JP2011075162A - Air conditioner adjustment device, and air conditioning device - Google Patents

Air conditioner adjustment device, and air conditioning device Download PDF

Info

Publication number
JP2011075162A
JP2011075162A JP2009225210A JP2009225210A JP2011075162A JP 2011075162 A JP2011075162 A JP 2011075162A JP 2009225210 A JP2009225210 A JP 2009225210A JP 2009225210 A JP2009225210 A JP 2009225210A JP 2011075162 A JP2011075162 A JP 2011075162A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
outdoor unit
liquid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009225210A
Other languages
Japanese (ja)
Other versions
JP5249164B2 (en
Inventor
Tadahiko Sotani
忠彦 曽谷
Takanobu Mizuno
高伸 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2009225210A priority Critical patent/JP5249164B2/en
Publication of JP2011075162A publication Critical patent/JP2011075162A/en
Application granted granted Critical
Publication of JP5249164B2 publication Critical patent/JP5249164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner adjustment device and an air conditioning device, reducing development load, and being economically installed. <P>SOLUTION: This air conditioner adjustment device is equipped with: a gas branch pipe 41 and a liquid branch pipe 42 connecting an existing EHP-type outdoor unit 10 and an existing GHP-type outdoor unit 20, and an indoor unit 30; gas flow rate adjustment valves 43, 44 for adjusting a flow rate of a refrigerant in a gas state between the indoor unit 30 and the outdoor units 10, 20; and fluid flow rate adjustment valves 45, 46 for adjusting a flow rate of a refrigerant in a liquid state. A control section 40a acquires model information of the outdoor units 10, 20 and air-conditioning load information of the indoor unit 30, and controls openings of the gas flow rate adjustment valves 43, 44 and the liquid flow rate adjustment valves 45, 46 so that the flow rates of the refrigerants respectively supplied to the indoor unit 30 from the outdoor units 10, 20 according to the model information and the air-conditioning load information, are equal to the flow rates of the refrigerants respectively supplied from the indoor unit 30 to the outdoor units 10, 20. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空気調和機調整装置及び空気調和装置に関するものである。   The present invention relates to an air conditioner adjusting device and an air conditioner.

従来、空気調和装置のヒートポンプとしては、動力源に電動モータを用いた電気ヒートポンプ(以下、EHPともいう)や、ガスエンジンを用いたガスヒートポンプ(以下、GHPともいう)が知られている。EHP式の空気調和装置は、イニシャルコストが安価で低負荷運転特性に優れているが、ランニングコストが比較的高いという特性を有する。一方、GHP式の空気調和装置は、比較的安価なガスを利用することでランニングコストが安いという特性を有する。また、GHP式の空気調和装置での暖房運転は、ガスエンジンから排出される高温の排気ガスなどの排熱を冷媒の加熱源として利用することで、暖房効率を向上することができる。加えて、暖房運転時の霜除去動作、いわゆるデフロスト動作についても排熱を利用することができる。EHP式の空気調和装置のデフロスト動作は一般的に冷房運転を実施して室外機熱交換器の霜除去を行うもので、室内機から冷風が吹き出して室内の空調環境の快適性を損なう可能性があることからも、GHP式の空気調和装置の方が優れている。   Conventionally, as a heat pump of an air conditioner, an electric heat pump (hereinafter also referred to as EHP) using an electric motor as a power source and a gas heat pump (hereinafter also referred to as GHP) using a gas engine are known. The EHP air conditioner has low initial cost and excellent low-load operation characteristics, but has a characteristic that the running cost is relatively high. On the other hand, the GHP air conditioner has a characteristic that running cost is low by using a relatively inexpensive gas. Moreover, the heating operation in the GHP type air conditioner can improve the heating efficiency by using exhaust heat such as high-temperature exhaust gas discharged from the gas engine as a refrigerant heating source. In addition, exhaust heat can be used for frost removal operation during heating operation, so-called defrost operation. The defrosting operation of an EHP type air conditioner generally performs cooling operation to remove frost in the outdoor unit heat exchanger, and cold air blows out from the indoor unit, which may impair the comfort of the indoor air conditioning environment Therefore, the GHP air conditioner is superior.

しかしながら、このように多くの利点を有するGHP式の空気調和装置であっても、イニシャルコストがやや高く、低負荷運転時の効率が悪いという特性を有する。これは、ガスエンジンは能力割合の低い低速回転時(低負荷運転時)ほどエンジン効率が下がるためで、特に近年の省エネルギーの観点から改善が望まれている。そこで、EHP及びGHP式の空気調和装置の特性を補完すべく、これらEHP及びGHP式の空気調和装置を組み合わせたものが知られている。   However, even the GHP type air conditioner having many advantages as described above has characteristics that the initial cost is slightly high and the efficiency at the time of low load operation is poor. This is because the gas engine has a lower engine efficiency when it is rotated at a low speed (during low load operation) with a low capacity ratio, and improvement is particularly desired from the viewpoint of energy saving in recent years. Therefore, in order to complement the characteristics of the EHP and GHP air conditioners, a combination of these EHP and GHP air conditioners is known.

例えば特許文献1の空気調和装置は、容量の異なる複数(2つ)の圧縮機を備えており、容量の大きい一方の圧縮機をガスエンジンで駆動するとともに、その排熱を暖房運転時の冷媒加熱に利用することが提案されている。また、容量の小さい他方の圧縮機を電動モータで駆動するとともに、併設する発電設備の発電装置の排熱を暖房運転時の冷媒加熱に利用することが提案されている。そして、これら容量の異なる2つの圧縮機を並列に接続し、空調負荷に応じてガスエンジン又は電動モータを駆動し、あるいはガスエンジン及び電動モータを同時に駆動することを選択的に実行している。   For example, the air conditioner of Patent Document 1 includes a plurality (two) of compressors having different capacities, and drives one compressor having a large capacity with a gas engine and uses the exhaust heat as a refrigerant during heating operation. It has been proposed to be used for heating. In addition, it has been proposed that the other compressor having a small capacity is driven by an electric motor, and the exhaust heat of the power generation device of the power generation facility provided is used for refrigerant heating during heating operation. Then, two compressors having different capacities are connected in parallel, and the gas engine or the electric motor is driven according to the air conditioning load, or the gas engine and the electric motor are driven simultaneously.

また、特許文献2の空気調和装置は、単独でも動作可能なEHP及びGHP式の空気調和装置をそれぞれ備えており、総合空調コントローラにより空調負荷の変動に応じて決定されたこれらEHP及びGHP式の空気調和装置間の空調バランスに基づいて、各々の空気調和装置を制御するものである。この場合、総合空調コントローラは、EHP及びGHP式の空気調和装置を全体として最適制御することができる。   Further, the air conditioner of Patent Document 2 includes EHP and GHP type air conditioners that can operate independently, and these EHP and GHP type air conditioners determined according to fluctuations in the air conditioning load by the general air conditioning controller. Each air conditioner is controlled based on the air conditioning balance between the air conditioners. In this case, the general air conditioning controller can optimally control the EHP and GHP type air conditioners as a whole.

特開2003−56931号公報JP 2003-56931 A 特開2007−187342号公報JP 2007-187342 A

ところで、特許文献1の空気調和装置では、室外機内で電動モータを動力源とする圧縮機及びガスエンジンを動力源とする圧縮機を併存させており、容量の異なるこれら2つの圧縮機を並列に接続するために、例えば四方弁との間で冷媒回路を分岐させるなど、汎用のEHP又はGHP式の空気調和装置の室外機とは異なる専用の冷媒回路を設計しなければならない。この場合、大規模な開発費用を投資する必要があり、イニシャルコストが増大してランニングメリットによる回収年数が延びる分、現実に市場に投入することが困難になる。   By the way, in the air conditioner of Patent Document 1, a compressor using an electric motor as a power source and a compressor using a gas engine as a power source coexist in the outdoor unit, and these two compressors having different capacities are arranged in parallel. In order to connect, for example, a dedicated refrigerant circuit different from the outdoor unit of a general-purpose EHP or GHP type air conditioner must be designed, for example, a refrigerant circuit is branched between the four-way valve. In this case, it is necessary to invest a large-scale development cost. Since the initial cost increases and the number of years of collection due to running merit increases, it becomes difficult to actually put it on the market.

また、特許文献2の空気調和装置では、既存の空気調和装置を継続使用しつつ、EHP及びGHP式の空気調和装置を全体として最適制御することが記載されているが、EHP及びGHP式の空気調和装置の各々に室内機が必要となり、当該部での冷媒系統が2系統になって施工費が増加してしまう。   Further, in the air conditioner of Patent Document 2, it is described that the EHP and GHP type air conditioners are optimally controlled as a whole while continuously using the existing air conditioner. However, the EHP and GHP type air is described. An indoor unit is required for each of the harmony devices, and the refrigerant system in the part becomes two systems, which increases the construction cost.

本発明の目的は、開発の負荷を軽減することができ、且つ、経済的に設置することができる空気調和機調整装置及び空気調和装置を提供することにある。   An object of the present invention is to provide an air conditioner adjusting device and an air conditioner that can reduce development load and can be installed economically.

上記問題点を解決するために、請求項1に記載の発明は、既製の電気ヒートポンプ式の第1室外機及び既製のガスヒートポンプ式の第2室外機と、室内機とを接続して気体状態の冷媒を流す気体分岐管と、前記第1室外機及び前記第2室外機と、前記室内機とを接続して液体状態の冷媒を流す液体分岐管と、前記気体分岐管に設けられ、前記室内機と前記第1室外機及び前記第2室外機との間で気体状態の冷媒の流量を調整する第1気体流量調整弁及び第2気体流量調整弁と、前記液体分岐管に設けられ、前記室内機と前記第1室外機及び前記第2室外機との間で液体状態の冷媒の流量を調整する第1液体流量調整弁及び第2液体流量調整弁と、前記第1室外機及び前記第2室外機の機種情報をそれぞれ取得する機種情報取得手段と、前記室内機の空調負荷情報を取得する空調負荷情報取得手段と、前記取得された機種情報及び空調負荷情報に応じて前記第1室外機及び前記第2室外機から前記室内機にそれぞれ供給された冷媒の流量が、前記室内機から前記第1室外機及び前記第2室外機にそれぞれ供給される冷媒の流量に一致するように、前記第1及び第2気体流量調整弁の開度並びに前記第1及び第2液体流量調整弁の開度をそれぞれ制御する制御手段とを備えたことを要旨とする。   In order to solve the above-mentioned problems, the invention according to claim 1 is a gas state in which the ready-made electric heat pump type first outdoor unit and the ready-made gas heat pump type second outdoor unit are connected to the indoor unit. A gas branch pipe for flowing the refrigerant, a liquid branch pipe for connecting the first outdoor unit and the second outdoor unit, and the indoor unit to flow a refrigerant in a liquid state, and the gas branch pipe, A first gas flow rate adjusting valve and a second gas flow rate adjusting valve for adjusting a flow rate of the refrigerant in a gaseous state between the indoor unit and the first outdoor unit and the second outdoor unit; and the liquid branch pipe. A first liquid flow rate adjustment valve and a second liquid flow rate adjustment valve that adjust the flow rate of the refrigerant in the liquid state between the indoor unit, the first outdoor unit, and the second outdoor unit, the first outdoor unit, and the Model information acquisition means for acquiring model information of the second outdoor unit, and the room Air-conditioning load information acquisition means for acquiring air-conditioning load information of the unit, and refrigerants respectively supplied from the first outdoor unit and the second outdoor unit to the indoor unit according to the acquired model information and air-conditioning load information The opening degree of the first and second gas flow rate adjustment valves and the first and second gas flow rate adjusting valves so that the flow rate matches the flow rate of the refrigerant respectively supplied from the indoor unit to the first outdoor unit and the second outdoor unit. The gist of the invention is that it includes control means for controlling the opening degree of the second liquid flow rate adjusting valve.

同構成によれば、既製の前記第1室外機及び前記第2室外機と、前記室内機とを連係する前記空気調和機調整装置を設計等すれば、既製品(量産品)を流用することで、開発の負荷を軽減することができる。また、空調に係る建築物(ビルなど)に電気ヒートポンプ(EHP)式及びガスヒートポンプ(GHP)式のいずれか一方の空気調和装置の室外機が既に設置されている場合、当該室外機を流用することができ、極めて経済的である。さらに、EHP式及びGHP式の前記両室外機の各々に前記室内機を個別に設ける必要がないため、その分、配管施工費の低減を図ることができる。   According to this configuration, if the air conditioner adjusting device that links the first outdoor unit and the second outdoor unit and the indoor unit are designed, etc., the ready-made product (mass-produced product) can be used. Therefore, the development load can be reduced. In addition, when an outdoor unit of an air conditioner of either one of an electric heat pump (EHP) type and a gas heat pump (GHP) type is already installed in a building (such as a building) related to air conditioning, the outdoor unit is diverted. Can be very economical. Furthermore, since it is not necessary to provide the indoor unit individually for each of the EHP type and GHP type outdoor units, the piping construction cost can be reduced accordingly.

ここで、前記取得された機種情報及び空調負荷情報に応じて前記第1室外機及び前記第2室外機から前記室内機にそれぞれ供給された冷媒の流量が、前記室内機から前記第1室外機及び前記第2室外機にそれぞれ供給される(戻される)冷媒の流量に一致するように、前記第1及び第2気体流量調整弁の開度並びに前記第1及び第2液体流量調整弁の開度がそれぞれ制御されることで、前記第1室外機及び前記第2室外機の協働で前記室内機における空気調和を実施しても、循環等する冷媒及び潤滑油(いわゆる冷凍機油)の流量がこれら第1室外機及び第2室外機間で不均衡になることを抑制することができる。   Here, the flow rate of the refrigerant respectively supplied from the first outdoor unit and the second outdoor unit to the indoor unit according to the acquired model information and air conditioning load information is determined from the indoor unit to the first outdoor unit. And the opening degree of the first and second gas flow rate adjustment valves and the opening of the first and second liquid flow rate adjustment valves so as to match the flow rate of the refrigerant respectively supplied (returned) to the second outdoor unit. By controlling the degree, the flow rate of refrigerant and lubricating oil (so-called refrigerating machine oil) that circulates even if air conditioning is performed in the indoor unit in cooperation with the first outdoor unit and the second outdoor unit. Can be prevented from becoming unbalanced between the first outdoor unit and the second outdoor unit.

請求項2に記載の発明は、電動モータ、該電動モータにより駆動されて冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する第1圧縮機、該第1圧縮機の吸入口及び吐出口にそれぞれ接続され冷房運転時と暖房運転時とで冷媒の流路を切り替える第1切替弁、及び該第1切替弁に接続され冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する第1室外機熱交換器を有する第1室外機と、ガスエンジン、該ガスエンジンにより駆動されて冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する第2圧縮機、該第2圧縮機の吸入口及び吐出口にそれぞれ接続され冷房運転時と暖房運転時とで冷媒の流路を切り替える第2切替弁、該第2切替弁に接続され冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する第2室外機熱交換器、及び前記ガスエンジンの排熱と熱交換して暖房運転時に冷媒の加熱に供せられる冷却液回路を有する第2室外機と、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する室内機熱交換器を有する室内機と、を接続する空気調和機調整装置において、前記第1切替弁に接続される第1気体分岐部と、前記第2切替弁に接続される第2気体分岐部、並びに前記室内機熱交換器に接続される気体集合部を有する気体分岐管と、前記第1室外機熱交換器に接続される第1液体分岐部と、前記第2室外機熱交換器に接続される第2液体分岐部、並びに前記室内機熱交換器に接続される液体集合部を有する液体分岐管と、前記気体分岐管に設けられ、冷房運転時は前記室内機熱交換器からの気体状態の冷媒の流量を調整して前記第1切替弁を介して前記第1圧縮機に供給し、暖房運転時は前記第1圧縮機の吐出した前記第1切替弁を介した気体状態の冷媒を前記室内機熱交換器に供給する第1気体流量調整弁と、前記気体分岐管に設けられ、冷房運転時は前記室内機熱交換器からの気体状態の冷媒の流量を調整して前記第2切替弁を介して前記第2圧縮機に供給し、暖房運転時は前記第2圧縮機の吐出した前記第2切替弁を介した気体状態の冷媒を前記室内機熱交換器に供給する第2気体流量調整弁と、前記液体分岐管に設けられ、冷房運転時は前記第1室外機熱交換器からの液体状態の冷媒を前記室内機熱交換器に供給し、暖房運転時は前記室内機熱交換器からの液体状態の冷媒の流量を調整して前記第1室外機熱交換器に供給する第1液体流量調整弁と、前記液体分岐管に設けられ、冷房運転時は前記第2室外機熱交換器からの液体状態の冷媒を前記室内機熱交換器に供給し、暖房運転時は前記室内機熱交換器からの液体状態の冷媒の流量を調整して前記第2室外機熱交換器に供給する第2液体流量調整弁と、前記第1室外機及び前記第2室外機の機種情報をそれぞれ取得する機種情報取得手段と、前記室内機の空調負荷情報を取得する空調負荷情報取得手段と、前記取得された機種情報及び空調負荷情報に応じて前記第1室外機及び前記第2室外機から前記室内機にそれぞれ供給された冷媒の流量が、前記室内機から前記第1室外機及び前記第2室外機にそれぞれ供給される冷媒の流量に一致するように、冷房運転時は前記第1及び第2気体流量調整弁の開度をそれぞれ制御し、暖房運転時は前記第1及び第2液体流量調整弁の開度をそれぞれ制御する制御手段とを備えたことを要旨とする。   According to a second aspect of the present invention, there is provided an electric motor, a first compressor that is driven by the electric motor to suck in the refrigerant and compresses and discharges the sucked refrigerant, and an inlet and an outlet of the first compressor Are connected to the first switching valve for switching the refrigerant flow path during the cooling operation and the heating operation, and functions as a refrigerant condenser during the cooling operation and connected to the first switching valve. A first outdoor unit having a first outdoor unit heat exchanger that functions as an evaporator, a gas engine, a second compressor that is driven by the gas engine to suck in refrigerant and compresses and discharges the sucked refrigerant; A second switching valve that is connected to the suction port and the discharge port of the second compressor to switch the refrigerant flow path during cooling operation and heating operation, and is connected to the second switching valve to condense refrigerant during cooling operation. Function as a heater and during heating operation A second outdoor unit heat exchanger functioning as an evaporator of the medium, a second outdoor unit having a coolant circuit that exchanges heat with the exhaust heat of the gas engine and supplies the refrigerant during heating operation, and cooling operation In an air conditioner adjustment apparatus that connects an indoor unit having an indoor unit heat exchanger that functions as a refrigerant evaporator and functions as a refrigerant condenser during heating operation, the air conditioner adjustment device is connected to the first switching valve. A gas branch pipe having a first gas branch section, a second gas branch section connected to the second switching valve, and a gas collecting section connected to the indoor unit heat exchanger; and the first outdoor unit heat exchange. A liquid branch pipe having a first liquid branch portion connected to the chamber, a second liquid branch portion connected to the second outdoor unit heat exchanger, and a liquid collecting portion connected to the indoor unit heat exchanger; The indoor unit is provided in the gas branch pipe during cooling operation. The flow rate of the refrigerant in the gaseous state from the exchanger is adjusted and supplied to the first compressor through the first switching valve, and during the heating operation, the first switching valve discharged from the first compressor is passed through the first switching valve. Provided in the gas branch pipe and the first gas flow rate adjusting valve for supplying the gaseous refrigerant to the indoor unit heat exchanger, and during cooling operation, the flow rate of the gaseous refrigerant from the indoor unit heat exchanger is adjusted. The refrigerant is adjusted and supplied to the second compressor via the second switching valve, and during heating operation, the refrigerant in the gaseous state discharged from the second compressor via the second switching valve is exchanged with the indoor unit heat. A second gas flow rate adjusting valve for supplying to the unit; and a liquid branch pipe provided in the liquid branch pipe for supplying the refrigerant in the liquid state from the first outdoor unit heat exchanger to the indoor unit heat exchanger during the cooling operation. During operation, the flow rate of the liquid refrigerant from the indoor unit heat exchanger is adjusted to heat the first outdoor unit. A first liquid flow control valve for supplying to the exchanger and the liquid branch pipe, and supplying the refrigerant in the liquid state from the second outdoor unit heat exchanger to the indoor unit heat exchanger during cooling operation; During the heating operation, a second liquid flow rate adjustment valve that adjusts the flow rate of the refrigerant in the liquid state from the indoor unit heat exchanger and supplies the refrigerant to the second outdoor unit heat exchanger, the first outdoor unit, and the second outdoor unit. Model information acquisition means for acquiring model information of outdoor units, air conditioning load information acquisition means for acquiring air conditioning load information of the indoor units, and the first outdoor unit according to the acquired model information and air conditioning load information And the flow rate of the refrigerant respectively supplied from the second outdoor unit to the indoor unit matches the flow rate of the refrigerant supplied from the indoor unit to the first outdoor unit and the second outdoor unit. During operation, the first and second gas flow rate adjustments The opening control respectively, during the heating operation is summarized as further comprising a control means for controlling each of the opening degree of the first and second liquid flow control valve.

