JP7474286B2 - Air-conditioning heat source control device, air-conditioning heat source control method, and air-conditioning heat source control program - Google Patents

Air-conditioning heat source control device, air-conditioning heat source control method, and air-conditioning heat source control program Download PDF

Info

Publication number
JP7474286B2
JP7474286B2 JP2022106486A JP2022106486A JP7474286B2 JP 7474286 B2 JP7474286 B2 JP 7474286B2 JP 2022106486 A JP2022106486 A JP 2022106486A JP 2022106486 A JP2022106486 A JP 2022106486A JP 7474286 B2 JP7474286 B2 JP 7474286B2
Authority
JP
Japan
Prior art keywords
temperature
chilled water
medium
demand
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022106486A
Other languages
Japanese (ja)
Other versions
JP2024005976A (en
Inventor
貴志 大塚
明 横濱
文郎 竹内
貴大 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2022106486A priority Critical patent/JP7474286B2/en
Publication of JP2024005976A publication Critical patent/JP2024005976A/en
Application granted granted Critical
Publication of JP7474286B2 publication Critical patent/JP7474286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、空調熱源制御装置、空調熱源制御方法、及び空調熱源制御プログラムに関する。 The present invention relates to an air conditioning heat source control device, an air conditioning heat source control method, and an air conditioning heat source control program.

従来より、冷水コイルへの冷水の供給通路に設けられた冷水バルブの開度および冷温水コイルへの冷温水の供給通路に設けられた冷温水バルブの開度を制御する空調制御システムが知られている(特許文献1)この空調制御システムでは、空調制御装置は、室内温度センサで計測された室内温度計測値と室内温度設定値の偏差を零とする室内温度制御出力値を演算してバルブの開度指令値を決定し、還水温度センサで計測された還水温度計測値と還水温度設定値の偏差を零とするバルブの開度指令値を演算し、バルブの各々について、室内温度計測値に基づく開度指令値と還水温度計測値に基づく開度指令値とを比較して、2つの開度指令値のうち開度が小さな値を示す方を実際の開度指令値として選択している。この空調制御システムでは、冷温水コイルおよび冷水コイルへの冷水の過流量を抑制する。 Conventionally, there is known an air conditioning control system that controls the opening of a cold water valve provided in a cold water supply passage to a cold water coil and the opening of a cold/hot water valve provided in a cold/hot water supply passage to a cold/hot water coil (Patent Document 1). In this air conditioning control system, the air conditioning control device determines a valve opening command value by calculating an indoor temperature control output value that makes the deviation between the indoor temperature measurement value measured by the indoor temperature sensor and the indoor temperature set value zero, calculates a valve opening command value that makes the deviation between the return water temperature measurement value measured by the return water temperature sensor and the return water temperature set value zero, and compares the opening command value based on the indoor temperature measurement value and the opening command value based on the return water temperature measurement value for each valve, and selects the opening command value that indicates the smaller opening value as the actual opening command value. This air conditioning control system suppresses excessive flow of cold water to the cold/hot water coil and the cold water coil.

また、給気が通流する給気風路と、冷水を生成する熱源部と、冷水との熱交換により前記給気風路を通流する給気を冷却可能な熱交換部と、を備え、冷房負荷の変動に応じて適切な空調を実現する空調システムが知られている(特許文献2)。この空調システムでは、低温冷水と中温冷水を用いて省エネルギー化を図る。
In addition, an air conditioning system is known that includes an intake air duct through which the intake air flows, a heat source unit that generates chilled water, and a heat exchange unit that can cool the intake air flowing through the intake air duct by exchanging heat with the chilled water, and that provides appropriate air conditioning in response to fluctuations in the cooling load (Patent Document 2). This air conditioning system uses low-temperature chilled water and medium-temperature chilled water to save energy.

特開2013-204889号公報JP 2013-204889 A 特開2019-124396号公報JP 2019-124396 A

また、中央管理室等で複数の空調機を一元的に制御するセントラル空調において、冷房時に空調機への熱媒として冷水のみを供給する事例が一般的であるが、近年、省エネルギー性を向上させるために冷水と中温冷水の2つの熱媒を活用する技術も知られている。ここで、冷水温度を固定し、中温冷水温度を可変とした場合には、省エネルギー性の観点で中温冷水の温度選択が最適でない可能性がある。すなわち、中温冷水の温度が高すぎる場合には、中温冷水の利用量が少ない状況が発生し、省エネルギー効果を十分確保できない可能性がある。また、中温冷水の温度が低すぎる場合には、省エネルギー性が劣後する可能性がある。 In addition, in central air conditioning systems that centrally control multiple air conditioners in a central control room, it is common to supply only chilled water as a heat transfer medium to the air conditioners during cooling operations, but in recent years, technology has been known that utilizes two heat transfer media, chilled water and medium-temperature chilled water, to improve energy conservation. Here, if the chilled water temperature is fixed and the medium-temperature chilled water temperature is variable, the selection of the medium-temperature chilled water temperature may not be optimal from the perspective of energy conservation. In other words, if the temperature of the medium-temperature chilled water is too high, it may result in a situation where only a small amount of medium-temperature chilled water is used, and the energy-saving effect may not be fully secured. Also, if the temperature of the medium-temperature chilled water is too low, energy savings may be inferior.

本発明は、上記の事情に鑑みてなされたもので、熱源機の最適運転となるように熱源機が製造する中温冷水の温度を決定することができる空調熱源制御装置、空調熱源制御方法、及び空調熱源制御プログラムを提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide an air conditioning heat source control device, an air conditioning heat source control method, and an air conditioning heat source control program that can determine the temperature of the medium-temperature chilled water produced by a heat source machine so that the heat source machine operates optimally.

上記の目的を達成するために第1の発明に係る空調熱源制御装置は、予測対象時期の気象情報を取得する気象情報取得部と、前記気象情報に基づいて、前記予測対象時期の空調機の熱需要を予測する熱需要予測部と、中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測する冷水需要予測部と、を含んで構成されている。 To achieve the above object, the air conditioning heat source control device according to the first invention includes a weather information acquisition unit that acquires weather information for a prediction target period, a heat demand prediction unit that predicts the heat demand of the air conditioner for the prediction target period based on the weather information, and a chilled water demand prediction unit that predicts, for each temperature of medium-temperature chilled water, the demand for medium-temperature chilled water of that temperature and the demand for chilled water with a temperature lower than that of the medium-temperature chilled water that will satisfy the heat demand.

第1の発明に係る空調熱源制御装置によれば、気象情報取得部によって、予測対象時期の気象情報を取得する。熱需要予測部によって、前記気象情報に基づいて、前記予測対象時期の空調機の熱需要を予測する。冷水需要予測部によって、中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測する。 According to the air conditioning heat source control device of the first invention, the weather information acquisition unit acquires weather information for the prediction period. The heat demand prediction unit predicts the heat demand of the air conditioner for the prediction period based on the weather information. The chilled water demand prediction unit predicts, for each temperature of medium-temperature chilled water, the demand for medium-temperature chilled water of that temperature and the demand for chilled water with a temperature lower than that of the medium-temperature chilled water that will satisfy the heat demand.

