JP2019124396A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2019124396A
JP2019124396A JP2018004607A JP2018004607A JP2019124396A JP 2019124396 A JP2019124396 A JP 2019124396A JP 2018004607 A JP2018004607 A JP 2018004607A JP 2018004607 A JP2018004607 A JP 2018004607A JP 2019124396 A JP2019124396 A JP 2019124396A
Authority
JP
Japan
Prior art keywords
heat exchange
cold water
heat
exchange unit
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018004607A
Other languages
Japanese (ja)
Other versions
JP7045860B2 (en
Inventor
直樹 中北
Naoki Nakakita
直樹 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2018004607A priority Critical patent/JP7045860B2/en
Publication of JP2019124396A publication Critical patent/JP2019124396A/en
Application granted granted Critical
Publication of JP7045860B2 publication Critical patent/JP7045860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To save energy of an air conditioning system while materializing proper air-conditioning according to fluctuation of cooling load, the air conditioning system comprising a supply air channel in which supply air flows, a heat source part generating cold water, and a heat exchange part capable of cooling the supply air flowing in the supply air channel by heat exchange with the cold water.SOLUTION: The air conditioning system comprises: a heat exchange part 2 which comprises a primary heat exchange part 3 and a secondary heat exchange part 4 disposed at downstream side thereof: a heat source part 50 which is configured to independently generate low-temperature cold water LCW and intermediate-temperature cold water MCW; and a control part 60 which performs such a latent/sensible separation air-conditioning operation that the intermediate-temperature cold water MCW is supplied to the primary heat exchange part 3 and the low-temperature cold water LCW is supplied to the secondary heat exchange part 4 in high cooling load in which cooling load is high. The control part 60 also performs such a large temperature difference air-conditioning operation that cold water is supplied to the secondary heat exchange part 4 and the cold water discharged from the secondary heat exchange part 4 is supplied to the primary heat exchange part 3 in low cooling load in which the cooling load is lower than that in the high cooling load.SELECTED DRAWING: Figure 1

Description

本発明は、給気が通流する給気風路と、冷水を生成する熱源部と、前記熱源部から供給される冷水との熱交換により前記給気風路を通流する給気を冷却可能な熱交換部と、を備えた空調システムに関する。   The present invention can cool the charge air flowing through the charge air passage by heat exchange between the charge air passage through which the charge air flows, the heat source unit generating cold water, and the cold water supplied from the heat source unit. The present invention relates to an air conditioning system provided with a heat exchange unit.

上記のような空調システムとして、夏季での冷房運転時において、給気風路において上流側に設けられた1次熱交換部に対して熱源部から例えば13℃の中温冷水を供給すると共に、給気風路において1次熱交換部よりも下流側に設けられた2次熱交換部に対して熱源部から上記中温冷水よりも低温の例えば6℃の低温冷水を供給する潜顕分離空調運転を実行するものが知られている(例えば、非特許文献1を参照。)。   In the air conditioning system as described above, during the cooling operation in summer, medium temperature cold water of, for example, 13 ° C. is supplied from the heat source unit to the primary heat exchange unit provided on the upstream side in the supply air passage. The latent heat separation air conditioning operation which supplies low temperature cold water of, for example, 6 ° C. lower than the medium temperature cold water from the heat source unit to the secondary heat exchange unit provided downstream of the primary heat exchange unit in the passage Those are known (see, for example, Non-Patent Document 1).

そして、このような空調システムでは、潜顕分離空調運転において、1次熱交換部では、外気を中温冷水との熱交換により露点を下回らない温度に冷却する形態で顕熱処理を行うことができ、一方、2次熱交換部では、1次熱交換部である程度冷却された外気を低温冷水との熱交換により露点よりも低い温度に冷却する形態で潜熱処理を行うことができる。そして、潜顕分離空調運転を実行することにより、低温冷水の生成量を削減して、高効率化を図ることができる。   And in such an air conditioning system, in the latent microscopic separation air conditioning operation, in the primary heat exchange section, sensible heat treatment can be performed in a form of cooling the outside air to a temperature not falling below the dew point by heat exchange with medium temperature cold water, On the other hand, in the secondary heat exchange unit, the latent heat treatment can be performed in a form of cooling the partially cooled external air which is the primary heat exchange unit to a temperature lower than the dew point by heat exchange with low temperature cold water. And, by executing the latent microscope separation air conditioning operation, it is possible to reduce the generation amount of low temperature cold water and to achieve high efficiency.

森ビル株式会社 設計統括部設備設計部 大森一郎、「虎ノ門ヒルズ森タワーの コミッショニングプロジェクト」、[online]、2015年01月06日掲載、建築設備コミッショニング協会 2015年 公開シンポジウム、[2017年12月20日検索]、インターネット(URL:http://www.bsca.or.jp/event/wp-content/uploads/sites/5/2015/01/04_PresentationToranomon-Hills_Omori_Okushi2.pdf)Mori Building Co., Ltd. Design Planning Department Equipment Design Department Ichiro Omori, "Commissioning Project of Toranomon Hills Mori Tower", [online], published on January 06, 2015, Building Equipment Commissioning Association 2015 Open Symposium, [Dec. 20, 2017] Day Search], Internet (URL: http://www.bsca.or.jp/event/wp-content/uploads/sites/5/2015/01/04_PresentationToranomon-Hills_Omori_Okushi2.pdf)

前述のような潜顕分離空調運転を実行する空調システムでは、中間期等の冷房負荷が比較的低い低冷房負荷時において、効率が低下するという問題が生じる。
即ち、夫々の熱交換部は最大の冷房負荷時を想定して選定されているため、低冷房負荷時において、夫々の熱交換部での冷房能力が過剰となる場合がある。また、低冷房負荷時において、負荷の低下に対応するべく1次熱交換部及び2次熱交換部への冷水の供給量を低下させる必要があるが、冷水の供給量を調整するための流量制御弁の制限により十分に冷水の供給量を低下させることができない場合がある。この場合、1次熱交換部及び2次熱交換部の冷却量が過剰となる上に、熱源部における往き冷水と還り冷水との往還温度差が小さくなり、熱源部での熱効率が低下する。
In the air conditioning system that executes the latent microscopic separation air conditioning operation as described above, there is a problem that the efficiency is lowered at the time of the low cooling load such as the intermediate period when the cooling load is relatively low.
That is, since each heat exchange part is selected on the assumption of the maximum cooling load time, the cooling capacity in each heat exchange part may become excessive at the time of low cooling load. In addition, at the time of low cooling load, it is necessary to reduce the supply amount of cold water to the primary heat exchange unit and the secondary heat exchange unit to correspond to the reduction of the load, but the flow rate for adjusting the supply amount of cold water Due to the restriction of the control valve, it may not be possible to sufficiently reduce the supply of cold water. In this case, the amount of cooling of the primary heat exchange unit and the secondary heat exchange unit becomes excessive, and the difference between the return temperature of the returning cold water and the return cold water in the heat source unit decreases, and the heat efficiency in the heat source unit decreases.

更に、低冷房負荷時において、2次熱交換部での低温冷水による処理熱量に対して1次熱交換部での中温冷水による処理熱量を大きくすることで、中温冷水側での往還温度差を大きいものに維持すると、1次熱交換部から2次熱交換部へ供給される空気温度の低下に伴って、低温冷水側での往還温度差が小さくなる。このため、1次熱交換部では、低冷房負荷時においても空気の出口温度を一定とするように中温冷水の供給量を制御する必要があり、それに応じて、1次熱交換部でも、1次熱交換部への中温冷水に対して最大冷房負荷時と同様の比率で低温冷水を供給することが必要となる。   Furthermore, at the time of low cooling load, by making the amount of heat treated with medium temperature cold water in the primary heat exchange portion larger than the amount of heat treated with low temperature cold water in the secondary heat exchange portion, the return temperature difference on the medium temperature cold water side If the temperature is maintained large, the temperature difference between the low temperature cold water side and the low temperature cold water side decreases as the temperature of the air supplied from the primary heat exchange section to the secondary heat exchange section decreases. For this reason, in the primary heat exchange unit, it is necessary to control the supply amount of medium temperature cold water so that the outlet temperature of air is constant even under a low cooling load, and accordingly, the primary heat exchange unit as well. It is necessary to supply low temperature cold water at the same ratio as the maximum cooling load to medium temperature cold water to the next heat exchange unit.