同構成によれば、前記第1室外機は、前記電動モータ、圧縮機(第1圧縮機)、四方弁(第1切替弁)及び室外機熱交換器(第1室外機熱交換器)を一体的に有する既製のEHP式の室外機で構成される。また、前記第2室外機は、前記ガスエンジン、圧縮機(第2圧縮機)、四方弁(第2切替弁)、室外機熱交換器(第2室外機熱交換器)及び前記冷却液回路を一体的に有する既製のGHP式の室外機で構成される。従って、前記第1室外機及び前記第2室外機と、前記室内機とを連係する前記空気調和機調整装置を設計等すれば、基本的に既製品(量産品)を流用することで、開発の負荷を軽減することができる。また、空調に係る建築物(ビルなど)にEHP式及びGHP式のいずれか一方の空気調和装置の室外機が既に設置されている場合、当該室外機を流用することができ、極めて経済的である。さらに、EHP式及びGHP式の前記両室外機の各々に前記室内機を個別に設ける必要がないため、その分、配管施工費の低減を図ることができる。   According to this configuration, the first outdoor unit includes the electric motor, the compressor (first compressor), the four-way valve (first switching valve), and the outdoor unit heat exchanger (first outdoor unit heat exchanger). It consists of an off-the-shelf EHP-type outdoor unit that is integrated. The second outdoor unit includes the gas engine, a compressor (second compressor), a four-way valve (second switching valve), an outdoor unit heat exchanger (second outdoor unit heat exchanger), and the coolant circuit. It is comprised with the ready-made GHP type outdoor unit which integrally has. Therefore, if the air conditioner adjustment device that links the first outdoor unit, the second outdoor unit, and the indoor unit is designed, etc., it is basically developed by diverting off-the-shelf products (mass-produced products). Can reduce the load. In addition, when an outdoor unit of one of the EHP type and GHP type air conditioners has already been installed in a building (such as a building) related to air conditioning, the outdoor unit can be diverted and is extremely economical. is there. Furthermore, since it is not necessary to provide the indoor unit individually for each of the EHP type and GHP type outdoor units, the piping construction cost can be reduced accordingly.

ここで、前記取得された機種情報及び空調負荷情報に応じて前記第1室外機及び前記第2室外機から前記室内機にそれぞれ供給された冷媒の流量が、前記室内機から前記第1室外機及び前記第2室外機にそれぞれ供給される(戻される)冷媒の流量に一致するように、冷房運転時は前記第1及び第2気体流量調整弁の開度がそれぞれ制御され、暖房運転時は前記第1及び第2液体流量調整弁の開度がそれぞれ制御されることで、前記第1室外機及び前記第2室外機の協働で前記室内機における空気調和を実施しても、循環等する冷媒及び潤滑油(いわゆる冷凍機油)の流量がこれら第1室外機及び第2室外機間で不均衡になることを抑制することができる。   Here, the flow rate of the refrigerant respectively supplied from the first outdoor unit and the second outdoor unit to the indoor unit according to the acquired model information and air conditioning load information is determined from the indoor unit to the first outdoor unit. And the opening degree of the first and second gas flow rate regulating valves is controlled during the cooling operation so as to coincide with the flow rate of the refrigerant respectively supplied (returned) to the second outdoor unit, and during the heating operation. The opening degree of the first and second liquid flow rate regulating valves is controlled, so that the air conditioning in the indoor unit is performed in cooperation with the first outdoor unit and the second outdoor unit. It is possible to prevent the flow rates of the refrigerant and the lubricating oil (so-called refrigerating machine oil) from becoming unbalanced between the first outdoor unit and the second outdoor unit.

請求項3に記載の発明は、請求項1又は2に記載の空気調和機調整装置において、前記取得された機種情報及び空調負荷情報に基づいて、前記第1室外機及び前記第2室外機の運転を選択的に停止する停止手段を備えたことを要旨とする。   According to a third aspect of the present invention, in the air conditioner adjusting device according to the first or second aspect, the first outdoor unit and the second outdoor unit are based on the acquired model information and air conditioning load information. The gist is that a stopping means for selectively stopping the operation is provided.

同構成によれば、例えば低負荷運転時には、前記停止手段により前記第2室外機(GHP式の室外機)の運転を停止することで空調効率を向上することができる。また、中負荷運転時には、前記停止手段により前記第1室外機(EHP式の室外機)の運転を停止することで特に暖房運転時の空調効率(暖房効率)を向上することができる。そして、高負荷運転時には、前記第1室外機及び前記第2室外機の協働運転で好適な空調能力を確保することができる。   According to this configuration, for example, during low load operation, the air conditioning efficiency can be improved by stopping the operation of the second outdoor unit (GHP type outdoor unit) by the stopping means. Further, at the time of medium load operation, it is possible to improve the air conditioning efficiency (heating efficiency) particularly during the heating operation by stopping the operation of the first outdoor unit (EHP type outdoor unit) by the stopping means. And at the time of high load operation, suitable air conditioning capability can be ensured by the cooperative operation of the first outdoor unit and the second outdoor unit.

請求項4に記載の発明は、請求項2に記載の空気調和機調整装置において、前記第1気体分岐部及び前記第2気体分岐部に配設され、各々を流れる冷媒の圧力を検出する第1気圧センサ及び第2気圧センサと、前記第1液体分岐部及び前記第2液体分岐部に配設され、各々を流れる冷媒の圧力を検出する第1液圧センサ及び第2液圧センサとを備え、前記制御手段は、冷房運転時は前記第1液圧センサ及び前記第2液圧センサの一方及び他方にそれぞれ検出された冷媒の圧力に相当する前記第1液体分岐部及び前記第2液体分岐部を流れる冷媒の流量が、前記第1気圧センサ及び前記第2気圧センサの一方及び他方にそれぞれ検出された冷媒の圧力に相当する前記第1気体分岐部及び前記第2気体分岐部を流れる冷媒の流量に一致するように前記第1気体流量調整弁及び第2気体流量調整弁の他方及び一方の開度をそれぞれ制御し、暖房運転時は前記第1気圧センサ及び前記第2気圧センサの一方及び他方にそれぞれ検出された冷媒の圧力に相当する前記第1気体分岐部及び前記第2気体分岐部を流れる冷媒の流量が、前記第1液圧センサ及び前記第2液圧センサの一方及び他方にそれぞれ検出された冷媒の圧力に相当する前記第1液体分岐部及び前記第2液体分岐部を流れる冷媒の流量に一致するように前記第1液体流量調整弁及び第2液体流量調整弁の他方及び一方の開度をそれぞれ制御することを要旨とする。   According to a fourth aspect of the present invention, there is provided the air conditioner adjusting apparatus according to the second aspect, wherein the first air branching unit and the second gas branching unit are arranged in the first gas branching unit and detect the pressure of the refrigerant flowing through each of them. A first atmospheric pressure sensor and a second atmospheric pressure sensor; a first hydraulic pressure sensor and a second hydraulic pressure sensor which are disposed in the first liquid branching unit and the second liquid branching unit and detect the pressure of a refrigerant flowing through each of the first liquid branching unit and the second liquid branching unit And the control means includes the first liquid branch portion and the second liquid corresponding to the refrigerant pressure detected in one and the other of the first hydraulic pressure sensor and the second hydraulic pressure sensor, respectively, during cooling operation. The flow rate of the refrigerant flowing through the branch portion flows through the first gas branch portion and the second gas branch portion corresponding to the pressure of the refrigerant detected at one and the other of the first atmospheric pressure sensor and the second atmospheric pressure sensor, respectively. To match the flow rate of the refrigerant The other opening and the other opening of the first gas flow control valve and the second gas flow control valve are respectively controlled, and detected in one and the other of the first atmospheric pressure sensor and the second atmospheric pressure sensor during heating operation, respectively. The flow rate of the refrigerant flowing through the first gas branch and the second gas branch corresponding to the pressure of the refrigerant is detected by one or the other of the first hydraulic pressure sensor and the second hydraulic pressure sensor, respectively. The opening degree of the other and one of the first liquid flow rate adjustment valve and the second liquid flow rate adjustment valve is set so as to coincide with the flow rate of the refrigerant flowing through the first liquid branch portion and the second liquid branch portion corresponding to the pressure, respectively. The gist is to control.

同構成によれば、冷房運転時は前記第1気体分岐部及び前記第2気体分岐部の一方及び他方を流れる冷媒の流量が、協働する相手方(第1気体分岐部及び前記第2気体分岐部の他方及び一方)の冷媒の流量調整に係る前記第1気体流量調整弁及び第2気体流量調整弁の他方及び一方の開度の制御で行われる。同様に、暖房運転時は前記第1液体分岐部及び前記第2液体分岐部の一方及び他方を流れる冷媒の流量が、協働する相手方(第1液体分岐部及び前記第2液体分岐部の他方及び一方)の冷媒の流量調整に係る前記第1液体流量調整弁及び第2液体流量調整弁の他方及び一方の開度の制御で行われる。従って、循環等する冷媒及び潤滑油の流量制御にあたって、前記第1室外機及び前記第2室外機をより緊密に協働させることができ、例えば自身の冷媒流量のみを確保すべく第1気体流量調整弁又は第2気体流量調整弁(第1液体流量調整弁又は第2液体流量調整弁)の開度が過大になることを抑制することができる。   According to this configuration, during cooling operation, the flow rate of the refrigerant flowing through one and the other of the first gas branching portion and the second gas branching portion cooperates with each other (the first gas branching portion and the second gas branching). This is performed by controlling the opening degree of the other and one of the first gas flow rate adjustment valve and the second gas flow rate adjustment valve related to the refrigerant flow rate adjustment of the other part. Similarly, at the time of heating operation, the flow rate of the refrigerant flowing through one and the other of the first liquid branch and the second liquid branch is equal to the other party (the other of the first liquid branch and the second liquid branch). And one of the first liquid flow rate adjustment valve and the second liquid flow rate adjustment valve according to the flow rate adjustment of the refrigerant. Accordingly, the first outdoor unit and the second outdoor unit can cooperate more closely in controlling the flow rate of the circulating refrigerant and lubricating oil, for example, the first gas flow rate to ensure only its own refrigerant flow rate. It can suppress that the opening degree of a regulating valve or a 2nd gas flow regulating valve (a 1st liquid flow regulating valve or a 2nd liquid flow regulating valve) becomes excessive.

請求項5に記載の発明は、請求項4に記載の空気調和機調整装置において、前記第1気体流量調整弁、前記第2気体流量調整弁、前記第1液体流量調整弁及び前記第2液体流量調整弁の各々の開度は、所定の下限開度以上に設定されることを要旨とする。   According to a fifth aspect of the present invention, in the air conditioner adjusting device according to the fourth aspect, the first gas flow rate adjustment valve, the second gas flow rate adjustment valve, the first liquid flow rate adjustment valve, and the second liquid. The gist is that each opening degree of the flow rate adjusting valve is set to a predetermined lower limit opening degree or more.

同構成によれば、前記第1気体流量調整弁、前記第2気体流量調整弁、前記第1液体流量調整弁及び前記第2液体流量調整弁のいずれかの開度が過小になって冷媒の循環等が制約されることを回避できる。   According to this configuration, the opening degree of any of the first gas flow rate adjustment valve, the second gas flow rate adjustment valve, the first liquid flow rate adjustment valve, and the second liquid flow rate adjustment valve becomes too small, and It is possible to avoid restrictions on circulation and the like.