このように、中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測することにより、熱源機の最適運転となるように熱源機が製造する中温冷水の温度を決定することができる。 In this way, by predicting the demand for medium-temperature chilled water at each temperature of medium-temperature chilled water that satisfies the heat demand, and the demand for chilled water at a temperature lower than that of the medium-temperature chilled water, it is possible to determine the temperature of the medium-temperature chilled water produced by the heat source machine so that the heat source machine operates optimally.

また、第2の発明に係る空調熱源制御方法は、気象情報取得部が、予測対象時期の気象情報を取得し、熱需要予測部が、前記気象情報に基づいて、前記予測対象時期の空調機の熱需要を予測し、冷水需要予測部が、中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測する。 In addition, in the air conditioning heat source control method according to the second invention, a weather information acquisition unit acquires weather information for a prediction target period, a heat demand prediction unit predicts the heat demand of the air conditioner for the prediction target period based on the weather information, and a chilled water demand prediction unit predicts, for each temperature of medium-temperature chilled water, the demand for medium-temperature chilled water of that temperature and the demand for chilled water with a temperature lower than that of the medium-temperature chilled water that will satisfy the heat demand.

また、第3の発明に係る空調熱源制御プログラムは、予測対象時期の気象情報を取得し、前記気象情報に基づいて、前記予測対象時期の空調機の熱需要を予測し、中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測することをコンピュータに実行させるプログラムである。 The air conditioning heat source control program according to the third invention is a program that causes a computer to acquire weather information for a prediction period, predict the heat demand of an air conditioner for the prediction period based on the weather information, and predict, for each temperature of medium-temperature chilled water, the demand for medium-temperature chilled water of that temperature and the demand for chilled water with a temperature lower than that of the medium-temperature chilled water that will satisfy the heat demand.

以上説明したように、本発明の空調熱源制御装置、空調熱源制御方法、及び空調熱源制御プログラムによれば、中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測することにより、熱源機の最適運転となるように熱源機が製造する中温冷水の温度を決定することができる、という効果が得られる。 As described above, the air conditioning heat source control device, air conditioning heat source control method, and air conditioning heat source control program of the present invention can predict, for each temperature of medium-temperature chilled water, the demand for medium-temperature chilled water at that temperature and the demand for chilled water at a temperature lower than that of the medium-temperature chilled water that satisfies the heat demand, thereby achieving the effect of determining the temperature of the medium-temperature chilled water produced by the heat source machine so as to optimize operation of the heat source machine.

本発明の実施の形態に係る空調熱源制御システムを示すブロック図である。1 is a block diagram showing an air conditioning heat source control system according to an embodiment of the present invention. 熱源機から冷水、中温冷水を、空調機へ供給する方法を説明するための図である。1 is a diagram for explaining a method of supplying chilled water and medium-temperature chilled water from a heat source unit to an air conditioner. FIG. 本発明の実施の形態に係るサーバの構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a server according to an embodiment of the present invention. 空気線図の一例を示す図である。FIG. 2 is a diagram showing an example of a psychrometric chart. 表示例を示す図である。FIG. 13 is a diagram showing a display example. 本発明の実施の形態に係るサーバにおける空調熱源制御処理ルーチンの内容を示すフローチャートである。5 is a flowchart showing the contents of an air-conditioning heat source control processing routine in the server according to the embodiment of the present invention. 中温冷水温度と総投入エネルギーとの関係を示すグラフである。11 is a graph showing the relationship between medium-temperature chilled water temperature and total input energy.

以下、図面を参照して、本発明の実施の形態について説明する。 The following describes an embodiment of the present invention with reference to the drawings.

<空調熱源制御システムのシステム構成>
図1に示すように、本発明の実施の形態に係る空調熱源制御システム100は、エネルギーセンター側に設けられたサーバ10と、複数の熱源機20A、20Bと、熱源機20A、20B毎に備えられた制御装置22A、22Bと、複数の空調機30A、30Bと、空調機30A、30B毎に備えられた制御装置32A、32Bと、を備えている。
<System configuration of air conditioning heat source control system>
As shown in FIG. 1, an air conditioning heat source control system 100 according to an embodiment of the present invention includes a server 10 provided on the energy center side, a plurality of heat source units 20A, 20B, control devices 22A, 22B provided for each of the heat source units 20A, 20B, a plurality of air conditioners 30A, 30B, and control devices 32A, 32B provided for each of the air conditioners 30A, 30B.

空調熱源制御システム100は、例えば、同一の街区内に設けられている。制御装置22A、22B、サーバ10は、LANやインターネットなどのネットワークNを介して相互に接続されている。なお、サーバ10が、空調熱源制御装置の一例である。また、熱源機は3つ以上であってもよく、空調機は、1つであってもよいし、3つ以上であってもよい。 The air conditioning heat source control system 100 is installed, for example, in the same city block. The control devices 22A, 22B and the server 10 are connected to each other via a network N such as a LAN or the Internet. The server 10 is an example of an air conditioning heat source control device. In addition, there may be three or more heat source machines, and there may be one air conditioner or three or more air conditioners.

熱源機20Aは、冷水を製造する熱源機であり、例えば、冷水を製造する冷凍機(ターボ冷凍機等)である。 The heat source unit 20A is a heat source unit that produces chilled water, for example a chiller (such as a turbo chiller) that produces chilled water.

熱源機20Bは、中温冷水を製造する熱源機であり、例えば、中温冷水を製造する冷凍機(ターボ冷凍機等)である。 The heat source unit 20B is a heat source unit that produces medium-temperature chilled water, for example a chiller (such as a turbo chiller) that produces medium-temperature chilled water.

エネルギー製造効率(COP)は、熱源機20Bの方が熱源機20Aよりも高い。これは、熱源機20Bの方が、冷水製造温度が高く高効率運転が可能なためである。 The energy production efficiency (COP) of heat source unit 20B is higher than that of heat source unit 20A. This is because heat source unit 20B produces cold water at a higher temperature and can operate with high efficiency.

図2に示すように、熱源機20A、20Bと、空調機30A、30Bとの間に、水蓄熱槽24が設けられている。なお、水蓄熱槽24がない場合であってもよい。 As shown in FIG. 2, a water heat storage tank 24 is provided between the heat source units 20A and 20B and the air conditioners 30A and 30B. Note that the water heat storage tank 24 may not be provided.

また、補機設備として、冷却塔および冷水ポンプ、冷却水ポンプ、熱交換器、建物側に熱媒を搬送する冷水送水ポンプが設けられていてもよい。 In addition, auxiliary equipment may include a cooling tower and a cold water pump, a cooling water pump, a heat exchanger, and a cold water supply pump that transports the heat transfer medium to the building side.

空調機30A、30Bは、以下の(1)~(2)の何れかの構成である。
(1)冷水と中温冷水を利用するダブルコイルの機種及び冷水循環ポンプ
(2)冷水のみ、あるいは中温冷水のみのシングルコイルの機種(潜顕分離空調)及び冷水循環ポンプ
The air conditioners 30A and 30B have any one of the following configurations (1) and (2).
(1) Double coil models that use chilled water and medium temperature chilled water and chilled water circulation pumps. (2) Single coil models that use only chilled water or only medium temperature chilled water (sensible and latent separate air conditioning) and chilled water circulation pumps.