この実情に鑑み、本発明の主たる課題は、給気が通流する給気風路と、冷水を生成する熱源部と、前記熱源部から供給される冷水との熱交換により前記給気風路を通流する給気を冷却可能な熱交換部と、を備えた空調システムにおいて、冷房負荷の変動に応じて適切な空調を実現しながら省エネルギー化を図ることができる技術を提供する点にある。   In view of this situation, the main object of the present invention is to pass the air supply path by heat exchange between the air supply air path through which the air supply flows, the heat source unit for generating cold water, and the cold water supplied from the heat source unit. An air conditioning system including a heat exchange unit capable of cooling flowing air, and providing a technology capable of achieving energy saving while realizing appropriate air conditioning according to a change in cooling load.

本発明の第1特徴構成は、給気が通流する給気風路と、
冷水を生成する熱源部と、
前記熱源部から供給される冷水との熱交換により前記給気風路を通流する給気を冷却可能な熱交換部と、を備えた空調システムであって、
前記熱交換部として、前記給気風路において上流側に設けられた1次熱交換部と、前記給気風路において前記1次熱交換部よりも下流側に設けられた2次熱交換部と、を備え、
前記熱源部が、低温冷水と当該低温冷水よりも高温の中温冷水とを各別に生成可能に構成され、
冷房負荷が高い高冷房負荷時において、前記1次熱交換部に対して前記熱源部から前記中温冷水を供給すると共に前記2次熱交換部に対して前記熱源部から前記低温冷水を供給する潜顕分離空調運転を実行し、冷房負荷が前記高冷房負荷時よりも低い低冷房負荷時において、前記2次熱交換部に対して前記熱源部から前記冷水を供給すると共に当該2次熱交換部から排出された冷水を前記1次熱交換部に供給する大温度差空調運転を実行する制御部を備えた点にある。
According to a first aspect of the present invention, there is provided an air supply path through which air flows.
A heat source unit for producing cold water,
A heat exchange unit capable of cooling the charge air flowing through the supply air passage by heat exchange with cold water supplied from the heat source unit;
A primary heat exchange portion provided on the upstream side of the air supply path as the heat exchange portion, and a secondary heat exchange portion provided on the downstream side of the primary heat exchange portion in the air supply path; Equipped with
The heat source unit is configured to be able to separately generate low temperature cold water and medium temperature cold water having a temperature higher than the low temperature cold water, respectively.
At the time of high cooling load with high cooling load, the latent heat is supplied from the heat source to the primary heat exchange section from the heat source section, and the low temperature cold water is supplied from the heat source section to the secondary heat exchange section. During the low cooling load, in which the sensible separation air conditioning operation is performed and the cooling load is lower than the high cooling load, the cold water is supplied from the heat source unit to the secondary heat exchange unit and the secondary heat exchange unit And a controller for performing a large temperature difference air conditioning operation for supplying the cold water discharged from the air to the primary heat exchange unit.

本構成によれば、冷房負荷が比較的高い高冷房負荷時においては、1次熱交換部には熱源部から中温冷水を供給すると共に2次熱交換部には熱源部から低温冷水を供給する形態で、給気の顕熱処理と潜熱処理とを温度が異なる各別の冷水で行うことができる上記潜顕分離空調運転が実行されることになる。即ち、この潜顕分離空調運転において、1次熱交換部では、外気や還気を含む比較的高温の給気を熱源部から供給された中温冷水との熱交換により露点を下回らない温度に冷却する形態で顕熱処理を行うことができ、2次熱交換部では、1次熱交換部である程度冷却された給気を熱源部から供給された低温冷水との熱交換により露点よりも低い温度に冷却する形態で潜熱処理を行うことができる。このような潜顕分離空調運転を高冷房負荷時に実行することで、熱源部において多くのエネルギーが必要な低温冷水の生成量を削減して、高効率化を図ることができる。   According to this configuration, during high cooling load where the cooling load is relatively high, medium temperature cold water is supplied to the primary heat exchange part from the heat source part and low temperature cold water is supplied from the heat source part to the secondary heat exchange part In the form, the latent-microbe separation air-conditioning operation described above can be performed in which the sensible heat treatment and the latent heat treatment of the air supply can be performed with different cold waters having different temperatures. That is, in this latent microscopic separation air conditioning operation, the primary heat exchange unit cools the relatively high temperature air supply including the outside air and the return air to a temperature not falling below the dew point by heat exchange with medium temperature cold water supplied from the heat source unit. In the secondary heat exchange unit, the cooled air supplied to the secondary heat exchange unit is partially cooled to a temperature lower than the dew point by heat exchange with the low temperature cold water supplied from the heat source unit. The latent heat treatment can be performed in the form of cooling. By performing such latent-microbe separation air-conditioning operation at high cooling load, it is possible to reduce the generation amount of low-temperature cold water which requires a large amount of energy in the heat source section, and to achieve high efficiency.

一方、冷房負荷が比較的低い低冷房負荷時においては、1次熱交換部には2次熱交換部から排出された冷水を供給すると共に2次熱交換部には熱源部から冷水を供給する形態で、熱源部における往き冷水と還り冷水との往還温度差を大きいものに維持することができる上記大温度差空調運転が実行されることになる。即ち、この大温度差空調運転において、1次熱交換部では、外気や還気を含む比較的高温の給気を2次熱交換部から排出されたある程度低温の冷水との熱交換により無駄なく冷却することができ、2次熱交換部では、1次熱交換部である程度冷却された給気を熱源部から供給された比較的低温の冷水で冷却することができる。このような大温度差空調運転を低冷房負荷時に実行することで、1次熱交換部及び2次熱交換部に対して共通の供給ポンプで冷水を供給しながら、熱源部において往還温度差を大きいものに維持して、高効率化を図ることができる。
従って、本発明により、冷房負荷の変動に応じて適切な空調を実現しながら省エネルギー化を図ることができる空調システムを提供することができる。
On the other hand, when the cooling load is relatively low and the cooling load is relatively low, the primary heat exchange unit is supplied with cold water discharged from the secondary heat exchange unit and the secondary heat exchange unit is supplied with cold water from the heat source unit In the aspect, the large temperature difference air conditioning operation described above can be performed, which can maintain a large difference between the temperature of return water and the temperature of return water in the heat source. That is, in this large temperature difference air conditioning operation, in the primary heat exchange section, relatively high temperature air supply including outside air and return air is not wasted by heat exchange with the relatively low temperature cold water discharged from the secondary heat exchange section. It is possible to cool, and in the secondary heat exchange unit, the partially cooled air that is the primary heat exchange unit can be cooled by relatively low temperature cold water supplied from the heat source unit. By performing such a large temperature difference air conditioning operation at a low cooling load, the heat source portion is supplied with cold water while the common heat pump is used to supply cold water to the primary heat exchange portion and the secondary heat exchange portion. It is possible to achieve high efficiency by maintaining a large one.
Therefore, according to the present invention, it is possible to provide an air conditioning system capable of achieving energy saving while realizing appropriate air conditioning according to the fluctuation of the cooling load.

本発明の第2特徴構成は、前記熱源部から前記中温冷水が供給される第1熱媒体供給路と、前記熱源部から前記低温冷水及び前記中温冷水が択一的に供給されて前記2次熱交換部に接続された第2熱媒体供給路と、を備えると共に、
前記第1熱媒体供給路の接続先を前記1次熱交換部と前記2次熱交換部との間で切替可能な接続先切替手段を備え、
前記制御部が、前記潜顕分離空調運転において、前記第1熱媒体供給路の接続先を前記1次熱交換部に切り替えて、前記1次熱交換部に対して前記第1熱媒体供給路を介して前記中温冷水を供給すると共に前記2次熱交換部に対して前記第2熱媒体供給路を介して前記低温冷水を供給し、前記大温度差空調運転において、前記第1熱媒体供給路の接続先を前記2次熱交換部に切り替えて、前記2次熱交換部に対して前記第1熱媒体供給路及び前記第2熱媒体供給路の両方を介して前記冷水を供給可能とする点にある。
According to a second characteristic configuration of the present invention, the first heat medium supply passage to which the medium temperature cold water is supplied from the heat source unit, and the low temperature cold water and the medium temperature cold water are alternatively supplied from the heat source unit And a second heat medium supply path connected to the heat exchange unit.
A connection destination switching unit capable of switching the connection destination of the first heat medium supply path between the primary heat exchange unit and the secondary heat exchange unit;
The control unit switches the connection destination of the first heat medium supply passage to the primary heat exchange unit in the latent microscopic separation air conditioning operation, and the first heat medium supply passage with respect to the primary heat exchange unit And the low-temperature cold water to the secondary heat exchange unit via the second heat medium supply passage, and the first heat medium supply in the large temperature difference air conditioning operation. The connection destination of the passage is switched to the secondary heat exchange unit, and the cold water can be supplied to the secondary heat exchange unit via both the first heat medium supply passage and the second heat medium supply passage. The point is to

