JP2019126103A - センサレスモータの駆動装置 - Google Patents

センサレスモータの駆動装置 Download PDF

Info

Publication number
JP2019126103A
JP2019126103A JP2018002863A JP2018002863A JP2019126103A JP 2019126103 A JP2019126103 A JP 2019126103A JP 2018002863 A JP2018002863 A JP 2018002863A JP 2018002863 A JP2018002863 A JP 2018002863A JP 2019126103 A JP2019126103 A JP 2019126103A
Authority
JP
Japan
Prior art keywords
phase
sensorless motor
induced voltage
drive device
sensorless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018002863A
Other languages
English (en)
Other versions
JP6967976B2 (ja
Inventor
昌彦 日笠
Masahiko Hikasa
昌彦 日笠
英喜 内木
Hideki Uchiki
英喜 内木
巧 神谷
Takumi Kamiya
巧 神谷
雄哉 鶴田
Yuya Tsuruta
雄哉 鶴田
沖中 健二
Kenji Okinaka
健二 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2018002863A priority Critical patent/JP6967976B2/ja
Priority to CN201910022582.6A priority patent/CN110034714B/zh
Publication of JP2019126103A publication Critical patent/JP2019126103A/ja
Application granted granted Critical
Publication of JP6967976B2 publication Critical patent/JP6967976B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】誘起電圧に発生するリンギングを低減することで円滑なセンサレス制御を行うことができるセンサレスモータの駆動装置を提供する。【解決手段】本開示の一態様は、センサレスモータ11の各相のコイルに対する通電を順次切り換えることによりマグネットロータ22を回転させるときに、各相のコイルで発生する誘起電圧に基づいてマグネットロータ22の位置を検出し、検出されるマグネットロータ22の位置に基づいて通電対象となる各相のコイルを決定する誘起駆動を行うセンサレスモータの駆動装置1において、誘起電圧に基づいてマグネットロータ22の位置を検出する演算回路13を有し、演算回路13は、誘起電圧を入力するための各相の入力端子を備え、各相の入力端子の各端子間に、コンデンサ51と抵抗52を設ける。【選択図】図1

