度の許容上限となる所定の閾値が変わる場合がある。このため、酸素濃度計21により酸素濃度を計測する。
まず、酸素濃度計21が、微粉炭集塵器5の出口側の排ガス排出ライン8に接続される場合について説明する。
排ガスが微粉炭機4へ供給されるとき、酸素濃度計21によって、微粉炭集塵器5を通過する排ガス中の酸素濃度を測定できるように、接続ライン9における排ガス排出ライン8側の開閉弁13を開放し、微粉炭ビン6側の開閉弁12を閉じる。
そして、排ガスが微粉炭機4へ供給されるとき、酸素濃度計21によって、微粉炭集塵器5を通過する排ガス中の酸素濃度を測定する。測定結果に基づいて、排ガス中の酸素濃度が所定の閾値を超えないように、窒素供給ライン22に設けられた流量調整弁24の開度を調整し、排ガス供給ライン23を流通する排ガスへ窒素ガスを供給する。これにより、排ガス供給ライン23を流通する排ガス中の窒素量が増加することで微粉炭機4へ排ガスが供給されるとき、ガスタービン17出口の排ガスに含まれる酸素濃度よりも、微粉炭集塵器5へ供給される排ガスに含まれる酸素濃度が低減される。なお、排ガス中の酸素濃度が所定の閾値を超えない場合には、窒素供給ライン22から排ガス供給ライン23を流通する排ガスへ窒素ガスを供給する必要はない。但し、酸素濃度計21による酸素濃度によって都度に窒素ガスの供給を調整するのではなく、予め設定した窒素ガスを供給し続けて、ガス化炉設備14の運用を容易にしてもよい。
ガスタービン17におけるタービン63から排出された排ガス(排熱回収ボイラ20で抽気された排ガス)中の酸素濃度は、通常では例えば10〜15体積%にある。例えば供給される石炭の炭種によって爆発限界が異なる場合があることを考慮して、所定の閾値を設定してもよい。
所定の閾値は、例えば供給される石炭の炭種、及び微粉炭機4の運転条件などによって定まる爆発限界に基づいて設定される。なお、ガス化炉設備14に、例えば様々な炭種の石炭が供給されることが想定されるとした場合、炭種が変更されるたびに、その炭種の爆発限界に基づいて閾値を設定してもよいし、想定される炭種のうち最も酸素濃度が低い爆発限界を有する炭種を基準として閾値を固定して設定してもよい。これにより、排ガス中の酸素濃度の検出及び所定の閾値以下とするための調整が簡易化される。
上述した閾値、すなわち、流量調整弁24によって調整される窒素ガスの供給量は、石炭の炭種で設定されるだけでなく、石炭などの炭素含有固体燃料から揮発する揮発ガスに応じて設定されてもよい。爆発限界酸素濃度は、石炭中の揮発分に応じて変化するものである。石炭中の揮発分の割合が高いものほど爆発限界酸素濃度は低くなる。すなわち、揮発分が高いほど、反応性が高いため、より低い酸素濃度でも酸化昇温が生じやすくなるため、排ガスの酸素濃度の上限となる所定の閾値が変わる場合がある。このため、酸素濃度計21による酸素濃度の計測結果に基づいて、流量調整弁24によって窒素ガスの供給量を調整して、酸化昇温が生じやすい炭素含有固体燃料に対して、より効果的に酸化昇温の発生を抑制又は防止できる。
なお、窒素供給ライン22が微粉炭機4の上流側の排ガス供給ライン23で接続される場合、微粉炭機4の通常運転が停止している間、微粉炭集塵器5には新たな微粉炭が供給されることなく、微粉炭機4内部のパージに用いられる窒素ガスが、窒素供給ライン22を介して微粉炭機4に供給される場合がある。この場合には、微粉炭機4内部が必要なパージでされればよい。このため、排ガス中の酸素濃度が所定の閾値を超えないように供給する窒素ガスの流量を可変にする必要がなく、一定量の窒素ガスが微粉炭機4に供給されてもよい。
排ガス中の酸素濃度の調整は、排ガス中の酸素濃度を測定するのではなく、ガスタービン17の運転負荷に基づいて行ってもよい。