制御装置22A、22Bの各々は、接続されている熱源機20A、20Bの運転を制御する。 Each of the control devices 22A and 22B controls the operation of the heat source units 20A and 20B to which it is connected.

制御装置32A、32Bの各々は、接続されている空調機30A、30Bの運転を制御する。 Each of the control devices 32A and 32B controls the operation of the connected air conditioners 30A and 30B.

サーバ10は、所定温度の中温冷水と冷水の需要を予測し、中温冷水を使い切った後に、冷水を使うように、各熱源機20A、20B及び各空調機30A、30Bの運転計画を決定し、運転計画に応じた運転指令を各制御装置22A、22B、32A、32Bへ送信する。 The server 10 predicts the demand for medium-temperature chilled water and chilled water at a specified temperature, determines an operation plan for each heat source unit 20A, 20B and each air conditioner 30A, 30B so that chilled water is used after the medium-temperature chilled water is used up, and transmits operation commands according to the operation plan to each control device 22A, 22B, 32A, 32B.

具体的には、図3に示すように、サーバ10は、通信部50と、演算部52とを備えている。演算部52は、気象情報取得部54と、熱需要予測部56と、冷水需要予測部58と、エネルギー量算出部60と、表示部62と、中温冷水温度決定部64と、運転指令出力部66とを備えている。 Specifically, as shown in FIG. 3, the server 10 includes a communication unit 50 and a calculation unit 52. The calculation unit 52 includes a weather information acquisition unit 54, a heat demand prediction unit 56, a chilled water demand prediction unit 58, an energy amount calculation unit 60, a display unit 62, a medium-temperature chilled water temperature determination unit 64, and an operation command output unit 66.

通信部50は、気象情報、建物情報、人員情報、各熱源機20A、20B、及び各空調機30A、30Bの過去実績、機器仕様、機器特性、並びにイベント情報を受信する。通信部50は、運転指令を、各熱源機20A、20Bの制御装置22A、22B、及び各空調機30A、30Bの制御装置32A、32Bへ送信する。 The communication unit 50 receives weather information, building information, personnel information, past performance, equipment specifications, equipment characteristics, and event information for each heat source unit 20A, 20B and each air conditioner 30A, 30B. The communication unit 50 transmits operation commands to the control devices 22A, 22B of each heat source unit 20A, 20B and the control devices 32A, 32B of each air conditioner 30A, 30B.

気象情報取得部54は、予測対象時期(例えば、翌日)の気象情報を取得する。 The weather information acquisition unit 54 acquires weather information for the prediction target period (e.g., the next day).

熱需要予測部56は、予測対象時期の気象情報に基づいて、予測対象時期の空調機の熱需要を予測する。具体的には、蓄積した各熱源機20A、20B及び各空調機30A、30Bの熱需要の時間変化の実績と、予測対象時期(例えば、翌日)の気象情報とに基づいて、予測対象時期の熱需要を予測する。予測するスパンは短いスパンとし、例えば、時間単位とする。より具体的には、前日の熱需要を、予測対象時期の気象情報、建物情報、イベント情報、街の未利用エネルギー量に基づいて修正し、予測値とする。 The heat demand prediction unit 56 predicts the heat demand of the air conditioners for the prediction period based on the weather information for the prediction period. Specifically, the heat demand for the prediction period is predicted based on the accumulated results of the time change in heat demand for each heat source unit 20A, 20B and each air conditioner 30A, 30B and the weather information for the prediction period (e.g., the next day). The prediction span is a short span, for example, in units of hours. More specifically, the heat demand for the previous day is corrected based on the weather information, building information, event information, and unused energy amount in the town for the prediction period, and the predicted value is obtained.

冷水需要予測部58は、中温冷水の温度毎に、熱需要の予測値を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測する。 The chilled water demand prediction unit 58 predicts, for each temperature of medium-temperature chilled water, the demand for medium-temperature chilled water of that temperature and the demand for chilled water with a temperature lower than that of the medium-temperature chilled water that satisfies the predicted value of heat demand.

具体的には、冷水需要予測部58は、中温冷水の温度毎に、中温冷水コイルの入口温度と、当該中温冷水の温度に応じて定まる中温冷水コイルの出口温度と、中温冷水コイルの空気流量とに基づいて、当該温度の中温冷水の需要を予測し、予測された熱需要と、予測された当該温度の中温冷水の需要との差分を、冷水の需要として予測する。 Specifically, for each temperature of medium-temperature chilled water, the chilled water demand prediction unit 58 predicts the demand for medium-temperature chilled water at that temperature based on the inlet temperature of the medium-temperature chilled water coil, the outlet temperature of the medium-temperature chilled water coil determined according to the temperature of the medium-temperature chilled water, and the air flow rate of the medium-temperature chilled water coil, and predicts the demand for chilled water as the difference between the predicted heat demand and the predicted demand for medium-temperature chilled water at that temperature.

より具体的には、中温冷水の需要Aは、中温冷水温度Bに応じて、以下に式に従って計算される。 More specifically, the demand for medium-temperature chilled water A is calculated according to the medium-temperature chilled water temperature B according to the following formula:

中温冷水の需要A=空気と中温冷水との熱交換器における空気の出入口温度差[℃]×空気の流量[kg/s]×空気の比熱[kJ/(kg・℃)] Demand for medium-temperature chilled water A = temperature difference between the air inlet and outlet of the heat exchanger between air and medium-temperature chilled water [℃] x air flow rate [kg/s] x specific heat of air [kJ/(kg・℃)]

熱交換機出口の空気温度は、空調機特性および中温冷水温度Bによって算出される。以上より、空気の比熱、流量、熱交換器入口の空気温度、中温冷水温度Bから、中温冷水の需要Aが求められる。 The air temperature at the heat exchanger outlet is calculated from the air conditioner characteristics and the medium temperature chilled water temperature B. From the above, the demand for medium temperature chilled water A can be calculated from the specific heat of the air, the flow rate, the air temperature at the heat exchanger inlet, and the medium temperature chilled water temperature B.

冷水の需要Cは、予測された熱需要と中温冷水の需要Aとの差から求められる(図4参照)。 The demand for chilled water C is calculated from the difference between the predicted heat demand and the demand for medium-temperature chilled water A (see Figure 4).

以下、具体的な計算例を示す。ここで、予測された熱需要を1000kW、空気流量を70kg/s、比熱を1kJ/(kg・℃)、中温冷水温度を14℃、空気の熱交換器入口温度を25℃とし、空気の熱交換器出口温度は中温冷水温度と等しくなるものとする。 A specific calculation example is shown below. Here, the predicted heat demand is 1000 kW, the air flow rate is 70 kg/s, the specific heat is 1 kJ/(kg·℃), the medium temperature chilled water temperature is 14℃, the air heat exchanger inlet temperature is 25℃, and the air heat exchanger outlet temperature is equal to the medium temperature chilled water temperature.

