JP2019129343A - 撮像装置及び放射線撮像システム - Google Patents

撮像装置及び放射線撮像システム Download PDF

Info

Publication number
JP2019129343A
JP2019129343A JP2018008165A JP2018008165A JP2019129343A JP 2019129343 A JP2019129343 A JP 2019129343A JP 2018008165 A JP2018008165 A JP 2018008165A JP 2018008165 A JP2018008165 A JP 2018008165A JP 2019129343 A JP2019129343 A JP 2019129343A
Authority
JP
Japan
Prior art keywords
signal
unit
period
control
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018008165A
Other languages
English (en)
Inventor
太田 幸一
Koichi Ota
幸一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018008165A priority Critical patent/JP2019129343A/ja
Priority to US16/244,500 priority patent/US20190230299A1/en
Publication of JP2019129343A publication Critical patent/JP2019129343A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/673Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction by using reference sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】撮像装置において発生する時間変動するノイズを低減するために有利な技術を提供する。【解決手段】撮像装置は、放射線又は光を電荷に変換する変換部、電荷に応じた信号を増幅する増幅部、変換部及び増幅部のリセットを行うリセット部、増幅された信号を保持するための第1及び第2の保持部とをそれぞれ有する複数の画素が二次元に配置されている画素アレイと、画素アレイを制御する制御部と、を有する。制御部は、リセット部による連続する2回のリセットの間に放射線又は光が照射される第1の期間に変換部によって変換された電荷に応じた第1の信号を第1の保持部に保持する第1の制御と、第1の制御とは別にリセット部による連続する2回の前記リセットの間に放射線又は光が照射されない第2の期間の変換部の電荷に応じた第2の信号を第2の保持部に保持する第2の制御とを行う。第1の制御と第2の制御とを含む制御が、繰り返し行われる。【選択図】図4