本構成によれば、潜顕分離空調運転では、第1熱媒体供給路の接続先を1次熱交換部として、第1熱媒体供給路を介して1次熱交換部に中温冷水を供給しながら、第2熱媒体供給路を介して2次熱交換部に低温冷水を供給するように構成した場合において、大温度差空調運転では、第1熱媒体供給路の接続先を2次熱交換部として、第1熱媒体供給路と第2熱媒体供給路との両方を介して2次熱交換部に対して冷水を供給することができる。即ち、大温度差空調運転において、2次熱交換部に対して第1熱媒体供給路と第2熱媒体供給路との2系統で冷水を供給することで、冷水に付加される配管抵抗を削減して、更なる高効率化を図ることができる。   According to the present configuration, in the latent microscopic separation air conditioning operation, intermediate temperature cold water is supplied to the primary heat exchange unit via the first heat medium supply passage with the connection destination of the first heat medium supply passage as the primary heat exchange unit. However, when configured to supply low temperature cold water to the secondary heat exchange unit via the second heat medium supply passage, in the large temperature difference air conditioning operation, the connection destination of the first heat medium supply passage is subjected to secondary heat exchange As part, cold water can be supplied to the secondary heat exchange part via both the first heat medium supply path and the second heat medium supply path. That is, in the large temperature difference air conditioning operation, the pipe resistance added to the cold water is supplied by supplying the cold water to the secondary heat exchange unit in two systems of the first heat medium supply passage and the second heat medium supply passage. It is possible to achieve further high efficiency by reducing it.

本発明の第3特徴構成は、前記第1熱媒体供給路又は前記第2熱媒体供給路からの冷水の供給を遮断可能な遮断手段を備え、
前記制御部が、前記大温度差空調運転において、冷房負荷に基づいて前記遮断手段の状態を切り替える形態で前記2次熱交換部に対して冷水を供給する冷水系統の数を制御する冷水系統数制御を実行する点にある。
According to a third aspect of the present invention, there is provided a shutoff means capable of shutting off the supply of cold water from the first heat medium supply passage or the second heat medium supply passage,
The number of chilled water systems in which the control unit controls the number of chilled water systems that supply chilled water to the secondary heat exchange unit in a mode that switches the state of the shutoff unit based on the cooling load in the large temperature difference air conditioning operation The point is to execute control.

本構成によれば、大温度差空調運転において、2次熱交換部に対して第1熱媒体供給路と第2熱媒体供給路との2系統で冷水を供給可能に構成する場合において、冷房負荷に基づいて2次熱交換部に対する冷水系統の数を制御する冷水系統数制御を実行することができる。即ち、大温度差空調運転において、上記冷水系統数制御が実行されることで、冷房負荷が比較的高い場合には、第1熱媒体供給路と第2熱媒体供給路との2系統で冷水を2次熱交換部に供給するが、冷房負荷が低下した場合には、遮断手段により第1熱媒体供給路又は第2熱媒体供給路からの冷水の供給を遮断して、第1熱媒体供給路又は第2熱媒体供給路の1系統で冷水を2次熱交換部へ供給することができる。よって、低冷房負荷時の大温度差空調運転において、冷房負荷が一層低下した場合でも、冷水の供給量を十分に低下させることで、熱源部において往還温度差を大きいものに維持して、高効率化を図ることができる。   According to this configuration, in the case where cold water can be supplied to the secondary heat exchange unit in two systems of the first heat medium supply path and the second heat medium supply path in the large temperature difference air conditioning operation, cooling can be performed. Cold water system number control may be performed which controls the number of cold water systems to the secondary heat exchange unit based on the load. That is, in the large temperature difference air conditioning operation, when the cooling load is relatively high due to the execution of the above-described control of the number of cold water systems, the cold water is divided by two systems of the first heat medium supply passage and the second heat medium supply passage. Is supplied to the secondary heat exchange unit, but if the cooling load decreases, the shutoff means shuts off the supply of cold water from the first heat medium supply passage or the second heat medium supply passage, and the first heat medium is supplied. Cold water can be supplied to the secondary heat exchange unit in one system of the supply path or the second heat medium supply path. Therefore, in the large temperature difference air conditioning operation under a low cooling load, even if the cooling load is further reduced, the amount of cold water supplied is sufficiently reduced to maintain a large temperature difference between the heat sources and keep the feedback temperature difference large. Efficiency can be improved.

本実施形態の空調システムにおける潜顕分離空調運転(並列供給モード)での熱媒体の通流状態を示す図The figure which shows the flow state of the heat medium in the latent-microbe isolation | separation air-conditioning driving | operation (parallel supply mode) in the air conditioning system of this embodiment. 本実施形態の空調システムにおける大温度差空調運転(カスケード2系統供給モード)での熱媒体の通流状態を示す図The figure which shows the flow state of the heat medium in the large temperature difference air conditioning operation (the cascade 2 system supply mode) in the air conditioning system of this embodiment. 本実施形態の空調システムにおける大温度差空調運転(カスケード1系統供給モード)での熱媒体の通流状態を示す図The figure which shows the flow state of the heat medium in the large temperature difference air conditioning operation (the cascade 1 system supply mode) in the air conditioning system of this embodiment. 本実施形態の空調システムにおける冷暖同時運転(並列供給モード)での熱媒体の通流状態を示す図The figure which shows the flow state of the heat medium in the heating / cooling simultaneous driving | operation (parallel supply mode) in the air conditioning system of this embodiment.

本発明の実施形態について、図1〜図4に基づいて説明する。
尚、図1〜図4に示す空調システム(以下、「本空調システム」と呼ぶ。)において、熱媒体が通流している流路を太実線で示し、熱媒体が通流していない流路を細実線で示している。
本空調システムは、主に、空調対象空間へ温度調整した給気SAを供給する空調機1と、冷水CW,MCW,LCWや温水HWなどの熱媒体を生成する熱源部50と、当該熱源部50で生成された熱媒体を空調機1に供給する熱媒体供給系統8とを備えて構成されている。尚、本実施形態において、空調機1としては、外気OAを処理して給気SAとして供給する外気処理空調機1Aや、空調対象空間から還流された還気RAを処理して給気SAとして処理する室内空調機1B等が設けられている。
An embodiment of the present invention will be described based on FIGS. 1 to 4.
In the air conditioning system shown in FIGS. 1 to 4 (hereinafter referred to as "the air conditioning system"), the flow path through which the heat medium flows is shown by a thick solid line, and the flow path through which the heat medium does not flow It is shown by a thin solid line.
The air conditioning system mainly includes an air conditioner 1 for supplying a temperature-adjusted supply air SA to a space to be air conditioned, a heat source unit 50 for generating a heat medium such as cold water CW, MCW, LCW or hot water HW, and the heat source unit A heat medium supply system 8 for supplying the heat medium generated at 50 to the air conditioner 1 is configured. In the present embodiment, as the air conditioner 1, the outside air processing air conditioner 1A that processes the outside air OA and supplies it as the air supply SA, or the return air RA returned from the air conditioning target space is processed as the air supply SA The indoor air conditioner 1B etc. to process are provided.

空調機1には、給気ファン5が作動することにより、外気OAや還気RAが後に空調対象空間に供給される給気SAとして通流する給気風路6が設けられている。この給気風路6には、熱源部50から供給される熱媒体との熱交換により給気風路6を通流する給気SAを冷却可能又は加熱可能な冷水コイルや温水コイルなどで構成された熱交換部2が配置されている。
また、熱交換部2としては、給気風路6において上流側に設けられた1次熱交換部3と、給気風路6において1次熱交換部3よりも下流側に設けられた2次熱交換部4とが設けられている。
The air conditioner 1 is provided with an air supply passage 6 through which the outside air OA and the return air RA are later supplied as the air supply SA to be supplied to the air conditioning target space by operating the air supply fan 5. The supply air passage 6 is configured of a cold water coil or a hot water coil capable of cooling or heating the supply air SA flowing through the supply air passage 6 by heat exchange with the heat medium supplied from the heat source unit 50. The heat exchange unit 2 is disposed.
Further, as the heat exchange unit 2, the primary heat exchange unit 3 provided on the upstream side in the supply air passage 6 and the secondary heat provided on the downstream side of the primary heat exchange unit 3 in the supply air passage 6 An exchange unit 4 is provided.

