JP2019122449A - 動態画像解析装置 - Google Patents

動態画像解析装置 Download PDF

Info

Publication number
JP2019122449A
JP2019122449A JP2018003173A JP2018003173A JP2019122449A JP 2019122449 A JP2019122449 A JP 2019122449A JP 2018003173 A JP2018003173 A JP 2018003173A JP 2018003173 A JP2018003173 A JP 2018003173A JP 2019122449 A JP2019122449 A JP 2019122449A
Authority
JP
Japan
Prior art keywords
chest
image
dynamic
volume
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018003173A
Other languages
English (en)
Other versions
JP7020125B2 (ja
Inventor
剛智 福元
Taketomo Fukumoto
剛智 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2018003173A priority Critical patent/JP7020125B2/ja
Publication of JP2019122449A publication Critical patent/JP2019122449A/ja
Application granted granted Critical
Publication of JP7020125B2 publication Critical patent/JP7020125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】放射線画像における動きのある被写体の体積の推定精度を向上させることにより、被写体の体積に基づいて推定される被写体の機能の評価指標の推定精度を向上させるとともに、単純X線画像から得られなかった被写体の機能の評価指標を取得できるようにする。【解決手段】診断用コンソール3の制御部31によれば、胸部正面と胸部側面の動態画像の各フレーム画像から、肺野の動態に関する特徴量を算出し、算出した特徴量に基づいて、胸部正面と胸部側面の動態画像から互いに呼吸位相が最も近いフレーム画像の組を少なくとも1組以上抽出し、抽出した組毎のフレーム画像に基づいて肺野の体積を推定し、推定した体積に基づいて、肺野の呼吸機能指標を推定する。【選択図】図3

Description

本発明は、動態画像解析装置に関する。
従来、独立して撮影された胸部正面の単純X線画像と胸部側面の単純X線画像の肺野面積から、全肺気量(Total Lung Capacity:TLC)を推定する手法が提案されている(例えば、非特許文献1参照)。
P.C.Pratt et al., "A Method for the Determination of Total Lung Capacity from Posteroanterior and Lateral Chest Roentgenograms", American Review of Respiratory Disease, 96(3), pp. 548-552, 1967
非特許文献1では、強制最大吸気位の正面と側面の独立した撮影により得られた画像のそれぞれから算出した肺野の面積に基づいて肺野の体積を推定し、推定した体積に基づいてTLCの推定を行っている。しかしながら、両撮影において、強制最大吸気位とみなしたタイミングがずれて肺の大きさが違ってしまうことが多く、精度良く肺野の体積を推定できないため、精度良くTLCの推定ができない。また、非特許文献1の技術では、TLCの推定に限定されており、残気量(Residual Volume:RV)などの他の重要な呼吸機能の評価指標(呼吸機能指標)や肺容量曲線を得ることができない。
本発明の課題は、放射線画像における動きのある被写体の体積の推定精度を向上させることにより、被写体の体積に基づいて推定される被写体の機能の評価指標の推定精度を向上させるとともに、単純X線画像から得られなかった被写体の機能の評価指標を取得できるようにすることである。
上記課題を解決するため、請求項1に記載の発明の動態画像解析装置は、
異なる複数の方向から周期性を持つ被写体の動態を放射線撮影することにより得られた複数の動態画像の各フレーム画像から、前記被写体の動態に関する特徴量を算出する特徴量算出手段と、
前記特徴量算出手段により算出された特徴量に基づいて、前記複数の動態画像間において互いに前記被写体の動態の位相が最も近いフレーム画像の組を少なくとも1組以上抽出する抽出手段と、