Description

本開示は、センサレス制御を行うセンサレスモータの駆動装置に関するものである。
従来、センサレスモータとして、ロータ(マグネットロータ)の磁極位置を検出するセンサを使わない代わりに、ロータが回転するときにステータのコイルに発生する誘起電圧を検出し、その検出信号に基づいてモータ通電信号を生成する、すなわち「誘起駆動」を実施するセンサレス制御を行うセンサレスモータが知られている。
このようなセンサレス制御の従来技術として、特許文献1には、センサレスベクトル方式により電動機を制御するインバータ装置が開示されている。このインバータ装置では、通電するコイルを切り替えながら、通電していない開放相から誘起電圧を検出することにより、そのゼロクロス点を検出し、ロータの位置を検出する電動機のセンサレスベクトル制御が行われる。
特開2009−247197号公報
しかしながら、特許文献1に開示されているインバータ装置のようにセンサレス制御を行う場合、誘起電圧にリンギングが発生すると、誘起電圧のゼロクロス点を検出する際にリンギングの電圧値を誤って読み違えるおそれがある。すると、ロータの位置を正確に検出できないため、円滑なセンサレス制御ができなくなるおそれがある。特に、センサレスモータの低回転時においては、誘起電圧が緩やかに変化することから、リンギングの電圧値を誤って読み違え易くなる。そのため、誘起電圧のゼロクロス点を検出することができず、センサレス制御を行うこと自体が不可能になるおそれがある。また、モータの起動に失敗するおそれもある。なお、誘起電圧のゼロクロス点とは、誘起電圧の符号が正および負の一方から他方に移行する際にゼロを横切る点である。
そこで、本開示は上記した問題点を解決するためになされたものであり、誘起電圧に発生するリンギングを低減することで円滑なセンサレス制御を行うことができるセンサレスモータの駆動装置を提供することを目的とする。
上記課題を解決するためになされた本開示の一形態は、複数相のコイルを備えるステータと、前記ステータに対応して設けられるロータと、を備えるセンサレスモータを有し、前記センサレスモータの各相のコイルに対する通電を順次切り換えることにより前記ロータを回転させるときに、前記各相のコイルで発生する誘起電圧に基づいて前記ロータの位置を検出し、検出される前記ロータの位置に基づいて通電対象となる前記各相のコイルを決定する誘起駆動を行うセンサレスモータの駆動装置において、前記誘起電圧に基づいて前記ロータの位置を検出する演算回路を有し、前記演算回路は、前記誘起電圧を入力するための各相の入力端子を備え、前記各相の入力端子の各端子間に、抵抗成分として作用する回路素子を設けること、を特徴とする。
この態様によれば、各相の入力端子の各端子間に抵抗成分として作用する回路素子を設けることにより、センサレスモータ側から見たインピーダンスの整合を行う。これにより、各相のコイルで発生する誘起電圧に発生するリンギングを低減することができる。そのため、センサレスモータにおける幅広い回転数において、誘起電圧のゼロクロス点を検出することができるので、円滑なセンサレス制御が可能となる。
上記の態様においては、前記回路素子がΔ結線されていること、が好ましい。
この態様によれば、各相の入力端子間に抵抗成分として作用する回路素子をΔ結線することにより、確実にセンサレスモータ側から見たインピーダンスの整合を行って、誘起電圧に発生するリンギングを低減することができる。
上記の態様においては、前記回路素子がY結線されていること、が好ましい。
この態様によれば、各相の入力端子間に抵抗成分として作用する回路素子をY結線することにより、確実にセンサレスモータ側から見たインピーダンスの整合を行って、誘起電圧に発生するリンギングを低減することができる。
上記課題を解決するためになされた本開示の他の形態は、複数相のコイルを備えるステータと、前記ステータに対応して設けられるロータと、を備えるセンサレスモータを有し、前記センサレスモータの各相のコイルに対する通電を順次切り換えることにより前記ロータを回転させるときに、前記各相のコイルで発生する誘起電圧に基づいて前記ロータの位置を検出し、検出される前記ロータの位置に基づいて通電対象となる前記各相のコイルを決定する誘起駆動を行うセンサレスモータの駆動装置において、前記誘起電圧に基づいて前記ロータの位置を検出する演算回路を有し、前記演算回路は、前記誘起電圧を入力するための各相の入力端子を備え、前記各相の入力端子とグランドとの間に、抵抗成分として作用する回路素子を設けること、が好ましい。
この態様によれば、各相のコイルで発生する誘起電圧に発生するリンギングを低減することができる。そのため、センサレスモータにおける幅広い回転数において、誘起電圧のゼロクロス点を検出することができるので、円滑なセンサレス制御が可能となる。
上記の態様においては、前記回路素子は、前記センサレスモータと前記各相の入力端子とを繋ぐ配線における何れかの位置で前記配線に接続するように設けられていること、が好ましい。
この態様によれば、抵抗成分として作用する回路素子は、センサレスモータから演算回路の各相の入力端子までの、どの位置で設けられていてもよい。そのため、回路素子を設ける箇所に制限が少ないので、様々な仕様のセンサレスモータの駆動装置に対応できる。