請求項6に記載の発明は、電動モータ、該電動モータにより駆動されて冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する第1圧縮機、該第1圧縮機の吸入口及び吐出口にそれぞれ接続され冷房運転時と暖房運転時とで冷媒の流路を切り替える第1切替弁、及び該第1切替弁に接続され冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する第1室外機熱交換器を有する第1室外機と、ガスエンジン、該ガスエンジンにより駆動されて冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する第2圧縮機、該第2圧縮機の吸入口及び吐出口にそれぞれ接続され冷房運転時と暖房運転時とで冷媒の流路を切り替える第2切替弁、該第2切替弁に接続され冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する第2室外機熱交換器、及び前記ガスエンジンの排熱と熱交換して暖房運転時に冷媒の加熱に供せられる冷却液回路を有する第2室外機と、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する室内機熱交換器を有する室内機と、前記第1室外機及び前記第2室外機の各々を前記室内機に接続する空気調和機調整装置とを備え、前記空気調和機調整装置は、前記第1切替弁に接続される第1気体分岐部と、前記第2切替弁に接続される第2気体分岐部、並びに前記室内機熱交換器に接続される気体集合部を有する気体分岐管と、前記第1室外機熱交換器に接続される第1液体分岐部と、前記第2室外機熱交換器に接続される第2液体分岐部、並びに前記室内機熱交換器に接続される液体集合部を有する液体分岐管と、前記気体分岐管に設けられ、冷房運転時は前記室内機熱交換器からの気体状態の冷媒の流量を調整して前記第1切替弁を介して前記第1圧縮機に供給し、暖房運転時は前記第1圧縮機の吐出した前記第1切替弁を介した気体状態の冷媒を前記室内機熱交換器に供給する第1気体流量調整弁と、前記気体分岐管に設けられ、冷房運転時は前記室内機熱交換器からの気体状態の冷媒の流量を調整して前記第2切替弁を介して前記第2圧縮機に供給し、暖房運転時は前記第2圧縮機の吐出した前記第2切替弁を介した気体状態の冷媒を前記室内機熱交換器に供給する第2気体流量調整弁と、前記液体分岐管に設けられ、冷房運転時は前記第1室外機熱交換器からの液体状態の冷媒を前記室内機熱交換器に供給し、暖房運転時は前記室内機熱交換器からの液体状態の冷媒の流量を調整して前記第1室外機熱交換器に供給する第1液体流量調整弁と、前記液体分岐管に設けられ、冷房運転時は前記第2室外機熱交換器からの液体状態の冷媒を前記室内機熱交換器に供給し、暖房運転時は前記室内機熱交換器からの液体状態の冷媒の流量を調整して前記第2室外機熱交換器に供給する第2液体流量調整弁と、前記第1室外機及び前記第2室外機の機種情報をそれぞれ取得する機種情報取得手段と、前記室内機の空調負荷情報を取得する空調負荷情報取得手段と、前記取得された機種情報及び空調負荷情報に応じて前記第1室外機及び前記第2室外機から前記室内機にそれぞれ供給された冷媒の流量が、前記室内機から前記第1室外機及び前記第2室外機にそれぞれ供給される流量に一致するように、冷房運転時は前記第1及び第2気体流量調整弁の開度をそれぞれ制御し、暖房運転時は前記第1及び第2液体流量調整弁の開度をそれぞれ制御する制御手段とを備えたことを要旨とする。   According to a sixth aspect of the present invention, there is provided an electric motor, a first compressor that is driven by the electric motor to suck in the refrigerant and compresses and discharges the sucked refrigerant, and an inlet and an outlet of the first compressor Are connected to the first switching valve for switching the refrigerant flow path during the cooling operation and the heating operation, and functions as a refrigerant condenser during the cooling operation and connected to the first switching valve. A first outdoor unit having a first outdoor unit heat exchanger that functions as an evaporator, a gas engine, a second compressor that is driven by the gas engine to suck in refrigerant and compresses and discharges the sucked refrigerant; A second switching valve that is connected to the suction port and the discharge port of the second compressor to switch the refrigerant flow path during cooling operation and heating operation, and is connected to the second switching valve to condense refrigerant during cooling operation. Function as a heater and during heating operation A second outdoor unit heat exchanger functioning as an evaporator of the medium, a second outdoor unit having a coolant circuit that exchanges heat with the exhaust heat of the gas engine and supplies the refrigerant during heating operation, and cooling operation An indoor unit having an indoor unit heat exchanger that functions as a refrigerant evaporator during heating and functions as a refrigerant condenser during heating operation, and each of the first outdoor unit and the second outdoor unit connected to the indoor unit An air conditioner adjusting device, the air conditioner adjusting device comprising: a first gas branching unit connected to the first switching valve; a second gas branching unit connected to the second switching valve; A gas branch pipe having a gas collecting part connected to the indoor unit heat exchanger, a first liquid branch part connected to the first outdoor unit heat exchanger, and a second outdoor unit heat exchanger. The second liquid branch portion and the liquid connected to the indoor unit heat exchanger A liquid branch pipe having a joint and the gas branch pipe are provided, and during cooling operation, the flow rate of the refrigerant in the gaseous state from the indoor unit heat exchanger is adjusted and the first switching valve is used to adjust the first flow rate. A first gas flow rate adjusting valve that supplies the refrigerant in a gaseous state to the indoor unit heat exchanger via the first switching valve discharged from the first compressor during heating operation; Provided in the branch pipe, adjusts the flow rate of the refrigerant in the gaseous state from the indoor unit heat exchanger during cooling operation, and supplies the refrigerant to the second compressor via the second switching valve. A second gas flow rate adjusting valve for supplying a refrigerant in a gaseous state discharged from the second compressor to the indoor unit heat exchanger via the second switching valve; and the liquid branch pipe. Supplying the refrigerant in the liquid state from the first outdoor unit heat exchanger to the indoor unit heat exchanger, A first liquid flow rate adjustment valve that adjusts the flow rate of the refrigerant in the liquid state from the indoor unit heat exchanger and supplies the first outdoor unit heat exchanger to the first outdoor unit heat exchanger and the liquid branch pipe during cooling, At the time of supplying the refrigerant in the liquid state from the second outdoor unit heat exchanger to the indoor unit heat exchanger, and adjusting the flow rate of the refrigerant in the liquid state from the indoor unit heat exchanger during the heating operation. A second liquid flow rate adjusting valve to be supplied to the second outdoor unit heat exchanger, model information acquisition means for acquiring model information of the first outdoor unit and the second outdoor unit, and air conditioning load information of the indoor unit. The air conditioning load information acquisition means to acquire, and the flow rate of the refrigerant respectively supplied from the first outdoor unit and the second outdoor unit to the indoor unit according to the acquired model information and air conditioning load information are the indoor unit To the first outdoor unit and the second outdoor unit, respectively. The opening degree of the first and second gas flow rate adjustment valves is controlled during cooling operation, and the opening degree of the first and second liquid flow rate adjustment valves is set during heating operation. The gist of the invention is that it comprises a control means for controlling.

同構成によれば、開発の負荷を軽減することができ、且つ、経済的に設置することができる空気調和装置を提供することができる。   According to this configuration, it is possible to provide an air conditioner that can reduce development load and can be installed economically.

本発明では、開発の負荷を軽減することができ、且つ、経済的に設置することができる空気調和機調整装置及び空気調和装置を提供することができる。   In the present invention, it is possible to provide an air conditioner adjusting device and an air conditioner that can reduce development load and can be installed economically.

本発明の一実施形態を示す回路図。The circuit diagram which shows one Embodiment of this invention. 空調負荷と負荷分担との関係を示すグラフ。The graph which shows the relationship between an air-conditioning load and load sharing. 空調負荷と設定圧力との関係を示すマップ。The map which shows the relationship between an air-conditioning load and setting pressure. (a)〜(d)は、目標圧力及び実際の圧力の偏差と開度との関係を示すマップ。(A)-(d) is a map which shows the relationship between the deviation of a target pressure and an actual pressure, and an opening degree. 同実施形態の空調負荷分配制御態様を示すフローチャート。The flowchart which shows the air-conditioning load distribution control aspect of the embodiment. 同実施形態の気体流量調整弁の開度制御態様を示すフローチャート。The flowchart which shows the opening degree control aspect of the gas flow regulating valve of the embodiment. 同実施形態の液体流量調整弁の開度制御態様を示すフローチャート。The flowchart which shows the opening degree control aspect of the liquid flow regulating valve of the embodiment.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1は、本実施形態に係る空気調和装置1を簡略化して示す回路図である。同図に示されるように、空気調和装置1は、既製品(量産品)であるEHP式の第1室外機10と、同じく既製品(量産品)であるGHP式の第2室外機20と、室内機30と、空気調和機調整装置40とを備えて構成されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram schematically showing an air conditioner 1 according to the present embodiment. As shown in the figure, the air conditioner 1 includes an EHP-type first outdoor unit 10 that is an off-the-shelf product (mass-produced product), and a GHP-type second outdoor unit 20 that is also an off-the-shelf product (mass-produced product). The indoor unit 30 and the air conditioner adjusting device 40 are provided.

第1室外機10は、電動モータ11及び該電動モータ11により駆動される第1圧縮機12を備える。第1圧縮機12は、冷媒を吸入するとともに該吸入した冷媒を圧縮して、その吐出口に冷媒配管13aを介して接続された第1切替弁としての四方弁14に冷媒を送り出す。   The first outdoor unit 10 includes an electric motor 11 and a first compressor 12 driven by the electric motor 11. The first compressor 12 sucks the refrigerant, compresses the sucked refrigerant, and sends the refrigerant to a four-way valve 14 serving as a first switching valve connected to the discharge port via a refrigerant pipe 13a.

四方弁14は、冷房運転時と暖房運転時とで冷媒の流路を切り替えるためのもので、冷媒配管13bを介して第1室外機熱交換器15に接続されるとともに、冷媒配管13cを介して第1圧縮機12の吸入口に接続され、更に冷媒配管13dを介して開閉弁16に接続されている。前記第1室外機熱交換器15は、冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能するもので、冷媒配管13eを介して開閉弁17に接続されている。なお、第1室外機熱交換器15の近傍には、外気との熱交換を促進するための送風用のファン18が設置されている。   The four-way valve 14 is for switching the refrigerant flow path between the cooling operation and the heating operation, and is connected to the first outdoor unit heat exchanger 15 via the refrigerant pipe 13b and via the refrigerant pipe 13c. Are connected to the suction port of the first compressor 12 and further connected to the on-off valve 16 via the refrigerant pipe 13d. The first outdoor unit heat exchanger 15 functions as a refrigerant condenser during the cooling operation and functions as a refrigerant evaporator during the heating operation, and is connected to the open / close valve 17 via the refrigerant pipe 13e. . In the vicinity of the first outdoor unit heat exchanger 15, a fan 18 for blowing air for promoting heat exchange with the outside air is installed.

第2室外機20は、ガスエンジン21及び該ガスエンジン21により駆動される第2圧縮機22を備える。第2圧縮機22は、冷媒を吸入するとともに該吸入した冷媒を圧縮して、その吐出口に冷媒配管23aを介して接続された第2切替弁としての四方弁24に冷媒を送り出す。   The second outdoor unit 20 includes a gas engine 21 and a second compressor 22 driven by the gas engine 21. The second compressor 22 sucks the refrigerant, compresses the sucked refrigerant, and sends the refrigerant to a four-way valve 24 as a second switching valve connected to the discharge port via the refrigerant pipe 23a.

四方弁24は、冷房運転時と暖房運転時とで冷媒の流路を切り替えるためのもので、冷媒配管23bを介して第2室外機熱交換器25に接続されるとともに、冷媒配管23cを介して第2圧縮機22の吸入口に接続され、更に冷媒配管23dを介して開閉弁26に接続されている。前記第2室外機熱交換器25は、冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能するもので、冷媒配管23eを介して開閉弁27に接続されている。なお、第2室外機熱交換器25の近傍には、外気との熱交換を促進するための送風用のファン28が設置されている。また、ガスエンジン21と第2室外機熱交換器25との間には、ガスエンジン21の排熱と熱交換して暖房運転時に第2室外機熱交換器25において冷媒の加熱に供せられる冷却液回路29が構成されている。   The four-way valve 24 is for switching the refrigerant flow path between the cooling operation and the heating operation, and is connected to the second outdoor unit heat exchanger 25 through the refrigerant pipe 23b and through the refrigerant pipe 23c. Are connected to the suction port of the second compressor 22 and further connected to the on-off valve 26 via the refrigerant pipe 23d. The second outdoor unit heat exchanger 25 functions as a refrigerant condenser during the cooling operation and functions as a refrigerant evaporator during the heating operation, and is connected to the on-off valve 27 via the refrigerant pipe 23e. . In the vicinity of the second outdoor unit heat exchanger 25, a blower fan 28 is installed to promote heat exchange with the outside air. Moreover, between the gas engine 21 and the 2nd outdoor unit heat exchanger 25, it heat-exchanges with the exhaust heat of the gas engine 21, and is used for the heating of a refrigerant | coolant in the 2nd outdoor unit heat exchanger 25 at the time of heating operation. A coolant circuit 29 is configured.

室内機30は、室内機熱交換器31及び該室内機熱交換器31に冷媒配管32aを介して接続された膨張弁33を備える。前記室内機熱交換器31は、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する。なお、室内機熱交換器31の近傍には、室内の空気との熱交換を促進するための送風用のファン34が設置されている。   The indoor unit 30 includes an indoor unit heat exchanger 31 and an expansion valve 33 connected to the indoor unit heat exchanger 31 via a refrigerant pipe 32a. The indoor unit heat exchanger 31 functions as a refrigerant evaporator during cooling operation and functions as a refrigerant condenser during heating operation. In the vicinity of the indoor unit heat exchanger 31, a blower fan 34 is installed to promote heat exchange with indoor air.

空気調和機調整装置40は、第1及び第2室外機10,20と、室内機30との間で気体状態の冷媒を循環させるための気体分岐管41を備える。この気体分岐管41は、開閉弁16,26(四方弁14,24)にそれぞれ接続される第1気体分岐部41a及び第2気体分岐部41b、並びに前記室内機熱交換器31に接続される気体集合部41cを有する。また、空気調和機調整装置40は、第1及び第2室外機10,20と、室内機30との間で液体状態の冷媒を循環させるための液体分岐管42を備える。この液体分岐管42は、開閉弁17,27(第1及び第2室外機熱交換器15,25)にそれぞれ接続される第1液体分岐部42a及び第2液体分岐部42b、並びに前記膨張弁33に接続される液体集合部42cを有する。   The air conditioner adjusting device 40 includes a gas branch pipe 41 for circulating a refrigerant in a gaseous state between the first and second outdoor units 10 and 20 and the indoor unit 30. The gas branch pipe 41 is connected to the first and second gas branch portions 41 a and 41 b connected to the on-off valves 16 and 26 (four-way valves 14 and 24), respectively, and the indoor unit heat exchanger 31. It has a gas collecting part 41c. In addition, the air conditioner adjustment device 40 includes a liquid branch pipe 42 for circulating a liquid refrigerant between the first and second outdoor units 10 and 20 and the indoor unit 30. The liquid branch pipe 42 includes a first liquid branch portion 42a and a second liquid branch portion 42b connected to the on-off valves 17 and 27 (first and second outdoor unit heat exchangers 15 and 25), respectively, and the expansion valve. A liquid collecting portion 42c connected to the first side 33.

第1及び第2気体分岐部41a,41bには、リニア調整弁からなる第1気体流量調整弁43及び第2気体流量調整弁44が配設されている。第1気体流量調整弁43は、冷房運転時は室内機熱交換器31からの気体状態の冷媒の流量を調整して開閉弁16及び四方弁14を介して第1圧縮機12に供給し、暖房運転時は第1圧縮機12の吐出した四方弁14及び開閉弁16を介した気体状態の冷媒を室内機熱交換器31に供給する。同様に、第2気体流量調整弁44は、冷房運転時は室内機熱交換器31からの気体状態の冷媒の流量を調整して開閉弁26及び四方弁24を介して第2圧縮機22に供給し、暖房運転時は第2圧縮機22の吐出した四方弁24及び開閉弁26を介した気体状態の冷媒を室内機熱交換器31に供給する。   In the first and second gas branch portions 41a and 41b, a first gas flow rate adjustment valve 43 and a second gas flow rate adjustment valve 44, which are linear adjustment valves, are disposed. The first gas flow rate adjusting valve 43 adjusts the flow rate of the refrigerant in the gaseous state from the indoor unit heat exchanger 31 during the cooling operation, and supplies it to the first compressor 12 through the on-off valve 16 and the four-way valve 14, During the heating operation, the gaseous refrigerant discharged from the first compressor 12 through the four-way valve 14 and the on-off valve 16 is supplied to the indoor unit heat exchanger 31. Similarly, the second gas flow rate adjustment valve 44 adjusts the flow rate of the refrigerant in the gaseous state from the indoor unit heat exchanger 31 during the cooling operation, and is supplied to the second compressor 22 via the on-off valve 26 and the four-way valve 24. In the heating operation, the refrigerant in the gaseous state discharged from the second compressor 22 via the four-way valve 24 and the on-off valve 26 is supplied to the indoor unit heat exchanger 31.

一方、第1及び第2液体分岐部42a,42bには、リニア調整弁からなる第1液体流量調整弁45及び第2液体流量調整弁46が配設されている。第1液体流量調整弁45は、冷房運転時は第1室外機熱交換器15からの開閉弁17を介した液体状態の冷媒を膨張弁33を介して室内機熱交換器31に供給し、暖房運転時は室内機熱交換器31からの膨張弁33を介した液体状態の冷媒の流量を調整して開閉弁17を介して第1室外機熱交換器15に供給する。同様に、第2液体流量調整弁46は、冷房運転時は第2室外機熱交換器25からの開閉弁27を介した液体状態の冷媒を膨張弁33を介して室内機熱交換器31に供給し、暖房運転時は室内機熱交換器31からの膨張弁33を介した液体状態の冷媒の流量を調整して開閉弁27を介して第2室外機熱交換器25に供給する。   On the other hand, a first liquid flow rate adjustment valve 45 and a second liquid flow rate adjustment valve 46, which are linear adjustment valves, are disposed in the first and second liquid branch portions 42a and 42b. The first liquid flow rate adjustment valve 45 supplies the refrigerant in the liquid state via the on-off valve 17 from the first outdoor unit heat exchanger 15 to the indoor unit heat exchanger 31 via the expansion valve 33 during the cooling operation. During the heating operation, the flow rate of the refrigerant in the liquid state from the indoor unit heat exchanger 31 through the expansion valve 33 is adjusted and supplied to the first outdoor unit heat exchanger 15 through the on-off valve 17. Similarly, the second liquid flow rate adjusting valve 46 supplies the refrigerant in the liquid state via the open / close valve 27 from the second outdoor unit heat exchanger 25 to the indoor unit heat exchanger 31 via the expansion valve 33 during the cooling operation. In the heating operation, the flow rate of the refrigerant in the liquid state from the indoor unit heat exchanger 31 through the expansion valve 33 is adjusted and supplied to the second outdoor unit heat exchanger 25 through the on-off valve 27.

ここで、空気調和装置1の空気調和に係る動作について、EHP式及びGHP式の両室外機10,20が駆動されているものとして説明する。なお、冷房及び暖房の各運転時における冷媒の流れを実線矢印及び破線矢印にて表している。   Here, the operation related to the air conditioning of the air conditioning apparatus 1 will be described on the assumption that both the EHP and GHP outdoor units 10 and 20 are driven. In addition, the flow of the refrigerant | coolant at the time of each operation | movement of cooling and heating is represented by the solid line arrow and the broken line arrow.

まず、冷房運転時において、室外機10,20の圧縮機12,22の吐出口を出た冷媒は、四方弁14,24を通過した後、凝縮器として機能する室外機熱交換器15,25に導かれる。室外機熱交換器15,25において、冷媒は室外の空気(外気)により熱を奪われ、凝縮・液化する。その後、液体分岐管42の第1及び第2液体分岐部42a,42bに導かれた冷媒は、空気調和機調整装置40内の液体集合部42cにおいて合流して室内機30に導かれる。室内機30に導かれた冷媒は、電子膨張弁33において減圧されるとともに、蒸発器として機能する室内機熱交換器31において、室内の空気の熱を奪い気化する。その後、気体分岐管41の気体集合部41cに導かれた冷媒は、空気調和機調整装置40内の第1及び第2気体分岐部41a,41bにおいて分流して、四方弁14,24を介して圧縮機12,22の吸入口に戻る。以上の過程を経ることで、室内が冷房される。   First, during cooling operation, the refrigerant that has exited the discharge ports of the compressors 12 and 22 of the outdoor units 10 and 20 passes through the four-way valves 14 and 24 and then functions as outdoor unit heat exchangers 15 and 25 that function as condensers. Led to. In the outdoor unit heat exchangers 15 and 25, the refrigerant is deprived of heat by outdoor air (outside air) and condensed and liquefied. Thereafter, the refrigerant guided to the first and second liquid branch portions 42 a and 42 b of the liquid branch pipe 42 merges at the liquid collecting portion 42 c in the air conditioner adjustment device 40 and is guided to the indoor unit 30. The refrigerant guided to the indoor unit 30 is decompressed by the electronic expansion valve 33, and in the indoor unit heat exchanger 31 functioning as an evaporator, the heat of the indoor air is taken and vaporized. Thereafter, the refrigerant guided to the gas collecting part 41c of the gas branch pipe 41 is branched in the first and second gas branching parts 41a and 41b in the air conditioner adjusting device 40, and is passed through the four-way valves 14 and 24. Return to the suction ports of the compressors 12 and 22. Through the above process, the room is cooled.