具体的には、まず、乾燥ガスとしての排ガスが微粉炭機4へ供給されるとき、負荷検出部(図示省略)が、ガスタービン17の運転負荷を検出する。検出結果に基づいて、排ガス中の酸素濃度が所定の閾値を超えないように、予め窒素供給が設定され、例えば記憶部(図示省略)に記憶されていてもよい。窒素供給ライン22に設けられた流量調整弁24の開度を調整し、排ガス供給ライン23を流通する排ガスへ窒素ガスを供給する。
この場合、予め記憶部(図示省略)に記録されているガスタービン17の運転負荷と流量調整弁24の開度の関係に基づいて、流量調整弁24の開度が設定されてもよい。
発明者らは、ガスタービン17の運転負荷が低い場合、排ガス中の酸素濃度が高くなる傾向にあるという知見を得ている。これに基づいて、ガスタービン17の低運転負荷時は、爆発限界から設定した酸素濃度の所定の閾値を超えないように、窒素ガスの供給量を増加させて酸素濃度を低減する必要がある場合があるため、流量調整弁24の開度を大きくする。他方で、ガスタービン17の運転負荷が高い場合、排ガス中の酸素濃度は低くなることから、窒素ガスの供給量を低下させてもよく、流量調整弁24の開度を小さくする。
また、ガス化炉設備14(または石炭ガス化複合発電設備1)において、空気分離設備42で生成される窒素ガスの使用率が低い工程で、排ガス中の酸素濃度の調整を行うようにしてもよい。図3には、ガス化炉設備14の起動にあたり、空気分離設備42の通常運転時を上限(100%)にした場合の窒素ガスの使用率と、ガス化炉設備14の各工程との関係を示す。図3に示すように、ガス化炉設備14の、ガス化炉燃料切替えから、ガスタービン燃料切替え完了までは、ガスタービン17は低運転負荷時であり、排ガス中の酸素濃度が高くなる傾向にある。一方、この期間は、空気分離設備42で生成される窒素ガスの使用率が低い期間で、窒素ガスの供給に余裕があるため、窒素ガスを多めに微粉炭集塵器5に供給することによって、微粉炭集塵器5内の酸素濃度を低くする。他方では、反対に、ガスタービン17の運転負荷が高くなるガス化炉設備14の通常運転時の工程では、排ガス中の酸素濃度は低くなることから、窒素ガスの供給量を低下させてもよい。空気分離設備42で生成される窒素ガスの使用率が高くなることから、窒素の供給量を低下させることができる。発明者らは、この方法でも、排ガス中の酸素濃度が所定の閾値を超えないように維持されることを確認した。
このように、空気分離設備42で生成される窒素ガスの使用率が低い工程で排ガス中の酸素濃度の調整を行うことによって、空気分離設備42で生成可能な最大窒素量を増加させることなく、排ガス中の酸素濃度を効果的に低減できる。
詳しく述べると、上述した空気分離設備42で生成される窒素ガスの使用率が低い工程とは、図3に示すように、例えば、ガス化炉設備14(または石炭ガス化複合発電設備1)の起動時において、ガス化炉設備14のウォーミングが完了した後、起動用補助燃料だけではなく、ガス化炉設備14で生成されたガスも用いてガスタービン17の燃焼を開始し、さらに、起動用補助燃料の供給を停止してガス化炉設備14からのガスのみによってガスタービン17の燃焼を開始するまでの期間の工程である。
この期間の工程は、ガスタービン17の運転負荷が低く、かつ、空気分離設備42で生成され窒素ガスの使用率も低い。このタイミングで、窒素ガスを多めに微粉炭集塵器5に供給することによって、微粉炭集塵器5の酸素濃度を、余裕をもって低減させてもよい。