上記の態様においては、前記回路素子として、直列に接続されるコンデンサと抵抗を使用すること、が好ましい。
上記の態様においては、前記コンデンサの容量は、前記誘起電圧に発生するリンギングの周波数であるリンギング周波数のうちで対象とするリンギング周波数成分にて前記コンデンサのインピーダンスが低インピーダンスになる容量であり、前記抵抗の抵抗値は、10Ω〜数百Ωであること、が好ましい。
この態様によれば、効果的にリンギングを低減できるので、ゼロクロス点の検出がさらに容易になる。
本開示のセンサレスモータの駆動装置によれば、誘起電圧に発生するリンギングを低減することで円滑なセンサレス制御を行うことができる。
第1実施形態におけるセンサレスモータの駆動装置の構成を示すブロック図である。 第1実施形態におけるU相の電圧波形を示す図である。 図2の誘起電圧の部分の拡大図である。 第1実施形態の変形例におけるセンサレスモータの駆動装置の構成を示すブロック図である。 第2実施形態におけるセンサレスモータの駆動装置の構成を示すブロック図である。 第3実施形態におけるセンサレスモータの駆動装置の構成を示すブロック図である。 従来例におけるU相の電圧波形を示す図である。 図7の誘起電圧の部分の拡大図である。
本開示のセンサレスモータの駆動装置の実施形態について、図面を参照しながら詳細に説明する。
[第1実施形態]
まず、第1実施形態について説明する。なお、センサレスモータの駆動装置の全体構成と作用の概要について説明した後に、誘起電圧に発生するリンギングを低減するための構成について説明する。
本実施形態のセンサレスモータの駆動装置1は、例えば、車両用エンジンに燃料を供給する燃料ポンプの駆動源として使用され、センサレス制御を行うセンサレス駆動方式を採用している。図1に示すように、センサレスモータの駆動装置1は、センサレスモータ11と駆動回路12と演算回路13を有する。
センサレスモータ11は、例えば3相のブラシレスモータであり、ステータ21とマグネットロータ22(本開示の「ロータ」の一例)とを備えている。ステータ21は、3相のコイルとしてU相コイル21UとV相コイル21VとW相コイル21Wを備えている。マグネットロータ22は、ステータ21に対応して設けられている。なお、図1では、マグネットロータ22の極数は、一例として「4」と示されているが、特にこの極数に限定されるものではない。
駆動回路12は、スイッチング素子としてのトランジスタTr1,Tr2,Tr3,Tr4,Tr5,Tr6を備えている。このトランジスタTr1,Tr2,Tr3,Tr4,Tr5,Tr6は、フィルタ回路等31を介して、電源32に接続されている。そして、駆動回路12において、各トランジスタが所定のタイミングでスイッチングされることにより、センサレスモータ11(マグネットロータ22)の回転駆動が制御される。
本実施形態では、直列に接続されるトランジスタTr1とトランジスタTr2の間の部分が、U相配線41Aにより、センサレスモータ11のU相コイル21Uに接続されている。また、直列に接続されるトランジスタTr3とトランジスタTr4の間の部分が、V相配線41Bにより、センサレスモータ11のV相コイル21Vに接続されている。さらに、直列に接続されるトランジスタTr5とトランジスタTr6の間の部分が、W相配線41Cにより、センサレスモータ11のW相コイル21Wに接続されている。
演算回路13は、マイコン等により構成され、各相のコイル(U相コイル21UとV相コイル21VとW相コイル21W)で発生する誘起電圧に基づいて、マグネットロータ22の磁極位置(ロータの位置)を検出するロータ位置検出回路を備えている。そして、この演算回路13は、誘起電圧を入力するための各相の入力端子(誘起電圧入力端子)として、U相入力端子13UとV相入力端子13VとW相入力端子13Wを備えている。
U相入力端子13Uは、U相配線41Aによりセンサレスモータ11のU相コイル21Uに接続されている。また、V相入力端子13Vは、V相配線41Bによりセンサレスモータ11のV相コイル21Vに接続されている。さらに、W相入力端子13Wは、W相配線41Cによりセンサレスモータ11のW相コイル21Wに接続されている。
このような構成のセンサレスモータの駆動装置1は、各相のコイルに対する通電を順次切り換えることによりマグネットロータ22を回転させる。そして、センサレスモータの駆動装置1は、センサレス駆動方式を採用しており、ホール素子を使わずに、各相のコイルで発生する誘起電圧を利用して、ステータ21に対するマグネットロータ22の磁極位置を検出する。すなわち、センサレスモータの駆動装置1は、マグネットロータ22を回転させるときに、各相のコイルで発生する誘起電圧に基づいてマグネットロータ22の位置を検出し、検出されるマグネットロータ22の位置に基づいて通電対象となる各相のコイルを決定する「誘起駆動」を行う。
次に、誘起電圧に発生するリンギングを低減するための構成について説明する。