前記抽出手段により抽出された組毎のフレーム画像に基づいて前記被写体の体積を推定し、推定した体積に基づいて、前記被写体の機能の評価指標を推定する推定手段と、
を備える。
請求項2に記載の発明は、請求項1に記載の発明において、
前記抽出手段は、前記複数の動態画像から、互いに前記算出された特徴量の値が最も近いフレーム画像の組を少なくとも1組以上抽出する。
請求項3に記載の発明は、請求項1又は2に記載の発明において、
前記複数の動態画像は、胸部正面の動態画像と胸部側面の動態画像であり、
前記特徴量算出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像の各フレーム画像から肺野の動態に関する特徴量を算出し、
前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が所定の呼吸位相付近において最も近いフレーム画像の組を抽出し、
前記推定手段は、前記胸部正面の動態画像から抽出されたフレーム画像の肺野領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の肺野領域の情報とに基づいて前記肺野の体積を推定し、推定した体積に基づいて、前記肺野の呼吸機能の評価指標を推定する。
請求項4に記載の発明は、請求項3に記載の発明において、
前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が強制最大吸気位付近において最も近いフレーム画像の組を抽出し、
前記推定手段は、前記胸部正面の動態画像から抽出されたフレーム画像の肺野領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の肺野領域の情報とに基づいて前記肺野の体積を推定し、推定した体積を全肺気量として推定する。
請求項5に記載の発明は、請求項3又は4に記載の発明において、
前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が強制最大呼気位付近において最も近いフレーム画像の組を抽出し、
前記推定手段は、前記胸部正面の動態画像から抽出されたフレーム画像の肺野領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の肺野領域の情報とに基づいて前記肺野の体積を推定し、推定した体積を残気量として推定する。
請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の発明において、
前記複数の動態画像は、胸部正面の動態画像と胸部側面の動態画像であり、
前記特徴量算出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像の各フレーム画像から肺野の動態に関する特徴量を算出し、
前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が最も近いフレーム画像の組を時間軸に沿って等間隔又は不等間隔で抽出し、
前記推定手段は、前記抽出された組毎に、前記胸部正面の動態画像から抽出されたフレーム画像の肺野領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の肺野領域の情報とに基づいて前記肺野の体積を推定し、推定した体積の時間変化を示す波形を生成して肺容量曲線を推定する。
請求項7に記載の発明は、請求項2に記載の発明において、
前記複数の動態画像は、胸部正面の動態画像と胸部側面の動態画像であり、
前記特徴量算出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像の各フレーム画像から心臓の動態に関する特徴量を算出し、
前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が心拡張末期付近及び/又は心収縮末期付近において最も近いフレーム画像の組を抽出し、
前記推定手段は、前記抽出された組毎に、前記胸部正面の動態画像から抽出されたフレーム画像の心臓領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の心臓領域の情報とに基づいて前記心臓の体積を推定し、推定した体積に基づいて、心機能の評価指標を推定する。
請求項8に記載の発明は、請求項1〜7のいずれか一項に記載の発明において、
前記推定手段により推定された評価指標を表示する表示手段を備える。
請求項9に記載の発明は、請求項8に記載の発明において、
前記表示手段は、さらに、前記抽出手段により前記複数の動態画像から抽出されたフレーム画像の組を並べて表示する。
本発明によれば、放射線画像における動きのある被写体の体積の推定精度を向上させることにより、被写体の体積に基づいて推定される被写体の機能の評価指標の推定精度を向上させることができる。また、単純X線画像から得られなかった被写体の機能の評価指標を取得することが可能となる。