Description

本発明は、撮像装置及び放射線撮像システムに関する。
デジタルX線撮像装置の分野では、イメージインテンシファイアに代わり、解像度の向上や体積の小型化、画像の歪みを押さえることを目的に光電変換素子を用いた等倍光学系の大面積フラットパネル式の撮像装置が普及している。撮像装置に用いられる等倍光学系のフラットパネルセンサの一つとして、シリコン半導体ウエハ上にCMOS半導体製造プロセスにより生成された光電変換素子を二次元につなぎ合わせて構成した大面積フラットパネルセンサがある。
特許文献1には、二次元に整列した光電変換素子と共に読み出し制御回路として垂直シフトレジスタと水平シフトレジスタが配置された画素アレイの構成が開示されている。特許文献1の装置は、画素アレイを二次元につなぎ合わせて構成した大面積フラットパネルセンサを使用している。また、特許文献1には、センサアレイの各画素において、2つの保持部で信号とリセット電圧とをそれぞれ取得し、これらの信号による差分によって、ノイズ除去を行う撮像装置が開示されている。特許文献2には、センサアレイの各画素において、2つの保持部に保持されたリセット電圧に基づくノイズ信号を用いて、信号に含まれ得る温度ばらつきに起因するノイズ成分を低減する技術が開示されている。
特開2002−344809号公報 特開2016−82255号公報
しかしながら、撮像装置に含まれる光電変換素子などの半導体素子に放射線又は光が照射されていなくても発生し得る暗電流に起因するノイズは、時間や温度によって変動するため、撮像した画像からノイズを十分に低減することは難しかった。本発明の目的は、撮像装置において発生する時間変動するノイズを低減するために有利な技術を提供することである。
本発明の撮像装置は、放射線又は光を電荷に変換する変換部と、前記電荷に応じた信号を増幅する増幅部と、前記変換部及び前記増幅部のリセットを行うリセット部と、前記増幅された信号を保持するための第1及び第2の保持部と、をそれぞれ有する複数の画素が二次元に配置されている画素アレイと、前記画素アレイを制御する制御部と、を有する撮像装置であって、前記制御部は、前記リセット部による連続する2回の前記リセットの間に、放射線又は光が照射される第1の期間に前記変換部によって変換された電荷に応じた第1の信号を前記第1の保持部に保持する第1の制御と、前記第1の制御とは別に、前記リセット部による連続する2回の前記リセットの間に、放射線又は光が照射されない第2の期間の前記変換部の電荷に応じた第2の信号を前記第2の保持部に保持する第2の制御とを行い、前記第1の制御と前記第2の制御とを含む制御が繰り返し行われることを特徴とする。
本発明によれば、撮像装置において発生する時間変動するノイズを低減するために有利な技術を提供することができる。
本発明の実施形態の画素構成を説明する回路図。 本発明の実施形態の画素アレイ及び信号読出部の構成を説明する回路図。 本発明の実施形態の放射線撮像システムの構成を説明する模式図。 本発明の第一実施形態を示すタイムチャート。 本発明の第一実施形態を説明するためのフローチャート。 本発明の第二実施形態を示すタイムチャート。 本発明の第二実施形態を説明するためのフローチャート。 本発明の撮像モード設定の詳細を説明するためのフローチャート。 本発明の第三実施形態における信号読出部の構成を説明する回路図。 本発明の第三実施形態を説明するためのフローチャート。
添付の図面を参照しつつ本発明の実施形態について以下に説明する。様々な実施形態を通じて同様の要素には同一の参照符号を付し、重複する説明を省略する。また、各実施形態は適宜変更、組み合わせが可能である。
<第一実施形態>
本発明の実施形態の撮像装置100に用いられる各構成について説明をする。まず、1つの画素Pについて、図1に示される回路図により概略を説明する。画素Pは、変換部CPと増幅部APとリセット部RPと保持部SH1〜SH3と出力部OP1〜OP3とを含む。
変換部CPは、フォトダイオードPDと、トランジスタM1と、フローティングディフュージョン容量Cfd(以下、FD容量Cfd)と、感度切り替え用の付加容量Cfd’とを有する。撮像装置100に入射した放射線は、放射線を光に変換する波長変換体であるシンチレータにより、入射した放射線に応じて生じた光に変換される。フォトダイオードPDは光電変換素子の一例であり、放射線に応じて生じた光を電荷に変換する。すなわち、放射線を光に変換するシンチレータと、光を電荷に変換する光電変換素子とによって、放射線は電荷に変換される。シンチレータを使うことに代えて、変換素子として放射線を直接電荷に変換する素子が用いられてもよい。
画素Pでは、光に応じた量の電荷がフォトダイオードPDで発生し、発生した電荷量に応じたFD容量Cfdの電圧が増幅部APに出力される。感度切り替え用の容量Cfd’は、画素Pの感度を切り替えるために用いられ、トランジスタM1(スイッチ)を介してフォトダイオードPDに接続されている。WIDE信号が活性化されることによってトランジスタM1が導通状態になり、FD容量Cfdと容量Cfd’との合成容量の電圧が増幅部APに出力される。すなわち、トランジスタM1の導通状態を制御することにより、変換部CPの感度を切り替えることができる。トランジスタM1がオフのときはフローティングディフュージョンの容量はFD容量Cfdのみなので、変換部CPは高感度になり、変換部CPからは高感度信号が出力される。また、トランジスタM1が導通状態の時は、FD容量Cfdに並列に感度切り替え用の容量Cfd’が加わるので、変換部CPは低感度になり、変換部CPからは低感度信号が出力されうる。
増幅部APは、制御トランジスタM3、増幅トランジスタM4、クランプ容量Ccl、制御トランジスタM6、増幅トランジスタM7と各定電流源とを有する。制御トランジスタM3と増幅トランジスタM4と定電流源(例えばカレントミラー構成のトランジスタ)とは直列に接続されて電流経路を形成している。制御トランジスタM3のゲートに入力されるイネーブル信号ENが活性化されることによって、変換部CPからの電圧を受ける増幅トランジスタM4が動作状態となる。このようにして増幅トランジスタM4によるソースフォロワ回路が形成され、変換部CPからの電圧を増幅した電圧が増幅トランジスタM4から出力される。増幅トランジスタM4から出力された電圧は、クランプ容量Cclを介して増幅トランジスタM7に入力される。制御トランジスタM6と増幅トランジスタM7と定電流源とは直列に接続されて電流経路を形成している。制御トランジスタM6のゲートに入力されるイネーブル信号ENが活性化されることによって、増幅トランジスタM4からの出力電圧を受ける増幅トランジスタM7が動作状態となる。このようにして増幅トランジスタM7によるソースフォロワ回路が形成され、増幅トランジスタM4からの電圧が増幅されて増幅トランジスタM7から出力される。クランプ容量Cclは増幅トランジスタM4のソース電極と増幅トランジスタM7のゲート電極との間に直列に配置されている。クランプ容量Cclによるクランプ動作については、次に説明するリセット部RPと併せて説明する。
リセット部RPは、リセットトランジスタM2とリセットトランジスタM5とを含む。リセットトランジスタM2は、リセット電圧PRESが活性化されると導通状態となり、フォトダイオードPDに所定の電位VRES(リセット用電圧)を供給する。それによってフォトダイオードPDの電荷をリセット(初期化)し、増幅部APに出力される電圧をリセットする。リセットトランジスタM5は、クランプ容量Cclと増幅トランジスタM7のゲート電極との間の接続ノードに所定の電位を供給することにより、増幅トランジスタM7から出力される電圧をリセットする。リセットトランジスタM2によるリセットがされると、リセット時の変換部CPからの電圧に応じた電圧がクランプ容量Cclの入力端子n1に入力される。また、クランプ信号PCLが活性化されることによりリセットトランジスタM5が導通状態になり、所定の電位であるクランプ用電圧VCLがクランプ容量Cclの出力端子n2に入力される。このようにして、クランプ容量Cclの両端子間で生じた電位差をノイズ成分としてクランプし、その後のフォトダイオードPDでの電荷の発生および蓄積に伴い変化した電圧を信号成分として出力する。これがクランプ容量Cclを用いたクランプ動作であり、クランプ動作により変換部CPで生じるkTCノイズや増幅トランジスタM4のオフセット等のノイズ成分が抑制される。またリセット動作によりFD容量と保持部SH1〜SH3とをリセットすることができる。
変換部CPと増幅部APとによって、放射線を電荷に変換し、変換部CPに蓄積された電荷に基づく信号を増幅して出力する信号生成部が構成される。変換部CPに蓄積された電荷に基づく信号を蓄積信号と呼ぶ。変換部CPに蓄積された電荷は、放射線に応じて発生した電荷と、放射線によらずに発生した電荷(いわゆる暗電流に基づく電荷)とを含む。放射線に応じて発生した蓄積信号は、上述の高感度信号又は低感度信号として出力される。また、変換部CPに放射線を曝射(照射)しないときに発生したノイズ等が蓄積された電荷に基づく信号を暗電流信号と呼ぶ。この信号生成部を、リセット部RPが電荷蓄積前の状態にリセットすることによって信号生成部が生成する信号をリセット信号と呼ぶ。信号生成部のリセットは、上述のように、光電変換素子PDの電位とクランプ容量Cclの出力端子n2の電位とをリセットすることによって行われる。
蓄積信号とリセット信号とを総称して画素信号と呼ぶ。変換部CPに電荷が蓄積された後に信号生成部が出力する画素信号を蓄積信号と称し、信号生成部がリセット状態である場合に出力する画素信号をリセット信号と称する。
保持部SH1は、増幅部APから出力された画素信号を保持する部分であり、転送トランジスタM8と容量CS1とを含むサンプルホールド回路である。具体的には、サンプルホールド制御信号TS1を用いて転送トランジスタM8の状態(導通状態または非導通状態)を切り替えることにより、画素信号を容量CS1に転送して保持する。出力部OP1は、信号増幅トランジスタM10と出力スイッチSW9とを含む。信号増幅トランジスタM10は、容量CS1に保持された画素信号を増幅して出力するためのトランジスタであり、出力スイッチSW9は信号増幅トランジスタM10によって出力された画素信号を端子S1へ転送するスイッチである。出力スイッチSW9に入力される垂直走査信号VSRによって出力スイッチSW9が導通状態となると、信号増幅トランジスタM10と列信号線406で接続される後段の定電流源CCSp(図2参照)とでソースフォロワ回路が形成される。これにより、出力部OP1によって、保持部SH1に保持された画素信号が増幅されて画素Pから出力される。以下では、画素Pから出力されて増幅後に端子S1から出力される画素信号を画素信号S1と呼ぶ。また、画素信号S1が照射に基づく蓄積信号である場合は画像信号S1、照射のないときの暗電流信号である場合は暗電流信号S1、リセット信号である場合はリセット信号S1と称する。
保持部SH2は、増幅部APから出力された画素信号を保持する部分であり、転送トランジスタM11と容量CS2とを含むサンプルホールド回路である。具体的には、サンプルホールド制御信号TS2を用いて転送トランジスタM11の状態(導通状態または非導通状態)を切り替えることにより、画素信号を容量CS2に転送して保持する。出力部OP2は、信号増幅トランジスタM13と出力スイッチSW12とを含む。信号増幅トランジスタM13は、容量CS2に保持された画素信号を増幅して出力するためのトランジスタであり、出力スイッチSW12は信号増幅トランジスタM13によって出力された画素信号を端子S2へ転送するスイッチである。具体的には、出力スイッチSW12に入力される垂直走査信号VSRによって出力スイッチSW12が導通状態となることにより、信号増幅トランジスタM13と列信号線407で接続される後段の定電流源CCSpとでソースフォロワ回路が形成される。これにより、出力部OP2によって、保持部SH2に保持された画素信号が増幅されて画素Pから出力される。以下では、画素Pから出力されて増幅後に端子S2から出力される画素信号を画素信号S2と呼ぶ。また、画素信号S2が照射に基づく蓄積信号である場合は画像信号S2、暗電流信号である場合は暗電流信号S2、リセット信号である場合はリセット信号S2と称する。