燃費向上の観点から車両の運転状況に応じて燃料ポンプにより必要量だけ燃料タンクから車両用エンジンに燃料を供給するために、要求される燃料の供給量に応じて効率的に燃料ポンプを駆動させるように制御したいという要求がある。そして、この要求を満たすために、要求される燃料の供給量が少ない低流量域で燃料ポンプを制御しなければならない場合もあり、この場合にはセンサレスモータ11を低回転で回すことが要求される。
ここで、図7と図8に示すように、従来より、誘起電圧において、駆動回路12の出力電圧の遷移時のスイッチングに伴うリンギングが発生していた。そのため、誘起電圧のゼロクロス点を検出する際にリンギングの電圧値を誤って読み違えてしまうことにより、マグネットロータ22の磁極位置を正確に検出できなくなるので、円滑なセンサレス制御ができないおそれがあった。特に、センサレスモータ11を低回転で回すときにおいては、誘起電圧が緩やかに変化することから、リンギングの電圧値を誤って読み違え易くなるので、マグネットロータ22の磁極位置を検出できず、センサレス制御を行うこと自体が不可能になるおそれもある。
このようなおそれに対して、例えば、誘起電圧に発生するリンギングがなるべく収まった時点で演算回路13により誘起電圧を検出するようにすることが考えられる。しかしながら、リンギングが収まってから演算回路13により誘起電圧を検出するので、円滑なセンサレス制御を行うためには、演算回路13におけるサンプリング等の演算処理を高速で行う必要性が生じる。そのため、演算回路13として高機能の回路を備える必要があり、コストの増加や回路の大型化のおそれがある。また、あらゆる条件下のもとリンギングが収まった時点を規定することは難しいことから、センサレスモータ11の起動時や低回転時において起動失敗や脱調という現象が発生する確率が非常に高くなる。
そこで、本実施形態では、センサレスモータ11のコイルで発生する誘起電圧を入力するU相とV相とW相の各相の端子間に直列にコンデンサと抵抗を実装することで、センサレスモータ11側から見たインピーダンスの整合を行う。具体的には、図1に示すように、演算回路13における各相の入力端子(U相入力端子13UとV相入力端子13VとW相入力端子13W)の各端子間に、抵抗成分として作用する回路素子として、直列に接続されるコンデンサ51と抵抗52を設ける。そして、本実施形態では、図1に示すように、コンデンサ51と抵抗52がΔ結線されているΔ結線部61を設けている。
さらに詳しくは、図1に示すように、配線42A(UV相間配線)と配線42B(UW相間配線)と配線42C(VW相間配線)において、各々、コンデンサ51と抵抗52が設けられている。なお、配線42AはU相配線41AとV相配線41Bに接続するものであり、配線42BはU相配線41AとW相配線41Cに接続するものであり、配線42CはV相配線41BとW相配線41Cに接続するものである。
このようにして、演算回路13の各相の入力端子(U相入力端子13UとV相入力端子13VとW相入力端子13W)の各端子間に、直列に接続されるコンデンサ51と抵抗52を設けることによりインピーダンス整合回路を形成し、センサレスモータ11側から見たインピーダンスの整合を行う。ここで、「センサレスモータ11側から見たインピーダンスの整合を行う」とは、センサレスモータ11と演算回路13との間においてインピーダンスの整合を行う、ということである。
さらに詳しく述べると、本実施形態におけるインピーダンス整合回路は、一般的なインピーダンス整合回路とは異なり、誘起電圧検出時にはインピーダンス整合回路として動作し、センサレスモータ11の通電時には不要な電流を流さないように設計する必要がある。また、センサレスモータ11の駆動時において、誘起電圧検出端子(演算回路13における各相の入力端子)とモータ通電端子(ステータ21の各相のコイルに繋がる端子)が順次切り替わる。そのため、一般的な信号線とGND間でのインピーダンス整合と異なるΔ結線や(後述する)Y結線という形で構成する必要がある。
これにより、図2と図3に示すように、誘起電圧に発生するリンギングを従来例(図7と図8参照)と比べて低減することができる。なお、図2と図3と図7と図8は一例としてU相の電圧波形を示しているが、V相やW相の電圧波形についても同様に示される。
そのため、精度の高い誘起電圧の検出が可能となり、演算回路13が誘起電圧のゼロクロス点を検出する際に、演算回路13はリンギングの電圧値を誤って読み違え難くなる。したがって、演算回路13は、正しい誘起電圧の値を検出できるので、誘起電圧のゼロクロス点を検出し易くなる。ゆえに、マグネットロータ22の磁極位置を正確に検出できるので、円滑なセンサレス制御を行うことができる。
また、センサレスモータ11の低回転時において、誘起電圧が緩やかに変化しても、演算回路13はリンギングの電圧値を誤って読み違え難くなる。そのため、演算回路13は、センサレスモータ11における幅広い回転数において、安定して誘起電圧のゼロクロス点を検出してマグネットロータ22の磁極位置を検出できる。したがって、センサレスモータ11の回転数に関わらず安定してセンサレス制御を行うことができる。