中温冷水の需要Aは、以下のように計算される。
(25-14)*70*1=770kW
The demand for medium temperature chilled water A is calculated as follows:
(25-14) * 70 * 1 = 770 kW

また、冷水の需要Cは、以下のように計算される。
1000-770=230kW
And the demand for cold water, C, is calculated as follows:
1000-770=230kW

例えば、上記がある1箇所の空調機とした場合、建物全体、さらに街区全体では、上記のような各空調機の熱量の合計値が地域冷暖房施設で製造する必要がある熱量となる。本実施形態では、街区の各空調機全部の個別計算を行うのではなく、代表的な箇所で需要想定および上記のような熱計算を行う。ここで、建物用途(事務所、商業、ホテル等)、居室の位置(方角、フロア、ペリメーターゾーン、インテリアゾーン)、居室の特性(専用部、共用部、ホール等大空間等)、空調機タイプ、稼働特性(24時間、日中のみ)等を踏まえた分類をした上で、代表的な箇所を選定すればよい。また、分類した空調機タイプ別に、街全体での稼働台数を想定し、それを合計して街区全体の中温冷水、冷水の熱需要総和を求める。 For example, if the above is for an air conditioner in one location, the total heat value of each air conditioner as described above for the entire building and even the entire block will be the amount of heat that needs to be produced by the district heating and cooling facility. In this embodiment, rather than performing individual calculations for all the air conditioners in the block, demand estimates and heat calculations as described above are performed for representative locations. Here, representative locations can be selected after classifying based on the building use (office, commercial, hotel, etc.), location of the room (direction, floor, perimeter zone, interior zone), characteristics of the room (private area, common area, large space such as hall, etc.), air conditioner type, operating characteristics (24 hours, daytime only), etc. In addition, the number of operating units in the entire city is estimated for each classified air conditioner type, and these are added up to determine the total heat demand for medium temperature chilled water and chilled water for the entire block.

エネルギー量算出部60は、中温冷水の温度毎に、当該温度の中温冷水の需要と前記冷水の需要の予測結果に対応する投入エネルギー量を算出する。 The energy amount calculation unit 60 calculates, for each temperature of medium-temperature chilled water, the amount of input energy corresponding to the demand for medium-temperature chilled water at that temperature and the predicted demand for the chilled water.

具体的には、エネルギー量算出部60は、中温冷水の温度毎に、予測された当該温度の中温冷水の需要と、予め求められた当該温度での中温冷水製造用の熱源機20Bの効率とに基づいて、中温冷水製造用の熱源機20Bへ投入するエネルギー量を算出し、予測された冷水の需要と、予め求められた冷水製造用の熱源機20Aの効率とに基づいて、冷水製造用の熱源機20Aへ投入するエネルギー量を算出し、中温冷水製造用の熱源機20Bへ投入するエネルギー量と、冷水製造用の熱源機20Aへ投入するエネルギー量とに基づいて、投入エネルギー量を算出する。 Specifically, for each temperature of medium-temperature chilled water, the energy amount calculation unit 60 calculates the amount of energy to be input to the heat source unit 20B for producing medium-temperature chilled water based on the predicted demand for medium-temperature chilled water at that temperature and the efficiency of the heat source unit 20B for producing medium-temperature chilled water at that temperature, calculates the amount of energy to be input to the heat source unit 20A for producing chilled water based on the predicted demand for chilled water and the efficiency of the heat source unit 20A for producing chilled water, and calculates the amount of input energy based on the amount of energy to be input to the heat source unit 20B for producing medium-temperature chilled water and the amount of energy to be input to the heat source unit 20A for producing chilled water.

より具体的には、熱源機への投入エネルギー[kW]は、熱源機の出力[kW]÷熱源機の効率(COP)[-]で求められる。またCOPは、熱源機特性と送水温度(ここでは中温冷水温度、冷水温度)から定められる。以上より、予測された中温冷水及び冷水それぞれの需要(熱源機の出力に相当)に対して、熱源機20A、20Bへの投入エネルギー量が算出される。 More specifically, the energy input [kW] to the heat source unit is calculated by the output [kW] of the heat source unit divided by the efficiency (COP) of the heat source unit [-]. The COP is determined from the heat source unit characteristics and the water supply temperature (here, the medium-temperature chilled water temperature and the chilled water temperature). From the above, the amount of energy input to heat source units 20A and 20B is calculated for the predicted demand for medium-temperature chilled water and chilled water (corresponding to the output of the heat source unit).

以下、具体的な計算例を示す。ここで、冷水製造用の熱源機20AのCOPを4.00、中温冷水製造用の熱源機20BのCOPを4.50、中温冷水及び冷水それぞれの需要を、上記で算出した値とする。 A specific calculation example is shown below. Here, the COP of the heat source unit 20A for producing cold water is 4.00, the COP of the heat source unit 20B for producing medium-temperature cold water is 4.50, and the demand for medium-temperature cold water and cold water is the value calculated above.

このとき、熱源機20A、20Bへの投入エネルギー量の和は以下のように計算される。
230÷4.00+770÷4.50=228.6kW
At this time, the sum of the amounts of energy input to the heat source units 20A and 20B is calculated as follows.
230÷4.00+770÷4.50=228.6kW

ここでは簡易的に熱源機20A、20Bへの投入エネルギー量のみを示しているが、これに限定されるものではない。ポンプ動力や二次側空調機への投入エネルギー量も同様に、機器特性や条件などから算出して投入エネルギー量に含めるようにしてもよい。 For simplicity, only the amount of energy input to heat source units 20A and 20B is shown here, but this is not limited to this. Similarly, the amount of energy input to pump power and secondary air conditioners may be calculated from equipment characteristics and conditions and included in the amount of input energy.

表示部62は、中温冷水の温度毎に、当該温度の中温冷水の需要と前記冷水の需要の予測結果を表示する。表示部62は、更に、エネルギー量算出部60による算出結果を表示する。 The display unit 62 displays, for each temperature of medium-temperature chilled water, the predicted demand for the medium-temperature chilled water at that temperature and the predicted demand for the chilled water. The display unit 62 further displays the calculation results obtained by the energy amount calculation unit 60.

例えば、図5に示すように、中温冷水の温度毎に、当該温度の中温冷水の需要と前記冷水の需要の割合を表示すると共に、投入エネルギー量の算出結果を表示する。図5では、13℃の中温冷水の供給するパターン1において、当該温度の中温冷水の需要と前記冷水の需要の比率が20:80であり、投入エネルギー量が19.1である例を示している。また、14℃の中温冷水の供給するパターン2において、当該温度の中温冷水の需要と前記冷水の需要の比率が40:60であり、投入エネルギー量が18.7である例を示している。15℃の中温冷水の供給するパターン3において、当該温度の中温冷水の需要と前記冷水の需要の比率が70:30であり、投入エネルギー量が19.0である例を示している。 For example, as shown in FIG. 5, for each temperature of medium-temperature chilled water, the ratio of the demand for medium-temperature chilled water at that temperature to the demand for the chilled water is displayed, along with the calculation result of the amount of energy input. FIG. 5 shows an example in which, in pattern 1 where medium-temperature chilled water at 13°C is supplied, the ratio of the demand for medium-temperature chilled water at that temperature to the demand for the chilled water is 20:80, and the amount of energy input is 19.1. Also, in pattern 2 where medium-temperature chilled water at 14°C is supplied, the ratio of the demand for medium-temperature chilled water at that temperature to the demand for the chilled water is 40:60, and the amount of energy input is 18.7. In pattern 3 where medium-temperature chilled water at 15°C is supplied, the ratio of the demand for medium-temperature chilled water at that temperature to the demand for the chilled water is 70:30, and the amount of energy input is 19.0.