保持部SH3は、増幅部APから出力された画素信号を保持可能な部分であり、転送トランジスタM14と容量CS3とを含むサンプルホールド回路である。具体的には、サンプルホールド制御信号TS3を用いて転送トランジスタM14の状態(導通状態または非導通状態)を切り替えることにより、画素信号を容量CS3に転送して保持する。出力部OP3は、信号増幅トランジスタM16と出力スイッチSW15とを含む。信号増幅トランジスタM16は、容量CS3に保持された画素信号を増幅して出力するためのトランジスタであり、出力スイッチSW15は信号増幅トランジスタM16によって出力された画素信号を端子S3へ転送するスイッチである。具体的には、出力スイッチSW15に入力される垂直走査信号VSRによって出力スイッチSW15が導通状態となることにより、信号増幅トランジスタM16と列信号線408で接続される後段の定電流源CCSpとでソースフォロワ回路が形成される。これにより、出力部OP3によって、保持部SH3に保持された画素信号が増幅されて画素Pから出力される。以下では、画素Pから出力されて増幅後に端子S3から出力される画素信号を画素信号S3と呼ぶ。また、画素信号S3が照射に基づく蓄積信号である場合は画像信号S3、暗電流信号である場合は暗電流信号S3、リセット信号である場合はリセット信号S3と呼ぶ。
容量CS1、容量CS2および容量CS3において画素信号がサンプルホールドされた後は、転送トランジスタM8、転送トランジスタM11および転送トランジスタM14がオフとなる。これによって容量CS1、容量CS2および容量CS3は前段の増幅部APから切り離される。このため、各容量に保持された画素信号(画像信号、暗電流信号、あるいはリセット信号)は、次の信号が再度サンプルホールドされるまで非破壊で読み出すことが可能である。
次に本実施形態の撮像装置100の画素アレイ120及び画素アレイ120に接続された信号読出部20について図2(A)及び図2(B)を用いて説明する。画素アレイ120には図1に示した画素Pが二次元アレイ状に複数配列されている。そして、画素アレイ120からの信号は、画素アレイ120の端子Es1、Es2及びEs3から信号読出部20によって読み出される。本実施形態の撮像装置100の画素アレイ120について図2(A)により説明する。図2(A)は、本実施形態の撮像装置100の画素アレイ120の概略構成を説明するための回路図の例である。
画素アレイ120は、複数の画素Pと、各画素Pを駆動するための垂直走査回路403と、各画素Pから信号読出を行うための水平走査回路404と、を備える。垂直走査回路403および水平走査回路404は、例えばシフトレジスタで構成されており、制御部109(図3参照。)からの制御信号に基づいて動作する。垂直走査回路403は、制御線405を介して各画素Pに垂直走査信号VSRを供給し、当該垂直走査信号VSRに基づいて各画素Pを行単位で駆動する。すなわち、垂直走査回路403は行選択部として機能し、信号読出を行うべき画素Pを行単位で選択する。また、水平走査回路404は列選択部として機能し、水平走査信号HSRに基づいて各画素Pを列単位で選択して、各画素Pからの信号を順に出力させる。つまり水平走査回路404はいわゆる水平転送を制御する。ここで、行選択部(垂直走査回路403)の動作周波数は、列選択部(水平走査回路404)の動作周波数に比べて低くされており、即ち、行選択部(垂直走査回路403)は列選択部(水平走査回路404)に比べて動作が遅くされている。
また、画素アレイ120は、各画素Pの容量CS1に保持された画素信号を出力する端子Es1と、容量CS2に保持された画素信号を出力する端子Es2と、容量CS3に保持された画素信号を出力する端子Es3と、を有する。また、画素アレイ120はセレクト端子Ecsをさらに有し、端子Ecsが受ける信号が活性化されることによって、画素アレイ120の選択された画素Pからの画素信号が、端子Es1、Es2及びEs3から読み出される。具体的には、前述の各画素Pの画素信号S1、画素信号S2及び画素信号S3は、端子S1〜S3に対応して各端子に接続している列信号線406〜408に供給される。列信号線406〜408に供給された画素信号は、列信号線に対応して設けられている増幅トランジスタAvに入力される。
増幅トランジスタAvには、制御トランジスタSWchと定電流源CCSvとが電流経路を形成するように直列に接続されている。選択された画素Pからの画素信号S1〜S3は列信号線406〜408を介して増幅トランジスタAvに入力される。増幅トランジスタAvの出力には転送トランジスタSWahが接続され、転送トランジスタSWahの出力にはアナログ信号線409〜411が接続されている。増幅トランジスタAvの出力は、水平走査回路404からの水平走査信号HSRに応答して導通状態になる転送トランジスタSWahを介して、アナログ信号線409〜411へ出力される。制御トランジスタSWchのゲートに入力される水平走査信号HSRが活性化されることによって、列信号線406〜408からの電圧をそれぞれに受ける増幅トランジスタAvが動作状態になり、ソースフォロワ回路が形成される。増幅トランジスタAvにより増幅された、列信号線406〜408からの電圧は、水平走査信号HSRに応答して導通状態になる転送トランジスタSWahを介してアナログ信号線409〜411に出力される。
アナログ信号線409〜411を介して信号が入力される増幅トランジスタAoutと定電流源CCSoutとは電流経路を形成するように直列に接続され、ソースフォロワ回路が形成されている。これによりアナログ信号線409〜411からの電圧を増幅トランジスタAoutが増幅する。増幅された電圧は、端子Ecsに入力される信号に応答して導通状態になる転送トランジスタSWcsを介して、端子Es1、Es2及びEs3から出力される。
また、画素アレイ120は、垂直走査回路403および水平走査回路404を制御するための各制御信号を受ける端子HST、CLKH、VSTおよびCLKVをさらに有する。端子HSTは、水平走査回路404に入力されるスタートパルスを受ける。端子CLKHは、水平走査回路404に入力されるクロック信号を受ける。端子VSTは、垂直走査回路403に入力されるスタートパルスを受ける。端子CLKVは、垂直走査回路403に入力されるクロック信号を受ける。これらの各制御信号は、後述する制御部109から入力される。水平走査回路404は入力されたスタートパルスとクロック信号とに基づいて水平走査信号HSRを生成して出力する。垂直走査回路403は入力されたスタートパルスとクロック信号とに基づいて垂直走査信号VSRを生成して出力する。これにより、容量Cs1〜CS3に保持された画素信号S1、画素信号S2及び画素信号S3が、各画素PからX-Yアドレス方式で順次に読み出される。すなわち、画素アレイ120では、各画素Pに保持された信号は、行単位で選択され、各保持部に保持された信号が列単位で出力される(水平転送される)ことによって、信号が読み出される。
次に、本実施形態の撮像装置の画素アレイ120から信号を読み出す信号読出部20について、本実施形態の撮像装置の信号読出部20の概略構成を示す図2(B)により説明する。信号読出部20は、例えば差動増幅器等を含む信号増幅部107とAD変換を行うAD変換部108とを有する。信号読出部20の入力端子には、画素アレイ120の端子Es1〜Es3から読み出された画素信号がそれぞれ入力される。
端子Es3からの画素信号S3は信号増幅部107の非反転入力端子AMP+に入力される。また、端子Es1からの画素信号S1は、スイッチM51を介して、信号増幅部107の反転入力端子AMP−に入力される。スイッチM51はスイッチM51の制御端子に入力される制御信号TRO1に応答して導通状態になる。また、端子Es2からの画素信号S2は、スイッチM52を介して、反転入力端子AMP−に入力される。スイッチM52はスイッチM52の制御端子に入力される制御信号TRO2に応答して導通状態になる。スイッチM51及びM52は、端子Es1及び端子Es2の一方の信号が信号増幅部107の反転入力端子AMP−に入力されるように制御される。スイッチM51及びM52並びに信号増幅部107は、信号ADCLKの周期に追従可能な応答特性を有するように設計されている。
信号増幅部107では、スイッチM51、M52の動作に応じて端子Es1からの信号と端子Es3からの信号との差分、又は端子Es2からの信号と端子Es3からの信号との差分が増幅される。この差分はAD変換部108で、端子ADCLKを介して入力されるクロック信号に基づいてAD変換される。このような構成により、画素アレイ120の画像データ(デジタルデータ)が得られ、端子ADOUTを介して後述する制御部109に出力される。
次に、本実施形態の撮像装置100及び放射線撮像システムSYSについて図3を用いて説明する。
放射線撮像システムSYSは、撮像装置100と、放射線を発生する放射線発生装置104と、照射制御部103と、画像処理およびシステム制御を行う信号処理部101と、ディスプレイ等を含む表示部102と、を備える。放射線撮像を行う際には、信号処理部101によって撮像装置100と照射制御部103とが同期制御される。被検者を通過した放射線(X線、α線、β線、γ線等)に基づいて撮像装置100が信号を生成し、この信号に対して信号処理部101等において所定の処理が為された後、当該放射線に基づく画像データが生成される。当該画像データは表示部102に撮像画像として表示される。撮像装置100は、撮像領域10を有する撮像パネル105と、撮像領域10から信号を読み出す信号読出部20と、各画素アレイ120を制御する制御部109とを備える。
撮像パネル105は、複数の画素アレイ120が板状の基台の上にタイリング(2次元配列)されて構成されている。このような構成により大型の撮像パネル105が形成されうる。図2(A)により説明したように、各画素アレイ120には複数の画素Pが配列されている。撮像領域10には、複数の画素アレイ120によって行および列を形成するように配列された複数の画素Pが配置されている。また、本実施形態では、複数の画素アレイ120が7列×2行を形成するようにタイリングされた構成が例示されているが、この構成に限られるものではない。
制御部109は、例えば信号処理部101との間で、制御コマンド、同期信号の通信を行う。また、制御部109は、撮像領域10の各画素アレイ120及び信号読出部20を制御し、例えば、各画素アレイ120の基準電圧の設定、各画素の駆動制御や動作モード制御を行う。また、制御部109は、信号読出部20のAD変換部108によりAD変換された各画素アレイ120の画像データ(デジタルデータ)を用いて1つのフレーム画像を合成し、信号処理部101に出力する。制御部109は、CPU等のプロセッサと、RAMやROMなどのメモリとで構成されてもよい。制御部109のプロセッサがメモリに格納されたプログラムを実行することによって、撮像装置100の動作が実行されてもよい。これに代えて、制御部109は、ASIC(特定用途向け集積回路)等の専用回路で構成されてもよい。信号処理部101も同様に、CPU等のプロセッサと、RAMやROMなどのメモリとで構成されたコンピュータであってもよいし、ASIC等の専用回路で構成されてもよい。信号処理部101は後述するように画像を生成するので、画像生成装置と呼ぶこともできる。信号処理部101には、信号処理部101の処理で用いられるプログラムやデータを記憶可能な記憶部115が接続されている。記憶部115は、例えば磁気ディスクや半導体ドライブ等で構成されてもよい。