なお、コンデンサ51は、低周波成分を通さない一方で高周波成分を通すことにより、高周波のリンギングの周波数成分を抵抗52に通す役割を有する。
ここで、実装されるコンデンサ51は対象とするリンギング周波数成分で低インピーダンスになる容量のものを選択し、抵抗52はその抵抗値が10Ω〜数百Ωであるものを選択する。なお、数百Ωとは、例えば200Ω〜300Ωである。
そこで、コンデンサ51と抵抗52の詳しい選択方法に関して以下に説明する。まず、誘起電圧に発生するリンギングの周波数であるリンギング周波数f_rinを測定波形より読み取り、このリンギング周波数f_rinでのセンサレスモータ11のインピーダンスZ_mを算出する。そして、算出したインピーダンスZ_mに近い抵抗をΔ結線部61の抵抗52として選定する。また、Δ結線部61のコンデンサ51については、そのインピーダンスjZ_mがリンギング周波数f_rinの10倍程度の周波数f_rin´でインピーダンスZ_mの1/100以下になるものを選択する。
さらに詳しく、具体的な計算例を挙げて以下に説明する。まず、測定の結果、例えば、リンギング周波数f_rin=80[kHz]、センサレスモータ11の相間抵抗R_m=100[mΩ]、センサレスモータ11の相間インダクタンスL_m=200[uH]であるとする。そこで、この測定結果の値をもとにセンサレスモータ11のインピーダンスZ_mを以下の数式を用いて算出すると、インピーダンスZ_m=100.63[Ω]となる。
Figure 2019126103
そして、この算出結果をもとに、算出したインピーダンスZ_mに近い抵抗をΔ結線部61の抵抗52として選定する。そこで、Δ結線部61の抵抗52として、その抵抗値R_Δが100Ωであるものを選択する。
また、Δ結線部61のコンデンサ51については、リンギング周波数f_rinの10倍の周波数f_rin´と、センサレスモータ11のインピーダンスZ_mの100分の1のインピーダンスjZ_mに基づいて、コンデンサ51の容量C_Δを算出する。ここで、前記の測定の結果をもとに、周波数f_rin´=800[kHz]であり、インピーダンスjZ_m=1.01[Ω]であるとする。そこで、コンデンサ51の容量C_Δを以下の数式を用いて算出すると、容量C_Δ=0.20[uF]となる。
Figure 2019126103
そして、この算出結果をもとに、コンデンサ51として、その容量C_Δが0.20[uF]であるものを選択する。
なお、センサレスモータ11と演算回路13間のハーネス長がリンギング周波数f_rinの波長の1/20を超える場合には、上記の数式に特性インピーダンスやハーネス長によるインピーダンス変換を考慮することで同様の計算が可能となる。
以上のように、本実施形態では、センサレスモータ11の駆動装置1において、U相入力端子13UとV相入力端子13VとW相入力端子13Wからなる各相の入力端子間に、直列に接続されるコンデンサ51と抵抗52を設ける。
このようにして本実施形態では、コンデンサ51と抵抗52を設けることにより、センサレスモータ11側から見たインピーダンスの整合を行う。これにより、U相コイル21UとV相コイル21VとW相コイル21Wで発生する誘起電圧に発生するリンギングを低減することができる。そのため、センサレスモータ11における幅広い回転数において、誘起電圧のゼロクロス点を検出することができるので、円滑なセンサレス制御が可能となる。
また、本実施形態では、Δ結線部61において、直列に接続されるコンデンサ51と抵抗52がΔ結線されている。
このようにして、各相の入力端子間にコンデンサ51と抵抗52をΔ結線することにより、確実にセンサレスモータ11側から見たインピーダンスの整合を行って、誘起電圧に発生するリンギングを低減することができる。
また、図1に示す例では、Δ結線部61は、フィルタ回路等33に対して演算回路13側の位置に形成されている。しかしながら、Δ結線部61は、センサレスモータ11から演算回路13の各相の入力端子までの何れかの位置において形成されていればよい。そこで、変形例として、図4に示すように、Δ結線部61は、フィルタ回路等33に対してセンサレスモータ11側の位置に形成されていてもよい。なお、図4に示す例では、Δ結線部61は、さらに、トランジスタTr1,Tr2,Tr3,Tr4,Tr5,Tr6に対してセンサレスモータ11側の位置に形成されている。
このように本実施形態では、コンデンサ51と抵抗52は、センサレスモータ11と各相の入力端子とを繋ぐ配線(41A,41B,41C)における何れかの位置で当該配線(41A,41B,41C)と接続するように設けられている。
このようにして、Δ結線部61は、センサレスモータ11から演算回路13の各相の入力端子までの、どの位置で構成されていてもよい。そのため、コンデンサ51と抵抗52の結線箇所に制限が少ないので、様々な仕様のセンサレスモータの駆動装置1に対応できる。