1次熱交換部3には、1次側熱媒体供給路14及び1次側熱媒体排出路16が接続されており、1次側熱媒体供給路14から1次熱交換部3へ熱媒体が供給され、1次熱交換部3から1次側熱媒体排出路16へ熱媒体が排出される。一方、2次熱交換部4には、2次側熱媒体供給路24及び2次側熱媒体排出路26が接続されており、2次側熱媒体供給路24から2次熱交換部4へ熱媒体が供給され、2次熱交換部4から2次側熱媒体排出路26へ熱媒体が排出される。
1次側熱媒体供給路14には熱媒体の通流を遮断可能な開閉弁15が設けられており、一方、2次側熱媒体排出路26には熱媒体の通流を遮断可能な開閉弁27が設けられている。更に、2次側熱媒体排出路26における開閉弁27の上流側と1次側熱媒体供給路14における開閉弁15の下流側とを接続するカスケード接続路30が設けられており、このカスケード接続路30には、熱媒体の通流を遮断可能な開閉弁31が設けられている。
The primary heat exchange unit 3 is connected to the primary side heat medium supply passage 14 and the primary side heat medium discharge passage 16, and the heat medium from the primary side heat medium supply passage 14 to the primary heat exchange unit 3 Is supplied, and the heat medium is discharged from the primary heat exchange unit 3 to the primary side heat medium discharge passage 16. On the other hand, the secondary heat exchange unit 4 is connected to the secondary side heat medium supply passage 24 and the secondary side heat medium discharge passage 26, and from the secondary side heat medium supply passage 24 to the secondary heat exchange unit 4. The heat medium is supplied, and the heat medium is discharged from the secondary heat exchange unit 4 to the secondary-side heat medium discharge passage 26.
The primary side heat medium supply passage 14 is provided with an on-off valve 15 capable of blocking the flow of the heat medium, while the secondary side heat medium discharge passage 26 is capable of blocking the flow of the heat medium. A valve 27 is provided. Furthermore, there is provided a cascade connection path 30 connecting the upstream side of the on-off valve 27 in the secondary side heat medium discharge path 26 and the downstream side of the on-off valve 15 in the primary side heat medium supply path 14. The passage 30 is provided with an on-off valve 31 capable of blocking the flow of the heat medium.

熱源部50は、温度の異なる複数種の熱媒体を生成可能に構成されている。例えば、図1に示すように、例えば13℃の中温冷水MCWと例えば7℃の低温冷水LCWとを同時に生成することができる。また、図2及び図3に示すように例えば10℃の冷水CWを生成したり、図4に示すように例えば45℃の温水HWと例えば13℃の冷水CWとを同時に生成することができる。
尚、このような熱源部50は、互いに温度の異なる熱媒体を生成可能な複数の熱源機からなる熱源機群で構成し、これら複数の熱源機を適宜作動させて所望の温度の熱媒体を得るように構成することができる。
The heat source unit 50 is configured to be capable of generating a plurality of types of heat transfer media having different temperatures. For example, as shown in FIG. 1, for example, 13 ° C. medium temperature cold water MCW and 7 ° C. low temperature cold water LCW can be simultaneously generated. Further, as shown in FIGS. 2 and 3, for example, cold water CW of 10 ° C. can be generated, or as shown in FIG. 4, hot water HW of 45 ° C. and cold water CW of, for example, 13 ° C. can be simultaneously generated.
Such a heat source unit 50 is constituted by a heat source unit group consisting of a plurality of heat source units capable of generating heat mediums having different temperatures, and the heat source units are operated appropriately to operate the heat source units of desired temperatures. It can be configured to gain.

熱媒体供給系統8には、熱源部50に対して第1ヘッダ51を介して接続されて、1次側熱媒体供給路14に通じる第1熱媒体供給路10と、熱源部50に対して第2ヘッダ52を介して接続されて、2次側熱媒体供給路24に通じる第2熱媒体供給路20とが各別に設けられている。第1熱媒体供給路10には、熱媒体の通流を遮断可能な開閉弁12や当該熱媒体の通流量を調整可能な流量制御弁13が設けられており、一方、第2熱媒体供給路20には、熱媒体の通流を遮断可能な開閉弁22や当該熱媒体の通流量を調整可能な流量制御弁23が設けられている。
更に、第1熱媒体供給路10の1次側熱媒体供給路14に対する接続部と第2熱媒体供給路20の2次側熱媒体供給路24に対する接続部とを接続する接続路40が設けられている。この接続路40には、熱媒体の通流を遮断可能な開閉弁41が設けられている。
The heat medium supply system 8 is connected to the heat source unit 50 via the first header 51 and is connected to the first heat medium supply passage 10 communicating with the primary side heat medium supply passage 14, and to the heat source unit 50. A second heat medium supply passage 20 connected to the second header 52 and communicating with the secondary side heat medium supply passage 24 is separately provided. The first heat medium supply passage 10 is provided with an on-off valve 12 capable of blocking the flow of the heat medium and a flow control valve 13 capable of adjusting the flow rate of the heat medium, while the second heat medium supply The passage 20 is provided with an on-off valve 22 capable of blocking the flow of the heat medium and a flow control valve 23 capable of adjusting the flow rate of the heat medium.
Furthermore, a connection path 40 is provided for connecting the connection portion of the first heat medium supply path 10 to the primary side heat medium supply path 14 and the connection portion of the second heat medium supply path 20 to the secondary side heat medium supply path 24. It is done. The connection path 40 is provided with an on-off valve 41 capable of blocking the flow of the heat medium.

このように構成された熱媒体供給系統8では、熱源部50から1次熱交換部3及び2次熱交換部4に対する熱媒体の供給状態を、以下に説明を加える並列供給モードと、カスケード2系統供給モードと、カスケード1系統供給モードとの間で切替可能に構成されている。   In the heat medium supply system 8 configured as described above, the parallel supply mode in which the supply state of the heat medium from the heat source unit 50 to the primary heat exchange unit 3 and the secondary heat exchange unit 4 is described below; It is configured to be switchable between the system supply mode and the cascade 1 system supply mode.

(並列供給モード)
上記並列供給モードは、例えば図1及び図4に示すように、熱媒体供給系統8に対して1次熱交換部3及び2次熱交換部4を並列状態で接続すると共に、熱源部50において互いに温度が異なる中温冷水MCWと低温冷水LCW又は温水HWと冷水CWなどの2種の熱媒体を生成し、これら2種の熱媒体を各別の系統で1次熱交換部3及び2次熱交換部4の夫々に供給するモードとされている。
並列供給モードでは、開閉弁12を開弁状態として第1熱媒体供給路10に熱源部50から供給された熱媒体を通流させると共に、開閉弁22を開弁状態として第2熱媒体供給路20に熱源部50から供給された熱媒体を通流させた状態とする。この状態にて、開閉弁15,27を開弁状態とし開閉弁31,41を閉弁状態として、第1熱媒体供給路10から供給された熱媒体を、1次側熱媒体供給路14を介して1次熱交換部3に供給すると共に、第2熱媒体供給路20から供給された熱媒体を、2次側熱媒体供給路24を介して2次熱交換部4に供給する。そして、1次熱交換部3及び2次熱交換部4の夫々を通流した後に排出された夫々の熱媒体は、1次側熱媒体排出路16及び2次側熱媒体排出路26の夫々を介して熱源部50に還流される。
(Parallel supply mode)
In the parallel supply mode, for example, as shown in FIGS. 1 and 4, the primary heat exchange unit 3 and the secondary heat exchange unit 4 are connected in parallel to the heat medium supply system 8 and Two kinds of heat medium such as medium-temperature cold water MCW and low-temperature cold water LCW or hot water HW and cold water CW, which have different temperatures, are generated, and these two types of heat medium are divided into primary heat exchange section 3 and secondary heat by different systems. It is set as the mode supplied to each of the exchange part 4.
In the parallel supply mode, the on-off valve 12 is opened and the heat medium supplied from the heat source unit 50 flows through the first heat medium supply passage 10, and the on-off valve 22 is opened and the second heat medium supply passage is opened. At 20, the heat medium supplied from the heat source unit 50 is made to flow. In this state, the open / close valves 15 and 27 are opened, the open / close valves 31 and 41 are closed, and the heat medium supplied from the first heat medium supply passage 10 is transferred to the primary side heat medium supply passage 14. The heat medium supplied from the second heat medium supply passage 20 is supplied to the secondary heat exchange unit 4 via the secondary side heat medium supply passage 24 while being supplied to the primary heat exchange unit 3 via the second heat medium supply passage 20. The heat medium discharged after passing through each of the primary heat exchange unit 3 and the secondary heat exchange unit 4 is the heat medium discharge passage 16 of the primary side and the heat medium discharge passage 26 of the secondary side. Is returned to the heat source unit 50 via the