なお、起動時において、上述したタイミングで窒素ガスを多く排ガスに混合させることが望ましいが、本発明はこの例に限定されない。ただし、ガス化炉ウォーミングが完了するまでの間は、ガスタービン17は、ガス化炉で生成されたガスではなく起動用補助燃料を用いて起動を行う。ガスタービン17の起動完了後からガス化炉設備14のウォーミングが完了するまでの間や、ガス化炉設備14の通常運転時でガス化炉設備14からの生成ガスのみによってガスタービン17の燃焼を開始した後の通常運転時は、空気分離設備42で生成される窒素ガスの使用率が比較的高い。したがって、窒素ガスの微粉炭集塵器5への供給を少なめ、もしくはゼロにしても、微粉炭集塵器5の酸素濃度は所定の閾値を超えることはない。
以上、本実施形態によれば、微粉炭機4へ排ガスが供給されるとき、微粉炭集塵器5の酸素濃度が所定の閾値より高い場合は、窒素供給ライン22から窒素ガスが微粉炭集塵器5へ供給される。窒素供給ライン22から微粉炭集塵器5へ窒素ガスが排ガスに混合されて供給されるため、微粉炭集塵器5における酸素濃度が低減する。これにより、乾燥ガスとして微粉炭機4へ供給される排ガス中の酸素によって、微粉炭機4の下流側の微粉炭集塵器5で貯留された微粉炭の酸化昇温が生じることが抑制又は防止される。
また、上述した実施形態では、燃料として石炭を使用し微粉炭から可燃性ガスを生成する石炭ガス化炉を備えたIGCCを一例として説明したが、高品位炭や低品位炭など他の炭素含有固体燃料であっても適用可能であり、また、石炭に限らず、再生可能な生物由来の有機性資源として使用されるバイオマスであってもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。本発明のガス化炉設備は、発電用に限らず、所望の化学物質を得る化学プラント用ガス化炉にも適用可能である。
なお、本実施形態はガス化炉設備14のガス化炉として、タワー型ガス化炉について説明してきたが、ガス化炉はクロスオーバー型ガス化炉でも、ガス化炉内の各機器の鉛直上下方向を生成ガスのガス流れ方向を合わせるように置き換えることで、同様に実施が可能である。
また、上述した実施形態では、酸素濃度計21が、微粉炭集塵器5の出口側の排ガス排出ライン8に接続される場合について説明したが、酸素濃度計21は、ガスタービン17の出口に接続されてもよい。この場合、窒素ガスが排ガスへ混合される前の排ガス中の酸素濃度が測定される。したがって、所定の閾値を基準にして決定された、予め記録されたガスタービン17の出口の酸素濃度と流量調整弁24の開度の関係に基づいて、流量調整弁24の開度が設定される。
1 :石炭ガス化複合発電設備(ガス化複合発電設備)
3 :原炭バンカ
4 :微粉炭機(微粉燃料機)
5 :微粉炭集塵器(集塵器)
6 :微粉炭ビン(貯留装置)
7 :微粉炭ホッパ
8 :排ガス排出ライン(排ガス排出系統)
9 :接続ライン(接続系統)
11 :給炭設備
11a :給炭ライン
12 :開閉弁
13 :開閉弁
14 :ガス化炉設備
15 :チャー回収設備
16 :ガス精製設備
17 :ガスタービン
18 :蒸気タービン
19 :発電機
20 :排熱回収ボイラ
21 :酸素濃度計(酸素濃度検出部)
22 :窒素供給ライン(不活性ガス供給系統)
23 :排ガス供給ライン
24 :流量調整弁(調整部)
41 :圧縮空気供給ライン
42 :空気分離設備
43 :第1窒素供給ライン
45 :第2窒素供給ライン
46 :チャー戻しライン
47 :酸素供給ライン
48 :異物除去設備
49 :ガス生成ライン
51 :集塵設備
52 :供給ホッパ
53 :ガス排出ライン
61 :圧縮機
62 :燃焼器
63 :タービン
64 :回転軸
65 :圧縮空気供給ライン
66 :燃料ガス供給ライン
67 :燃焼ガス供給ライン
68 :昇圧機
69 :タービン
70 :排ガスライン
71 :蒸気供給ライン
72 :蒸気回収ライン
73 :復水器
74 :ガス浄化設備
75 :煙突