また、本実施形態では、コンデンサ51の容量は、リンギング周波数のうちで対象とするリンギング周波数成分(周波数f_rin´)にてコンデンサ51のインピーダンスjZ_mが低インピーダンスになる容量である。ここで、「低インピーダンス」とは、センサレスモータ11のインピーダンスZ_mよりも低いインピーダンスであり、例えば、インピーダンスZ_mの1/100以下のインピーダンスである。また、抵抗52の抵抗値は、10Ω〜数百Ωである。これにより、効果的にリンギングを低減できるので、ゼロクロス点の検出がさらに容易になる。
[第2実施形態]
次に、第2実施形態について説明するが、第1実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。本実施形態では、図5に示すように、コンデンサ51と抵抗52がY結線されているY結線部62を設けている。
詳しくは、図5に示すように、配線43A(U相中点間配線)と配線43B(V相中点間配線)と配線43C(W相中点間配線)において、各々、コンデンサ51と抵抗52が設けられている。なお、配線43AはU相配線41Aと中点44に接続するものであり、配線43BはV相配線41Bと中点44に接続するものであり、配線43CはW相配線41Cと中点44に接続するものである。
また、本実施形態においても、コンデンサ51と抵抗52は、センサレスモータ11と各相の入力端子とを繋ぐ配線(41A,41B,41C)における何れかの位置で当該配線(41A,41B,41C)と接続するように設けられていればよい。
以上のように、本実施形態では、Y結線部62において、直列に接続されるコンデンサ51と抵抗52がY結線されている。
このようにして、各相の入力端子間にコンデンサ51と抵抗52をY結線することにより、確実にセンサレスモータ11側から見たインピーダンスの整合を行って、誘起電圧に発生するリンギングを低減することができる。
[第3実施形態]
次に、第3実施形態について説明するが、第1,2実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。本実施形態では、センサレスモータ11のコイルで発生する誘起電圧を入力するU相とV相とW相の各相の端子とグランドGNDとの間に、直列にコンデンサ51と抵抗52を実装する。具体的には、図6に示すように、演算回路13における各相の入力端子(U相入力端子13UとV相入力端子13VとW相入力端子13W)の各端子とグランドGNDとの間に、抵抗成分として作用する回路素子として、直列に接続されるコンデンサ51と抵抗52を設ける。
詳しくは、図6に示すように、配線45A(U相グランド間配線)と配線45B(V相グランド間配線)と配線45C(W相グランド間配線)において、各々、コンデンサ51と抵抗52が設けられている。なお、配線45AはU相配線41AとグランドGNDに接続するものであり、配線45BはV相配線41BとグランドGNDに接続するものであり、配線45CはW相配線41CとグランドGNDに接続するものである。
なお、スナバ回路は、基板内での浮遊インダクタンスを打ち消すことを目的としているので、コンデンサの容量の値や、抵抗値が本実施形態のコンデンサ51と抵抗52とは大きく異なる。特に、スナバ回路の場合には抵抗の抵抗値は数Ω程度であるが、本実施形態の場合には抵抗52の抵抗値は数百Ωでもその効果を得ることができる。また、コンデンサと抵抗の基板における実装位置について、スナバ回路の場合にはMOSFET周囲の位置である必要性があるが、本実施形態の場合には演算回路13の入力端子付近の位置であってもよい。
また、本実施形態においても、コンデンサ51と抵抗52は、センサレスモータ11と各相の入力端子とを繋ぐ配線(41A,41B,41C)における何れかの位置で当該配線(41A,41B,41C)と接続するように設けられていればよい。
以上のように、本実施形態では、センサレスモータの駆動装置1において、U相入力端子13UとV相入力端子13VとW相入力端子13Wからなる各相の入力端子とグランドGNDとの間に、直列に接続されるコンデンサ51と抵抗52を設ける。
これにより、U相コイル21UとV相コイル21VとW相コイル21Wで発生する誘起電圧に発生するリンギングを低減することができる。そのため、センサレスモータ11における幅広い回転数において、誘起電圧のゼロクロス点を検出することができるので、円滑なセンサレス制御が可能となる。
なお、上記した実施の形態は単なる例示にすぎず、本開示を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。
例えば、抵抗成分として作用する回路素子として、抵抗52の代わりに、あるいは、抵抗52とともに、インダクタ(コイル)が設けられていてもよい。また、図1等において、コンデンサ51は抵抗52よりも図面の上側の位置に設けられているが、これに限定されず、コンデンサ51は抵抗52よりも図面の下側の位置に設けられていてもよい。
1 センサレスモータの駆動装置
11 センサレスモータ
12 駆動回路
13 演算回路
13U U相入力端子
13V V相入力端子
13W W相入力端子
21 ステータ
21U U相コイル
21V V相コイル
21W W相コイル
22 マグネットロータ
41A U相配線
41B V相配線
41C W相配線
51 コンデンサ
52 抵抗
61 Δ結線部
62 Y結線部
GND グランド