(カスケード2系統供給モード)
上記カスケード2系統供給モードは、例えば図2に示すように、熱媒体供給系統8に対して1次熱交換部3及び2次熱交換部4を直列状態で接続すると共に、熱源部50において冷水CWなどの1種の熱媒体を生成し、これら1種の熱媒体を2系統で2次熱交換部4と1次熱交換部3とに順に供給するモードとされている。
上記カスケード2系統供給モードでは、開閉弁12を開弁状態として第1熱媒体供給路10に熱源部50から供給された熱媒体を通流させると共に、開閉弁22を開弁状態として第2熱媒体供給路20に熱源部50から供給された熱媒体を通流させた状態とする。この状態にて、開閉弁15,27を閉弁状態とし開閉弁31,41を開弁状態として、第1熱媒体供給路10及び第2熱媒体供給路20の2つの冷水系統から供給された熱媒体を、接続路40及び2次側熱媒体供給路24を介して2次熱交換部4に供給すると共に、2次熱交換部4から2次側熱媒体排出路26に排出された熱媒体を、カスケード接続路30及び1次側熱媒体供給路14を介して1次熱交換部3に供給する。そして、2次熱交換部4及び1次熱交換部3を順に通流した後に排出された熱媒体は、1次側熱媒体排出路16を介して熱源部50に還流される。
(Cascade 2 system supply mode)
For example, as shown in FIG. 2, in the cascade two-system supply mode, the primary heat exchange unit 3 and the secondary heat exchange unit 4 are connected in series to the heat medium supply system 8, and In this mode, one heat medium such as CW is generated, and the one heat medium is sequentially supplied to the secondary heat exchange unit 4 and the primary heat exchange unit 3 in two systems.
In the cascade two-system supply mode, the on-off valve 12 is opened and the heat medium supplied from the heat source unit 50 flows through the first heat medium supply passage 10, and the on-off valve 22 is opened on the second heat The heat medium supplied from the heat source unit 50 is allowed to flow through the medium supply passage 20. In this state, the on-off valves 15 and 27 are closed and the on-off valves 31 and 41 are opened, and the water is supplied from the two cooling water systems of the first heat medium supply passage 10 and the second heat medium supply passage 20 The heat medium is supplied to the secondary heat exchange unit 4 through the connection passage 40 and the secondary side heat medium supply passage 24, and the heat discharged from the secondary heat exchange unit 4 to the secondary side heat medium discharge passage 26. The medium is supplied to the primary heat exchange unit 3 via the cascade connection path 30 and the primary-side heat medium supply path 14. Then, the heat medium discharged after sequentially flowing through the secondary heat exchange unit 4 and the primary heat exchange unit 3 is returned to the heat source unit 50 via the primary side heat medium discharge passage 16.

(カスケード1系統供給モード)
上記カスケード1系統供給モードは、例えば図3に示すように、熱媒体供給系統8に対して1次熱交換部3及び2次熱交換部4を直列状態で接続すると共に、熱源部50において1種の熱媒体を生成し、これら1種の熱媒体を1系統で2次熱交換部4と1次熱交換部3とに順に供給するモードとされている。
上記カスケード1系統供給モードでは、開閉弁12を閉弁状態として第1熱媒体供給路10への熱源部50からの熱媒体の供給を停止しながら、開閉弁22を開弁状態として第2熱媒体供給路20に熱源部50から供給された熱媒体を通流させた状態とする。この状態にて、開閉弁15,27を閉弁状態とし開閉弁31,41を開弁状態として、第2熱媒体供給路20の単一の冷水系統から供給された熱媒体を、2次側熱媒体供給路24を介して2次熱交換部4に供給すると共に、2次熱交換部4から2次側熱媒体排出路26に排出された熱媒体を、カスケード接続路30及び1次側熱媒体供給路14を介して1次熱交換部3に供給する。そして、2次熱交換部4及び1次熱交換部3を順に通流した後に排出された熱媒体は、1次側熱媒体排出路16を介して熱源部50に還流される。
(Cascade 1 system supply mode)
For example, as shown in FIG. 3, in the cascade one-system supply mode, the primary heat exchange unit 3 and the secondary heat exchange unit 4 are connected in series to the heat medium supply system 8 and 1 in the heat source unit 50. The heat medium of a kind is generated, and it is considered as a mode which supplies one kind of heat medium to secondary heat exchange part 4 and primary heat exchange part 3 one by one in order.
In the above-described cascade one-system supply mode, the on-off valve 22 is opened while the on-off valve 22 is opened while the supply of the heat medium from the heat source unit 50 to the first heat medium supply passage 10 is stopped. The heat medium supplied from the heat source unit 50 is allowed to flow through the medium supply passage 20. In this state, the on-off valves 15 and 27 are closed and the on-off valves 31 and 41 are opened, and the heat medium supplied from a single cold water system of the second heat medium supply passage 20 is The heat medium supplied to the secondary heat exchange unit 4 via the heat medium supply passage 24 and discharged from the secondary heat exchange unit 4 to the secondary side heat medium discharge passage 26 is the cascade connection passage 30 and the primary side. The heat is supplied to the primary heat exchange unit 3 through the heat medium supply passage 14. Then, the heat medium discharged after sequentially flowing through the secondary heat exchange unit 4 and the primary heat exchange unit 3 is returned to the heat source unit 50 via the primary side heat medium discharge passage 16.

尚、上記並列供給モードと上記カスケード2系統供給モードとの切り替えにおいて、開閉弁15及び開閉弁41は、第1熱媒体供給路10の接続先を、1次熱交換部3と2次熱交換部4との間で切替可能な接続先切替手段として機能することになる。即ち、これら開閉弁15及び開閉弁41を択一的に開弁状態とし当該開弁状態とする側を切り替える形態で、第1熱媒体供給路10の接続先、言い換えれば第1熱媒体供給路10からの熱媒体の供給先を、1次熱交換部3と2次熱交換部4との間で切り替えることができる。
具体的には、上記並列供給モード(図1及び図4参照)のように、開閉弁15を開弁状態とし開閉弁41を閉弁状態とすれば、第1熱媒体供給路10の接続先が1次熱交換部3に切り替わり、1次熱交換部3に対して第1熱媒体供給路10を介して熱媒体が供給されると共に、2次熱交換部4に対して第2熱媒体供給路20を介して熱媒体が供給される。一方、上記カスケード2系統供給モード(図2参照)のように、開閉弁15を閉弁状態とし開閉弁41を開弁状態とすれば、第1熱媒体供給路10の接続先が2次熱交換部4に切り替わり、2次熱交換部4に対して第1熱媒体供給路10及び第2熱媒体供給路20の両方を介して熱媒体が供給可能となる。
また、上記カスケード2系統供給モードと上記カスケード1系統供給モードとの切り替えにおいて、開閉弁12及び開閉弁22は、第1熱媒体供給路10又は第2熱媒体供給路20からの熱媒体の供給を遮断可能な遮断手段として機能することになる。そして、これら遮断手段として機能する開閉弁12,22の開閉状態を切り替える形態で、2次熱交換部4に対して熱媒体を供給する冷水系統の数を1系統と2系統との間で切り替えることができる。
In the switching between the parallel supply mode and the cascade two-system supply mode, the on-off valve 15 and the on-off valve 41 exchange the connection destination of the first heat medium supply passage 10 with the primary heat exchange unit 3 and the secondary heat exchange. It functions as a connection destination switching unit that can be switched with the unit 4. That is, the on-off valve 15 and the on-off valve 41 are selectively opened to switch the side to be in the open state, and the connection destination of the first heat medium supply path 10, in other words, the first heat medium supply path The supply destination of the heat medium from 10 can be switched between the primary heat exchange unit 3 and the secondary heat exchange unit 4.
Specifically, as in the parallel supply mode (see FIGS. 1 and 4), when the on-off valve 15 is opened and the on-off valve 41 is closed, the connection destination of the first heat medium supply passage 10 is Switches to the primary heat exchange unit 3 and the heat medium is supplied to the primary heat exchange unit 3 through the first heat medium supply passage 10, and the second heat medium to the secondary heat exchange unit 4 The heat medium is supplied via the supply passage 20. On the other hand, if the on-off valve 15 is closed and the on-off valve 41 is opened as in the cascade two-system supply mode (see FIG. 2), the connection destination of the first heat medium supply passage 10 is secondary heat. It switches to the exchange unit 4, and the heat medium can be supplied to the secondary heat exchange unit 4 through both the first heat medium supply passage 10 and the second heat medium supply passage 20.
In switching between the cascade two-system supply mode and the cascade one-system supply mode, the on-off valve 12 and the on-off valve 22 supply the heat medium from the first heat medium supply passage 10 or the second heat medium supply passage 20. Function as a means to shut off the Then, in the form of switching the open / close states of the on-off valves 12 and 22 functioning as these shutoff means, the number of chilled water systems supplying the heat medium to the secondary heat exchange unit 4 is switched between 1 system and 2 systems. be able to.