中温冷水温度決定部64は、エネルギー量算出部60による算出結果に基づいて、中温冷水の温度を決定する。例えば、中温冷水温度決定部64は、投入エネルギー量が最小となるときの中温冷水の温度を、中温冷水の温度として決定する。上記図4の例では、中温冷水の温度が14℃であるとき、投入エネルギー量が最小となるため、14℃を、中温冷水の温度として決定する。 The medium-temperature cold water temperature determination unit 64 determines the temperature of the medium-temperature cold water based on the calculation result by the energy amount calculation unit 60. For example, the medium-temperature cold water temperature determination unit 64 determines the temperature of the medium-temperature cold water when the amount of input energy is minimum as the temperature of the medium-temperature cold water. In the example of FIG. 4 above, when the temperature of the medium-temperature cold water is 14°C, the amount of input energy is minimum, so 14°C is determined as the temperature of the medium-temperature cold water.

運転指令出力部66は、中温冷水製造用の熱源機20Bに対して、決定された温度の中温冷水が製造されるように予測対象時期の運転指令を出力する。 The operation command output unit 66 outputs an operation command for the predicted target period to the heat source unit 20B for producing medium-temperature chilled water so that medium-temperature chilled water at the determined temperature is produced.

<空調熱源制御システム100の動作>
次に、本実施の形態に係る空調熱源制御システム100の動作について説明する。
<Operation of air conditioning heat source control system 100>
Next, the operation of the air conditioning heat source control system 100 according to this embodiment will be described.

サーバ20により、図6に示す空調熱源制御処理ルーチンが実行される。 The server 20 executes the air conditioning heat source control processing routine shown in FIG. 6.

まず、ステップS100において、気象情報取得部54は、例えば、気象情報を提供するサーバから、予測対象時期(例えば、翌日)の気象情報を取得する。 First, in step S100, the weather information acquisition unit 54 acquires weather information for the prediction target period (e.g., the next day) from, for example, a server that provides weather information.

そして、ステップS102において、熱需要予測部56は、蓄積した各熱源機20A、20B及び各空調機30A、30Bの熱負荷の時間変化の実績と、予測対象時期の気象情報とに基づいて、前日の熱需要を、予測対象時期の気象情報、建物情報、イベント情報、街の未利用エネルギー量に基づいて修正し、予測対象時期の熱需要を予測する。 Then, in step S102, the heat demand prediction unit 56 corrects the heat demand of the previous day based on the accumulated actual changes in heat load over time for each heat source unit 20A, 20B and each air conditioner 30A, 30B and the weather information for the prediction target period, as well as the weather information, building information, event information, and unused energy amount in the city for the prediction target period, and predicts the heat demand for the prediction target period.

ステップS104において、冷水需要予測部58は、中温冷水の温度毎に、中温冷水コイルの入口温度と、当該中温冷水の温度に応じて定まる中温冷水コイルの出口温度と、中温冷水コイルの空気流量とに基づいて、当該温度の中温冷水の需要を予測し、予測された熱需要と、予測された当該温度の中温冷水の需要との差分を、冷水の需要として予測することにより、熱需要の予測値を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測する。 In step S104, the chilled water demand prediction unit 58 predicts the demand for medium temperature chilled water for each temperature of medium temperature chilled water based on the inlet temperature of the medium temperature chilled water coil, the outlet temperature of the medium temperature chilled water coil determined according to the temperature of the medium temperature chilled water, and the air flow rate of the medium temperature chilled water coil, and predicts the demand for medium temperature chilled water at that temperature as the demand for chilled water, by predicting the difference between the predicted heat demand and the predicted demand for medium temperature chilled water at that temperature, thereby predicting the demand for medium temperature chilled water at that temperature and the demand for chilled water at a temperature lower than the medium temperature chilled water that satisfies the predicted value of heat demand.

ステップS106において、エネルギー量算出部60は、中温冷水の温度毎に、予測された当該温度の中温冷水の需要と、予め求められた当該温度での中温冷水製造用の熱源機20Bの効率とに基づいて、中温冷水製造用の熱源機20Bへ投入するエネルギー量を算出し、予測された冷水の需要と、予め求められた冷水製造用の熱源機20Aの効率とに基づいて、冷水製造用の熱源機20Aへ投入するエネルギー量を算出する。そして、エネルギー量算出部60は、中温冷水の温度毎に、中温冷水製造用の熱源機20Bへ投入するエネルギー量と、冷水製造用の熱源機20Aへ投入するエネルギー量とに基づいて、投入エネルギー量の和を算出する。 In step S106, the energy amount calculation unit 60 calculates the amount of energy to be input to the heat source unit 20B for producing medium-temperature chilled water for each temperature of the medium-temperature chilled water based on the predicted demand for medium-temperature chilled water at that temperature and the previously determined efficiency of the heat source unit 20B for producing medium-temperature chilled water at that temperature, and calculates the amount of energy to be input to the heat source unit 20A for producing chilled water based on the predicted demand for chilled water and the previously determined efficiency of the heat source unit 20A for producing chilled water. The energy amount calculation unit 60 then calculates the sum of the input amounts of energy for each temperature of the medium-temperature chilled water based on the amount of energy to be input to the heat source unit 20B for producing medium-temperature chilled water and the amount of energy to be input to the heat source unit 20A for producing chilled water.

ステップS108において、表示部62は、中温冷水の温度毎に、当該温度の中温冷水の需要と冷水の需要の割合を表示すると共に、エネルギー量算出部60による算出結果を表示する。 In step S108, the display unit 62 displays the ratio of the demand for medium-temperature chilled water at each temperature to the demand for chilled water, and also displays the calculation results obtained by the energy amount calculation unit 60.

ステップS110において、中温冷水温度決定部64は、エネルギー量算出部60による算出結果に基づいて、投入エネルギー量が最小となるときの中温冷水の温度を、中温冷水の温度として決定する。 In step S110, the medium-temperature cold water temperature determination unit 64 determines the temperature of the medium-temperature cold water when the amount of input energy is minimum based on the calculation result by the energy amount calculation unit 60 as the temperature of the medium-temperature cold water.

ステップS112において、運転指令出力部66は、中温冷水製造用の熱源機20Bに対して、決定された温度の中温冷水が製造されるように予測対象時期の運転指令を出力する。 In step S112, the operation command output unit 66 outputs an operation command for the predicted target period to the heat source unit 20B for producing medium-temperature chilled water so that medium-temperature chilled water at the determined temperature is produced.

<実施例>
上記実施の形態で説明した、中温冷水の需要と冷水の需要の予測、及び投入エネルギー量の算出の具体例について説明する。
<Example>
A specific example of the prediction of the demand for medium-temperature chilled water and the demand for chilled water, and the calculation of the input energy amount, which have been described in the above embodiment, will be described.