Claims (7)

  1. 複数相のコイルを備えるステータと、
    前記ステータに対応して設けられるロータと、を備えるセンサレスモータを有し、
    前記センサレスモータの各相のコイルに対する通電を順次切り換えることにより前記ロータを回転させるときに、前記各相のコイルで発生する誘起電圧に基づいて前記ロータの位置を検出し、検出される前記ロータの位置に基づいて通電対象となる前記各相のコイルを決定する誘起駆動を行うセンサレスモータの駆動装置において、
    前記誘起電圧に基づいて前記ロータの位置を検出する演算回路を有し、
    前記演算回路は、前記誘起電圧を入力するための各相の入力端子を備え、
    前記各相の入力端子の各端子間に、抵抗成分として作用する回路素子を設けること、
    を特徴とするセンサレスモータの駆動装置。
  2. 請求項1のセンサレスモータの駆動装置において、
    前記回路素子がΔ結線されていること、
    を特徴とするセンサレスモータの駆動装置。
  3. 請求項1のセンサレスモータの駆動装置において、
    前記回路素子がY結線されていること、
    を特徴とするセンサレスモータの駆動装置。
  4. 複数相のコイルを備えるステータと、
    前記ステータに対応して設けられるロータと、を備えるセンサレスモータを有し、
    前記センサレスモータの各相のコイルに対する通電を順次切り換えることにより前記ロータを回転させるときに、前記各相のコイルで発生する誘起電圧に基づいて前記ロータの位置を検出し、検出される前記ロータの位置に基づいて通電対象となる前記各相のコイルを決定する誘起駆動を行うセンサレスモータの駆動装置において、
    前記誘起電圧に基づいて前記ロータの位置を検出する演算回路を有し、
    前記演算回路は、前記誘起電圧を入力するための各相の入力端子を備え、
    前記各相の入力端子とグランドとの間に、抵抗成分として作用する回路素子を設けること、
    を特徴とするセンサレスモータの駆動装置。
  5. 請求項1乃至4のいずれか1つのセンサレスモータの駆動装置において、
    前記回路素子は、前記センサレスモータと前記各相の入力端子とを繋ぐ配線における何れかの位置で前記配線に接続するように設けられていること、
    を特徴とするセンサレスモータの駆動装置。
  6. 請求項1乃至5のいずれか1つのセンサレスモータの駆動装置において、
    前記回路素子として、直列に接続されるコンデンサと抵抗を使用すること、
    を特徴とするセンサレスモータの駆動装置。
  7. 請求項6のセンサレスモータの駆動装置において、
    前記コンデンサの容量は、前記誘起電圧に発生するリンギングの周波数であるリンギング周波数のうちで対象とするリンギング周波数成分にて前記コンデンサのインピーダンスが低インピーダンスになる容量であり、
    前記抵抗の抵抗値は、10Ω〜数百Ωであること、
    を特徴とするセンサレスモータの駆動装置。
JP2018002863A 2018-01-11 2018-01-11 センサレスモータの駆動装置 Active JP6967976B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018002863A JP6967976B2 (ja) 2018-01-11 2018-01-11 センサレスモータの駆動装置
CN201910022582.6A CN110034714B (zh) 2018-01-11 2019-01-10 无传感器电动机的驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002863A JP6967976B2 (ja) 2018-01-11 2018-01-11 センサレスモータの駆動装置