制御部109と信号処理部101との間では、各種インターフェースを介して、制御コマンド又は制御信号および画像データの授受が行われる。信号処理部101は、制御用インターフェース110を介して、動作モードや各種パラメータなどの設定情報又は撮像情報を制御部109に出力する。また、制御部109は、制御用インターフェース110を介して、撮像装置100の動作状態などの装置情報を信号処理部101に出力する。また、制御部109は、画像データインターフェース111を介して、撮像装置100で得られた画像データを信号処理部101に出力する。また、制御部109は、READY信号112を用いて、撮像装置100が撮像可能な状態になったことを信号処理部101に通知することができる。また、信号処理部101は、同期信号113を用いて、制御部109からのREADY信号112に応答して制御部109に、放射線の照射開始のタイミングを通知することができる。また、制御部109は同期信号113を受信して制御を行う。照射許可信号114は撮像パネル105が撮像の準備ができたことを信号処理部101に通知する信号である。信号処理部101は、照射許可信号114がイネーブル状態の間に、照射制御部103に制御信号を出力して放射線照射を開始させる。
本実施形態における撮像装置100の駆動方法について図4に示すタイムチャートの例により説明をする。撮像は、制御部109が撮像装置100の各部の動作を制御することによって実行される。撮像装置100は、複数のフレーム画像で構成される動画撮影を行うことができる。
図4において、横軸は時間、各信号「SYNC」〜「WIDE」の値は、各信号のレベルを示す。例えば、信号SYNCはF1、F2、F3・・・の周期でHレベルになる。信号WIDEは、図4ではLレベルのままであることを示している。信号「CS1」、「CS2」及び「CS3」は、容量CS1、CS2及びCS3に保持されている信号を示す。信号「Es1」、「Es2」及び「Es3」は画素アレイ120の各保持部から信号読出部20へ読み出す信号と期間とを示す。信号「Es1」〜「Es3」がH(ハイ)レベルで示されている期間は、信号の読出し動作が実行されている期間を示す。「AMP−」がHレベルで示されている期間は、信号増幅部107の反転入力端子AMP−に信号が入力される期間を示す。「AMP+」がHレベルで示されている期間は信号増幅部107の非反転入力端子AMP+に信号が入力される期間を示す。期間Rは信号増幅部107の出力端子から信号が出力される期間を示す。
図4において、フレーム画像レートは一定である。後述するサンプルホールド駆動及びリセット駆動SRSD1(以下、「駆動SRSD1」)及びSRSD2(以下、「駆動SRSD2」)それぞれの駆動後の期間Tc及び期間Tsは画素信号の読み出し期間Rより長い。またここでは、付加容量Cfd’を付加しない感度で撮像する撮像モードが設定された場合について説明する。
フレーム期間F1〜F2は、撮像開始後の1番目と2番目のフレーム期間を示す。フレーム期間とは、フレーム画像を生成するための期間のことであり、複数のフレーム画像を作成するために反復される。
蓄積期間T1は、この期間内で放射線が照射される期間である。蓄積期間T1は、フレーム期間F1及びF2のそれぞれにおいて、蓄積期間T1に対応する電荷が光電変換素子PDに蓄積される期間である。この電荷は、放射線の照射に応じて発生する電荷と、それ以外の暗電荷とを含む。蓄積期間T1の間、制御部109は放射線の照射が可能であることを照射許可信号114により信号処理部101へ通知する。
蓄積期間T2は放射線が照射されない期間である。蓄積期間T2は、フレーム期間F1及びF2のそれぞれにおいて、蓄積期間T2に対応する暗電流に基づく暗電荷が光電変換素子PDに蓄積される期間である。蓄積期間T2の間、制御部109は放射線の照射を禁止することを照射許可信号114により信号処理部101へ通知する。制御部109は、フレーム画像レートから計算されるフレーム期間をもとに、蓄積期間T1と蓄積期間T2が同じ長さとなるように、期間Tc及び期間Tsを制御する。
撮像前に、最初に撮像モードが設定される。具体的には例えば画素Pの感度が設定される。ここでは感度切り替え用の付加容量Cfd’を付加しないでFD容量Cfdのみを使って撮像を行うことを例として説明する。制御部109は制御信号WIDEを非活性化する。
撮像が開始されて、制御部109が同期信号SYNCのパルスの立ち上がりを検出すると、最初のフレーム期間F1でフレーム画像を生成するための駆動が開始される。撮像は、SYNC信号におけるパルスの立ち上がりによって1つのフレーム期間F1が始まり、次のSYNC信号の立ち上がりによってこのフレーム期間F1が終わり、次のフレーム期間F2が始まるというように撮像中は、動作は繰り返される。SYNC信号は外部から受信した同期信号と内部で発生する同期信号とのどちらでも構わないが、本実施形態では外部から受信した同期信号として説明を行う。
フレーム期間F1における駆動SRSD1について説明する。制御部109は、以下に説明する駆動SRSD1を撮像パネル105に含まれるすべての画素Pに対して一括して行う。駆動SRSD1は、フレーム期間F1、F2等に実行されるサンプルホールド駆動及びリセット駆動を行う期間である。サンプルホールド駆動は、画素信号を容量CS1〜3に保持するためのサンプルホールドを行う駆動のことである。リセット駆動は、変換部CP及び増幅部APのリセットを行う駆動のことである。
制御部109は、SYNC信号のパルスの立ち上がりを検出すると、フレーム期間F1でフレーム画像を生成するための制御を開始する。まず、制御部109は、イネーブル信号ENを活性化する。これによって、制御トランジスタM3が導通状態となり、増幅トランジスタM4が動作状態になる。変換部CPからの電圧は増幅されて、増幅トランジスタM4から出力される。また、増幅トランジスタM4からの出力電圧はクランプ容量Cclを介して増幅トランジスタM7に入力される。制御トランジスタM6もイネーブル信号ENにより導通状態になっているので、増幅トランジスタM7も動作状態になっている。増幅トランジスタM4からの電圧は増幅トランジスタM7により増幅されて、出力される。次に、制御部109は、制御信号TS2を一時的に活性化する。これによって、転送トランジスタM11が導通状態になるので、増幅トランジスタM7からの出力は画素信号S2として容量CS2に転送され保持される。なお、本実施形態では撮像の最初の駆動SRSD1のときはこの画素信号S2は不要な信号である。
次に、制御部109は、制御信号TS2を非活性化した後でリセット電圧PRESを活性化する。これによって、リセットトランジスタM2が導通状態となり、フォトダイオードPDに所定の電位であるリセット用電圧VRESが供給され、フォトダイオードPDの電荷がリセットされる。その結果、リセット時の変換部CPからの電圧がクランプ容量Cclの入力端子n1に入力される。制御部109は、次にクランプ信号PCLを活性化する。これによって、リセットトランジスタM5が導通状態となり、所定の電位であるクランプ用電圧VCLがクランプ容量Cclの出力端子n2に入力される。
次に、制御部109は、クランプ信号PCLを活性化してから非活性化するまでの期間において、制御信号TS1及びTS3を一時的に活性化する。イネーブル信号ENが活性化されており、増幅トランジスタM4及びM7が動作状態なので、増幅トランジスタM7からは変換部CPからはリセット時の信号が増幅されて出力される。制御信号TS1及びTS3の活性化によって、転送トランジスタM8及びM14が導通状態になって、増幅トランジスタM7から出力される電圧がリセット信号S1及びS3として容量CS1及びCS3に転送され保持される。すなわち、リセット信号のサンプリングが行われる。
制御部109は、制御信号TS1及びTS3を一時的に活性化している間にリセット電圧PRESを非活性化する。これによって、リセットトランジスタM2が非導通状態になる。制御部109は、制御信号TS1及びTS3を非活性化後にクランプ信号PCLを非活性化する。これによって、リセットトランジスタM5が非導通状態になり、クランプ容量Cclの入力端子n1と出力端子n2との間で生じた電位差がクランプ容量Cclの両端子に保たれる。クランプ信号PCLが非活性化されてから、電荷が光電変換素子PDに蓄積される蓄積期間T1が始まる。制御部109は、クランプ信号PCLを非活性化した後、イネーブル信号ENを非活性化する。これで、フレーム期間F1における駆動SRSD1を終了する。フレーム期間F1では有効な蓄積信号が容量CS2に保持されていないため画素信号の読み出しは行わない。
次に、フレーム期間F1における駆動SRSD2について説明する。制御部109は、以下に説明する駆動SRSD2を撮像パネル105に含まれるすべての画素Pに対して一括して行う。駆動SRSD2はサンプルホールド駆動及びリセット駆動を行う期間である。駆動SRSD2では期間T1に蓄積された画像信号が容量へサンプルホールドされる。以下に具体的に説明をする。
制御部109は、フレーム期間F1における駆動SRSD1終了後期間Tcが経過すると、フレーム期間F1でフレーム画像を生成するための駆動を開始する。まず、制御部109は、イネーブル信号ENを活性化する。次に、制御部109は、制御信号TS1を一時的に活性化する。これによって、増幅トランジスタM4及びM7で増幅された電圧が転送トランジスタM8を介して画像信号S1として容量CS1に転送され保持される。
次に、制御部109は、制御信号TS1を非活性化し、リセット電圧PRESを活性化し、次にクランプ信号PCLを活性化する。制御部109は、クランプ信号PCLを非活性化するまでの間に制御信号TS2及びTS3を一時的に活性化する。これによって、増幅トランジスタM7からの出力がリセット信号S2及びS3として容量CS2及びCS3に転送され保持される。すなわち、リセット信号のサンプリングが行われる。
制御部109は、制御信号TS2及びTS3を一時的に活性化している間にリセット電圧PRESを非活性化する。これによって、リセットトランジスタM2が非導通状態になる。制御部109は、制御信号TS2及びTS3を非活性化後にクランプ信号PCLを非活性化する。これによって、リセットトランジスタM5が非導通状態になり、クランプ容量Cclの入力端子n1と出力端子n2との間で生じた電位差がクランプ容量Cclの両端子に保たれる。クランプ信号PCLが非活性化されてから、電荷が光電変換素子PDに蓄積される蓄積期間T2が始まる。制御部109は、クランプ信号PCLを非活性化にした後、イネーブル信号ENを非活性化する。これで、フレーム期間F1における駆動SRSD2を終了する。
図4の参照を続けて、フレーム期間F1の期間Tsにおいて画像信号S1及びリセット信号S3を読み出す動作について説明する。本実施形態で、信号読出部20は、画像信号S1の保持から所定時間を経過後に画像信号S1及びリセット信号S3の読出しを開始する。フレーム期間F1の駆動SRSD2終了時点で、容量CS1にフレーム期間F1の蓄積期間T1に対応した画像信号S1が保持され、容量CS2〜CS3に所定の電位であるリセット信号S2、S3が保持されている。そこで、制御部109は、駆動SRSD2終了から所定時間が経過後に、これらの容量に保持された画像信号S1及びリセット信号S3の読出しを開始する。具体的には制御部109は、画素アレイ120のセレクト端子Ecsを活性化し、信号読出部20の制御信号TRO1を活性化する。このとき、制御信号TRO2は不活性化される。転送トランジスタSWcsが導通し、増幅トランジスタAoutの出力が端子Es1〜3に表れる。またスイッチM51が導通し、スイッチM52が非導通になるので、端子Es1からの信号が信号増幅部107の非反転入力端子に入力される。