まず、空調機の熱需要を、予測対象時期の気象情報に基づいて予測する。ここでは、予測された熱需要が1295kWであったとする。また、各状態点の温度及び比エンタルピは表1の通りとする。 First, the heat demand of the air conditioner is predicted based on the weather information for the forecast period. Here, the predicted heat demand is assumed to be 1,295 kW. The temperature and specific enthalpy of each state point are as shown in Table 1.

このとき、空気流量は熱需要を冷却コイル出入口の空気の比エンタルピ差[kJ/kg]で除することにより求められるため、上記条件における空気流量は70kg/sとなる。 In this case, the air flow rate is calculated by dividing the heat demand by the specific enthalpy difference [kJ/kg] of the air at the inlet and outlet of the cooling coil, so the air flow rate under the above conditions is 70 kg/s.

次に、中温冷水の温度毎に中温冷水及び冷水それぞれの需要を算出する。ここでは、空気の湿度変化は冷水との熱交換で生じることを仮定し、空気流量×中温冷水との熱交換コイル出入口の空気温度差により、中温冷水の需要を算出する。中温冷水の温度毎の算出結果を以下の表2に示す。 Next, the demand for medium temperature chilled water and cold water is calculated for each temperature of the medium temperature chilled water. Here, it is assumed that changes in air humidity occur due to heat exchange with the cold water, and the demand for medium temperature chilled water is calculated by multiplying the air flow rate by the difference in air temperature at the inlet and outlet of the heat exchange coil with the medium temperature chilled water. The calculation results for each temperature of medium temperature chilled water are shown in Table 2 below.

表3に示すように、中温冷水の温度毎に熱源機への投入エネルギーを算出し、投入エネルギーが最小となるときの中温冷水の温度を、最適な温度として決定する。表3の例では、中温冷水の温度が13℃のときに熱源機への投入エネルギーが最小となるので、中温冷水の温度は13℃に決定される(図7参照)。このとき、熱源機効率は、表4の通り算出されているものとする。 As shown in Table 3, the energy input to the heat source unit is calculated for each temperature of the medium-temperature chilled water, and the temperature of the medium-temperature chilled water at which the input energy is minimal is determined as the optimal temperature. In the example of Table 3, the energy input to the heat source unit is minimal when the temperature of the medium-temperature chilled water is 13°C, so the temperature of the medium-temperature chilled water is determined to be 13°C (see Figure 7). At this time, it is assumed that the efficiency of the heat source unit is calculated as shown in Table 4.

以上説明したように、本発明の実施の形態に係る空調熱源制御システムによれば、中温冷水の温度毎に、熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測し、熱源機への投入エネルギーが最小となるポイントを探索することで、中温冷水の温度を決定することができる。 As described above, the air conditioning heat source control system according to the embodiment of the present invention can determine the temperature of medium-temperature chilled water by predicting the demand for medium-temperature chilled water at that temperature and the demand for chilled water at a lower temperature than the medium-temperature chilled water that satisfies the heat demand for each temperature of medium-temperature chilled water and searching for the point at which the energy input to the heat source machine is minimized.

なお、本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。 The present invention is not limited to the above-described embodiment, and various modifications and applications are possible without departing from the spirit of the invention.

例えば、投入エネルギー量が最小となるように中温冷水の温度を決定する場合を例に説明したが、これに限定されるものではない。中温冷水の温度毎に算出した投入エネルギー量を表示し、ユーザからの選択を受け付けて、中温冷水の温度を決定するようにしてもよい。
また、中温冷水と冷水の両方の温度を可変とする場合もある。また、空調機の熱媒として冷水のみを利用する場合でも、需要想定に基づいた供給温度可変での運用に活用できる可能性がある。また、暖房時の温水供給の場合にも同様に活用できる可能性がある。
For example, the embodiment is not limited to the above example where the temperature of the medium-temperature chilled water is determined so as to minimize the amount of input energy. The amount of input energy calculated for each temperature of the medium-temperature chilled water may be displayed, and the medium-temperature chilled water temperature may be determined by accepting a selection from the user.
There are also cases where the temperature of both the medium-temperature chilled water and the chilled water can be varied. Even when only chilled water is used as a heat transfer medium for air conditioners, it may be possible to use this system to operate with variable supply temperature based on demand forecasts. It may also be possible to use this system in the same way when supplying hot water during heating.

10 サーバ
20A、20B 熱源機
22A、22B 制御装置
24 水蓄熱槽
30A、30B 各空調機
32A、32B 制御装置
50 通信部
52 演算部
54 気象情報取得部
56 熱需要予測部
58 冷水需要予測部
60 エネルギー量算出部
62 表示部
64 中温冷水温度決定部
66 運転指令出力部
100 空調熱源制御システム
Reference Signs List 10 Server 20A, 20B Heat source unit 22A, 22B Control device 24 Water heat storage tank 30A, 30B Each air conditioner 32A, 32B Control device 50 Communication unit 52 Calculation unit 54 Weather information acquisition unit 56 Heat demand prediction unit 58 Chilled water demand prediction unit 60 Energy amount calculation unit 62 Display unit 64 Medium temperature chilled water temperature determination unit 66 Operation command output unit 100 Air conditioning heat source control system

Claims (12)