Publications (2)

Publication Number Publication Date
JP2019126103A true JP2019126103A (ja) 2019-07-25
JP6967976B2 JP6967976B2 (ja) 2021-11-17

Family

ID=67235485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002863A Active JP6967976B2 (ja) 2018-01-11 2018-01-11 センサレスモータの駆動装置

Country Status (2)

Country Link
JP (1) JP6967976B2 (ja)
CN (1) CN110034714B (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205597A (ja) * 1992-12-28 1994-07-22 Toshiba Corp ブラシレスモータの駆動装置
JP2003111267A (ja) * 2001-10-01 2003-04-11 Otis Elevator Co モータ駆動装置
JP2007202294A (ja) * 2006-01-26 2007-08-09 Valeo Thermal Systems Japan Corp センサレス・ブラシレスモータの駆動制御方法及びその装置
WO2013111575A1 (ja) * 2012-01-25 2013-08-01 パナソニック株式会社 モータ駆動装置およびこれを用いた冷蔵庫

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205597A (ja) * 1992-12-28 1994-07-22 Toshiba Corp ブラシレスモータの駆動装置
JP2003111267A (ja) * 2001-10-01 2003-04-11 Otis Elevator Co モータ駆動装置
JP2007202294A (ja) * 2006-01-26 2007-08-09 Valeo Thermal Systems Japan Corp センサレス・ブラシレスモータの駆動制御方法及びその装置
WO2013111575A1 (ja) * 2012-01-25 2013-08-01 パナソニック株式会社 モータ駆動装置およびこれを用いた冷蔵庫

Also Published As

Publication number Publication date
JP6967976B2 (ja) 2021-11-17
CN110034714A (zh) 2019-07-19
CN110034714B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
TW529237B (en) Device for the electronic commutation of a brushless DC motor
JP5504878B2 (ja) 車両用発電機
JP4081100B2 (ja) 三相dcブラシレスモータ及び巻線方法
KR20090052905A (ko) 모터 구동 제어 장치 및 모터의 구동 제어 시스템
CN108702116B (zh) 通过电流整形的最佳转矩脉动减小
CN115389930A (zh) 电机故障检测的系统和方法
US8134317B2 (en) Motor controller, motor drive system and pump unit
US9929682B2 (en) Motor control device
JP4428440B2 (ja) ロータ位置検出回路,モータ駆動装置及びロータ位置検出方法
Im et al. Static and dynamic eccentricity faults diagnosis in PM synchronous motor using planar search coil
US8664905B2 (en) Control of brushless motor
US20120249034A1 (en) Position sensing circuit for brushless motors
JP5371502B2 (ja) モータ駆動装置及びモータ駆動方法
CN110034714B (zh) 无传感器电动机的驱动装置
CN108400731B (zh) 针对无刷dc控制进行自动超前角调整的方法和装置
JP5405224B2 (ja) モータ駆動装置、及びモータに備えられたロータの相対位置の判別方法
JP4455070B2 (ja) モータ制御装置,モータの制御方法及びコンピュータプログラム
JP2019161874A (ja) モータ制御装置
CN112534708B (zh) 用于运行电机的方法、控制器和电机
JP7447835B2 (ja) モータ制御装置
JP2019161875A (ja) モータ制御装置
JP4003700B2 (ja) 6線式3相ブラシレスモータ制御装置
WO2021106609A1 (ja) 電力変換装置
JP2011055586A (ja) モータ駆動制御回路
JP2006050815A (ja) 同期モータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211026

R150 Certificate of patent or registration of utility model

Ref document number: 6967976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250