続いて、制御部109は、垂直走査回路403を制御して画素アレイ120の所定の行を選択し、水平走査回路404を制御して所定の列を選択することによって、画素アレイ120に含まれる複数の画素Pのうちの1つを選択する。選択された画素Pに保持されていた信号は画素アレイ120の端子Es1〜Es3から出力される。これによって、選択された画素Pに保持された画像信号S1が信号増幅部107の反転入力端子AMP−に入力され、選択された画素Pに保持されたリセット信号S3が信号増幅部107の非反転入力端子AMP+に入力される。このように、フレーム期間F1では、信号読出部20は、選択された画素Pの画像信号S1及びリセット信号S3を同じタイミングで読み出す。
制御部109は、選択された画素Pの容量に保持された画像信号S1及びリセット信号S3を、画素アレイ120内部の列信号線を含む2系統の画素信号の信号経路(差動信号経路)を経て読み出し、信号読出部20の信号増幅部107に出力する。画素アレイ120からの出力を受けた信号増幅部107は、画像信号S1及びリセット信号S3の差分をとって得られる信号を出力する。信号増幅部107の出力信号は、差動入力により2系統の信号経路のオフセットが補正された画素信号に相当するが、2系統の信号経路に含まれるノイズは残る。
この出力信号は、AD変換部108によってデジタルデータに変換され、制御部109に供給される。制御部109は、垂直走査回路403及び水平走査回路404を制御することによって選択画素を順次切り替え、期間Ts内の期間Rで画像を生成するためのデジタルデータを取得し、フレーム期間F1の蓄積期間T1に対応するフレームの画像を生成する。このように、各画素から読み出された蓄積信号に基づいて生成された画像を蓄積画像と呼ぶ。
次にフレーム期間F2における駆動SRSD1について図4により説明する。なお、フレーム期間F1と重複する動作については省略する。フレーム期間F2の駆動SRSD1では、フレーム期間F1の放射線が照射されなかった期間T2で蓄積された暗電流の信号が読み出される。この駆動SRSD1も撮像パネル105に含まれるすべての画素Pに対して一括して行われる。まず、制御部109は、イネーブル信号ENを活性化し、次に制御信号TS2を一時的に活性化する。これによって、転送トランジスタM11が非導通状態から導通状態に切り替わり、フレーム期間F1内の蓄積期間T2で蓄積された暗電流信号S2が、容量CS2に転送され保持される。すなわち、蓄積信号(暗電流による信号)のサンプリングが行われる。
次に、制御部109は、期間F1と同様に順次リセット電圧PRES、クランプ信号PCLを活性化する。次に、制御部109は、TS1及びTS3を一時的に活性化し、リセット信号S1及びS3を容量CS1及びCS3に保持する。次に、制御部109は、順次リセット電圧PRES、クランプ信号PCLを非活性化する。クランプ信号PCLの非活性化によりフレーム期間F2の蓄積期間T1が始まる。その後、制御部109は、イネーブル信号ENを非活性化し、フレーム期間F2における駆動SRSD1を終了する。
次に、フレーム期間F2の期間Tcにおいて暗電流信号S2及びリセット信号S3を読み出す動作について説明する。本実施形態で、信号読出部20は、暗電流信号S2の保持から所定時間を経過後に暗電流信号S2及びリセット信号S3の読出しを開始する。
フレーム期間F2の駆動SRSD1終了時点で、容量CS2にフレーム期間F1の蓄積期間T2に対応する暗電流信号S2が保持され、容量CS1及びCS3に所定の電位であるリセット信号S1及びS3が保持されている。そこで、制御部109は、駆動SRSD1終了から所定時間が経過後に、これらの容量に保持された暗電流信号S2及びリセット信号S3の読出しを開始する。
具体的には、制御部109は、制御信号TRO1を不活性化するとともに、セレクト端子Ecs及び制御信号TRO2を活性化する。続いて、制御部109は、垂直走査回路403及び水平走査回路404を制御することによって、画素アレイ120に含まれる複数の画素Pのうちの1つを選択する。これによって、選択された画素Pに保持された暗電流信号S2が信号増幅部107の反転入力端子AMP−に入力され、選択された画素Pに保持されたリセット信号S3が信号増幅部107の非反転入力端子AMP+に入力される。このように、信号読出部20は、暗電流信号S2及びリセット信号S3を同じタイミングで読み出す。
制御部109は、容量に保持された暗電流信号S2及びリセット信号S3を、画素アレイ120内部の2系統の画素信号の信号経路(差動信号経路)を経て読み出し、信号増幅部107に出力する。画素アレイ120からの出力を受けた信号増幅部107は、暗電流信号S2及びリセット信号S3の差分をとって得られる信号を出力する。
この出力信号は、AD変換部108によってデジタルデータに変換され、制御部109に供給される。制御部109は、垂直走査回路403及び水平走査回路404を制御することによって選択画素を順次切り替え、期間Tc内の期間Rで画像を生成するためのデジタルデータを取得し、フレーム期間F1の蓄積期間T2に対応する画像を生成する。このように、蓄積期間T2に蓄積されて、各画素から読み出された蓄積信号に基づいて生成された画像も蓄積画像と呼ぶ。信号の蓄積は、撮像装置100に放射線が照射されている状態での蓄積期間T1と、撮像装置100に放射線が照射されていない状態での蓄積期間T2と、のそれぞれで行われる。以下、説明のために撮像装置100に放射線が照射されていない状態で生成された蓄積画像を暗画像と呼ぶ。撮像装置100に放射線が照射されている状態で生成された蓄積画像を撮像画像と呼ぶ。
続いて、フレーム期間F2においてもフレーム期間F1と同様の駆動SRSD2が行われる。駆動SRSD2によりフレーム期間F2の蓄積期間T1に対応する画像信号S1が容量CS1に、リセット信号S2及びS3が容量CS2及びCS3にそれぞれ転送され保持される。駆動SRSD2が終了すると、制御部109は、画素を順次切り替えて選択することにより期間Ts内の期間Rで蓄積画像を生成するためのデジタルデータを取得し、フレーム期間F2の蓄積期間T1に対応する蓄積画像(撮像画像)を生成する。
続いて、フレーム期間F3以降のフレーム期間においても同様の駆動SRSD1及び駆動SRSD2が行われる。たとえば、駆動SRSD1により1つ前のフレーム期間の蓄積期間T2に対応する暗電流信号S2が容量CS2に、リセット信号S1及びS3が容量CS1及びCS3にそれぞれ転送され保持される。駆動SRSD1が終了すると、制御部109は、画素を順次切り替えて選択し、期間Rで蓄積画像を生成するためのデジタルデータを取得し、1つ前のフレーム期間の蓄積期間T2に対応する蓄積画像(暗画像)を生成する。
続いて、駆動SRSD2により、この駆動が行われるフレーム期間の蓄積期間T1に対応する画像信号S1が容量CS1に、リセット信号S2及びS3が容量CS2及びCS3にそれぞれ転送され保持される。駆動SRSD2が終了すると、制御部109は、画素を順次切り替えて選択し画素信号を読み出して、期間Rで駆動SRSD2が行われたフレーム期間の蓄積期間T1に対応する蓄積画像(撮像画像)を生成する。このように蓄積信号の保持とリセット信号の保持とは連続する2回のリセットの間に行われる。
以上のように、撮像画像と暗画像とを順次、生成する。次に、撮像画像と暗画像とを用いたノイズの除去について説明する。以下の説明では、蓄積画像S1は例えばフレーム期間F1の期間T1で蓄積された信号に基づく撮像信号であり、フレーム期間F1の駆動SRSD2で読み出される信号に対応する。蓄積画像S2はフレーム期間F1の期間T2で蓄積された信号に基づく暗画像であり、フレーム期間F2の駆動SRSD1で読み出される信号に対応する。以下では説明のために蓄積画像S1を撮像画像S1と呼び、蓄積画像S2を暗画像S2と呼ぶ。
画素アレイ120内部の画素信号の信号経路には、信号線の他に増幅トランジスタ、定電流源及びスイッチなどの半導体素子が含まれ、個々の半導体素子起因により異なる1/fノイズ、温度ドリフトが発生する。信号読出部20を構成する信号増幅部107及びAD変換部108の半導体も1/fノイズ、温度ドリフトなどのノイズ成分を含む。すなわち、生成される信号には、画素アレイ120内部の信号経路で発生するノイズに、信号読出部20で発生するノイズ成分が重畳されている。
上述の例で、読出し信号が差動で伝送される方法が行われる。差動の各伝送経路の半導体素子には固有のオフセット、1/fノイズ、温度ドリフトが存在する。差動信号間の差は生成される画像に重畳され、固有のアーチファクト、ランダムノイズ、縦線ノイズ、ブロック状アーチファクトとして画像に現れる。
画像の補正では、時間変動する半導体素子の1/fノイズを良好に補正するために、暗画像を撮像開始の直前に生成することが考えられる。しかし、撮像モードが数種類に限定されていたとしても蓄積を含む暗画像の生成には時間を要し、特に撮像の開始時に生成する場合は撮像開始にタイムラグが発生する。
また、低周波ノイズが画像に及ぼす影響は、半導体素子が使用される回路の場所で異なる影響を及ぼす。例えば、画素アレイ120の画素回路Pの容量の増幅トランジスタM10、M13及びM16の低周波ノイズはランダムノイズとして画像に影響する。画素アレイ120の列信号線406〜408の画素信号の増幅に用いられる定電流源CCSp、増幅トランジスタAv及び定電流源CCSvの低周波ノイズは縦線ノイズとして画像に影響する。アナログ信号線409〜411の画素信号の増幅に用いられる増幅トランジスタAout及び定電流源CCSoutの低周波ノイズは、画素アレイ全領域にノイズが重畳され、ブロック状アーチファクトとして画像に影響する。同じく、信号増幅部107及びAD変換部108の低周波ノイズは、画素アレイ全領域にノイズが重畳され、ブロック状アーチファクトとして画像に影響する。特に、大面積フラットパネルセンサを使用した3D撮影において、縦線ノイズ、ブロック状アーチファクトは3Dの再構成画像にリングアーチファクトを発生させ、ランダムノイズ以上に画像に影響を及ぼすことが知られている。
本実施形態では、各フレーム期間にそれぞれ同一期間蓄積した蓄積信号をもとに生成した蓄積画像及び暗画像に基づいてフレーム画像を生成する。これによって、1/fノイズや温度ドリフトなどのノイズに起因して発生する縦線ノイズ、ブロック状アーチファクトを補正可能である。
次に、放射線撮像において放射線照射と同期して、蓄積画像と暗画像を取得し、暗画像を用いて蓄積画像のオフセット補正を行う処理について、その一例を示す図5により説明する。
S101において、信号処理部101は、制御部109に制御コマンドを発行し、撮像モードを設定する。その後、制御コマンドにより撮像装置100を撮像可能状態に遷移させる。
S102で、信号処理部101は、撮像装置100が撮像可能状態に遷移したかどうかをREADY信号112により判定する。信号処理部101は、READY信号112が活性化し、撮像装置100が撮像可能状態になったと判断したら放射線撮像を開始する。
S103で信号処理部101は同期信号パルスSYNCを制御部109に出力する。制御部109は、同期信号パルスSYNCを受けると図4のタイムチャートに従い撮像パネル105の駆動を開始し、S101で設定された蓄積期間T1の間、照射許可信号114を信号処理部101に出力する。S104で信号処理部101は照射許可信号114を判定し、照射許可信号114が活性化し照射可能状態になったことを検出すると、S105で蓄積期間T1の期間に合わせて放射線の照射が行われるように照射制御部103に制御信号を出力する。