予測対象時期の気象情報を取得する気象情報取得部と、
前記気象情報に基づいて、前記予測対象時期の空調機の熱需要を予測する熱需要予測部と、
中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測する冷水需要予測部と、
熱源機への投入エネルギー量が最小となるように中温冷水製造用の熱源機によって製造される中温冷水の温度を決定する中温冷水温度決定部と、
を含み、
前記中温冷水及び前記冷水は、熱源機によって製造され、かつ、熱媒として、前記空調機における熱交換に利用される空調熱源制御装置。
A weather information acquisition unit that acquires weather information for a forecast target period;
A heat demand prediction unit that predicts the heat demand of the air conditioner for the prediction target period based on the weather information;
a chilled water demand prediction unit that predicts, for each temperature of medium-temperature chilled water, a demand for medium-temperature chilled water of that temperature and a demand for chilled water having a temperature lower than that of the medium-temperature chilled water, which satisfy the heat demand;
a medium-temperature chilled water temperature determination unit that determines the temperature of the medium-temperature chilled water produced by the heat source device for producing medium-temperature chilled water so that the amount of energy input to the heat source device is minimized;
Including,
The medium-temperature chilled water and the chilled water are produced by a heat source device, and are used as a heat medium for heat exchange in the air conditioner.
予測対象時期の気象情報を取得する気象情報取得部と、
前記気象情報に基づいて、前記予測対象時期の空調機の熱需要を予測する熱需要予測部と、
中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測する冷水需要予測部と、
中温冷水製造用の熱源機によって製造される中温冷水の温度毎に算出した、熱源機への投入エネルギー量をユーザからの前記中温冷水の温度の選択を受け付けるために表示するように構成される表示部と、
を含み、
前記中温冷水及び前記冷水は、熱源機によって製造され、かつ、熱媒として、前記空調機における熱交換に利用される空調熱源制御装置。
A weather information acquisition unit that acquires weather information for a forecast target period;
A heat demand prediction unit that predicts the heat demand of the air conditioner for the prediction target period based on the weather information;
a chilled water demand prediction unit that predicts, for each temperature of medium-temperature chilled water, a demand for medium-temperature chilled water of that temperature and a demand for chilled water having a temperature lower than that of the medium-temperature chilled water, which satisfy the heat demand;
A display unit configured to display the amount of energy input to the heat source machine calculated for each temperature of the medium-temperature chilled water produced by the heat source machine for producing medium-temperature chilled water , in order to receive a selection of the temperature of the medium-temperature chilled water from a user;
Including,
The medium-temperature chilled water and the chilled water are produced by a heat source device, and are used as a heat medium for heat exchange in the air conditioner.
前記中温冷水の温度毎に、当該温度の中温冷水の需要と前記冷水の需要の予測結果に対応する投入エネルギー量を算出するエネルギー量算出部を更に含む請求項1又は2記載の空調熱源制御装置。 The air conditioning heat source control device according to claim 1 or 2, further comprising an energy amount calculation unit that calculates, for each temperature of the medium-temperature chilled water, an input energy amount corresponding to the demand for the medium-temperature chilled water at that temperature and the predicted demand for the chilled water. 前記冷水需要予測部は、前記中温冷水の温度毎に、
中温冷水コイルの入口温度と、前記中温冷水の温度に応じて定まる中温冷水コイルの出口温度と、中温冷水コイルの空気流量とに基づいて、当該温度の中温冷水の需要を予測し、
前記予測された前記熱需要と、前記予測された当該温度の中温冷水の需要との差分を、前記冷水の需要として予測する請求項1又は2記載の空調熱源制御装置。
The cold water demand prediction unit, for each temperature of the medium temperature cold water,
predicting a demand for medium-temperature chilled water at a given temperature based on an inlet temperature of a medium-temperature chilled water coil, an outlet temperature of the medium-temperature chilled water coil determined according to the temperature of the medium-temperature chilled water, and an air flow rate of the medium-temperature chilled water coil;
3 . The air conditioning heat source control device according to claim 1 , further comprising: a controller configured to predict, as the demand for chilled water, a difference between the predicted heat demand and the predicted demand for medium-temperature chilled water of the temperature.
前記エネルギー量算出部は、前記中温冷水の温度毎に、
前記予測された当該温度の中温冷水の需要と、予め求められた当該温度での中温冷水製造用の熱源機の効率とに基づいて、前記中温冷水製造用の熱源機へ投入するエネルギー量を算出し、
前記予測された前記冷水の需要と、予め求められた冷水製造用の熱源機の効率とに基づいて、前記冷水製造用の熱源機へ投入するエネルギー量を算出し、
前記中温冷水製造用の熱源機へ投入するエネルギー量と、前記冷水製造用の熱源機へ投入するエネルギー量とに基づいて、前記投入エネルギー量を算出する請求項3記載の空調熱源制御装置。
The energy amount calculation unit, for each temperature of the medium-temperature cold water,
Calculating the amount of energy to be input to the heat source machine for producing medium-temperature chilled water based on the predicted demand for medium-temperature chilled water at the temperature and the efficiency of the heat source machine for producing medium-temperature chilled water at the temperature that has been calculated in advance;
Calculating an amount of energy to be input to the heat source machine for producing cold water based on the predicted demand for cold water and a previously calculated efficiency of the heat source machine for producing cold water;
The air-conditioning heat source control device according to claim 3 , wherein the input energy amount is calculated based on an amount of energy input to the heat source unit for producing medium-temperature chilled water and an amount of energy input to the heat source unit for producing chilled water.
前記エネルギー量算出部による算出結果に基づいて、中温冷水の温度を決定する中温冷水温度決定部と、
中温冷水製造用の熱源機に対して、決定された温度の中温冷水が製造されるように予測対象時期の運転指令を出力する運転指令出力部と、
を更に含む請求項3記載の空調熱源制御装置。
A medium-temperature cold water temperature determination unit that determines a temperature of the medium-temperature cold water based on a result of the calculation by the energy amount calculation unit;
an operation command output unit that outputs an operation command for a prediction target period to a heat source device for producing medium-temperature chilled water so that the medium-temperature chilled water of the determined temperature is produced;
The air conditioning heat source control device according to claim 3 , further comprising:
前記中温冷水の温度毎に、当該温度の中温冷水の需要と前記冷水の需要の予測結果を表示する表示部を更に含む請求項1又は2記載の空調熱源制御装置。 The air conditioning heat source control device according to claim 1 or 2, further comprising a display unit that displays, for each temperature of the medium-temperature chilled water, the demand for the medium-temperature chilled water at that temperature and the predicted demand for the chilled water. 前記エネルギー量算出部による算出結果を表示する表示部を更に含む請求項3記載の空調熱源制御装置。 The air conditioning heat source control device according to claim 3, further comprising a display unit that displays the calculation results by the energy amount calculation unit. 前記空調機は、複数の空調機であって、
前記熱需要予測部は、前記気象情報に基づいて、前記複数の空調機のうちの代表的な空調機について、前記予測対象時期の熱需要を予測し、前記予測された前記予測対象時期の熱需要に、前記空調機の台数を乗算し、複数の空調機の熱需要の合計を予測する請求項1又は2記載の空調熱源制御装置。
The air conditioner is a plurality of air conditioners,
The air conditioning heat source control device of claim 1 or 2, wherein the heat demand prediction unit predicts the heat demand for the prediction period for a representative air conditioner among the plurality of air conditioners based on the weather information, multiplies the predicted heat demand for the prediction period by the number of the air conditioners, and predicts the total heat demand of the plurality of air conditioners.
気象情報取得部が、予測対象時期の気象情報を取得し、
熱需要予測部が、前記気象情報に基づいて、前記予測対象時期の空調機の熱需要を予測
し、
冷水需要予測部が、中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測し、
中温冷水温度決定部が、熱源機への投入エネルギー量が最小となるように中温冷水製造用の熱源機によって製造される中温冷水の温度を決定する
ことを含み、
前記中温冷水及び前記冷水は、熱源機によって製造され、かつ、熱媒として、前記空調機における熱交換に利用される空調熱源制御方法。
A weather information acquisition unit acquires weather information for a forecast target period,
A heat demand prediction unit predicts the heat demand of the air conditioner for the prediction target period based on the meteorological information,
a chilled water demand prediction unit predicts, for each temperature of the medium-temperature chilled water, a demand for the medium-temperature chilled water of that temperature and a demand for chilled water having a temperature lower than that of the medium-temperature chilled water that satisfy the heat demand;
a medium-temperature chilled water temperature determination unit determining a temperature of the medium-temperature chilled water produced by a heat source device for producing medium-temperature chilled water so as to minimize an amount of energy input to the heat source device;
The air-conditioning heat source control method, wherein the medium-temperature chilled water and the chilled water are produced by a heat source device and are used as heat transfer media for heat exchange in the air conditioner.
気象情報取得部が、予測対象時期の気象情報を取得し、
熱需要予測部が、前記気象情報に基づいて、前記予測対象時期の空調機の熱需要を予測
し、
冷水需要予測部が、中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測し、
表示部が、中温冷水製造用の熱源機によって製造される中温冷水の温度毎に算出した、熱源機への投入エネルギー量をユーザからの前記中温冷水の温度の選択を受け付けるために表示する
ことを含み、
前記中温冷水及び前記冷水は、熱源機によって製造され、かつ、熱媒として、前記空調機における熱交換に利用される空調熱源制御方法。
A weather information acquisition unit acquires weather information for a forecast target period,
A heat demand prediction unit predicts the heat demand of the air conditioner for the prediction target period based on the meteorological information,
a chilled water demand prediction unit predicts, for each temperature of the medium-temperature chilled water, a demand for the medium-temperature chilled water of that temperature and a demand for chilled water having a temperature lower than that of the medium-temperature chilled water that satisfy the heat demand;
The display unit displays the amount of energy input to the heat source device, calculated for each temperature of the medium-temperature chilled water produced by the heat source device for producing medium-temperature chilled water , in order to accept a selection of the temperature of the medium-temperature chilled water from a user.
Including,
The air-conditioning heat source control method, wherein the medium-temperature chilled water and the chilled water are produced by a heat source device and are used as heat transfer media for heat exchange in the air conditioner.
予測対象時期の気象情報を取得し、
前記気象情報に基づいて、前記予測対象時期の空調機の熱需要を予測し、
中温冷水の温度毎に、前記熱需要を満たす、当該温度の中温冷水の需要と前記中温冷水より温度が低い冷水の需要を予測し、
熱源機への投入エネルギー量が最小となるように中温冷水製造用の熱源機によって製造される中温冷水の温度を決定し、若しくは、中温冷水の温度毎に算出した投入エネルギー量を表示してユーザからの選択を受け付ける
ことをコンピュータに実行させる空調熱源制御プログラムであって、
前記中温冷水及び前記冷水は、熱源機によって製造され、かつ、熱媒として、前記空調機における熱交換に利用される空調熱源制御プログラム。
Obtain weather information for the forecast period,
Predicting heat demand for an air conditioner for the prediction target period based on the meteorological information;
predicting, for each temperature of medium-temperature chilled water, a demand for medium-temperature chilled water of that temperature and a demand for chilled water having a temperature lower than that of the medium-temperature chilled water, which satisfy the heat demand;
An air-conditioning heat source control program that causes a computer to execute the following: determining a temperature of medium-temperature chilled water produced by a heat source machine for producing medium-temperature chilled water so that an amount of energy input to the heat source machine is minimized; or displaying an amount of input energy calculated for each temperature of the medium-temperature chilled water and accepting a selection from a user;
An air-conditioning heat source control program in which the medium-temperature chilled water and the chilled water are produced by a heat source device and are used as a heat medium for heat exchange in the air conditioner.
JP2022106486A 2022-06-30 2022-06-30 Air-conditioning heat source control device, air-conditioning heat source control method, and air-conditioning heat source control program Active JP7474286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022106486A JP7474286B2 (en) 2022-06-30 2022-06-30 Air-conditioning heat source control device, air-conditioning heat source control method, and air-conditioning heat source control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022106486A JP7474286B2 (en) 2022-06-30 2022-06-30 Air-conditioning heat source control device, air-conditioning heat source control method, and air-conditioning heat source control program