本発明の実施形態における動態画像解析システムの全体構成を示す図である。 図1の撮影用コンソールの制御部により実行される撮影制御処理を示すフローチャートである。 図1の診断用コンソールの制御部により実行される呼吸機能指標推定処理を示すフローチャートである。 胸部正面と胸部側面のフレーム画像から算出される特徴量を説明するための図である。 胸部正面の動態画像と胸部側面の動態画像から抽出されるフレーム画像の例を模式的に示す図である。 肺容量曲線の生成手法を説明するための図である。 呼吸機能指標の推定手法を示す図である。
以下、図面を参照して本発明の実施形態について説明する。ただし、発明の範囲は、図示例に限定されない。
〔動態画像解析システム100の構成〕
まず、本実施形態の構成を説明する。
図1に、本実施形態における動態画像解析システム100の全体構成を示す。
図1に示すように、動態画像解析システム100は、撮影装置1と、撮影用コンソール2とが通信ケーブル等により接続され、撮影用コンソール2と、診断用コンソール3とがLAN(Local Area Network)等の通信ネットワークNTを介して接続されて構成されている。動態画像解析システム100を構成する各装置は、DICOM(Digital Image and Communications in Medicine)規格に準じており、各装置間の通信は、DICOMに則って行われる。
〔撮影装置1の構成〕
撮影装置1は、例えば、呼吸運動に伴う肺の膨張及び収縮の形態変化、心臓の拍動等の、周期性(サイクル)を持つ被写体の動態を撮影する撮影手段である。動態撮影とは、被写体に対し、X線等の放射線をパルス状にして所定時間間隔で繰り返し照射するか(パルス照射)、もしくは、低線量率にして途切れなく継続して照射する(連続照射)ことで、被写体の動態を示す複数の画像を取得することをいう。動態撮影により得られた一連の画像を動態画像と呼ぶ。また、動態画像を構成する複数の画像のそれぞれをフレーム画像と呼ぶ。なお、以下の実施形態では、パルス照射により胸部正面及び胸部側面の動態撮影を行う場合を例にとり説明する。
放射線源11は、被写体Mを挟んで放射線検出部13と対向する位置に配置され、放射線照射制御装置12の制御に従って、被写体Mに対し放射線(X線)を照射する。
放射線照射制御装置12は、撮影用コンソール2に接続されており、撮影用コンソール2から入力された放射線照射条件に基づいて放射線源11を制御して放射線撮影を行う。撮影用コンソール2から入力される放射線照射条件は、例えば、パルスレート、パルス幅、パルス間隔、1撮影あたりの撮影フレーム数、X線管電流の値、X線管電圧の値、付加フィルター種等である。パルスレートは、1秒あたりの放射線照射回数であり、後述するフレームレートと一致している。パルス幅は、放射線照射1回当たりの放射線照射時間である。パルス間隔は、1回の放射線照射開始から次の放射線照射開始までの時間であり、後述するフレーム間隔と一致している。
放射線検出部13は、FPD(Flat Panel Detector)等の半導体イメージセンサーにより構成される。FPDは、例えば、ガラス基板等を有しており、基板上の所定位置に、放射線源11から照射されて少なくとも被写体Mを透過した放射線をその強度に応じて検出し、検出した放射線を電気信号に変換して蓄積する複数の検出素子(画素)がマトリックス状に配列されている。各画素は、例えばTFT(Thin Film Transistor)等のスイッチング部を備えて構成されている。FPDにはX線をシンチレーターを介して光電変換素子により電気信号に変換する間接変換型、X線を直接的に電気信号に変換する直接変換型があるが、何れを用いてもよい。
放射線検出部13は、被写体Mを挟んで放射線源11と対向するように設けられている。
読取制御装置14は、撮影用コンソール2に接続されている。読取制御装置14は、撮影用コンソール2から入力された画像読取条件に基づいて放射線検出部13の各画素のスイッチング部を制御して、当該各画素に蓄積された電気信号の読み取りをスイッチングしていき、放射線検出部13に蓄積された電気信号を読み取ることにより、画像データを取得する。この画像データがフレーム画像である。読取制御装置14は、取得したフレーム画像を撮影用コンソール2に出力する。画像読取条件は、例えば、フレームレート、フレーム間隔、画素サイズ、画像サイズ(マトリックスサイズ)等である。フレームレートは、1秒あたりに取得するフレーム画像数であり、パルスレートと一致している。フレーム間隔は、1回のフレーム画像の取得動作開始から次のフレーム画像の取得動作開始までの時間であり、パルス間隔と一致している。
ここで、放射線照射制御装置12と読取制御装置14は互いに接続され、互いに同期信号をやりとりして放射線照射動作と画像の読み取りの動作を同調させるようになっている。
〔撮影用コンソール2の構成〕