S106で、制御部109は各画素に保持された蓄積信号をフレーム期間内にAD変換し蓄積画像の画素データとして信号処理部101に転送する。信号処理部101は順次転送されてくる画素データをもとに撮像画像S1を生成し、記憶部115に一時保存する。
次に、S107で制御部109は暗電流の蓄積期間T2で各画素に保持された暗電流信号をフレーム期間内にAD変換し暗画像S2の画素データとして信号処理部101に転送する。信号処理部101は順次転送されてくる画素データから、画素位置が一致する撮像画像S1の画素データを記憶部115から読み出し、撮像画像S1の画素データと暗画像S2の画素データとを減算しながらフレーム画像を生成する。
S108で生成されたフレーム画像を後工程に転送する。後工程では、転送されてきたフレーム画像に対し、放射線撮像と並行してパイプライン方式でゲイン補正処理、尖鋭化処理などの画像処理を行い、放射線透視撮影などリアルタイムに画像を観察する撮影であれば処理後の画像を表示部102に転送し表示する。3D撮影など複数枚の画像を元に処理を行うための撮影であれば、画像処理後のフレーム画像は記憶部115に保存する。
S109で信号処理部101は、撮像を終了するかどうかを、不図示の放射線透視スイッチの状態あるいはプログラムされた撮影枚数などをもとに判定する。撮像を継続する場合には、S110でフレーム期間の時間経過を判定する。撮像が終了したと判定した場合は、S111で、現在の撮像モードでの画像生成の終了を伝える制御コマンドを、制御用インターフェース110を通して制御部109に伝え、撮像の終了処理を行う。
S110ではフレーム期間が経過していないと判定した場合は、再度S109の判定処理を行う。フレーム期間を経過したと判定した場合は、S103から次のフレームの撮像を行う。信号処理部101は、撮像終了まで取得した画像の処理を継続する。
図5のフローチャートの例では、S107の処理で撮像画像S1の画素データから暗画像S2の画素データの減算処理を信号処理部101内で行っているが、当該減算処理を制御部109で行ってもよい。この場合は、制御部109に撮像画像S1を一時保存する不図示の記憶部を構成し、フレーム期間に先に読み出す撮像画像S1を前記記憶部に保存する。そして次に前記記憶部から読み出した撮像画像S1の画素データから撮像パネル105から読み出される暗画像S2の画素データを減算処理し、当該処理後の画素データを信号処理部101に転送する。S107での信号処理部101の処理は、転送されてくる画素データに相対する補正用画像の画素データを減算しながらフレーム画像を生成する。
S106で取得した撮像画像S1には、変換部CPと増幅部APのオフセットに加え、読出し系のオフセットが重畳されている。また、S107で取得した暗画像S2にも変換部CPと増幅部APのオフセットに加え、読出し系のオフセットが重畳されている。S107で蓄積画像S1から暗画像S2を減算することにより、互いの画像の読出し系のオフセット成分、および、変換部CPと増幅部APのオフセット成分を相殺し、ノイズやアーチファクトが良好に抑制されたフレーム画像を生成できる。容量CS1〜CS3は転送トランジスタM8、M11、M14により切り離すことができるので、画素信号は次に転送トランジスタM8、M11、M14が導通するまで容量CS1〜CS3に保持される。したがって蓄積信号の読出しは信号生成部から影響を受けない。
<第二実施形態>
本実施形態と第一実施形態の違いは、1フレーム期間の撮像画像と暗画像の生成順である。第一実施形態では、補正に用いる暗画像を撮像画像の後に撮像するため、放射線の照射開始から実際の撮像まで0.5フレームの遅延が発生してしまう。そこで放射線撮像の前に暗画像を取得する動作について、図6を用いて説明する。本実施形態において撮像装置の構成、画像取得・生成のための駆動方法は第一実施形態と略同一である。具体的な違いとしては、撮像開始前のフレーム期間F0において、フレーム期間F0に対応する暗画像を作成する。つまり撮像開始前のフレーム期間F0において、リセット駆動SRSD2の終了と次のサンプルホールド駆動SRSD1開始までの期間T2の間に制御部109は選択画素を順次切り替える。フレーム期間F0の期間Rで暗画像を生成するためのデジタルデータを取得し、撮像開始前のフレーム期間F0に対応する暗画像を生成する。
このとき、制御部への放射同期信号SYNCが入力されるタイミングは定まっていないため、蓄積された暗電流信号の取得タイミングが蓄積信号の直前にならないことがある。そのため、同期信号が入力されるまでは、フレーム期間F0を一定周期で繰り返し、蓄積する暗電流信号を更新する。
図7は、第二実施形態の放射線撮像処理の一例を示すフローチャートである。第一実施形態との差分は前述のとおり撮像画像、暗画像の取得・生成順序が逆であることであり、その他の処理は第一実施形態と略同じである。具体的には、S202で信号処理部101は、撮像装置100が撮像可能状態に遷移したかどうかをREADY信号112により判定する。撮影可能状態の場合は信号処理部101から同期信号パルスSYNCを制御部109に出力する前に、S203にて、制御部109は各画素に保持された暗電流信号をAD変換し暗画像の画素データとして信号処理部101に転送する。信号処理部101は順次転送されてくる画素データをもとに暗画像を生成し、記憶部115に一時保存する。
次にS204で信号処理部101は同期信号パルスSYNCを制御部109に出力し、S105で蓄積期間T1の期間に合わせて放射線の照射が行われるように照射制御部103に制御信号を出力する。このとき、放射線の同期信号がフレーム期間の半分の時間入力されなかった場合は、暗画像の蓄積が不十分なためにS203の暗電流信号の蓄積から再スタートする。
その後は第一実施形態と同様に撮像画像S1の取得を行い、S207で制御部109は各画素に保持された蓄積信号をフレーム期間内にAD変換し撮像画像の画素データとして信号処理部101に転送する。信号処理部101は順次転送されてくる画素データから当該画素データに相対する撮像画像S1の画素データと前記一時保存された補正用の暗画像S2の画素データと、を減算しながらフレーム画像を生成する。
S210ではフレーム期間が経過していないと判定した場合は、再度S109の判定処理を行う。フレーム期間を経過したと判定した場合は、S203から次のフレームの撮像を行う。
<第二実施形態の変形例>
前述の実施形態では、撮像画像と暗画像の撮像時間が略同じで撮像時間の和がフレーム期間と一致する場合の実施形態を示した。フレーム期間で決まる周期に対して、撮像モードによって画像を蓄積する蓄積時間がフレーム期間の略半分と異なる場合は図8のフローチャートに示すように暗電流の蓄積時間T2を計算し、次の制御を行う。図8は前述の図5のS101および、図7のS202の撮像モード設定の詳細を示したフローチャートである。
S301にて信号処理部101はユーザーからのX線ウインドウ幅、撮影周期、ゲイン等の撮像モードの入力を受け付ける。
次にS302にて入力されたX線ウインドウ幅、撮影周期の情報から次の設定を行う。
1.蓄積時間(T1)<1/2フレーム期間の場合
撮像画像を、暗画像を用いて補正するとき、放射線の照射以外同じ条件であることが望ましい。よって、放射線照射の蓄積時間T1と暗電流の蓄積時間T2は同じであることが望ましいため、この場合は、S303にて蓄積期間T1=暗電流蓄積期間T2となるよう、イネーブル信号ENおよびサンプルホールド制御信号TS2を可変制御する。
2.蓄積時間(T1)>1/2フレーム期間の場合
本条件において、暗電流蓄積時間T2を放射線照射の蓄積時間T1と同じにすると1フレーム期間を超えてしまうので、同じにすることはできない。このため、S304にて放射線照射の蓄積時間T1と暗電流の蓄積時間T2の和がフレーム期間になるように、暗電流の蓄積時間T2を短く調整する。この場合、暗画像の値の時間特性をテーブルで持っておき、作成した暗画像に対して係数補正を行うことで、放射線照射の蓄積時間に相当する補正画像を作成する。なお、放射線照射による蓄積時間はフレーム期間から転送期間Rを引いた時間より長くすることはできないため、少なくとも転送期間Rに相当する期間は期間T2とすることができる。したがって、極端に暗電流の蓄積時間が短くなることはない。
次にS305にて信号処理部101は制御部109へ撮像モード設定の制御コマンドを発行する。
<第三実施形態>
第一実施形態および第二実施形態においては、画像信号および暗電流信号はそれぞれ制御部へ転送を行い、その都度画像データを生成する形態を示した。この形態においては、蓄積時間T1が短い場合でもデータの転送時間の制約により、フレームレートを一定以上早めることができない。本実施形態では、データ転送前に蓄積信号と暗電流信号の差分を計算し、転送時間を短縮する構成について示す。
前述の実施形態との違いは、図2(b)で示したS1〜3の出力端子Es1〜3から信号増幅部107の構成である。本実施形態の信号読出部の構成を図9に示す。図2(b)との違いは端子Es3と信号増幅部107の間と、端子Es2と端子Es3の間にスイッチM54が追加になる。この構成では、端子Es2からの画素信号S2はスイッチM54を介して非反転入力端子AMP+に入力される。スイッチM52とM53はスイッチM54と排他的に制御され、反転入力端子AMP−に撮像信号、非反転入力端子AMP+に暗電流信号が入力されるようにスイッチ制御信号TRO1〜4を制御する。これにより信号読み出し部の中で蓄積信号の補正を行うことができる。つまり、図4のフレーム期間F1における期間T2で取得した蓄積信号を容量CS1に保持し、フレーム期間F2における期間T1で取得した蓄積信号を容量CS2に保持する。信号読出部20において2つの蓄積信号の差分をとる補正を行うことで、データ転送の回数を減らしフレームレートを早めることができる。
ただしこの構成では、補正後の蓄積画像のみ転送されるため、後述する暗画像の平均画像を作成することができなくなる。蓄積時間が長い場合や画質を優先させる場合は、第一または第二実施形態の制御を行い、速度を優先させる場合は第三実施形態の制御となるように使い分けると良い。
これまでの実施形態で示したように、蓄積画像と暗画像とを2セットの信号線を用いた非破壊読み出しによる1フレーム期間内でのフレーム画像を作成する。これによって、フレームレートを低下させることなく好適な蓄積画像の作成が行えるだけでなく、また、これまで必要であった補正用画像取得のためのアイドリングタイムが不要となる。
<その他実施形態>
第一〜第三実施形態では、差動で読み出す方法を示したが、読出しは差動でなくシングルエンドで読み出してもよい。また、前述の実施形態では、S1にて撮像信号、S2にて暗電流信号を取得する例を示したが、順番を変えてS1にて暗電流信号、S2にて撮像信号でもよく、その場合は実施形態に記載の端子名・信号名を置き換えた動作となる。
さらに、前述の実施形態では、撮像信号、暗電流信号ともに各1セットの信号線での例を示したが、信号線を複数使用し蓄積時間に差を設けることで、高感度信号と低感度信号の両方をサンプルホールドし、ダイナミックレンジ拡張を行うことも可能である。
また、第一実施形態および第二実施形態では各フレーム期間内での蓄積画像と暗画像の差分計算を行う方法を示した。しかし、蓄積画像の補正に用いる暗画像は照射の都度、複数回取得し、それらの移動平均画像を計算により算出し、作成する。このように移動平均画像を更新することによって蓄積画像の補正を行うことで、さらにランダムノイズを低減することができる。
SYNC 同期信号、EN イネーブル信号、PRES リセット電圧、PCL クランプ信号、TS1〜TS3 サンプルホールド制御信号、WIDE 感度切り替え用制御信号、CS1〜CS3 容量、Es1〜Es3 端子、AMP−、AMP+ 増幅器の入力