一方、暖房運転時において、室外機10,20の圧縮機12,22の吐出口を出た冷媒は、四方弁14,24を通過した後、気体分岐管41の第1及び第2気体分岐部41a,41bに導かれ、空気調和機調整装置40内の気体集合部41cにおいて合流して室内機30に導かれる。そして、冷媒は、凝縮器として機能する室内機熱交換器31において、室内の空気に熱を放出し、凝縮・液化する。その後、電子膨張弁33において減圧された冷媒は、液体分岐管42の液体集合部42cに導かれ、空気調和機調整装置40内の第1及び第2液体分岐部42a,42bにおいて分流して室外機熱交換器15,25に導かれる。そして、冷媒は、蒸発器として機能する室外機熱交換器15,25において、室外の空気の熱を吸収・気化する。この際、ガスエンジン21の排熱と熱交換する前記冷却液回路29が冷媒の加熱に供せられる。その後、室外機熱交換器15,25からの四方弁14,24を介した冷媒が、圧縮機12,22の吸入口に戻る。以上の過程を経ることで、室内が暖房される。   On the other hand, during the heating operation, the refrigerant that has exited the discharge ports of the compressors 12 and 22 of the outdoor units 10 and 20 passes through the four-way valves 14 and 24, and then the first and second gas branch portions of the gas branch pipe 41. 41 a and 41 b, merge at the gas collecting portion 41 c in the air conditioner adjustment device 40, and are guided to the indoor unit 30. The refrigerant releases heat into the indoor air in the indoor unit heat exchanger 31 functioning as a condenser, and condenses and liquefies. Thereafter, the refrigerant depressurized in the electronic expansion valve 33 is guided to the liquid collecting portion 42c of the liquid branch pipe 42, and is diverted in the first and second liquid branch portions 42a and 42b in the air conditioner adjusting device 40 to be outdoors. It is guided to the machine heat exchangers 15 and 25. The refrigerant absorbs and vaporizes the heat of the outdoor air in the outdoor unit heat exchangers 15 and 25 that function as an evaporator. At this time, the coolant circuit 29 that exchanges heat with the exhaust heat of the gas engine 21 is used to heat the refrigerant. Thereafter, the refrigerant from the outdoor unit heat exchangers 15 and 25 through the four-way valves 14 and 24 returns to the suction ports of the compressors 12 and 22. Through the above process, the room is heated.

なお、第1及び第2気体分岐部41a,41bには、各々を流れる冷媒の圧力(気圧)P1,P2を検出するための第1気圧センサ47及び第2気圧センサ48が配設されている。また、第1及び第2液体分岐部42a,42bには、各々を流れる冷媒の圧力(液圧)P3,P4を検出するための第1液圧センサ49及び第2液圧センサ50が配設されている。   The first and second gas branch portions 41a and 41b are provided with a first atmospheric pressure sensor 47 and a second atmospheric pressure sensor 48 for detecting the pressure (atmospheric pressure) P1 and P2 of the refrigerant flowing therethrough. . The first and second liquid branch portions 42a and 42b are provided with a first hydraulic pressure sensor 49 and a second hydraulic pressure sensor 50 for detecting pressures (fluid pressures) P3 and P4 of the refrigerant flowing through the first and second liquid branch portions 42a and 42b, respectively. Has been.

次に、空気調和装置1の電気的構成について説明する。図1に併せ示すように、第1室外機10、第2室外機20、室内機30及び空気調和機調整装置40は、例えばマイクロコンピュータを主体に構成された制御部10a,20a,30a,40aをそれぞれ備える。制御部10a,20aは、該当の圧縮機12,22及びファン18,28等をそれぞれ駆動制御するものであり、制御部30aは、膨張弁33及びファン34等をそれぞれ駆動制御するとともに空調負荷を算出・記憶するものである。そして、制御部40aは、これら制御部10a,20a,30aと電気的に接続されて相互に連携されている。制御部10a,20a,30aの制御部40aとの接続にあたっては、これら制御部10a,20a,30aに既存の入出力ポートが利用されており、基本的に既製品である第1及び第2室外機10,20等を改修していない。   Next, the electrical configuration of the air conditioner 1 will be described. As shown in FIG. 1, the first outdoor unit 10, the second outdoor unit 20, the indoor unit 30, and the air conditioner adjusting device 40 are, for example, control units 10a, 20a, 30a, 40a mainly composed of a microcomputer. Each is provided. The control units 10a and 20a drive and control the corresponding compressors 12 and 22 and the fans 18 and 28, respectively. The control unit 30a controls and drives the expansion valve 33 and the fan 34 and the air conditioning load. Calculate and store. And the control part 40a is electrically connected with these control parts 10a, 20a, and 30a, and is mutually cooperated. When connecting the control units 10a, 20a, and 30a to the control unit 40a, the existing input / output ports are used for the control units 10a, 20a, and 30a, and are basically off-the-shelf first and second outdoor units. Machines 10, 20, etc. have not been refurbished.

そして、制御手段を構成する制御部40aは、制御部10a,20aから第1及び第2室外機10,20の機種情報(定格負荷情報等)を取得するとともに(機種情報取得手段)、制御部30aから運転中の室内機30の空調負荷情報を取得する(空調負荷情報取得手段)。空調負荷情報には、冷房及び暖房のいずれの運転サイクル中かの冷/暖情報も含まれている。なお、空調負荷は、例えば室内機30の設置される室内温度と設定温度との差に基づき算出されるものである。特に、空気調和機調整装置40に接続される室内機30が複数の場合には、各室内機30において算出された空調負荷の総和となる。   And the control part 40a which comprises a control means acquires the model information (rated load information etc.) of the 1st and 2nd outdoor units 10 and 20 from the control parts 10a and 20a (model information acquisition means), and a control part The air conditioning load information of the indoor unit 30 in operation is acquired from 30a (air conditioning load information acquisition means). The air conditioning load information includes the cooling / warming information during either the cooling or heating operation cycle. The air conditioning load is calculated based on, for example, the difference between the indoor temperature where the indoor unit 30 is installed and the set temperature. In particular, when there are a plurality of indoor units 30 connected to the air conditioner adjustment device 40, the total air conditioning load calculated in each indoor unit 30 is obtained.

制御部40aは、取得したこれら機種情報及び空調負荷情報に基づいて、第1及び第2室外機10,20の少なくとも一方を駆動すべく制御部10a,20aを制御する。図2は、第1及び第2室外機10,20を共に定格上の最大能力(定格負荷)で駆動したときの空調負荷を100%として、空調負荷と第1及び第2室外機10,20の負荷分担との関係を示すグラフである。同図に示すように、第1及び第2室外機10,20の負荷分担態様の空調負荷の切替点として所定値A,B(A<B)が設定されている。所定値A(%)は、取得された機種情報に対応するGHP式の第2室外機20において、その低負荷運転を抑制して運転効率を向上させることができる最適な値に設定されている。また、所定値Bは、取得された機種情報に対応するGHP式の第2室外機20の定格負荷に基づいて設定されている。そして、空調負荷が所定値A未満の低負荷時には、その優れた負荷特性を考慮して、制御部40aは、EHP式の第1室外機10のみを駆動すべく制御部10a,20aを制御する(停止手段)。また、空調負荷が所定値A以上所定値B未満の中負荷時には、その優れたランニングコストを考慮して、制御部40aは、GHP式の第2室外機20のみを駆動すべく制御部10a,20aを制御する(停止手段)。さらに、空調負荷が所定値B以上の高負荷時には、十分な空調能力を確保するために、制御部40aは、EHP式及びGHP式の両室外機10,20を並行して駆動すべく制御部10a,20aを制御する。   The control unit 40a controls the control units 10a and 20a to drive at least one of the first and second outdoor units 10 and 20 based on the acquired model information and air conditioning load information. FIG. 2 shows the air conditioning load and the first and second outdoor units 10, 20 when the air conditioning load when both the first and second outdoor units 10, 20 are driven at the rated maximum capacity (rated load) is 100%. It is a graph which shows the relationship with no load sharing. As shown in the figure, predetermined values A and B (A <B) are set as switching points of the air conditioning load in the load sharing mode of the first and second outdoor units 10 and 20. The predetermined value A (%) is set to an optimum value that can suppress the low-load operation and improve the operation efficiency in the GHP-type second outdoor unit 20 corresponding to the acquired model information. . The predetermined value B is set based on the rated load of the GHP-type second outdoor unit 20 corresponding to the acquired model information. When the air conditioning load is a low load less than the predetermined value A, the control unit 40a controls the control units 10a and 20a to drive only the EHP type first outdoor unit 10 in consideration of the excellent load characteristics. (Stop means). In addition, when the air conditioning load is a medium load that is greater than or equal to the predetermined value A and less than the predetermined value B, the control unit 40a is configured to control only the second HPHP outdoor unit 20 in consideration of the excellent running cost. 20a is controlled (stopping means). Further, when the air conditioning load is a high load of a predetermined value B or more, in order to ensure sufficient air conditioning capacity, the control unit 40a controls the EHP type and GHP type outdoor units 10 and 20 to drive in parallel. 10a and 20a are controlled.

なお、各室外機10,20の駆動に際しては、制御部40aは、取得した機種情報及び空調負荷情報に基づいて、各室外機10,20の負荷分担及び運転・停止を表す指示信号を制御部10a,20aに出力する。指示信号により、運転指示された制御部10a,20aは、負荷分担分を確保すべく、圧縮機12,22を駆動制御する。この際、制御部10a,20aは、冷房及び暖房のいずれの運転サイクル中かに応じて四方弁14,24の流路の切り替えを併せて行う。また、指示信号により、停止指示された制御部10a,20aは、圧縮機12,22の駆動制御を停止する。   When the outdoor units 10 and 20 are driven, the control unit 40a transmits an instruction signal indicating load sharing and operation / stop of the outdoor units 10 and 20 based on the acquired model information and air conditioning load information. 10a and 20a. The control units 10a and 20a, which are instructed to operate by the instruction signal, drive-control the compressors 12 and 22 so as to secure the load sharing. At this time, the control units 10a and 20a simultaneously switch the flow paths of the four-way valves 14 and 24 depending on which of the cooling and heating operation cycles is being performed. In addition, the control units 10 a and 20 a instructed to stop by the instruction signal stop the drive control of the compressors 12 and 22.

ここで、制御部40aは、第1及び第2気体流量調整弁43,44、第1及び第2液体流量調整弁45,46、第1及び第2気圧センサ47,48、並びに第1及び第2液圧センサ49,50とも電気的に接続されている。以下、各室外機10,20の駆動態様に応じた制御部40aによる第1及び第2気体流量調整弁43,44並びに第1及び第2液体流量調整弁45,46の開度制御態様について説明する。   Here, the controller 40a includes the first and second gas flow rate adjustment valves 43 and 44, the first and second liquid flow rate adjustment valves 45 and 46, the first and second atmospheric pressure sensors 47 and 48, and the first and second pressure flow rate adjustment valves 45 and 46. The two hydraulic pressure sensors 49 and 50 are also electrically connected. Hereinafter, the opening degree control mode of the first and second gas flow rate adjustment valves 43 and 44 and the first and second liquid flow rate adjustment valves 45 and 46 by the control unit 40a according to the drive mode of the outdoor units 10 and 20 will be described. To do.

まず、EHP式の第1室外機10のみを駆動する場合には、該第1室外機10の冷媒を循環させるために第1気体流量調整弁43及び第1液体流量調整弁45の開度を共に「100%」(全開)にするとともに、GHP式の第2室外機20の冷媒が室内機30側に漏れないように、第2気体流量調整弁44及び第2液体流量調整弁46の開度を共に「0%」(全閉)にする。また、GHP式の第2室外機20のみを駆動する場合には、該第2室外機20の冷媒を循環させるために第2気体流量調整弁44及び第2液体流量調整弁46の開度を共に「100%」にするとともに、EHP式の第1室外機10の冷媒が室内機30側に漏れないように、第1気体流量調整弁43及び第1液体流量調整弁45の開度を共に「0%」にする。   First, when only the EHP type first outdoor unit 10 is driven, the opening degree of the first gas flow rate adjustment valve 43 and the first liquid flow rate adjustment valve 45 is set in order to circulate the refrigerant of the first outdoor unit 10. Both are set to “100%” (fully open), and the second gas flow rate adjustment valve 44 and the second liquid flow rate adjustment valve 46 are opened so that the refrigerant of the GHP type second outdoor unit 20 does not leak to the indoor unit 30 side. Both degrees are set to “0%” (fully closed). When only the GHP type second outdoor unit 20 is driven, the opening degree of the second gas flow rate adjustment valve 44 and the second liquid flow rate adjustment valve 46 is set to circulate the refrigerant of the second outdoor unit 20. Both are set to “100%” and the opening amounts of the first gas flow rate adjustment valve 43 and the first liquid flow rate adjustment valve 45 are both set so that the refrigerant of the EHP type first outdoor unit 10 does not leak to the indoor unit 30 side. Set to “0%”.

さらに、EHP式及びGHP式の両室外機10,20を駆動する場合には、前述の負荷分担に応じて各室外機10,20から室内機30に供給された冷媒の流量が、該室内機30から各室外機10,20に供給される(戻される)冷媒の流量に一致するように、第1及び第2気体流量調整弁43,44、第1及び第2液体流量調整弁45,46の開度を制御する。これは、両室外機10,20の協働で室内機30における空気調和を実施する際、循環等する冷媒及び潤滑油(冷凍機油)の流量(循環量)がこれら室外機10,20間で不均衡になることを抑制するためである。   Further, when both the EHP type and GHP type outdoor units 10 and 20 are driven, the flow rate of the refrigerant supplied from each of the outdoor units 10 and 20 to the indoor unit 30 in accordance with the load sharing described above is determined by the indoor unit. The first and second gas flow rate adjusting valves 43 and 44, and the first and second liquid flow rate adjusting valves 45 and 46 so as to match the flow rate of the refrigerant supplied (returned) to the outdoor units 10 and 20 from 30. To control the opening degree. This is because when the air conditioning in the indoor unit 30 is performed in cooperation with both the outdoor units 10 and 20, the flow rate (circulation amount) of the circulating refrigerant and lubricating oil (refrigerating machine oil) is between these outdoor units 10 and 20. This is to suppress imbalance.

すなわち、例えば冷房運転時は、制御部40aは、第1及び第2液体流量調整弁45,46の開度を共に「100%」にする。これにより、負荷分担に応じて各室外機10,20により制御された流量の冷媒が、流量調整されることなくそのまま液体分岐管42(液体集合部42c)で合流して室内機30側に供給される。そして、制御部40aは、室内機30に供給された流量の冷媒が気体分岐管41(第1及び第2気体分岐部41a,41b)で分流して再び各室外機10,20に戻るように第1及び第2気体流量調整弁43,44の開度を制御する。この場合、制御部40aは、第1及び第2気圧センサ47,48により検出された圧力P1,P2が目標圧力Pt1,Pt2にそれぞれ一致するように第1及び第2気体流量調整弁43,44の開度を制御する。   That is, for example, during the cooling operation, the controller 40a sets both the opening degrees of the first and second liquid flow rate adjusting valves 45 and 46 to “100%”. As a result, the refrigerant having a flow rate controlled by each of the outdoor units 10 and 20 according to the load sharing is merged in the liquid branch pipe 42 (liquid collecting portion 42c) without being adjusted and supplied to the indoor unit 30 side. Is done. And the control part 40a is divided so that the refrigerant | coolant of the flow volume supplied to the indoor unit 30 may be branched by the gas branch pipe 41 (1st and 2nd gas branch part 41a, 41b), and returns to each outdoor unit 10 and 20 again. The opening degree of the first and second gas flow rate adjusting valves 43 and 44 is controlled. In this case, the control unit 40a controls the first and second gas flow rate adjusting valves 43 and 44 so that the pressures P1 and P2 detected by the first and second atmospheric pressure sensors 47 and 48 coincide with the target pressures Pt1 and Pt2, respectively. To control the opening degree.

ここで、「目標圧力Pt1」及び「目標圧力Pt2」は、第1室外機10及び第2室外機20に対する各々の負荷分担に相当する空調負荷(%)に基づき、図3に示すマップから設定圧力Ps1,Ps2を求めることで算出される。すなわち、目標圧力Pt1は、前記圧力P3から設定圧力Ps1を減じた値であり、目標圧力Pt2は、前記圧力P4から設定圧力Ps2を減じた値である。各設定圧力Ps1,Ps2は、気体状態での圧力P1,P2相当の冷媒の流量と、液体状態での圧力P3,P4相当の冷媒の流量とが互いに同等になるように変換するためのもので、負荷分担に相当する空調負荷(%)が大きくなるに従って大きくなるように設定されている。これは、負荷分担に相当する空調負荷(%)が大きくなるほど、各室外機10,20が室内機30側に供給する冷媒の流量が大きくなることから、その分、圧力P3,P4を大きく補正するためである。また、各設定圧力Ps1,Ps2は、該当室外機10,20の定格負荷が大きくなるに従って大きくなるように設定されている。これは、室外機10,20の空調能力が高いほど、当該室外機10,20が室内機30側に供給可能な冷媒の流量が大きくなることから、その分、圧力P3,P4を大きく補正するためである。   Here, “target pressure Pt1” and “target pressure Pt2” are set from the map shown in FIG. 3 based on the air conditioning load (%) corresponding to each load sharing for the first outdoor unit 10 and the second outdoor unit 20. It is calculated by obtaining the pressures Ps1, Ps2. That is, the target pressure Pt1 is a value obtained by subtracting the set pressure Ps1 from the pressure P3, and the target pressure Pt2 is a value obtained by subtracting the set pressure Ps2 from the pressure P4. The set pressures Ps1 and Ps2 are used for conversion so that the flow rate of the refrigerant corresponding to the pressures P1 and P2 in the gas state is equal to the flow rate of the refrigerant corresponding to the pressures P3 and P4 in the liquid state. The air conditioning load (%) corresponding to the load sharing is set to increase as the load increases. This is because, as the air conditioning load (%) corresponding to the load sharing increases, the flow rate of the refrigerant supplied from the outdoor units 10 and 20 to the indoor unit 30 increases, and accordingly, the pressures P3 and P4 are largely corrected accordingly. It is to do. Each set pressure Ps1, Ps2 is set so as to increase as the rated load of the corresponding outdoor unit 10, 20 increases. This is because the higher the air conditioning capacity of the outdoor units 10 and 20, the larger the flow rate of refrigerant that can be supplied to the indoor unit 30 by the outdoor units 10 and 20, so that the pressures P 3 and P 4 are greatly corrected accordingly. Because.