撮影用コンソール2は、放射線照射条件や画像読取条件を撮影装置1に出力して撮影装置1による放射線撮影及び放射線画像の読み取り動作を制御するとともに、撮影装置1により取得された動態画像を撮影技師等の撮影実施者によるポジショニングの確認や診断に適した画像であるか否かの確認用に表示する。
撮影用コンソール2は、図1に示すように、制御部21、記憶部22、操作部23、表示部24、通信部25を備えて構成され、各部はバス26により接続されている。
制御部21は、CPU(Central Processing Unit)、RAM(Random Access Memory)等により構成される。制御部21のCPUは、操作部23の操作に応じて、記憶部22に記憶されているシステムプログラムや各種処理プログラムを読み出してRAM内に展開し、展開されたプログラムに従って後述する撮影制御処理を始めとする各種処理を実行し、撮影用コンソール2各部の動作や、撮影装置1の放射線照射動作及び読み取り動作を集中制御する。
記憶部22は、不揮発性の半導体メモリーやハードディスク等により構成される。記憶部22は、制御部21で実行される各種プログラムやプログラムにより処理の実行に必要なパラメーター、或いは処理結果等のデータを記憶する。例えば、記憶部22は、図2に示す撮影制御処理を実行するためのプログラムを記憶している。また、記憶部22は、被写体部位(ここでは、胸部とする)に対応付けて放射線照射条件及び画像読取条件を記憶している。各種プログラムは、読取可能なプログラムコードの形態で格納され、制御部21は、当該プログラムコードに従った動作を逐次実行する。
操作部23は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードに対するキー操作やマウス操作により入力された指示信号を制御部21に出力する。また、操作部23は、表示部24の表示画面にタッチパネルを備えても良く、この場合、タッチパネルを介して入力された指示信号を制御部21に出力する。
表示部24は、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)等のモニターにより構成され、制御部21から入力される表示信号の指示に従って、操作部23からの入力指示やデータ等を表示する。
通信部25は、LANアダプターやモデムやTA(Terminal Adapter)等を備え、通信ネットワークNTに接続された各装置との間のデータ送受信を制御する。
〔診断用コンソール3の構成〕
診断用コンソール3は、撮影用コンソール2から動態画像を取得し、取得した動態画像や動態画像の解析結果を表示して医師の診断を支援するための動態画像解析装置である。
診断用コンソール3は、図1に示すように、制御部31、記憶部32、操作部33、表示部34、通信部35を備えて構成され、各部はバス36により接続されている。
制御部31は、CPU、RAM等により構成される。制御部31のCPUは、操作部33の操作に応じて、記憶部32に記憶されているシステムプログラムや、各種処理プログラムを読み出してRAM内に展開し、展開されたプログラムに従って、後述する呼吸機能指標推定処理を始めとする各種処理を実行し、診断用コンソール3の各部の動作を集中制御する。制御部31は、特徴量算出手段、抽出手段、推定手段として機能する。
記憶部32は、不揮発性の半導体メモリーやハードディスク等により構成される。記憶部32は、制御部31で呼吸機能指標推定処理を実行するためのプログラムを始めとする各種プログラムやプログラムによる処理の実行に必要なパラメーター、或いは処理結果等のデータを記憶する。これらの各種プログラムは、読取可能なプログラムコードの形態で格納され、制御部31は、当該プログラムコードに従った動作を逐次実行する。
また、記憶部32には、撮影された動態画像が患者情報(例えば、患者ID、患者の氏名、身長、体重、年齢、性別等)、検査情報(例えば、検査ID、検査日、被写体部位(ここでは、胸部)、撮影方向(正面、側面)等)に対応付けて記憶されている。
操作部33は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、ユーザーによるキーボードに対するキー操作やマウス操作により入力された指示信号を制御部31に出力する。また、操作部33は、表示部34の表示画面にタッチパネルを備えても良く、この場合、タッチパネルを介して入力された指示信号を制御部31に出力する。
表示部34は、LCDやCRT等のモニターにより構成され、制御部31から入力される表示信号の指示に従って、各種表示を行う。
通信部35は、LANアダプターやモデムやTA等を備え、通信ネットワークNTに接続された各装置との間のデータ送受信を制御する。
〔動態画像解析システム100の動作〕
次に、本実施形態における上記動態画像解析システム100の動作について説明する。
(撮影装置1、撮影用コンソール2の動作)