Publications (2)

Publication Number Publication Date
JP2024005976A JP2024005976A (en) 2024-01-17
JP7474286B2 true JP7474286B2 (en) 2024-04-24

Family

ID=89540591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022106486A Active JP7474286B2 (en) 2022-06-30 2022-06-30 Air-conditioning heat source control device, air-conditioning heat source control method, and air-conditioning heat source control program

Country Status (1)

Country Link
JP (1) JP7474286B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124396A (en) 2018-01-16 2019-07-25 株式会社竹中工務店 Air conditioning system
JP2019163885A (en) 2018-03-19 2019-09-26 株式会社東芝 Air-conditioning control device, air-conditioning control method and computer program
JP2020098087A (en) 2018-12-19 2020-06-25 株式会社竹中工務店 Air conditioning system
WO2021149677A1 (en) 2020-01-23 2021-07-29 三菱重工サーマルシステムズ株式会社 Air conditioning system control device, air conditioning system, air conditioning system control method, and program
JP2021149273A (en) 2020-03-17 2021-09-27 株式会社関電エネルギーソリューション Heat source operation support system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124396A (en) 2018-01-16 2019-07-25 株式会社竹中工務店 Air conditioning system
JP2019163885A (en) 2018-03-19 2019-09-26 株式会社東芝 Air-conditioning control device, air-conditioning control method and computer program
JP2020098087A (en) 2018-12-19 2020-06-25 株式会社竹中工務店 Air conditioning system
WO2021149677A1 (en) 2020-01-23 2021-07-29 三菱重工サーマルシステムズ株式会社 Air conditioning system control device, air conditioning system, air conditioning system control method, and program
JP2021149273A (en) 2020-03-17 2021-09-27 株式会社関電エネルギーソリューション Heat source operation support system

Also Published As

Publication number Publication date
JP2024005976A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
EP3351862B1 (en) Hvac system with predictive free cooling control and free cooling optimization
Thangavelu et al. Energy optimization methodology of multi-chiller plant in commercial buildings
US10876754B2 (en) Dynamic central plant control based on load prediction
US11680724B2 (en) Central plant control system with computation reduction based on sensitivity analysis
US10900686B2 (en) Central plant control system with time dependent deferred load
Hajiah et al. Optimal control of building storage systems using both ice storage and thermal mass–Part I: Simulation environment
US11662113B2 (en) Building cooling systems with energy optimization and model predictive control
US11092352B2 (en) Central plant control system with computation reduction based on stranded node analysis
US11281168B2 (en) Central plant control system based on load prediction through mass storage model
US10948884B2 (en) Building control based on uneven load distribution
EP1387988A1 (en) Air-conditioning system
AU2002310859A1 (en) Air-conditioning system
Sane et al. Building HVAC control systems-role of controls and optimization
CN104160217A (en) Air-conditioning control device and storage medium
Seo et al. Comparative analysis of cooling energy performance between water-cooled VRF and conventional AHU systems in a commercial building
JP2007127321A (en) Cold water load factor controller for refrigerator
CN111076354A (en) Equipment model selection method and system of central air conditioner
Zhai et al. Promoting variable refrigerant flow system with a simple design and analysis tool
Yu et al. Strategy for designing more energy efficient chiller plants serving air-conditioned buildings
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
JP7474286B2 (en) Air-conditioning heat source control device, air-conditioning heat source control method, and air-conditioning heat source control program
JP5062555B2 (en) Energy saving air conditioning control system
Alessio et al. All-air system and radiant floor for heating and cooling in residential buildings: A simulation-based analysis
Fong et al. Investigation on variable flow control in existing water-cooled chiller plant of high-rise commercial building in subtropical climate
JP3309282B2 (en) Design method of air conditioning system with heat storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240412

R150 Certificate of patent or registration of utility model

Ref document number: 7474286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150