Claims (10)

  1. 放射線又は光を電荷に変換する変換部と、前記電荷に応じた信号を増幅する増幅部と、前記変換部及び前記増幅部のリセットを行うリセット部と、前記増幅された信号を保持するための第1及び第2の保持部と、をそれぞれ有する複数の画素が二次元に配置されている画素アレイと、
    前記画素アレイを制御する制御部と、を有する撮像装置であって、
    前記制御部は、
    前記リセット部による連続する2回の前記リセットの間に、放射線又は光が照射される第1の期間に前記変換部によって変換された電荷に応じた第1の信号を前記第1の保持部に保持する第1の制御と、
    前記第1の制御とは別に、前記リセット部による連続する2回の前記リセットの間に、放射線又は光が照射されない第2の期間の前記変換部の電荷に応じた第2の信号を前記第2の保持部に保持する第2の制御とを行い、
    前記第1の制御と前記第2の制御とを含む制御が繰り返し行われることを特徴とする撮像装置。
  2. 前記画素は、前記変換部と前記増幅部とがリセットされたときの前記変換部の電荷に応じた第3の信号を保持する第3保持部を更に含むことを特徴とする請求項1に記載の撮像装置。
  3. 前記第1の期間と前記第2の期間は等しい、
    ことを特徴とする請求項1又は2に記載の撮像装置。
  4. 前記制御部は、前記放射線又は光が照射されるタイミングを示す同期信号を検出し、前記同期信号の周期と前記第1の期間の長さに基づいて前記第2の期間の長さを調整することを特徴とする請求項1又は2に記載の撮像装置。
  5. 前記第1の信号に基づいて撮像画像を生成し、前記第2の信号に基づいて暗画像を生成し、前記暗画像により前記撮像画像を補正することを特徴とする請求項1乃至4のいずれか1項に記載の撮像装置。
  6. 前記撮像画像の補正は、前記放射線が繰り返して照射されるのに応じて前記暗画像を複数回取得し、前記複数回取得した暗画像から算出される平均の暗画像により前記撮像画像を補正することを含み、
    暗画像を取得する毎に前記平均の暗画像は更新されることを特徴とする請求項5に記載の撮像装置。
  7. 放射線又は光の照射が開始される前に前記第2の信号を取得することを特徴とする請求項1乃至6のいずれか1項に記載の撮像装置。
  8. 前記制御部により、前記第1の期間に前記第2の保持部から前記第2の信号を読み出し、前記第2の期間に前記第1の保持部から前記第1の信号を読み出すことを特徴とする請求項1乃至7のいずれか1項に記載の撮像装置。
  9. 前記制御部により、前記第1の保持部に保持されている前記第1の信号と前記第2の保持部に保持されている前記第2の信号との差分を読み出すことを特徴とする請求項1乃至7のいずれか1項に記載の撮像装置。
  10. 放射線を発生する放射線発生装置と、
    請求項1乃至9のいずれか1項に記載の撮像装置と、
    を備えることを特徴とする放射線撮像システム。
JP2018008165A 2018-01-22 2018-01-22 撮像装置及び放射線撮像システム Pending JP2019129343A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018008165A JP2019129343A (ja) 2018-01-22 2018-01-22 撮像装置及び放射線撮像システム
US16/244,500 US20190230299A1 (en) 2018-01-22 2019-01-10 Imaging apparatus and radiation imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018008165A JP2019129343A (ja) 2018-01-22 2018-01-22 撮像装置及び放射線撮像システム