まず、撮影装置1、撮影用コンソール2による撮影動作について説明する。
図2に、撮影用コンソール2の制御部21において実行される撮影制御処理を示す。撮影制御処理は、制御部21と記憶部22に記憶されているプログラムとの協働により実行される。
まず、撮影実施者により撮影用コンソール2の操作部23が操作され、被検者(被写体M)の患者情報、検査情報の入力が行われる(ステップS1)。
次いで、放射線照射条件が記憶部22から読み出されて放射線照射制御装置12に設定されるとともに、画像読取条件が記憶部22から読み出されて読取制御装置14に設定される(ステップS2)。
次いで、操作部23の操作による放射線照射の指示が待機される(ステップS3)。ここで、撮影実施者は、被写体Mを放射線源11と放射線検出部13の間に配置してポジショニングを行う。また、被検者に対し、呼吸状態(深呼吸、安静呼吸等)を指示する。撮影準備が整った時点で、操作部23を操作して放射線照射指示を入力する。
操作部23により放射線照射指示が入力されると(ステップS3;YES)、放射線照射制御装置12及び読取制御装置14に撮影開始指示が出力され、動態撮影が開始される(ステップS4)。即ち、放射線照射制御装置12に設定されたパルス間隔で放射線源11により放射線が照射され、放射線検出部13によりフレーム画像が取得される。なお、撮影実施者は、動態撮影中に呼吸状態の指示を行ってもよい。
予め定められたフレーム数の撮影が終了すると、制御部21により放射線照射制御装置12及び読取制御装置14に撮影終了の指示が出力され、撮影動作が停止される。撮影されるフレーム数は、少なくとも1呼吸サイクルが撮影できる枚数である。
撮影により取得されたフレーム画像は順次撮影用コンソール2に入力され、撮影順を示す番号(フレーム番号)と対応付けて記憶部22に記憶されるとともに(ステップS5)、表示部24に表示される(ステップS6)。撮影実施者は、表示された動態画像によりポジショニング等を確認し、撮影により診断に適した画像が取得された(撮影OK)か、再撮影が必要(撮影NG)か、を判断する。そして、操作部23を操作して、判断結果を入力する。
操作部23の所定の操作により撮影OKを示す判断結果が入力されると(ステップS7;YES)、動態撮影で取得された一連のフレーム画像のそれぞれに、動態画像を識別するための識別IDや、患者情報、検査情報、放射線照射条件、画像読取条件、撮影順を示す番号(フレーム番号)等の情報が付帯され(例えば、DICOM形式で画像データのヘッダ領域に書き込まれ)、通信部25を介して診断用コンソール3に送信される(ステップS8)。そして、本処理は終了する。一方、操作部23の所定の操作により撮影NGを示す判断結果が入力されると(ステップS7;NO)、記憶部22に記憶された一連のフレーム画像が削除され(ステップS9)、本処理は終了する。この場合、再撮影が必要となる。
本実施形態では、上記撮影制御処理に従って胸部正面(又は胸部側面)の動態撮影を行った後、胸部側面(又は胸部正面)の動態撮影を行い、胸部正面の動態画像及び胸部側面の動態画像をそれぞれを取得する。
(診断用コンソール3の動作)
次に、診断用コンソール3における動作について説明する。
診断用コンソール3においては、通信部35を介して撮影用コンソール2から動態画像の一連のフレーム画像が受信されると、受信された動態画像が記憶部32に記憶される。
操作部33により記憶部32により記憶されている動態画像の中から同一患者の胸部正面の動態画像及び胸部側面の動態画像が選択され、呼吸機能指標の推定が指示されると、制御部31と記憶部32に記憶されているプログラムとの協働により図3に示す呼吸機能指標推定処理が実行される。呼吸機能指標は、肺の呼吸機能を評価するための評価指標である。
以下、図3を参照して呼吸機能指標推定処理の流れについて説明する。
なお、呼吸機能指標推定処理においては、撮影により取得された全てのフレーム画像からなる動態画像を用いることとしてもよいし、撮影により取得された複数のフレーム画像のうち一部のフレーム画像からなる動態画像を用いることとしてもよい。
まず、選択された胸部正面の動態画像及び胸部側面の動態画像が記憶部32から読み出され、各動態画像の各フレーム画像から肺野輪郭が認識される(ステップS11)。
肺野輪郭の認識は、公知の何れの手法を用いてもよい。
例えば、各フレーム画像を表示部34に表示して、表示した画像上からユーザーが操作部33により指定した輪郭(線や点)に基づいて肺野輪郭を認識することとしてもよい。この場合、例えば、参照文献1に記載のように、指定された輪郭の重心と輪郭上の可動点を通る直線に対する可動点の移動方向に基づいて、指定された輪郭を自動的に修正する手法等を用いて、肺野輪郭の認識精度を向上させることとしてもよい(参照文献1:特許第5814655号公報)。