Claims (9)

  1. 炭素含有固体燃料から生成ガスを生成するガス化炉を有するガス化炉設備であって、
    前記炭素含有固体燃料と、前記ガス化炉で生成した生成ガスの少なくとも一部を燃料ガスとして燃焼するガスタービンからの排ガスとが供給され、前記炭素含有固体燃料を粉砕する微粉燃料機と、
    前記微粉燃料機で生成された微粉燃料を捕集する集塵器と、
    前記集塵器へ不活性ガスを供給する不活性ガス供給系統と、
    を備え、
    前記微粉燃料機へ前記排ガスが供給されるとき、前記微粉燃料機及び前記集塵器を介して前記ガス化炉までの系統の酸素濃度が所定の閾値を超える場合は、前記排ガスに含まれる酸素濃度が低減されるように、前記不活性ガス供給系統から前記集塵器へ前記不活性ガスが供給されるガス化炉設備。
  2. 前記集塵器から外部へ排出される前記排ガスが流通する排ガス排出系統と、
    前記排ガス排出系統を流通する前記排ガス中の酸素濃度を検出する酸素濃度検出部と、
    前記酸素濃度検出部によって検出された前記酸素濃度に基づいて、前記微粉燃料機へ供給される前記不活性ガスの供給量を調整する調整部と、
    を更に備える請求項1に記載のガス化炉設備。
  3. 前記集塵器から供給される前記微粉燃料を貯蔵する貯留装置と、
    前記貯留装置と前記排ガス排出系統とを接続し、前記酸素濃度検出部が設置される接続系統と、
    前記接続系統において、前記酸素濃度検出部の両側にそれぞれ一つずつ設置される二つの開閉弁と、
    を更に備え、
    前記二つの開閉弁の開閉動作を切り替えることによって、前記酸素濃度検出部が、前記排ガス排出系統内部の酸素濃度と前記貯留装置内部の酸素濃度をそれぞれ検出する請求項2に記載のガス化炉設備。
  4. 前記不活性ガス供給系統は、前記微粉燃料機に前記不活性ガスを供給し、
    前記不活性ガスは、前記微粉燃料機の運転が停止している間における前記微粉燃料機内部のパージにも用いられる請求項1から3のいずれか1項に記載のガス化炉設備。
  5. 前記ガスタービンの運転負荷を検出する負荷検出部と、
    前記負荷検出部によって検出された前記運転負荷に基づいて、前記微粉燃料機へ供給される前記不活性ガスの供給量を調整する調整部と、
    を更に備える請求項1に記載のガス化炉設備。
  6. 前記ガス化炉設備の運転工程に基づいて、前記微粉燃料機へ供給される前記不活性ガスの供給量を調整する調整部を更に備える請求項1に記載のガス化炉設備。
  7. 前記調整部によって調整される前記不活性ガスの供給量は、前記炭素含有固体燃料の種類、前記炭素含有固体燃料中の揮発分に応じて変更される請求項2、5又は6に記載のガス化炉設備。
  8. 請求項1から7のいずれかに記載の前記ガス化炉設備と、
    前記ガス化炉設備で生成した生成ガスの少なくとも一部を燃焼させることで回転駆動する前記ガスタービンと、
    前記ガスタービンから排出されたタービン排ガスを導入する排熱回収ボイラで生成した蒸気により回転駆動する蒸気タービンと、
    前記ガスタービンおよび/または前記蒸気タービンと回転連結された発電機と、
    を備えるガス化複合発電設備。
  9. 炭素含有固体燃料から生成ガスを生成するガス化炉を有するガス化炉設備において、前記炭素含有固体燃料と、前記ガス化炉で生成した生成ガスの少なくとも一部を燃料ガスとして燃焼するガスタービンからの排ガスとが供給され、前記炭素含有固体燃料を粉砕する微粉燃料機と、前記微粉燃料機で生成された微粉燃料を捕集する集塵器と、前記集塵器へ不活性ガスを供給する不活性ガス供給系統とを備えるガス化炉設備の運転方法であって、
    前記微粉燃料機へ前記排ガスを供給するとき、前記微粉燃料機及び前記集塵器を介して前記ガス化炉までの系統の酸素濃度が所定の閾値を超える場合は、前記排ガスに含まれる酸素濃度が低減されるように、前記不活性ガス供給系統から前記集塵器へ前記不活性ガスを供給するガス化炉設備の運転方法。
JP2018027110A 2018-02-19 2018-02-19 ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法 Active JP7043285B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027110A JP7043285B2 (ja) 2018-02-19 2018-02-19 ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027110A JP7043285B2 (ja) 2018-02-19 2018-02-19 ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法