そして、圧力P1が目標圧力Pt1以上のときには、制御部40aは、目標圧力Pt2及び圧力P2の偏差D2(=Pt2−P2)に基づき算出される開度A1に一致するように第1気体流量調整弁43を制御する。図4(a)は、偏差D2と開度A1との関係を示すマップである。同図に示すように、開度A1は、「100%」を上限に偏差D2が大きくなるに従って小さくなるように設定されるとともに、所定偏差Da2以上で所定の最小開度Am1に保持されている。つまり、開度A1は、基本的に圧力P2が目標圧力Pt2に比べて小さくなるほど小さくなるように、即ち第2室外機20側に分流される冷媒の流量が不足するほど第1室外機10側に分流される冷媒の流量を抑えるべく第1気体流量調整弁43を閉じるように設定される。なお、このように第1気体流量調整弁43の開度A1の制御において第2室外機20側の冷媒の循環(戻り)に係る偏差D2を利用するのは、当該室外機20側に戻る冷媒の流量を考慮することなく第1気体流量調整弁43の開度A1が過大に制御されること、即ち第1室外機10側に戻る冷媒の流量が過剰になることを防止するためである。一方、圧力P1が目標圧力Pt1未満のときには、制御部40aは、第1気体流量調整弁43の開度を所定の漸増量ΔG(%)だけ増ずるようにこれを制御する。   When the pressure P1 is equal to or higher than the target pressure Pt1, the control unit 40a adjusts the first gas flow rate so as to coincide with the opening degree A1 calculated based on the target pressure Pt2 and the deviation D2 (= Pt2-P2) of the pressure P2. The valve 43 is controlled. FIG. 4A is a map showing the relationship between the deviation D2 and the opening degree A1. As shown in the figure, the opening degree A1 is set so as to decrease as the deviation D2 increases with “100%” as the upper limit, and is held at a predetermined minimum opening degree Am1 above a predetermined deviation Da2. . That is, the opening degree A1 basically becomes smaller as the pressure P2 becomes smaller than the target pressure Pt2, that is, the first outdoor unit 10 side becomes smaller as the flow rate of the refrigerant diverted to the second outdoor unit 20 side becomes insufficient. The first gas flow rate adjusting valve 43 is set to be closed in order to suppress the flow rate of the refrigerant diverted into the first flow rate. Note that the deviation D2 related to the circulation (return) of the refrigerant on the second outdoor unit 20 side in the control of the opening degree A1 of the first gas flow rate adjustment valve 43 in this way is the refrigerant that returns to the outdoor unit 20 side. This is to prevent the opening degree A1 of the first gas flow rate adjustment valve 43 from being excessively controlled without considering the flow rate of the refrigerant, that is, the flow rate of the refrigerant returning to the first outdoor unit 10 side from being excessive. On the other hand, when the pressure P1 is less than the target pressure Pt1, the control unit 40a controls this so that the opening degree of the first gas flow rate adjustment valve 43 is increased by a predetermined incremental amount ΔG (%).

同様に、圧力P2が目標圧力Pt2以上のときには、制御部40aは、目標圧力Pt1及び圧力P1の偏差D1(=Pt1−P1)に基づき算出される開度A2に一致するように第2気体流量調整弁44を制御する。図4(b)は、偏差D1と開度A2との関係を示すマップである。同図に示すように、開度A2は、「100%」を上限に偏差D1が大きくなるに従って小さくなるように設定されるとともに、所定偏差Da1以上で所定の最小開度Am2に保持されている。つまり、開度A2は、基本的に圧力P1が目標圧力Pt1に比べて小さくなるほど小さくなるように、即ち第1室外機10側に分流される冷媒の流量が不足するほど第2室外機20側に分流される冷媒の流量を抑えるべく第2気体流量調整弁44を閉じるように設定される。一方、圧力P2が目標圧力Pt2未満のときには、制御部40aは、第2気体流量調整弁44の開度を所定の漸増量ΔG(%)だけ増ずるようにこれを制御する。   Similarly, when the pressure P2 is equal to or higher than the target pressure Pt2, the control unit 40a sets the second gas flow rate so as to coincide with the opening degree A2 calculated based on the target pressure Pt1 and the deviation D1 (= Pt1-P1) of the pressure P1. The regulating valve 44 is controlled. FIG. 4B is a map showing the relationship between the deviation D1 and the opening A2. As shown in the figure, the opening A2 is set to become smaller as the deviation D1 increases with “100%” as the upper limit, and is held at a predetermined minimum opening Am2 at a predetermined deviation Da1 or more. . That is, the opening A2 is basically such that the pressure P1 becomes smaller as the pressure P1 becomes smaller than the target pressure Pt1, that is, the second outdoor unit 20 side as the flow rate of the refrigerant diverted to the first outdoor unit 10 side becomes insufficient. The second gas flow rate adjustment valve 44 is set to be closed in order to suppress the flow rate of the refrigerant that is diverted to the first gas flow rate. On the other hand, when the pressure P2 is less than the target pressure Pt2, the control unit 40a controls the second gas flow rate adjustment valve 44 so that the opening degree of the second gas flow rate adjustment valve 44 is increased by a predetermined incremental amount ΔG (%).

また、暖房運転時は、制御部40aは、第1及び第2気体流量調整弁43,44の開度を共に「100%」にする。これにより、負荷分担に応じて各室外機10,20により制御された流量の冷媒が、流量調整されることなくそのまま気体分岐管41(気体集合部41c)で合流して室内機30側に供給される。そして、制御部40aは、室内機30に供給された流量の冷媒が液体分岐管42(第1及び第2液体分岐部42a,42b)で分流して再び各室外機10,20に戻るように第1及び第2液体流量調整弁45,46の開度を制御する。この場合、制御部40aは、第1及び第2液圧センサ49,50により検出された圧力P3,P4が目標圧力Pt3,Pt4にそれぞれ一致するように第1及び第2液体流量調整弁45,46の開度を制御する。   Moreover, at the time of heating operation, the control part 40a makes both the opening degree of the 1st and 2nd gas flow control valves 43 and 44 "100%". Thereby, the refrigerant | coolant of the flow volume controlled by each outdoor unit 10 and 20 according to load sharing is merged with the gas branch pipe 41 (gas gathering part 41c) as it is, without adjusting flow volume, and is supplied to the indoor unit 30 side. Is done. Then, the control unit 40a causes the refrigerant at the flow rate supplied to the indoor unit 30 to be diverted by the liquid branch pipe 42 (first and second liquid branch units 42a and 42b) and returned to the outdoor units 10 and 20 again. The opening degree of the first and second liquid flow rate adjusting valves 45 and 46 is controlled. In this case, the control unit 40a includes the first and second liquid flow rate adjustment valves 45, so that the pressures P3, P4 detected by the first and second hydraulic pressure sensors 49, 50 coincide with the target pressures Pt3, Pt4, respectively. The opening of 46 is controlled.

ここで、「目標圧力Pt3」及び「目標圧力Pt4」は、第1室外機10及び第2室外機20に対する各々の負荷分担に相当する空調負荷(%)に基づき、前述の図3に示すマップから設定圧力Ps3,Ps4を求めることで算出される。すなわち、目標圧力Pt3は、前記圧力P1から設定圧力Ps3を減じた値であり、目標圧力Pt4は、前記圧力P2から設定圧力Ps4を減じた値である。各設定圧力Ps3,Ps4が、気体状態での圧力P1,P2相当の冷媒の流量と、液体状態での圧力P3,P4相当の冷媒の流量とが互いに同等になるように変換するためのものであることは同様である。   Here, the “target pressure Pt3” and the “target pressure Pt4” are based on the air-conditioning load (%) corresponding to the load sharing for each of the first outdoor unit 10 and the second outdoor unit 20, and the map shown in FIG. Is calculated by obtaining set pressures Ps3 and Ps4. That is, the target pressure Pt3 is a value obtained by subtracting the set pressure Ps3 from the pressure P1, and the target pressure Pt4 is a value obtained by subtracting the set pressure Ps4 from the pressure P2. The set pressures Ps3 and Ps4 are used for conversion so that the flow rate of the refrigerant corresponding to the pressures P1 and P2 in the gas state and the flow rate of the refrigerant corresponding to the pressures P3 and P4 in the liquid state are equal to each other. The same is true.

そして、圧力P3が目標圧力Pt3以上のときには、制御部40aは、目標圧力Pt4及び圧力P4の偏差D4(=Pt4−P4)に基づき算出される開度A3に一致するように第1液体流量調整弁45を制御する。図4(c)は、偏差D4と開度A3との関係を示すマップである。同図に示すように、開度A3は、「100%」を上限に偏差D4が大きくなるに従って小さくなるように設定されるとともに、所定偏差Da4以上で所定の最小開度Am3に保持されている。つまり、開度A3は、基本的に圧力P4が目標圧力Pt4に比べて小さくなるほど小さくなるように、即ち第2室外機20側に分流される冷媒の流量が不足するほど第1室外機10側に分流される冷媒の流量を抑えるべく第1液体流量調整弁45を閉じるように設定される。一方、圧力P3が目標圧力Pt3未満のときには、制御部40aは、第1液体流量調整弁45の開度を所定の漸増量ΔL(%)だけ増ずるようにこれを制御する。   When the pressure P3 is equal to or higher than the target pressure Pt3, the control unit 40a adjusts the first liquid flow rate so as to coincide with the opening A3 calculated based on the target pressure Pt4 and the deviation D4 (= Pt4-P4) of the pressure P4. The valve 45 is controlled. FIG. 4C is a map showing the relationship between the deviation D4 and the opening A3. As shown in the figure, the opening A3 is set so as to decrease as the deviation D4 increases with the upper limit being “100%”, and is held at a predetermined minimum opening Am3 at a predetermined deviation Da4 or more. . That is, the opening A3 basically becomes smaller as the pressure P4 becomes smaller than the target pressure Pt4, that is, as the flow rate of refrigerant diverted to the second outdoor unit 20 becomes insufficient, the first outdoor unit 10 side becomes smaller. The first liquid flow rate adjustment valve 45 is set to be closed in order to suppress the flow rate of the refrigerant diverted into the first flow rate. On the other hand, when the pressure P3 is less than the target pressure Pt3, the controller 40a controls the opening of the first liquid flow rate adjustment valve 45 so as to increase by a predetermined incremental amount ΔL (%).

同様に、圧力P4が目標圧力Pt4以上のときには、制御部40aは、目標圧力Pt3及び圧力P3の偏差D3(=Pt3−P3)に基づき算出される開度A4に一致するように第2液体流量調整弁46を制御する。図4(d)は、偏差D3と開度A4との関係を示すマップである。同図に示すように、開度A4は、「100%」を上限に偏差D3が大きくなるに従って小さくなるように設定されるとともに、所定偏差Da3以上で所定の最小開度Am4に保持されている。つまり、開度A4は、基本的に圧力P3が目標圧力Pt3に比べて小さくなるほど小さくなるように、即ち第1室外機10側に分流される冷媒の流量が不足するほど第2室外機20側に分流される冷媒の流量を抑えるべく第2液体流量調整弁46を閉じるように設定される。一方、圧力P4が目標圧力Pt4未満のときには、制御部40aは、第2液体流量調整弁46の開度を所定の漸増量ΔL(%)だけ増ずるようにこれを制御する。   Similarly, when the pressure P4 is equal to or higher than the target pressure Pt4, the control unit 40a causes the second liquid flow rate to coincide with the opening A4 calculated based on the target pressure Pt3 and the deviation D3 (= Pt3-P3) of the pressure P3. The regulating valve 46 is controlled. FIG. 4D is a map showing the relationship between the deviation D3 and the opening A4. As shown in the figure, the opening A4 is set so as to decrease as the deviation D3 increases with “100%” as an upper limit, and is held at a predetermined minimum opening Am4 with a predetermined deviation Da3 or more. . That is, the opening A4 is basically such that the pressure P3 becomes smaller as the pressure P3 becomes smaller than the target pressure Pt3, that is, the second outdoor unit 20 side as the flow rate of the refrigerant diverted to the first outdoor unit 10 side becomes insufficient. The second liquid flow rate adjusting valve 46 is set to be closed in order to suppress the flow rate of the refrigerant diverted into the first flow rate. On the other hand, when the pressure P4 is less than the target pressure Pt4, the control unit 40a controls the second liquid flow rate adjustment valve 46 so that the opening degree of the second liquid flow rate adjustment valve 46 is increased by a predetermined incremental amount ΔL (%).

以上により、EHP式及びGHP式の両室外機10,20を駆動する場合において、各室外機10,20から室内機30に供給された冷媒の流量が、該室内機30から各室外機10,20に供給される(戻される)冷媒の流量に一致するように制御され、循環等する冷媒及び潤滑油(冷凍機油)の流量がこれら室外機10,20間で不均衡になることが抑制される。   As described above, when both the EHP type and GHP type outdoor units 10 and 20 are driven, the flow rate of the refrigerant supplied from the outdoor units 10 and 20 to the indoor unit 30 is changed from the indoor unit 30 to the outdoor units 10 and 20. 20 is controlled so as to match the flow rate of the refrigerant supplied (returned) to the refrigerant, and the flow rate of the circulating refrigerant and lubricating oil (refrigeration oil) is suppressed from being unbalanced between the outdoor units 10 and 20. The

次に、本実施形態における空調制御態様について総括して説明する。
図5は、制御部40aによる空調負荷分配制御態様を示すフローチャートである。同図に示すように、処理がこのルーチンに移行すると、まず、該当の運転サイクル(冷房又は暖房運転)における空調負荷のレベル(図2参照)が判断される(S1)。そして、低負荷運転中と判断されると、EHP式の第1室外機10のみが駆動されるように制御部10a,20aに対する指示が行われる(S2)。また、中負荷運転中と判断されると、GHP式の第2室外機20のみが駆動されるように制御部10a,20aに対する指示が行われる(S3)。さらに、高負荷運転中と判断されると、EHP式及びGHP式の両室外機10,20が駆動されるように制御部10a,20aに対する指示が行われる(S4)。そして、その後の処理が一旦終了される。
Next, the air conditioning control mode in the present embodiment will be described collectively.
FIG. 5 is a flowchart showing an air conditioning load distribution control mode by the control unit 40a. As shown in the figure, when the processing shifts to this routine, first, the air conditioning load level (see FIG. 2) in the corresponding operation cycle (cooling or heating operation) is determined (S1). When it is determined that the low load operation is being performed, an instruction is given to the control units 10a and 20a so that only the EHP type first outdoor unit 10 is driven (S2). If it is determined that the medium load operation is being performed, an instruction is given to the control units 10a and 20a so that only the GHP-type second outdoor unit 20 is driven (S3). Further, when it is determined that the high load operation is being performed, an instruction is given to the control units 10a and 20a so that the EHP type and GHP type outdoor units 10 and 20 are driven (S4). Then, the subsequent processing is temporarily terminated.

また、EHP式及びGHP式の両室外機10,20を駆動する場合において、図6は、制御部40aによる第1及び第2気体流量調整弁43,44の開度制御態様を示すフローチャートであり、図7は、制御部40aによる第1及び第2液体流量調整弁45,46の開度制御態様を示すフローチャートである。各処理は、例えば所定時間ごとの定時割り込みにより繰り返し実行される。   FIG. 6 is a flowchart showing how the first and second gas flow rate adjusting valves 43 and 44 are controlled by the control unit 40a when the EHP and GHP outdoor units 10 and 20 are driven. FIG. 7 is a flowchart showing the opening control mode of the first and second liquid flow rate adjusting valves 45 and 46 by the control unit 40a. Each process is repeatedly executed by, for example, a scheduled interruption every predetermined time.

図6に示すように、処理がこのルーチンに移行すると、まず、運転サイクル(冷房又は暖房)が判断される(S11)。そして、冷房のサイクルで運転中と判断されると、目標圧力Pt1,Pt2がそれぞれ演算される(S12)。次いで、圧力P1が目標圧力Pt1以上か否かが判断され(S13)、圧力P1が目標圧力Pt1以上と判断されたときは、更に圧力P2が目標圧力Pt2以上か否かが判断される(S14)。また、S13で圧力P1が目標圧力Pt1未満と判断されたときは、更に圧力P2が目標圧力Pt2以上か否かが判断される(S15)。   As shown in FIG. 6, when the processing shifts to this routine, first, an operation cycle (cooling or heating) is determined (S11). When it is determined that the vehicle is operating in the cooling cycle, the target pressures Pt1 and Pt2 are calculated (S12). Next, it is determined whether or not the pressure P1 is equal to or higher than the target pressure Pt1 (S13). When the pressure P1 is determined to be equal to or higher than the target pressure Pt1, it is further determined whether or not the pressure P2 is equal to or higher than the target pressure Pt2 (S14). ). When it is determined in S13 that the pressure P1 is less than the target pressure Pt1, it is further determined whether or not the pressure P2 is equal to or higher than the target pressure Pt2 (S15).