本空調システムには、運転を制御する制御部60が設けられている。夏季や中間期等において、制御部60は、冷房運転を実行するにあたり、空調対象空間の温湿度や取り込んだ外気OAや還気RAの温湿度等により検出した冷房負荷に応じて潜顕分離空調運転及び大温度差空調運転を択一的に実行する。また、冬季等において、制御部60は、夫々の空調機1において冷房又は暖房を適宜行うための冷暖同時運転を実行する。制御部60により実行される各種運転の詳細について、以下に説明を加える。   The air conditioning system is provided with a control unit 60 that controls the operation. In the summer season, the middle season, etc., the control unit 60 performs latent air separation air conditioning according to the cooling load detected by the temperature and humidity of the air conditioning target space and the temperature and humidity of the returned air RA and the like when performing the cooling operation. The operation and the large temperature difference air conditioning operation are alternatively performed. Further, in winter and the like, the control unit 60 performs simultaneous cooling and heating operation for appropriately performing cooling and heating in each air conditioner 1. The details of the various operations performed by the control unit 60 will be described below.

〔潜顕分離空調運転〕
制御部60は、冷房負荷が高い夏季等の高冷房負荷時において、図1に示す潜顕分離空調運転を実行する。この潜顕分離空調運転では、熱源部50において例えば13℃の中温冷水MCWと例えば7℃の低温冷水LCWとを各別に生成すると共に、熱媒体供給系統8での熱媒体の供給状態を上述した並列供給モードに切り替えて、1次熱交換部3に対して熱源部50から中温冷水MCWを供給すると共に2次熱交換部4に対して熱源部50から低温冷水LCWを供給する。
すると、空調機1において、1次熱交換部3では、比較的高温の外気OAや還気RAである給気SAが、例えば13℃の中温冷水MCWとの熱交換により露点を下回らない温度に冷却される形態で顕熱処理が行われる。一方、2次熱交換部4では、1次熱交換部3である程度冷却された給気SAが、例えば7℃の低温冷水LCWとの熱交換により露点よりも低い温度に冷却される形態で潜熱処理が行われる。よって、このような潜顕分離空調運転を高冷房負荷時に実行することで、熱源部50において多くのエネルギーが必要な低温冷水LCWの生成量が削減され、高効率化が図られることになる。
[Latent micro air separation operation]
The control unit 60 executes the latent-microbe separation air-conditioning operation shown in FIG. 1 at the time of high cooling load such as summer having a high cooling load. In this latent microscopic separation air conditioning operation, medium temperature cold water MCW of 13 ° C. and low temperature cold water LCW of 7 ° C., for example, are separately generated in the heat source unit 50, and the supply state of the heat medium in the heat medium supply system 8 is described above. The mode is switched to the parallel supply mode, and medium temperature cold water MCW is supplied from the heat source unit 50 to the primary heat exchange unit 3 and low temperature cold water LCW is supplied from the heat source unit 50 to the secondary heat exchange unit 4.
Then, in the air conditioner 1, at the primary heat exchange unit 3, the air supply SA, which is relatively high temperature outside air OA and return air RA, does not fall below the dew point by heat exchange with, for example, 13 ° C. medium temperature cold water MCW. The sensible heat treatment is performed in the form of being cooled. On the other hand, in the secondary heat exchange unit 4, the latent heat in the form in which the air supply SA cooled to a certain extent as the primary heat exchange unit 3 is cooled to a temperature lower than the dew point by heat exchange with the low temperature cold water LCW of 7 ° C, for example Processing is performed. Therefore, by executing such latent-microbe separation air-conditioning operation at a high cooling load, the amount of low-temperature cold water LCW that requires a large amount of energy in the heat source unit 50 is reduced, and high efficiency can be achieved.

〔大温度差空調運転〕
制御部60は、冷房負荷が上述の高冷房負荷時よりも低い中間期等の低冷房負荷時において、図2及び図3に示す大温度差空調運転を実行する。この大温度差空調運転では、熱源部50において例えば10℃の冷水CWを生成すると共に、2次熱交換部4に対して熱源部50から冷水CWを供給すると共に当該2次熱交換部4から排出された例えば15℃の冷水CWを1次熱交換部3に供給する。
すると、熱源部50における往き冷水CWと還り冷水CWとの往還温度差が大きいものに維持されることになる。即ち、この大温度差空調運転において、1次熱交換部3では、外気OAや還気RAである比較的高温の給気SAが、2次熱交換部4から排出された例えば15℃のある程度低温の冷水CWとの熱交換により無駄なく冷却される。一方、2次熱交換部4では、1次熱交換部3である程度冷却された給気SAが、熱源部50から供給された例えば10℃の比較的低温の冷水CWで冷却される。よって、このような大温度差空調運転を低冷房負荷時に実行することで、1次熱交換部3及び2次熱交換部4に対して共通の供給ポンプ(図示省略)で冷水CWを供給しながら、熱源部50において往還温度差が大きいものに維持され、高効率化が図られることになる。
Large temperature difference air conditioning operation
The control unit 60 executes the large temperature difference air conditioning operation shown in FIGS. 2 and 3 during low cooling load such as an intermediate period in which the cooling load is lower than the high cooling load described above. In this large temperature difference air conditioning operation, for example, cold water CW of 10 ° C. is generated in the heat source unit 50 and the cold water CW is supplied from the heat source unit 50 to the secondary heat exchange unit 4 and from the secondary heat exchange unit 4 The discharged cold water CW of, for example, 15 ° C. is supplied to the primary heat exchange unit 3.
As a result, the difference between the temperature of the return cold water CW and the temperature of the return cold water CW in the heat source unit 50 is maintained at a large value. That is, in this large temperature difference air conditioning operation, in the primary heat exchange unit 3, the relatively high temperature air supply SA, which is the outside air OA or the return air RA, is discharged from the secondary heat exchange unit 4 to a certain extent of 15 ° C, for example. It is cooled without waste by heat exchange with low temperature cold water CW. On the other hand, in the secondary heat exchange unit 4, the air supply SA cooled to a certain extent as the primary heat exchange unit 3 is cooled by the relatively low temperature cold water CW of 10 ° C. supplied from the heat source unit 50. Therefore, cold water CW is supplied to the primary heat exchange unit 3 and the secondary heat exchange unit 4 by a common supply pump (not shown) by executing such a large temperature difference air conditioning operation at a low cooling load. However, in the heat source unit 50, the difference between the return temperature and the temperature is maintained to be large, and high efficiency can be achieved.

更に、制御部60は、この大温度差空調運転において、冷房負荷に基づいて遮断手段として機能する開閉弁12及び開閉弁22の開閉状態を切り替える形態で、2次熱交換部4に対して冷水CWを供給する冷水系統の数を1系統と2系統との間で切り替えて制御する冷水系統数制御を実行する。
具体的には、制御部60は、大温度差空調運転において、冷房負荷が比較的高い場合には、図2に示すように、熱媒体供給系統8での冷水CWの供給状態を上述したカスケード2系統供給モードに切り替えることで、2次熱交換部4に対して第1熱媒体供給路10及び第2熱媒体供給路20の2つの冷水系統から冷水CWが供給されることになる。一方、制御部60は、大温度差空調運転において、冷房負荷が比較的低い場合には、図3に示すように、熱媒体供給系統8での冷水CWの供給状態を上述したカスケード1系統供給モードに切り替えることで、2次熱交換部4に対して第2熱媒体供給路20の単一の冷水系統から冷水CWが供給されることになる。
このような冷水系統数制御が実行されることにより、低冷房負荷時に実行される大温度差空調運転において、冷房負荷が一層低下した場合でも、冷水CWの供給量を十分に低下させることができる。よって、熱源部50において往還温度差が大きいものに維持され、高効率化が図られることになる。
Furthermore, in the large temperature difference air conditioning operation, the control unit 60 switches the open / close state of the on-off valve 12 and the on-off valve 22 that function as a shutoff unit based on the cooling load. A cold water system number control is executed which switches and controls the number of cold water systems supplying CW between 1 system and 2 systems.
Specifically, when the cooling load is relatively high in the large temperature difference air conditioning operation, as shown in FIG. 2, the control unit 60 cascades the supply state of the cold water CW in the heat medium supply system 8 as shown in FIG. By switching to the two-system supply mode, the cold water CW is supplied to the secondary heat exchange unit 4 from the two cold water systems of the first heat medium supply passage 10 and the second heat medium supply passage 20. On the other hand, when the cooling load is relatively low in the large temperature difference air conditioning operation, as shown in FIG. 3, the control unit 60 supplies the cascade 1 system of the supply state of the cold water CW in the heat medium supply system 8 as described above. By switching to the mode, the cold water CW is supplied from the single cold water system of the second heat medium supply passage 20 to the secondary heat exchange unit 4.
By performing such cold water system number control, in the large temperature difference air conditioning operation performed at the time of low cooling load, even when the cooling load is further reduced, the supply amount of cold water CW can be sufficiently reduced. . Therefore, in the heat source unit 50, the difference between the return temperature and the temperature is maintained to be large, and high efficiency can be achieved.