Publications (2)

Publication Number Publication Date
JP2019143012A true JP2019143012A (ja) 2019-08-29
JP7043285B2 JP7043285B2 (ja) 2022-03-29

Family

ID=67770968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027110A Active JP7043285B2 (ja) 2018-02-19 2018-02-19 ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法

Country Status (1)

Country Link
JP (1) JP7043285B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200256A1 (ja) * 2020-03-31 2021-10-07 三菱パワー株式会社 ガス化複合発電設備及びその運転方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787038U (ja) * 1980-11-12 1982-05-28
JPS61175241A (ja) * 1985-01-30 1986-08-06 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電装置
JP2010059383A (ja) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd ガス化炉装置
JP2010059940A (ja) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電設備
JP2010106722A (ja) * 2008-10-29 2010-05-13 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電設備
JP2016060894A (ja) * 2014-09-22 2016-04-25 三菱日立パワーシステムズ株式会社 ガス化設備および粉体燃料搬送方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787038U (ja) * 1980-11-12 1982-05-28
JPS61175241A (ja) * 1985-01-30 1986-08-06 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電装置
JP2010059383A (ja) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd ガス化炉装置
JP2010059940A (ja) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電設備
JP2010106722A (ja) * 2008-10-29 2010-05-13 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電設備
JP2016060894A (ja) * 2014-09-22 2016-04-25 三菱日立パワーシステムズ株式会社 ガス化設備および粉体燃料搬送方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200256A1 (ja) * 2020-03-31 2021-10-07 三菱パワー株式会社 ガス化複合発電設備及びその運転方法
JP7434031B2 (ja) 2020-03-31 2024-02-20 三菱重工業株式会社 ガス化複合発電設備及びその運転方法

Also Published As

Publication number Publication date
JP7043285B2 (ja) 2022-03-29

Similar Documents

Publication Publication Date Title
JP5578907B2 (ja) 石炭ガス化複合発電プラント
KR20170082479A (ko) 증기를 사용하여 고체 원료를 건조시키는 방법 및 장치
JP7325948B2 (ja) 微粉炭機の微粉炭乾燥システム及びその微粉炭乾燥方法並びに微粉炭乾燥プログラム、微粉炭機、ガス化複合発電設備
JP5848014B2 (ja) 流動層乾燥装置
CN108602631B (zh) 粉体供给料斗的加压系统、气化设备及气化复合发电设备以及粉体供给料斗的加压方法
US9567904B2 (en) Method for controlling gas turbine power plant, gas turbine power plant, method for controlling carbon-containing fuel gasifier, and carbon-containing fuel gasifier
JP2021143347A (ja) ガス化炉設備及びその運転方法
JP7043285B2 (ja) ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法
JP7039793B2 (ja) スラグ排出システムの停止方法、スラグ排出システムおよびガス化複合発電装置
CN106459789A (zh) 气化炉设备、气化复合发电设备以及气化炉设备的起动方法
JPH10251669A (ja) ガス化発電システム
JP6602174B2 (ja) ガス化装置、ガス化複合発電設備、ガス化設備及び除煤方法
JP2017110165A (ja) ガス化装置及びガス化装置の制御装置、ガス化複合発電設備
CN108368440B (zh) 气化装置、气化装置的控制装置及方法、气化复合发电设备
WO2023162712A1 (ja) ガス化炉設備、ガス化複合発電設備及びガス化炉の運転方法
JP6957198B2 (ja) ガス化炉設備およびこれを備えたガス化複合発電設備
JP2012241120A (ja) ガス化システム
JP7458795B2 (ja) フィルタ再生システム、ガス化複合発電設備およびフィルタ再生方法
JP3646479B2 (ja) 石炭ガス化発電プラント
US20230151766A1 (en) Integrated gasification combined cycle and operation method thereof
JP5675297B2 (ja) ガス化設備および石炭ガス化複合発電設備
CN108368439B (zh) 煤焦排出装置、具备该煤焦排出装置的煤焦回收装置及煤焦排出方法、气化复合发电设备
JP2018141042A (ja) ガス化炉設備およびこれを備えたガス化複合発電設備ならびにガス化炉設備の運転方法
JP2011174454A (ja) ガス化発電プラント
JPH11106760A (ja) ウェットフィード方式ガス化炉

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220316

R150 Certificate of patent or registration of utility model

Ref document number: 7043285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150