S14で圧力P2が目標圧力Pt2以上と判断されたときは、第1及び第2気体流量調整弁43,44の開度A1,A2がそれぞれ演算され(図4参照)、該開度A1,A2に一致するように第1及び第2気体流量調整弁43,44がそれぞれ制御される(S16)。また、S14で圧力P2が目標圧力Pt2未満と判断されたときは、第1気体流量調整弁43の開度A1が演算され該開度A1に一致するように第1気体流量調整弁43が制御されるとともに、第2気体流量調整弁44の開度が前記漸増量ΔG(%)だけ増すように制御される(S17)。   When it is determined in S14 that the pressure P2 is equal to or higher than the target pressure Pt2, the opening degrees A1 and A2 of the first and second gas flow rate adjusting valves 43 and 44 are respectively calculated (see FIG. 4), and the opening degrees A1 and A2 The first and second gas flow rate adjusting valves 43 and 44 are controlled so as to coincide with each other (S16). When it is determined in S14 that the pressure P2 is less than the target pressure Pt2, the opening A1 of the first gas flow rate adjustment valve 43 is calculated and the first gas flow rate adjustment valve 43 is controlled so as to coincide with the opening degree A1. At the same time, the opening degree of the second gas flow rate adjustment valve 44 is controlled to increase by the gradually increasing amount ΔG (%) (S17).

一方、S15で圧力P2が目標圧力Pt2以上と判断されたときは、第1気体流量調整弁43の開度が前記漸増量ΔG(%)だけ増すように制御されるとともに、第2気体流量調整弁44の開度A2が演算され該開度A2に一致するように第2気体流量調整弁44が制御される(S18)。また、S15で圧力P2が目標圧力Pt2未満と判断されたときは、第1及び第2気体流量調整弁43,44の開度がそれぞれ前記漸増量ΔG(%)だけ増すように制御される(S19)。   On the other hand, when it is determined in S15 that the pressure P2 is equal to or higher than the target pressure Pt2, the opening degree of the first gas flow rate adjustment valve 43 is controlled to increase by the gradually increasing amount ΔG (%) and the second gas flow rate adjustment is performed. The opening degree A2 of the valve 44 is calculated, and the second gas flow rate adjusting valve 44 is controlled so as to coincide with the opening degree A2 (S18). When it is determined in S15 that the pressure P2 is less than the target pressure Pt2, the opening degree of the first and second gas flow rate adjusting valves 43, 44 is controlled so as to increase by the gradually increasing amount ΔG (%), respectively ( S19).

なお、S11で暖房のサイクルで運転中と判断されると、第1及び第2気体流量調整弁43,44の開度が共に全開に設定される(S20)。S16〜S20のいずれかの開度制御が実行されると、その後の処理が一旦終了される。   If it is determined in S11 that the heating cycle is in operation, both the first and second gas flow rate adjusting valves 43 and 44 are set to fully open (S20). When the opening degree control of any one of S16 to S20 is executed, the subsequent processing is once ended.

また、図7に示すように、処理がこのルーチンに移行すると、まず、運転サイクル(冷房又は暖房)が判断される(S21)。そして、暖房のサイクルで運転中と判断されると、目標圧力Pt3,Pt4がそれぞれ演算される(S22)。次いで、圧力P3が目標圧力Pt3以上か否かが判断され(S23)、圧力P3が目標圧力Pt3以上と判断されたときは、更に圧力P4が目標圧力Pt4以上か否かが判断される(S24)。また、S23で圧力P3が目標圧力Pt3未満と判断されたときは、更に圧力P4が目標圧力Pt4以上か否かが判断される(S25)。   Further, as shown in FIG. 7, when the processing shifts to this routine, first, an operation cycle (cooling or heating) is determined (S21). When it is determined that the vehicle is operating in the heating cycle, the target pressures Pt3 and Pt4 are calculated (S22). Next, it is determined whether or not the pressure P3 is equal to or higher than the target pressure Pt3 (S23). When it is determined that the pressure P3 is equal to or higher than the target pressure Pt3, it is further determined whether or not the pressure P4 is equal to or higher than the target pressure Pt4 (S24). ). When it is determined in S23 that the pressure P3 is less than the target pressure Pt3, it is further determined whether or not the pressure P4 is equal to or higher than the target pressure Pt4 (S25).

S24で圧力P4が目標圧力Pt4以上と判断されたときは、第1及び第2液体流量調整弁45,46の開度A3,A4がそれぞれ演算され(図4参照)、該開度A3,A4に一致するように第1及び第2液体流量調整弁45,46がそれぞれ制御される(S26)。また、S24で圧力P4が目標圧力Pt4未満と判断されたときは、第1液体流量調整弁45の開度A3が演算され該開度A3に一致するように第1液体流量調整弁45が制御されるとともに、第2液体流量調整弁46の開度が前記漸増量ΔL(%)だけ増すように制御される(S27)。   When it is determined in S24 that the pressure P4 is equal to or higher than the target pressure Pt4, the opening degrees A3 and A4 of the first and second liquid flow rate adjusting valves 45 and 46 are respectively calculated (see FIG. 4), and the opening degrees A3 and A4 are calculated. The first and second liquid flow rate adjusting valves 45 and 46 are controlled so as to coincide with each other (S26). When it is determined in S24 that the pressure P4 is less than the target pressure Pt4, the opening degree A3 of the first liquid flow rate adjustment valve 45 is calculated and the first liquid flow rate adjustment valve 45 is controlled so as to match the opening degree A3. At the same time, the opening degree of the second liquid flow rate adjusting valve 46 is controlled to increase by the incremental amount ΔL (%) (S27).

一方、S25で圧力P4が目標圧力Pt4以上と判断されたときは、第1液体流量調整弁45の開度が前記漸増量ΔL(%)だけ増すように制御されるとともに、第2液体流量調整弁46の開度A4が演算され該開度A4に一致するように第2液体流量調整弁46が制御される(S28)。また、S25で圧力P4が目標圧力Pt4未満と判断されたときは、第1及び第2液体流量調整弁45,46の開度がそれぞれ前記漸増量ΔL(%)だけ増すように制御される(S29)。   On the other hand, when it is determined in S25 that the pressure P4 is equal to or higher than the target pressure Pt4, the opening degree of the first liquid flow rate adjustment valve 45 is controlled to increase by the incremental amount ΔL (%) and the second liquid flow rate adjustment is performed. The opening A4 of the valve 46 is calculated, and the second liquid flow rate adjustment valve 46 is controlled so as to coincide with the opening A4 (S28). When it is determined in S25 that the pressure P4 is less than the target pressure Pt4, the opening degree of the first and second liquid flow rate adjusting valves 45, 46 is controlled to increase by the incremental amount ΔL (%), respectively ( S29).

なお、S21で冷房のサイクルで運転中と判断されると、第1及び第2液体流量調整弁45,46の開度が共に全開に設定される(S30)。S26〜S30のいずれかの開度制御が実行されると、その後の処理が一旦終了される。   If it is determined in S21 that the cooling cycle is in operation, both the first and second liquid flow rate adjusting valves 45 and 46 are set to fully open (S30). When the opening degree control of any one of S26 to S30 is executed, the subsequent processing is once ended.

以上詳述したように、本実施形態によれば、以下に示す効果が得られるようになる。
(1)本実施形態では、第1室外機10は、電動モータ11、圧縮機(第1圧縮機12)、四方弁14及び室外機熱交換器(第1室外機熱交換器15)を一体的に有する既製のEHP式の室外機で構成される。また、第2室外機20は、ガスエンジン21、圧縮機(第2圧縮機22)、四方弁24、室外機熱交換器(第2室外機熱交換器25)及び冷却液回路29を一体的に有する既製のGHP式の室外機で構成される。従って、第1及び第2室外機10,20と、室内機30とを連係する空気調和機調整装置40を設計等すれば、基本的に既製品(量産品)を流用することで、開発の負荷を軽減することができ、ひいては開発費用を削減することができる。そして、イニシャルコストが減少してランニングメリットによる回収年数が短縮される分、現実に市場に投入することが容易になる。また、空調に係る建築物(ビルなど)にEHP式及びGHP式のいずれか一方の空気調和装置の室外機が既に設置されている場合、当該室外機を流用することができ、極めて経済的である。さらに、EHP式及びGHP式の両室外機10,20の各々に室内機30を個別に設ける必要がないため、その分、コストの削減及び配管施工費の低減を図ることができる。さらに、室内機30及び空気調和機調整装置40を接続する冷媒配管(気体集合部41c、液体集合部42c)は1系統でよいため、施工費を削減することができる。
As described above in detail, according to the present embodiment, the following effects can be obtained.
(1) In this embodiment, the 1st outdoor unit 10 integrates the electric motor 11, the compressor (1st compressor 12), the four-way valve 14, and the outdoor unit heat exchanger (1st outdoor unit heat exchanger 15). It is composed of a ready-made EHP outdoor unit. The second outdoor unit 20 includes a gas engine 21, a compressor (second compressor 22), a four-way valve 24, an outdoor unit heat exchanger (second outdoor unit heat exchanger 25), and a coolant circuit 29. It is composed of an off-the-shelf GHP outdoor unit. Therefore, if the air conditioner adjustment device 40 that links the first and second outdoor units 10 and 20 and the indoor unit 30 is designed, etc., the developed product can be basically utilized by diverting the ready-made product (mass-produced product). The load can be reduced and the development cost can be reduced. Since the initial cost is reduced and the number of years of recovery due to running merit is shortened, it becomes easier to actually put it on the market. In addition, when an outdoor unit of one of the EHP type and GHP type air conditioners has already been installed in a building (such as a building) related to air conditioning, the outdoor unit can be diverted and is extremely economical. is there. Furthermore, since it is not necessary to provide the indoor unit 30 for each of the EHP type and GHP type outdoor units 10 and 20, it is possible to reduce the cost and the piping construction cost accordingly. Furthermore, since the refrigerant pipes (the gas collecting part 41c and the liquid collecting part 42c) connecting the indoor unit 30 and the air conditioner adjusting device 40 may be one system, the construction cost can be reduced.

ここで、制御部40aにより、取得された機種情報及び空調負荷情報に応じて第1及び第2室外機10,20から室内機30にそれぞれ供給された冷媒の流量が、該室内機30から第1及び第2室外機10,20にそれぞれ供給される(戻される)冷媒の流量に一致するように、冷房運転時は第1及び第2気体流量調整弁43,44の開度がそれぞれ制御され、暖房運転時は第1及び第2液体流量調整弁45,46の開度がそれぞれ制御されることで、第1及び第2室外機10,20の協働で室内機30における空気調和を実施しても、循環等する冷媒及び潤滑油の流量がこれら第1及び第2室外機10,20間で不均衡になることを抑制することができ、ひいては第1及び第2圧縮機12,22の性能を好適に維持することができる。   Here, the flow rate of the refrigerant respectively supplied from the first and second outdoor units 10 and 20 to the indoor unit 30 according to the acquired model information and air conditioning load information by the control unit 40a is changed from the indoor unit 30 to the first. During the cooling operation, the opening degree of the first and second gas flow rate adjusting valves 43 and 44 is controlled so as to match the flow rate of the refrigerant supplied (returned) to the first and second outdoor units 10 and 20, respectively. During the heating operation, the opening degree of the first and second liquid flow rate adjusting valves 45 and 46 is controlled, so that the air conditioning in the indoor unit 30 is performed in cooperation with the first and second outdoor units 10 and 20. Even so, it is possible to suppress the flow of the circulating refrigerant and the lubricating oil from being unbalanced between the first and second outdoor units 10 and 20, and thus the first and second compressors 12 and 22. This performance can be suitably maintained.

(2)本実施形態では、例えば低負荷運転時には、第2室外機20(GHP式の室外機)の運転を停止することで空調効率を向上することができる。また、中負荷運転時には、第1室外機10(EHP式の室外機)の運転を停止することでランニングコストを抑えることができ、特に暖房運転時の空調効率(暖房効率)を向上することができる。そして、高負荷運転時には、第1及び第2室外機10,20の協働運転で好適な空調能力を確保することができる。   (2) In this embodiment, for example, during low load operation, the air conditioning efficiency can be improved by stopping the operation of the second outdoor unit 20 (GHP type outdoor unit). Further, during medium load operation, the running cost can be suppressed by stopping the operation of the first outdoor unit 10 (EHP type outdoor unit), and in particular, the air conditioning efficiency (heating efficiency) during the heating operation can be improved. it can. And at the time of high load operation, suitable air conditioning capability can be ensured by the cooperative operation of the first and second outdoor units 10 and 20.

(3)本実施形態では、冷房運転時は第1及び第2気体分岐部41a,41bの一方及び他方を流れる冷媒の流量が、協働する相手方(第1及び第2気体分岐部41a,41bの他方及び一方)の冷媒の流量調整に係る第1及び第2気体流量調整弁43,44の他方及び一方の開度A2,A1の制御で行われる。同様に、暖房運転時は第1及び第2液体分岐部42a,42bの一方及び他方を流れる冷媒の流量が、協働する相手方(第1及び第2液体分岐部42a,42bの他方及び一方)の冷媒の流量調整に係る第1及び第2液体流量調整弁45,46の他方及び一方の開度A4,A3の制御で行われる。従って、循環等する冷媒及び潤滑油の流量制御にあたって、第1及び第2室外機10,20をより緊密に協働させることができ、例えば自身の冷媒流量のみを確保すべく第1気体流量調整弁43又は第2気体流量調整弁44(第1液体流量調整弁45又は第2液体流量調整弁46)の開度が過大になることを抑制することができる。   (3) In the present embodiment, during the cooling operation, the flow rate of the refrigerant flowing through one and the other of the first and second gas branch portions 41a and 41b is the same as the other party (the first and second gas branch portions 41a and 41b). The other and one of the first and second gas flow rate adjusting valves 43 and 44 relating to the refrigerant flow rate adjustment are performed by controlling the opening degrees A2 and A1 of the first and second gas flow rate adjustment valves 43 and 44. Similarly, during the heating operation, the flow rate of the refrigerant flowing through one and the other of the first and second liquid branch portions 42a and 42b cooperates with each other (the other and one of the first and second liquid branch portions 42a and 42b). This is performed by controlling the opening degrees A4 and A3 of the other and one of the first and second liquid flow rate adjusting valves 45 and 46 relating to the flow rate adjustment of the refrigerant. Therefore, the first and second outdoor units 10 and 20 can cooperate more closely in controlling the flow rate of the circulating refrigerant and lubricating oil, for example, the first gas flow rate adjustment to ensure only the refrigerant flow rate of itself. It is possible to prevent the opening degree of the valve 43 or the second gas flow rate adjustment valve 44 (the first liquid flow rate adjustment valve 45 or the second liquid flow rate adjustment valve 46) from becoming excessive.

(4)本実施形態では、第1気体流量調整弁43、第2気体流量調整弁44、第1液体流量調整弁45及び第2液体流量調整弁46の各々の開度A1〜A4が、所定の最小開度(下限開度)Am1〜Am4以上に設定されることで、いずれかの開度A1〜A4が過小になって冷媒の循環等が制約されることを回避できる。   (4) In the present embodiment, the opening degrees A1 to A4 of the first gas flow rate adjustment valve 43, the second gas flow rate adjustment valve 44, the first liquid flow rate adjustment valve 45, and the second liquid flow rate adjustment valve 46 are predetermined. By setting the minimum opening (lower opening) Am1 to Am4 or higher, it is possible to avoid any of the openings A1 to A4 from becoming too small and restricting the circulation of the refrigerant.

(5)本実施形態では、低負荷運転に伴い第2室外機20が停止中のとき、該第2室外機20に対応する第2気体流量調整弁44及び第2液体流量調整弁46が全閉状態にされ、中負荷運転に伴い第1室外機10が停止中のとき、該第1室外機10に対応する第1気体流量調整弁43及び第1液体流量調整弁45が全閉状態にされることで、停止中の第1室外機10又は第2室外機20における冷媒の出入りを確実に防止することができ、例えば当該室外機10,20の冷媒が室内機30側に漏れて流量不足に陥ることを防止することができる。   (5) In the present embodiment, when the second outdoor unit 20 is stopped due to the low load operation, the second gas flow rate adjustment valve 44 and the second liquid flow rate adjustment valve 46 corresponding to the second outdoor unit 20 are all When the first outdoor unit 10 is stopped during the middle load operation and the first outdoor unit 10 is stopped, the first gas flow rate adjustment valve 43 and the first liquid flow rate adjustment valve 45 corresponding to the first outdoor unit 10 are fully closed. By doing so, it is possible to reliably prevent the refrigerant from entering and exiting the stopped first outdoor unit 10 or the second outdoor unit 20, for example, the refrigerant of the outdoor units 10 and 20 leaks to the indoor unit 30 side and the flow rate It is possible to prevent a shortage.

(6)本実施形態では、空気調和機調整装置40の制御部40aは、既製の室外機10,20の制御部10a,20aと電気的に接続するだけで、各々の機種情報を取得してこれらを制御することができる。   (6) In this embodiment, the control part 40a of the air conditioner adjustment device 40 acquires each model information only by electrically connecting with the control parts 10a and 20a of the ready-made outdoor units 10 and 20. These can be controlled.

(7)本実施形態では、空調負荷が少なくなる中間期(例えば4〜5月、10〜11月)に第2室外機20を運転する必要が殆どなくなることで、ガスエンジン21の運転時間を抑えることができ、メンテナンス費用の低減及び第2室外機20の長寿命化を図ることができる。   (7) In this embodiment, it is not necessary to operate the second outdoor unit 20 in the intermediate period (for example, April to May, October to November) when the air conditioning load is reduced, thereby reducing the operation time of the gas engine 21. Therefore, the maintenance cost can be reduced and the life of the second outdoor unit 20 can be extended.