〔冷暖同時運転〕
制御部60は、冬季等において、図4に示す冷暖同時運転を実行する。この冷暖同時運転では、熱源部50において例えば45℃の温水HWと例えば13℃の冷水CWとを各別に生成する。そして、熱媒体供給系統8での熱媒体の供給状態を上述した並列供給モードに切り替えて、1次熱交換部3に対しては熱源部50から温水HWを供給可能な状態とすると共に、2次熱交換部4に対しては熱源部50から冷水CWを供給可能な状態とする。
すると、例えば外気処理空調機1Aにおいて、開閉弁22を閉弁状態として2次熱交換部4に対する冷水CWの供給を停止しながら、開閉弁12を開弁状態として1次熱交換部3に対して温水HWを通流させることにより、1次熱交換部3では、冬季において比較的低温である外気OAが、例えば45℃の温水HWとの熱交換により加熱されて、当該加熱後の給気SAを空調対象空間へ供給する暖房運転を実行することができる。
また、例えば室内空調機1Bにおいて、開閉弁12を閉弁状態として1次熱交換部3に対する温水HWの供給を停止しながら、開閉弁22を開弁状態として2次熱交換部4に対して冷水CWを通流させることにより、2次熱交換部4では、比較的温暖な還気RAが、例えば13℃の冷水CWとの熱交換により冷却されて、当該冷却後の給気SAを空調対象空間へ供給する冷房運転を実行することができる。
尚、本実施形態では、外気処理空調機1Aにおいて暖房運転を実行し、室内空調機1Bにおいて冷房運転を実行するように構成したが、夫々の空調機1において暖房運転及び冷房運転の何れを実行するかは適宜設定することができる。
Simultaneous operation of heating and cooling
The control unit 60 executes the simultaneous heating and cooling operation shown in FIG. 4 in winter and the like. In this simultaneous heating and heating operation, for example, a hot water HW of 45 ° C. and a cold water CW of 13 ° C., for example, are separately generated in the heat source unit 50. Then, the supply state of the heat medium in the heat medium supply system 8 is switched to the above-described parallel supply mode, and the hot water HW can be supplied to the primary heat exchange unit 3 from the heat source unit 50 The cold water CW can be supplied from the heat source unit 50 to the next heat exchange unit 4.
Then, for example, in the outside air processing air conditioner 1A, the on-off valve 12 is opened and the primary heat exchange unit 3 is opened while the supply of cold water CW to the secondary heat exchange unit 4 is stopped with the on-off valve 22 closed. In the primary heat exchange section 3, the outside air OA, which is relatively low temperature in winter, is heated by heat exchange with, for example, the 45.degree. C. warm water HW by flowing the hot water HW, and the air after heating is heated. It is possible to execute a heating operation for supplying SA to the air conditioning target space.
Further, for example, in the indoor air conditioner 1B, the on-off valve 22 is opened and the secondary heat exchange unit 4 is opened while the supply of hot water HW to the primary heat exchange unit 3 is stopped with the on-off valve 12 closed. By letting cold water CW flow, in the secondary heat exchange unit 4, relatively warm return air RA is cooled by heat exchange with, for example, 13 ° C. cold water CW, and the air supply SA after cooling is air-conditioned It is possible to execute a cooling operation to supply the target space.
In this embodiment, the heating operation is performed in the outside air processing air conditioner 1A, and the cooling operation is performed in the indoor air conditioner 1B. However, any of the heating operation and the cooling operation is performed in each air conditioner 1 It can be set appropriately.

〔別実施形態〕
本発明の他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用することに限らず、他の実施形態の構成と組み合わせて適用することも可能である。
[Another embodiment]
Another embodiment of the present invention will be described. In addition, the configuration of each embodiment described below is not limited to being individually applied, and may be applied in combination with the configuration of the other embodiments.

(1)上記実施形態では、大温度差空調運転において、冷房負荷時に応じて、熱媒体供給系統8での冷水CWの供給状態をカスケード2系統供給モード(図2参照)とカスケード1系統供給モード(図3参照)とで切り替える形態で、2次熱交換部4に対して冷水CWを供給する冷水系統の数を1系統と2系統との間で切り替えるように構成したが、冷水系統の数を3系統以上で切り替えるように構成しても構わない。また、大温度差空調運転において、冷房負荷に拘らず、例えば熱媒体供給系統8での冷水CWの供給状態をカスケード2系統供給モード(図2参照)又はカスケード1系統供給モード(図3参照)に固定する形態で、2次熱交換部4に対して冷水CWを供給する冷水系統の数を1系統又は2系統又はそれ以上に固定するように構成しても構わない。 (1) In the above embodiment, in the large temperature difference air conditioning operation, depending on the time of the cooling load, the supply state of the cold water CW in the heat medium supply system 8 is cascade 2 system supply mode (see FIG. 2) and cascade 1 system supply mode The number of chilled water systems for supplying the chilled water CW to the secondary heat exchange unit 4 is switched between one system and two systems in a mode of switching by (see FIG. 3), but the number of cold water systems May be configured to be switched in three or more systems. Moreover, in the large temperature difference air conditioning operation, regardless of the cooling load, for example, the supply state of the cold water CW in the heat medium supply system 8 is in the cascade 2 system supply mode (see FIG. 2) or the cascade 1 system supply mode (see FIG. 3) The number of chilled water systems for supplying the chilled water CW to the secondary heat exchange unit 4 may be fixed to one system, two systems or more in a fixed form.

(2)上記実施形態では、大温度差空調運転において、熱媒体供給系統8での冷水CWの供給状態をカスケード1系統供給モード(図3参照)として、2次熱交換部4に対して冷水CWを供給する冷水系統の数を1系統に切り替える場合に、第2熱媒体供給路20を介して熱源部50から2次熱交換部4に冷水CWを供給するように構成したが、第1熱媒体供給路10を介して熱源部50から2次熱交換部4に冷水CWを供給するように構成しても構わない。 (2) In the above embodiment, in the large temperature difference air conditioning operation, the cooling water supply condition in the heat medium supply system 8 is set to the cascade 1 system supply mode (see FIG. 3), and the cooling water is supplied to the secondary heat exchange unit 4. In the case where the number of cold water systems supplying CW is switched to one system, the cold water CW is supplied from the heat source unit 50 to the secondary heat exchange unit 4 through the second heat medium supply passage 20, but The cold water CW may be supplied from the heat source unit 50 to the secondary heat exchange unit 4 through the heat medium supply path 10.