Publications (1)

Publication Number Publication Date
JP2019129343A true JP2019129343A (ja) 2019-08-01

Family

ID=67298847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008165A Pending JP2019129343A (ja) 2018-01-22 2018-01-22 撮像装置及び放射線撮像システム

Country Status (2)

Country Link
US (1) US20190230299A1 (ja)
JP (1) JP2019129343A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508509B2 (ja) 2022-07-25 2024-07-01 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の制御方法、プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033932B2 (ja) * 2018-01-17 2022-03-11 キヤノン株式会社 放射線撮像装置、放射線撮像装置の制御方法およびプログラム
JP2021191391A (ja) 2020-06-05 2021-12-16 キヤノン株式会社 放射線撮像システム、および、放射線撮像装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5460103B2 (ja) * 2009-03-31 2014-04-02 キヤノン株式会社 放射線撮影装置及びその暗電流補正方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508509B2 (ja) 2022-07-25 2024-07-01 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の制御方法、プログラム

Also Published As

Publication number Publication date
US20190230299A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6116152B2 (ja) イメージセンサ駆動装置および方法、放射線画像撮像装置
JP6579741B2 (ja) 撮像装置及び放射線撮像システム
US10557948B2 (en) Radiation imaging system and moving image generation method
JP6608132B2 (ja) 放射線撮像装置および放射線撮像システム
JP7033932B2 (ja) 放射線撮像装置、放射線撮像装置の制御方法およびプログラム
US9838619B2 (en) Radiation imaging apparatus and radiation inspection apparatus
US9823363B2 (en) Radiation imaging apparatus and radiation imaging system
JP2019129343A (ja) 撮像装置及び放射線撮像システム
WO2018083894A1 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の駆動方法およびプログラム
JP6708474B2 (ja) 撮像装置及び放射線撮像システム
JP6936680B2 (ja) 放射線撮像システム、動画像生成方法及びプログラム
US10969501B2 (en) Radiation imaging apparatus, driving method therefor, and radiation imaging system
JP2018014573A (ja) 撮像装置、放射線撮像システム、撮像装置の駆動方法およびプログラム
JP6936681B2 (ja) 放射線撮像システム、動画像生成方法及びプログラム
JP2023091731A (ja) 放射線撮像装置及びその制御方法、プログラム、記憶媒体
US20230199338A1 (en) Radiation imaging apparatus and method of controlling the same, and storage medium
JP6373442B2 (ja) 放射線撮像装置及び放射線検査装置
JP2023088698A (ja) 放射線撮像システム、動画像を撮像する方法およびプログラム
JP2024073166A (ja) 放射線撮像装置、放射線撮像装置の制御方法、及びプログラム
JP2023115684A (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、画像処理装置
JP2015177355A (ja) 撮像装置、その制御方法、及び、放射線検査装置
JP2017200013A (ja) 撮像装置、放射線撮像システム及び撮像装置の制御方法
JP2019087892A (ja) 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の制御方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113