(8)本実施形態では、開発の負荷を軽減することができ、且つ、経済的に設置することができる空気調和装置1を提供することができる。
なお、上記実施形態は以下のように変更してもよい。
(8) In the present embodiment, it is possible to provide the air conditioner 1 that can reduce the development load and can be installed economically.
In addition, you may change the said embodiment as follows.

・前記実施形態において、冷房運転時は第1及び第2気体分岐部41a,41bの一方及び他方を流れる冷媒の流量を、自身の冷媒の流量調整に係る第1及び第2気体流量調整弁43,44の一方及び他方の開度A1,A2の制御で行ってもよい。同様に、暖房運転時は第1及び第2液体分岐部42a,42bの一方及び他方を流れる冷媒の流量を、自身の冷媒の流量調整に係る第1及び第2液体流量調整弁45,46の一方及び他方の開度A3,A4の制御で行ってもよい。この場合、第1気体流量調整弁43、第2気体流量調整弁44、第1液体流量調整弁45及び第2液体流量調整弁46の各々の開度A1〜A4が、過大にならないように所定の最大開度(上限開度)以下に規制することが好ましい。   In the above-described embodiment, during the cooling operation, the flow rate of the refrigerant flowing through one and the other of the first and second gas branch portions 41a and 41b is set to the first and second gas flow rate adjusting valves 43 related to the flow rate adjustment of the refrigerant. , 44 and the other opening degree A1, A2 may be controlled. Similarly, during the heating operation, the flow rate of the refrigerant flowing through one and the other of the first and second liquid branch portions 42a and 42b is set to be the same as that of the first and second liquid flow rate adjustment valves 45 and 46 related to the flow rate adjustment of the own refrigerant. You may carry out by control of one and the other opening degree A3, A4. In this case, the opening degrees A1 to A4 of the first gas flow rate adjustment valve 43, the second gas flow rate adjustment valve 44, the first liquid flow rate adjustment valve 45, and the second liquid flow rate adjustment valve 46 are set so as not to become excessive. It is preferable to regulate the maximum opening (upper limit opening) or less.

・前記実施形態において、空気調和機調整装置40を介して第1及び第2室外機10,20に繋がる室内機30は、並列接続された複数台であってもよい。
次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
In the embodiment, the indoor units 30 connected to the first and second outdoor units 10 and 20 via the air conditioner adjustment device 40 may be a plurality of units connected in parallel.
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.

・請求項3に記載の空気調和機調整装置において、
前記制御手段は、前記停止手段により停止されている、前記第1室外機に対応する前記第1気体流量調整弁及び前記第1液体流量調整弁又は前記第2室外機に対応する前記第2気体流量調整弁及び前記第2液体流量調整弁を全閉状態にすることを特徴とする空気調和機調整装置。同構成によれば、停止中の前記第1室外機又は前記第2室外機における冷媒の出入りを確実に防止することができ、例えば当該室外機の冷媒が前記室内機側に漏れて流量不足に陥ることを防止することができる。
In the air conditioner adjusting device according to claim 3,
The control means is stopped by the stop means, the first gas flow rate adjustment valve corresponding to the first outdoor unit and the first liquid flow rate adjustment valve or the second gas corresponding to the second outdoor unit. An air conditioner adjustment device, wherein the flow rate adjustment valve and the second liquid flow rate adjustment valve are fully closed. According to this configuration, it is possible to reliably prevent the refrigerant from entering and leaving the first outdoor unit or the second outdoor unit that is stopped. For example, the refrigerant of the outdoor unit leaks to the indoor unit and the flow rate is insufficient. It can prevent falling.

10…第1室外機、11…電動モータ、12…第1圧縮機、15…第1室外機熱交換器、14…四方弁(第1切替弁)、20…第2室外機、21…ガスエンジン、22…第2圧縮機、24…四方弁(第2切替弁)、25…第2室外機熱交換器、29…冷却液回路、30…室内機、31…室内機熱交換器、40…空気調和機調整装置、40a…制御部(制御手段、機種情報取得手段、空調負荷情報取得手段、停止手段)41…気体分岐管、41a…第1気体分岐部、41b…第2気体分岐部、41c…気体集合部、42…液体分岐管、42a…第1液体分岐部、42b…第2液体分岐部、42c…液体集合部、43…第1気体流量調整弁、44…第2気体流量調整弁、45…第1液体流量調整弁、46…第2液体流量調整弁、47…第1気圧センサ、48…第2気圧センサ、49…第1液圧センサ、50…第2液圧センサ。   DESCRIPTION OF SYMBOLS 10 ... 1st outdoor unit, 11 ... Electric motor, 12 ... 1st compressor, 15 ... 1st outdoor unit heat exchanger, 14 ... Four-way valve (1st switching valve), 20 ... 2nd outdoor unit, 21 ... Gas Engine, 22 ... second compressor, 24 ... four-way valve (second switching valve), 25 ... second outdoor unit heat exchanger, 29 ... coolant circuit, 30 ... indoor unit, 31 ... indoor unit heat exchanger, 40 ... Air conditioner adjusting device, 40a ... Control part (control means, model information acquisition means, air conditioning load information acquisition means, stop means) 41 ... Gas branch pipe, 41a ... first gas branch part, 41b ... second gas branch part 41c ... Gas collecting part, 42 ... Liquid branch pipe, 42a ... First liquid branching part, 42b ... Second liquid branching part, 42c ... Liquid collecting part, 43 ... First gas flow rate adjusting valve, 44 ... Second gas flow rate Adjustment valve 45 ... first liquid flow rate adjustment valve 46 ... second liquid flow rate adjustment valve 47 ... first pressure control valve Sa, 48 ... second atm sensor, 49 ... first hydraulic pressure sensor, 50 ... second hydraulic pressure sensor.

Claims (6)

既製の電気ヒートポンプ式の第1室外機及び既製のガスヒートポンプ式の第2室外機と、室内機とを接続して気体状態の冷媒を流す気体分岐管と、
前記第1室外機及び前記第2室外機と、前記室内機とを接続して液体状態の冷媒を流す液体分岐管と、
前記気体分岐管に設けられ、前記室内機と前記第1室外機及び前記第2室外機との間で気体状態の冷媒の流量を調整する第1気体流量調整弁及び第2気体流量調整弁と、
前記液体分岐管に設けられ、前記室内機と前記第1室外機及び前記第2室外機との間で液体状態の冷媒の流量を調整する第1液体流量調整弁及び第2液体流量調整弁と、
前記第1室外機及び前記第2室外機の機種情報をそれぞれ取得する機種情報取得手段と、
前記室内機の空調負荷情報を取得する空調負荷情報取得手段と、
前記取得された機種情報及び空調負荷情報に応じて前記第1室外機及び前記第2室外機から前記室内機にそれぞれ供給された冷媒の流量が、前記室内機から前記第1室外機及び前記第2室外機にそれぞれ供給される冷媒の流量に一致するように、前記第1及び第2気体流量調整弁の開度並びに前記第1及び第2液体流量調整弁の開度をそれぞれ制御する制御手段とを備えたことを特徴とする空気調和機調整装置。
A gas branch pipe that connects a ready-made electric heat pump-type first outdoor unit and a ready-made gas heat pump-type second outdoor unit and the indoor unit to flow a gaseous refrigerant;
A liquid branch pipe that connects the first outdoor unit and the second outdoor unit, and the indoor unit to flow a liquid refrigerant;
A first gas flow rate adjusting valve and a second gas flow rate adjusting valve, which are provided in the gas branch pipe and adjust the flow rate of the refrigerant in a gaseous state between the indoor unit and the first outdoor unit and the second outdoor unit; ,
A first liquid flow rate adjustment valve and a second liquid flow rate adjustment valve which are provided in the liquid branch pipe and adjust the flow rate of the refrigerant in a liquid state between the indoor unit and the first outdoor unit and the second outdoor unit; ,
Model information acquisition means for acquiring model information of the first outdoor unit and the second outdoor unit,
Air conditioning load information acquisition means for acquiring air conditioning load information of the indoor unit;
According to the acquired model information and air conditioning load information, the flow rates of the refrigerant respectively supplied from the first outdoor unit and the second outdoor unit to the indoor unit are from the indoor unit to the first outdoor unit and the first outdoor unit. Control means for controlling the opening degree of the first and second gas flow rate adjustment valves and the opening degree of the first and second liquid flow rate adjustment valves so as to match the flow rates of the refrigerant respectively supplied to the two outdoor units. And an air conditioner adjusting device.
電動モータ、該電動モータにより駆動されて冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する第1圧縮機、該第1圧縮機の吸入口及び吐出口にそれぞれ接続され冷房運転時と暖房運転時とで冷媒の流路を切り替える第1切替弁、及び該第1切替弁に接続され冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する第1室外機熱交換器を有する第1室外機と、
ガスエンジン、該ガスエンジンにより駆動されて冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する第2圧縮機、該第2圧縮機の吸入口及び吐出口にそれぞれ接続され冷房運転時と暖房運転時とで冷媒の流路を切り替える第2切替弁、該第2切替弁に接続され冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する第2室外機熱交換器、及び前記ガスエンジンの排熱と熱交換して暖房運転時に冷媒の加熱に供せられる冷却液回路を有する第2室外機と、
冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する室内機熱交換器を有する室内機と、
を接続する空気調和機調整装置において、
前記第1切替弁に接続される第1気体分岐部と、前記第2切替弁に接続される第2気体分岐部、並びに前記室内機熱交換器に接続される気体集合部を有する気体分岐管と、
前記第1室外機熱交換器に接続される第1液体分岐部と、前記第2室外機熱交換器に接続される第2液体分岐部、並びに前記室内機熱交換器に接続される液体集合部を有する液体分岐管と、
前記気体分岐管に設けられ、冷房運転時は前記室内機熱交換器からの気体状態の冷媒の流量を調整して前記第1切替弁を介して前記第1圧縮機に供給し、暖房運転時は前記第1圧縮機の吐出した前記第1切替弁を介した気体状態の冷媒を前記室内機熱交換器に供給する第1気体流量調整弁と、
前記気体分岐管に設けられ、冷房運転時は前記室内機熱交換器からの気体状態の冷媒の流量を調整して前記第2切替弁を介して前記第2圧縮機に供給し、暖房運転時は前記第2圧縮機の吐出した前記第2切替弁を介した気体状態の冷媒を前記室内機熱交換器に供給する第2気体流量調整弁と、
前記液体分岐管に設けられ、冷房運転時は前記第1室外機熱交換器からの液体状態の冷媒を前記室内機熱交換器に供給し、暖房運転時は前記室内機熱交換器からの液体状態の冷媒の流量を調整して前記第1室外機熱交換器に供給する第1液体流量調整弁と、
前記液体分岐管に設けられ、冷房運転時は前記第2室外機熱交換器からの液体状態の冷媒を前記室内機熱交換器に供給し、暖房運転時は前記室内機熱交換器からの液体状態の冷媒の流量を調整して前記第2室外機熱交換器に供給する第2液体流量調整弁と、
前記第1室外機及び前記第2室外機の機種情報をそれぞれ取得する機種情報取得手段と、
前記室内機の空調負荷情報を取得する空調負荷情報取得手段と、
前記取得された機種情報及び空調負荷情報に応じて前記第1室外機及び前記第2室外機から前記室内機にそれぞれ供給された冷媒の流量が、前記室内機から前記第1室外機及び前記第2室外機にそれぞれ供給される冷媒の流量に一致するように、冷房運転時は前記第1及び第2気体流量調整弁の開度をそれぞれ制御し、暖房運転時は前記第1及び第2液体流量調整弁の開度をそれぞれ制御する制御手段とを備えたことを特徴とする空気調和機調整装置。
An electric motor, a first compressor that is driven by the electric motor and sucks refrigerant and compresses and discharges the sucked refrigerant, and is connected to the suction port and the discharge port of the first compressor, respectively, for cooling operation and heating A first switching valve that switches a refrigerant flow path during operation, and a first outdoor unit that is connected to the first switching valve and functions as a refrigerant condenser during cooling operation and as a refrigerant evaporator during heating operation A first outdoor unit having a heat exchanger;
A gas engine, a second compressor that is driven by the gas engine to suck in refrigerant and compresses and discharges the sucked refrigerant, and is connected to a suction port and a discharge port of the second compressor, respectively, for cooling operation and heating A second switching valve that switches the refrigerant flow path during operation, and a second outdoor unit heat that is connected to the second switching valve and functions as a refrigerant condenser during cooling operation and as a refrigerant evaporator during heating operation A second outdoor unit having a exchanger and a coolant circuit that exchanges heat with the exhaust heat of the gas engine and is used to heat the refrigerant during heating operation;
An indoor unit having an indoor unit heat exchanger that functions as a refrigerant evaporator during cooling operation and functions as a refrigerant condenser during heating operation;
In the air conditioner adjusting device for connecting
A gas branch pipe having a first gas branch portion connected to the first switching valve, a second gas branch portion connected to the second switch valve, and a gas collecting portion connected to the indoor unit heat exchanger When,
A first liquid branch connected to the first outdoor unit heat exchanger, a second liquid branch connected to the second outdoor unit heat exchanger, and a liquid assembly connected to the indoor unit heat exchanger A liquid branch pipe having a section;
Provided in the gas branch pipe, during cooling operation, the flow rate of the refrigerant in the gaseous state from the indoor unit heat exchanger is adjusted and supplied to the first compressor via the first switching valve, and during heating operation Is a first gas flow rate adjustment valve that supplies the indoor unit heat exchanger with a gaseous refrigerant discharged from the first compressor through the first switching valve;
Provided in the gas branch pipe, during cooling operation, the flow rate of the refrigerant in the gaseous state from the indoor unit heat exchanger is adjusted and supplied to the second compressor via the second switching valve, and during heating operation Is a second gas flow rate adjustment valve that supplies the refrigerant in the gaseous state via the second switching valve discharged from the second compressor to the indoor unit heat exchanger;
Provided in the liquid branch pipe, supplies a refrigerant in a liquid state from the first outdoor unit heat exchanger to the indoor unit heat exchanger during cooling operation, and supplies liquid from the indoor unit heat exchanger during heating operation. A first liquid flow rate adjustment valve that adjusts the flow rate of refrigerant in a state and supplies the refrigerant to the first outdoor unit heat exchanger;
Provided in the liquid branch pipe, the refrigerant in the liquid state from the second outdoor unit heat exchanger is supplied to the indoor unit heat exchanger during the cooling operation, and the liquid from the indoor unit heat exchanger during the heating operation. A second liquid flow rate adjustment valve that adjusts the flow rate of the refrigerant in a state and supplies the refrigerant to the second outdoor unit heat exchanger;
Model information acquisition means for acquiring model information of the first outdoor unit and the second outdoor unit,
Air conditioning load information acquisition means for acquiring air conditioning load information of the indoor unit;
According to the acquired model information and air conditioning load information, the flow rates of the refrigerant respectively supplied from the first outdoor unit and the second outdoor unit to the indoor unit are from the indoor unit to the first outdoor unit and the first outdoor unit. The opening degree of the first and second gas flow rate regulating valves is controlled during cooling operation so as to match the flow rate of the refrigerant respectively supplied to the two outdoor units, and the first and second liquids are controlled during heating operation. An air conditioner adjusting device comprising control means for controlling the opening degree of the flow rate adjusting valve.
請求項1又は2に記載の空気調和機調整装置において、
前記取得された機種情報及び空調負荷情報に基づいて、前記第1室外機及び前記第2室外機の運転を選択的に停止する停止手段を備えたことを特徴とする空気調和機調整装置。
In the air conditioner adjusting device according to claim 1 or 2,
An air conditioner adjustment apparatus comprising: a stopping unit that selectively stops the operation of the first outdoor unit and the second outdoor unit based on the acquired model information and air conditioning load information.
請求項2に記載の空気調和機調整装置において、
前記第1気体分岐部及び前記第2気体分岐部に配設され、各々を流れる冷媒の圧力を検出する第1気圧センサ及び第2気圧センサと、
前記第1液体分岐部及び前記第2液体分岐部に配設され、各々を流れる冷媒の圧力を検出する第1液圧センサ及び第2液圧センサとを備え、
前記制御手段は、
冷房運転時は前記第1液圧センサ及び前記第2液圧センサの一方及び他方にそれぞれ検出された冷媒の圧力に相当する前記第1液体分岐部及び前記第2液体分岐部を流れる冷媒の流量が、前記第1気圧センサ及び前記第2気圧センサの一方及び他方にそれぞれ検出された冷媒の圧力に相当する前記第1気体分岐部及び前記第2気体分岐部を流れる冷媒の流量に一致するように前記第1気体流量調整弁及び第2気体流量調整弁の他方及び一方の開度をそれぞれ制御し、
暖房運転時は前記第1気圧センサ及び前記第2気圧センサの一方及び他方にそれぞれ検出された冷媒の圧力に相当する前記第1気体分岐部及び前記第2気体分岐部を流れる冷媒の流量が、前記第1液圧センサ及び前記第2液圧センサの一方及び他方にそれぞれ検出された冷媒の圧力に相当する前記第1液体分岐部及び前記第2液体分岐部を流れる冷媒の流量に一致するように前記第1液体流量調整弁及び第2液体流量調整弁の他方及び一方の開度をそれぞれ制御することを特徴とする空気調和機調整装置。
In the air conditioner adjusting device according to claim 2,
A first atmospheric pressure sensor and a second atmospheric pressure sensor which are disposed in the first gas branching section and the second gas branching section and detect the pressure of the refrigerant flowing through each of the first gas branching section and the second gas branching section;
A first hydraulic pressure sensor and a second hydraulic pressure sensor which are disposed in the first liquid branch portion and the second liquid branch portion and detect the pressure of a refrigerant flowing through each of the first liquid branch portion and the second liquid branch portion;
The control means includes
During the cooling operation, the flow rate of the refrigerant flowing through the first liquid branch portion and the second liquid branch portion corresponding to the refrigerant pressure detected at one and the other of the first hydraulic pressure sensor and the second hydraulic pressure sensor, respectively. Is equal to the flow rate of the refrigerant flowing through the first gas branching portion and the second gas branching portion corresponding to the pressure of the refrigerant detected in one and the other of the first atmospheric pressure sensor and the second atmospheric pressure sensor, respectively. The other and one opening of the first gas flow rate adjustment valve and the second gas flow rate adjustment valve, respectively,
During the heating operation, the flow rate of the refrigerant flowing through the first gas branching portion and the second gas branching portion corresponding to the pressure of the refrigerant detected in one and the other of the first atmospheric pressure sensor and the second atmospheric pressure sensor, respectively, The flow rate of the refrigerant flowing through the first liquid branching portion and the second liquid branching portion corresponds to the refrigerant pressure detected by one and the other of the first hydraulic pressure sensor and the second hydraulic pressure sensor, respectively. The air conditioner adjusting device is characterized in that the other and one opening degree of the first liquid flow rate adjusting valve and the second liquid flow rate adjusting valve are respectively controlled.
請求項4に記載の空気調和機調整装置において、
前記第1気体流量調整弁、前記第2気体流量調整弁、前記第1液体流量調整弁及び前記第2液体流量調整弁の各々の開度は、所定の下限開度以上に設定されることを特徴とする空気調和機調整装置。
In the air conditioner adjusting device according to claim 4,
The opening degree of each of the first gas flow rate adjustment valve, the second gas flow rate adjustment valve, the first liquid flow rate adjustment valve and the second liquid flow rate adjustment valve is set to be equal to or greater than a predetermined lower limit opening degree. The air conditioner adjustment device characterized.
電動モータ、該電動モータにより駆動されて冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する第1圧縮機、該第1圧縮機の吸入口及び吐出口にそれぞれ接続され冷房運転時と暖房運転時とで冷媒の流路を切り替える第1切替弁、及び該第1切替弁に接続され冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する第1室外機熱交換器を有する第1室外機と、
ガスエンジン、該ガスエンジンにより駆動されて冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する第2圧縮機、該第2圧縮機の吸入口及び吐出口にそれぞれ接続され冷房運転時と暖房運転時とで冷媒の流路を切り替える第2切替弁、該第2切替弁に接続され冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する第2室外機熱交換器、及び前記ガスエンジンの排熱と熱交換して暖房運転時に冷媒の加熱に供せられる冷却液回路を有する第2室外機と、
冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する室内機熱交換器を有する室内機と、
前記第1室外機及び前記第2室外機の各々を前記室内機に接続する空気調和機調整装置とを備え、
前記空気調和機調整装置は、
前記第1切替弁に接続される第1気体分岐部と、前記第2切替弁に接続される第2気体分岐部、並びに前記室内機熱交換器に接続される気体集合部を有する気体分岐管と、
前記第1室外機熱交換器に接続される第1液体分岐部と、前記第2室外機熱交換器に接続される第2液体分岐部、並びに前記室内機熱交換器に接続される液体集合部を有する液体分岐管と、
前記気体分岐管に設けられ、冷房運転時は前記室内機熱交換器からの気体状態の冷媒の流量を調整して前記第1切替弁を介して前記第1圧縮機に供給し、暖房運転時は前記第1圧縮機の吐出した前記第1切替弁を介した気体状態の冷媒を前記室内機熱交換器に供給する第1気体流量調整弁と、
前記気体分岐管に設けられ、冷房運転時は前記室内機熱交換器からの気体状態の冷媒の流量を調整して前記第2切替弁を介して前記第2圧縮機に供給し、暖房運転時は前記第2圧縮機の吐出した前記第2切替弁を介した気体状態の冷媒を前記室内機熱交換器に供給する第2気体流量調整弁と、
前記液体分岐管に設けられ、冷房運転時は前記第1室外機熱交換器からの液体状態の冷媒を前記室内機熱交換器に供給し、暖房運転時は前記室内機熱交換器からの液体状態の冷媒の流量を調整して前記第1室外機熱交換器に供給する第1液体流量調整弁と、
前記液体分岐管に設けられ、冷房運転時は前記第2室外機熱交換器からの液体状態の冷媒を前記室内機熱交換器に供給し、暖房運転時は前記室内機熱交換器からの液体状態の冷媒の流量を調整して前記第2室外機熱交換器に供給する第2液体流量調整弁と、
前記第1室外機及び前記第2室外機の機種情報をそれぞれ取得する機種情報取得手段と、
前記室内機の空調負荷情報を取得する空調負荷情報取得手段と、
前記取得された機種情報及び空調負荷情報に応じて前記第1室外機及び前記第2室外機から前記室内機にそれぞれ供給された冷媒の流量が、前記室内機から前記第1室外機及び前記第2室外機にそれぞれ供給される流量に一致するように、冷房運転時は前記第1及び第2気体流量調整弁の開度をそれぞれ制御し、暖房運転時は前記第1及び第2液体流量調整弁の開度をそれぞれ制御する制御手段とを備えたことを特徴とする空気調和装置。
An electric motor, a first compressor that is driven by the electric motor and sucks refrigerant and compresses and discharges the sucked refrigerant, and is connected to the suction port and the discharge port of the first compressor, respectively, for cooling operation and heating A first switching valve that switches a refrigerant flow path during operation, and a first outdoor unit that is connected to the first switching valve and functions as a refrigerant condenser during cooling operation and as a refrigerant evaporator during heating operation A first outdoor unit having a heat exchanger;
A gas engine, a second compressor that is driven by the gas engine to suck in refrigerant and compresses and discharges the sucked refrigerant, and is connected to a suction port and a discharge port of the second compressor, respectively, for cooling operation and heating A second switching valve that switches the refrigerant flow path during operation, and a second outdoor unit heat that is connected to the second switching valve and functions as a refrigerant condenser during cooling operation and as a refrigerant evaporator during heating operation A second outdoor unit having a exchanger and a coolant circuit that exchanges heat with the exhaust heat of the gas engine and is used to heat the refrigerant during heating operation;
An indoor unit having an indoor unit heat exchanger that functions as a refrigerant evaporator during cooling operation and functions as a refrigerant condenser during heating operation;
An air conditioner adjusting device that connects each of the first outdoor unit and the second outdoor unit to the indoor unit;
The air conditioner adjustment device is:
A gas branch pipe having a first gas branch portion connected to the first switching valve, a second gas branch portion connected to the second switch valve, and a gas collecting portion connected to the indoor unit heat exchanger When,
A first liquid branch connected to the first outdoor unit heat exchanger, a second liquid branch connected to the second outdoor unit heat exchanger, and a liquid assembly connected to the indoor unit heat exchanger A liquid branch pipe having a section;
Provided in the gas branch pipe, during cooling operation, the flow rate of the refrigerant in the gaseous state from the indoor unit heat exchanger is adjusted and supplied to the first compressor via the first switching valve, and during heating operation Is a first gas flow rate adjustment valve that supplies the indoor unit heat exchanger with a gaseous refrigerant discharged from the first compressor through the first switching valve;
Provided in the gas branch pipe, during cooling operation, the flow rate of the refrigerant in the gaseous state from the indoor unit heat exchanger is adjusted and supplied to the second compressor via the second switching valve, and during heating operation Is a second gas flow rate adjustment valve that supplies the refrigerant in the gaseous state via the second switching valve discharged from the second compressor to the indoor unit heat exchanger;
Provided in the liquid branch pipe, supplies a refrigerant in a liquid state from the first outdoor unit heat exchanger to the indoor unit heat exchanger during cooling operation, and supplies liquid from the indoor unit heat exchanger during heating operation. A first liquid flow rate adjustment valve that adjusts the flow rate of refrigerant in a state and supplies the refrigerant to the first outdoor unit heat exchanger;
Provided in the liquid branch pipe, the refrigerant in the liquid state from the second outdoor unit heat exchanger is supplied to the indoor unit heat exchanger during the cooling operation, and the liquid from the indoor unit heat exchanger during the heating operation. A second liquid flow rate adjustment valve that adjusts the flow rate of the refrigerant in a state and supplies the refrigerant to the second outdoor unit heat exchanger;
Model information acquisition means for acquiring model information of the first outdoor unit and the second outdoor unit,
Air conditioning load information acquisition means for acquiring air conditioning load information of the indoor unit;
According to the acquired model information and air conditioning load information, the flow rates of the refrigerant respectively supplied from the first outdoor unit and the second outdoor unit to the indoor unit are from the indoor unit to the first outdoor unit and the first outdoor unit. The opening degree of the first and second gas flow rate adjusting valves is controlled during cooling operation so as to match the flow rate supplied to each of the two outdoor units, and the first and second liquid flow rate adjustments are performed during heating operation. An air conditioner comprising control means for controlling the opening of each valve.
JP2009225210A 2009-09-29 2009-09-29 Air conditioner adjusting device and air conditioner Active JP5249164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225210A JP5249164B2 (en) 2009-09-29 2009-09-29 Air conditioner adjusting device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225210A JP5249164B2 (en) 2009-09-29 2009-09-29 Air conditioner adjusting device and air conditioner