2 熱交換部
3 1次熱交換部
4 2次熱交換部
6 給気風路
10 第1熱媒体供給路
12 開閉弁(遮断手段)
15 開閉弁(接続先切替手段)
20 第2熱媒体供給路
22 開閉弁(遮断手段)
41 開閉弁(接続先切替手段)
50 熱源部
60 制御部
CW 冷水
LCW 低温冷水
MCW 中温冷水
SA 給気
2 heat exchange unit 3 primary heat exchange unit 4 secondary heat exchange unit 6 air supply air passage 10 first heat medium supply passage 12 on-off valve (cut-off means)
15 On-off valve (connection destination switching means)
20 second heat medium supply passage 22 on-off valve (cut-off means)
41 On-off valve (connection destination switching means)
50 heat source unit 60 control unit CW cold water LCW low temperature cold water MCW medium temperature cold water SA air supply

Claims (3)

給気が通流する給気風路と、
冷水を生成する熱源部と、
前記熱源部から供給される冷水との熱交換により前記給気風路を通流する給気を冷却可能な熱交換部と、を備えた空調システムであって、
前記熱交換部として、前記給気風路において上流側に設けられた1次熱交換部と、前記給気風路において前記1次熱交換部よりも下流側に設けられた2次熱交換部と、を備え、
前記熱源部が、低温冷水と当該低温冷水よりも高温の中温冷水とを各別に生成可能に構成され、
冷房負荷が高い高冷房負荷時において、前記1次熱交換部に対して前記熱源部から前記中温冷水を供給すると共に前記2次熱交換部に対して前記熱源部から前記低温冷水を供給する潜顕分離空調運転を実行し、冷房負荷が前記高冷房負荷時よりも低い低冷房負荷時において、前記2次熱交換部に対して前記熱源部から前記冷水を供給すると共に当該2次熱交換部から排出された冷水を前記1次熱交換部に供給する大温度差空調運転を実行する制御部を備えた空調システム。
An air flow path through which the air flows,
A heat source unit for producing cold water,
A heat exchange unit capable of cooling the charge air flowing through the supply air passage by heat exchange with cold water supplied from the heat source unit;
A primary heat exchange portion provided on the upstream side of the air supply path as the heat exchange portion, and a secondary heat exchange portion provided on the downstream side of the primary heat exchange portion in the air supply path; Equipped with
The heat source unit is configured to be able to separately generate low temperature cold water and medium temperature cold water having a temperature higher than the low temperature cold water, respectively.
At the time of high cooling load with high cooling load, the latent heat is supplied from the heat source to the primary heat exchange section from the heat source section, and the low temperature cold water is supplied from the heat source section to the secondary heat exchange section. During the low cooling load, in which the sensible separation air conditioning operation is performed and the cooling load is lower than the high cooling load, the cold water is supplied from the heat source unit to the secondary heat exchange unit and the secondary heat exchange unit An air conditioning system comprising: a control unit that executes a large temperature difference air conditioning operation that supplies cold water discharged from the air to the primary heat exchange unit.
前記熱源部から前記中温冷水が供給される第1熱媒体供給路と、前記熱源部から前記低温冷水及び前記中温冷水が択一的に供給されて前記2次熱交換部に接続された第2熱媒体供給路と、を備えると共に、
前記第1熱媒体供給路の接続先を前記1次熱交換部と前記2次熱交換部との間で切替可能な接続先切替手段を備え、
前記制御部が、前記潜顕分離空調運転において、前記第1熱媒体供給路の接続先を前記1次熱交換部に切り替えて、前記1次熱交換部に対して前記第1熱媒体供給路を介して前記中温冷水を供給すると共に前記2次熱交換部に対して前記第2熱媒体供給路を介して前記低温冷水を供給し、前記大温度差空調運転において、前記第1熱媒体供給路の接続先を前記2次熱交換部に切り替えて、前記2次熱交換部に対して前記第1熱媒体供給路及び前記第2熱媒体供給路の両方を介して前記冷水を供給可能とする請求項1に記載の空調システム。
A first heat medium supply path through which the medium-temperature cold water is supplied from the heat source unit, and a low-temperature cold water and the medium-temperature cold water are alternatively supplied from the heat source unit and connected to the secondary heat exchange unit And a heat medium supply path,
A connection destination switching unit capable of switching the connection destination of the first heat medium supply path between the primary heat exchange unit and the secondary heat exchange unit;
The control unit switches the connection destination of the first heat medium supply passage to the primary heat exchange unit in the latent microscopic separation air conditioning operation, and the first heat medium supply passage with respect to the primary heat exchange unit And the low-temperature cold water to the secondary heat exchange unit via the second heat medium supply passage, and the first heat medium supply in the large temperature difference air conditioning operation. The connection destination of the passage is switched to the secondary heat exchange unit, and the cold water can be supplied to the secondary heat exchange unit via both the first heat medium supply passage and the second heat medium supply passage. The air conditioning system according to claim 1.
前記第1熱媒体供給路又は前記第2熱媒体供給路からの冷水の供給を遮断可能な遮断手段を備え、
前記制御部が、前記大温度差空調運転において、冷房負荷に基づいて前記遮断手段の状態を切り替える形態で前記2次熱交換部に対して冷水を供給する冷水系統の数を制御する冷水系統数制御を実行する請求項2に記載の空調システム。
A shutoff unit capable of shutting off the supply of cold water from the first heat medium supply passage or the second heat medium supply passage;
The number of chilled water systems in which the control unit controls the number of chilled water systems that supply chilled water to the secondary heat exchange unit in a mode that switches the state of the shutoff unit based on the cooling load in the large temperature difference air conditioning operation The air conditioning system according to claim 2, which executes control.
JP2018004607A 2018-01-16 2018-01-16 Air conditioning system Active JP7045860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018004607A JP7045860B2 (en) 2018-01-16 2018-01-16 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004607A JP7045860B2 (en) 2018-01-16 2018-01-16 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2019124396A true JP2019124396A (en) 2019-07-25
JP7045860B2 JP7045860B2 (en) 2022-04-01

Family

ID=67398428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004607A Active JP7045860B2 (en) 2018-01-16 2018-01-16 Air conditioning system

Country Status (1)

Country Link
JP (1) JP7045860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474286B2 (en) 2022-06-30 2024-04-24 株式会社えきまちエナジークリエイト Air-conditioning heat source control device, air-conditioning heat source control method, and air-conditioning heat source control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846026U (en) * 1981-09-22 1983-03-28 株式会社竹中工務店 air conditioner
JP2011075162A (en) * 2009-09-29 2011-04-14 Aisin Seiki Co Ltd Air conditioner adjustment device, and air conditioning device
US20120174612A1 (en) * 2010-05-21 2012-07-12 Liebert Corporation Computer Room Air Conditioner With Pre-Cooler
JP2014062651A (en) * 2012-09-20 2014-04-10 Mitsubishi Jisho Sekkei Inc Dehumidifying/reheating air-conditioning system by means of cool water
JP2015007484A (en) * 2013-06-24 2015-01-15 株式会社三菱地所設計 Air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846026U (en) * 1981-09-22 1983-03-28 株式会社竹中工務店 air conditioner
JP2011075162A (en) * 2009-09-29 2011-04-14 Aisin Seiki Co Ltd Air conditioner adjustment device, and air conditioning device
US20120174612A1 (en) * 2010-05-21 2012-07-12 Liebert Corporation Computer Room Air Conditioner With Pre-Cooler
JP2014062651A (en) * 2012-09-20 2014-04-10 Mitsubishi Jisho Sekkei Inc Dehumidifying/reheating air-conditioning system by means of cool water
JP2015007484A (en) * 2013-06-24 2015-01-15 株式会社三菱地所設計 Air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474286B2 (en) 2022-06-30 2024-04-24 株式会社えきまちエナジークリエイト Air-conditioning heat source control device, air-conditioning heat source control method, and air-conditioning heat source control program

Also Published As

Publication number Publication date
JP7045860B2 (en) 2022-04-01

Similar Documents

Publication Publication Date Title
KR101766045B1 (en) Air conditioning system for vehicle
KR101560192B1 (en) Heat recovering ventilation apparatus having bypass operating
CN109383221A (en) The HVAC system of vehicle
JP3997482B2 (en) Water source air conditioning system
KR102171919B1 (en) Combined cooling and heating system
KR20170069318A (en) Air conditioning system for vehicle
KR101629341B1 (en) Heat exchange coil and air conditioning unit
JP4203758B2 (en) Water-cooled heat pump type ground-heated air conditioning system
JP4088790B2 (en) Heat pump type water heater and its operating method
JP2019124396A (en) Air conditioning system
JP4422124B2 (en) Air conditioning system
KR101836767B1 (en) Air conditioning system for vehicle
KR20170069319A (en) Air conditioning system for vehicle
JP6747920B2 (en) Air conditioning system
KR100953766B1 (en) Heat pump
JP4989307B2 (en) Air conditioner
CN218599856U (en) Air conditioner water heater
JP2001065929A (en) Air conditioner
JP6917139B2 (en) Outside air treatment air conditioner
JP6537448B2 (en) Integrated air conditioner
JP4421983B2 (en) Air conditioning system.
JP2003120965A (en) Dehumidifying air conditioner
JP6697891B2 (en) Heat utilization system
KR20170051812A (en) Air conditioning system for vehicle
JP6259337B2 (en) Gas conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7045860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150