Publications (2)

Publication Number Publication Date
JP2011075162A true JP2011075162A (en) 2011-04-14
JP5249164B2 JP5249164B2 (en) 2013-07-31

Family

ID=44019342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225210A Active JP5249164B2 (en) 2009-09-29 2009-09-29 Air conditioner adjusting device and air conditioner

Country Status (1)

Country Link
JP (1) JP5249164B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233640A (en) * 2011-05-02 2012-11-29 Mitsubishi Electric Corp Air conditioner
JP2015132409A (en) * 2014-01-10 2015-07-23 東京瓦斯株式会社 Air conditioner
JP2015132410A (en) * 2014-01-10 2015-07-23 東京瓦斯株式会社 Air conditioner and air conditioning system
WO2015122167A1 (en) * 2014-02-14 2015-08-20 パナソニックIpマネジメント株式会社 Air conditioner
JP2015152246A (en) * 2014-02-14 2015-08-24 パナソニックIpマネジメント株式会社 air conditioner
KR20160050247A (en) * 2014-10-29 2016-05-11 엘지전자 주식회사 An air conditioner and Method of controlling the same
EP3043127A1 (en) * 2015-01-12 2016-07-13 LG Electronics Inc. Air conditioner and control method thereof
EP3043126A1 (en) * 2015-01-12 2016-07-13 LG Electronics Inc. Air conditioner and method for controlling an air conditioner
EP3043128A1 (en) * 2015-01-12 2016-07-13 LG Electronics Inc. Air conditioner and method for controlling an air conditioner
US20160201950A1 (en) * 2015-01-12 2016-07-14 Lg Electronics Inc. Air conditioner
US20160201955A1 (en) * 2015-01-12 2016-07-14 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
US20160201963A1 (en) * 2015-01-12 2016-07-14 Lg Electroncis Inc. Air conditioner
US20160223235A1 (en) * 2015-01-12 2016-08-04 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
JP2017150689A (en) * 2016-02-22 2017-08-31 パナソニックIpマネジメント株式会社 Air conditioner
JP2018136073A (en) * 2017-02-21 2018-08-30 大阪瓦斯株式会社 Hybrid air conditioning system and control method thereof
JP2019124396A (en) * 2018-01-16 2019-07-25 株式会社竹中工務店 Air conditioning system
JP2020020491A (en) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 Air conditioner
JP2020020490A (en) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 Hybrid chiller system
KR20220144201A (en) * 2021-04-19 2022-10-26 엘지전자 주식회사 Controll Method of Air Conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153864B2 (en) * 2018-07-30 2022-10-17 パナソニックIpマネジメント株式会社 air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142010A (en) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp Refrigeration air conditioner
JP2003056931A (en) * 2001-08-20 2003-02-26 Mitsubishi Heavy Ind Ltd Air conditioner
JP2003262383A (en) * 2002-03-12 2003-09-19 Sanyo Electric Co Ltd Air conditioner
JP2007187342A (en) * 2006-01-11 2007-07-26 Daikin Ind Ltd Air conditioner group control device
JP2007292407A (en) * 2006-04-26 2007-11-08 Aisin Seiki Co Ltd Air conditioner
JP2009198087A (en) * 2008-02-21 2009-09-03 Mitsubishi Electric Corp Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142010A (en) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp Refrigeration air conditioner
JP2003056931A (en) * 2001-08-20 2003-02-26 Mitsubishi Heavy Ind Ltd Air conditioner
JP2003262383A (en) * 2002-03-12 2003-09-19 Sanyo Electric Co Ltd Air conditioner
JP2007187342A (en) * 2006-01-11 2007-07-26 Daikin Ind Ltd Air conditioner group control device
JP2007292407A (en) * 2006-04-26 2007-11-08 Aisin Seiki Co Ltd Air conditioner
JP2009198087A (en) * 2008-02-21 2009-09-03 Mitsubishi Electric Corp Air conditioner

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233640A (en) * 2011-05-02 2012-11-29 Mitsubishi Electric Corp Air conditioner
JP2015132409A (en) * 2014-01-10 2015-07-23 東京瓦斯株式会社 Air conditioner
JP2015132410A (en) * 2014-01-10 2015-07-23 東京瓦斯株式会社 Air conditioner and air conditioning system
WO2015122167A1 (en) * 2014-02-14 2015-08-20 パナソニックIpマネジメント株式会社 Air conditioner
JP2015152240A (en) * 2014-02-14 2015-08-24 パナソニックIpマネジメント株式会社 air conditioner
JP2015152246A (en) * 2014-02-14 2015-08-24 パナソニックIpマネジメント株式会社 air conditioner
KR20160050247A (en) * 2014-10-29 2016-05-11 엘지전자 주식회사 An air conditioner and Method of controlling the same
KR101644703B1 (en) 2014-10-29 2016-08-01 엘지전자 주식회사 An air conditioner and Method of controlling the same
EP3043126A1 (en) * 2015-01-12 2016-07-13 LG Electronics Inc. Air conditioner and method for controlling an air conditioner
US10041706B2 (en) 2015-01-12 2018-08-07 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
US20160201950A1 (en) * 2015-01-12 2016-07-14 Lg Electronics Inc. Air conditioner
US20160201952A1 (en) * 2015-01-12 2016-07-14 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
US20160201953A1 (en) * 2015-01-12 2016-07-14 Electronics Inc. Air conditioner and method for controlling an air conditioner
US20160201955A1 (en) * 2015-01-12 2016-07-14 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
US20160201963A1 (en) * 2015-01-12 2016-07-14 Lg Electroncis Inc. Air conditioner
CN105783145A (en) * 2015-01-12 2016-07-20 Lg电子株式会社 Air conditioner and method for controlling an air conditioner
EP3043127A1 (en) * 2015-01-12 2016-07-13 LG Electronics Inc. Air conditioner and control method thereof
US20160223235A1 (en) * 2015-01-12 2016-08-04 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
US10527333B2 (en) 2015-01-12 2020-01-07 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
US9816734B2 (en) 2015-01-12 2017-11-14 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
US9863668B2 (en) 2015-01-12 2018-01-09 Lg Electronics Inc. Air conditioner
EP3043128A1 (en) * 2015-01-12 2016-07-13 LG Electronics Inc. Air conditioner and method for controlling an air conditioner
US10054348B2 (en) 2015-01-12 2018-08-21 Lg Electronics Inc. Air conditioner
JP2017150689A (en) * 2016-02-22 2017-08-31 パナソニックIpマネジメント株式会社 Air conditioner
JP2018136073A (en) * 2017-02-21 2018-08-30 大阪瓦斯株式会社 Hybrid air conditioning system and control method thereof
JP2019124396A (en) * 2018-01-16 2019-07-25 株式会社竹中工務店 Air conditioning system
JP7045860B2 (en) 2018-01-16 2022-04-01 株式会社竹中工務店 Air conditioning system
JP2020020491A (en) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 Air conditioner
JP2020020490A (en) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 Hybrid chiller system
JP7142314B2 (en) 2018-07-30 2022-09-27 パナソニックIpマネジメント株式会社 Hybrid chiller system
JP7174936B2 (en) 2018-07-30 2022-11-18 パナソニックIpマネジメント株式会社 air conditioner
KR20220144201A (en) * 2021-04-19 2022-10-26 엘지전자 주식회사 Controll Method of Air Conditioner
KR102465072B1 (en) * 2021-04-19 2022-11-09 엘지전자 주식회사 Controll Method of Air Conditioner

Also Published As

Publication number Publication date
JP5249164B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5249164B2 (en) Air conditioner adjusting device and air conditioner
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
CN102472519B (en) Heat source system
CN102042648B (en) Heat recovery type multi-connection air condition unit
US6883342B2 (en) Multiform gas heat pump type air conditioning system
US20230092215A1 (en) Air conditioning system with capacity control and controlled hot water generation
EP2128542B1 (en) Air conditioner
WO2010131335A1 (en) Air conditioning apparatus
EP3071894B1 (en) Air conditioner and method of controlling the same
WO2006013834A1 (en) Freezing apparatus
JP6296364B2 (en) Air conditioner
WO2006013938A1 (en) Freezing apparatus
CN103842743B (en) Heat pump
JP2006071137A (en) Refrigeration unit
WO2010113313A1 (en) Air-conditioning device
WO2016001958A1 (en) Air-conditioning device
US20210048216A1 (en) Air-conditioning apparatus
JP6672619B2 (en) Air conditioning system
KR20190081866A (en) air-conditioning system
KR20210093560A (en) Air Conditioner System for Simultaneous Cooling, Heating and hot water supplying and Control Method of the Same
US10465935B2 (en) Air-conditioning apparatus
KR20120114997A (en) Air conditoner
EP2137467A1 (en) Multi-unit air conditioning system and controlling method for the same
KR20080038511A (en) Multi-type air conditioner
CN105556219A (en) Freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5249164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250