また、エッジ検出、動的輪郭モデル、領域分割等の公知の画像処理技術を用いて自動的に肺野輪郭を認識してもよい。例えば、参照文献2や参照文献3に記載の手法を用いることができる(参照文献2:特開2004−188202号公報、参照文献3:Francisco M. Carrascal et al., “Automatic calculation of total lung capacity from automatically traced lung boundaries in postero-anterior and lateral digital chest radiographs”, Med. Phys. VOL.25 No.7, pp. 1117-1131, July 1998)。
次いで、胸部正面と胸部側面の各動態画像の各フレーム画像から、肺野の動態に関する特徴量が算出される(ステップS12)。
ここで、呼吸運動は、呼気位相と吸気位相により構成される。呼気位相は、横隔膜が上がることによって肺から空気が排出され、肺野の領域が小さくなる。これにより肺野の密度は高くなり、動態画像では肺野が低い濃度値(画素値)で描画される。最大呼気位では、横隔膜の位置が最も高い状態となる。吸気位相は、横隔膜が下がることにより肺に空気が取り込まれ、肺野の領域が大きくなる。これにより肺野の密度は低くなり、動態画像では肺野が高い濃度値で描画される。最大吸気位では、横隔膜の位置が最も下がった状態となる。このように、胸部の動態画像の各フレーム画像における肺野内の濃度、肺野の面積、横隔膜の上下位置(或いは、肺尖及び大動脈弓はほとんど動かないため、肺尖と横隔膜の頂点との距離又は大動脈弓と横隔膜の頂点との距離)は、呼吸運動による肺野の動態に関する特徴量となる。
そこで、ステップS12においては、例えば、図4に示すように各フレーム画像の肺尖と横隔膜の頂点との距離Lを肺野の動態に関する特徴量として算出する。
次いで、算出された特徴量に基づいて、胸部正面の動態画像と胸部側面の動態画像から呼吸位相が最も近いフレーム画像の組が抽出される(ステップS13)。
図5は、胸部正面の動態画像と胸部側面の動態画像の肺尖−横隔膜間の距離Lの時間変化をプロットしたグラフである。ステップS13においては、例えば、図5の矢印で示すように、胸部正面と胸部側面の肺尖−横隔膜間の距離Lの値が最も近い(差分が最も小さい)フレーム画像同士からなる組を呼吸位相が最も近いフレーム画像の組として抽出する。本実施形態では、胸部正面の動態画像と胸部側面の動態画像から、互いに算出された特徴量の値が最も近いフレーム画像の組を時間軸に沿って複数抽出する。抽出する間隔は、等間隔であっても不等間隔であってもよい。
次いで、抽出された組毎の胸部正面と胸部側面のフレーム画像に基づいて肺野の体積が推定される(ステップS14)。
肺野の体積は、例えば、非特許文献1に記載のように、下記の(式1)、(式2)により推定することができる。
X線画像から簡易的に算出される肺野の体積=右肺の体積 + 左肺の体積
=(S_PA_R + S_LAT)^3/4 + (S_PA_L + S_LAT)^3/4 ・・・(式1)
肺野の体積の推定値 = 0.67 ×(X線画像から簡易的に算出される肺野の体積)+ 160 [ml]
・・・(式2)
ここで、S_PA_Rは胸部正面のフレーム画像における右肺の面積、S_PA_Lは胸部正面のフレーム画像における左肺の面積、S_LATは胸部側面における肺野の面積である(図4参照)。各肺野の面積は、各肺野の肺野輪郭内の画素数に基づいて求めることができる。
次いで、推定された肺野の体積に基づいて、呼吸機能指標が推定される(ステップS15)。
例えば、図6に示すように、ステップS14で推定された肺野の体積を時間軸に沿ってプロットして補間することにより肺野の体積の時間変化を示す波形を生成し、生成した波形を肺容量曲線として推定する。また、図7に示すように、肺容量曲線の矢印で示す各点(ピーク)の値に基づいて、TLC、RV等の、スパイロメーターでは測定不可能な呼吸機能指標や、IRV(Inspiratory Reserve Volume)、IC(Inspiratory Capacity)、VC(Vital Capacity)等の呼吸機能検査で得られるその他の呼吸機能指標を推定することができる。例えば、TLCは、強制最大吸気位(深呼吸時の最大吸気位)での肺の体積と推定することができる。RVは、強制最大呼気位(深呼吸時の最大呼気位)での肺の体積と推定することができる。
そして、推定された呼吸機能指標が表示部34に表示され(ステップS16)、呼吸機能指標推定処理は終了する。呼吸機能指標とともに、ステップS13で抽出されたフレーム画像の組を並べて表示することとしてもよい。
例えば、従来、TLCを推定するときには、被検者に深呼吸を行わせて正面及び側面から強制最大吸気位の胸部単純X線画像(静止画)の撮影を行っていた。しかし、胸部正面、胸部側面を独立に撮影するので、両者の撮影時の呼吸位相がずれて肺の大きさが異なってしまうことが多く、精度良く肺野の体積を推定することができなかった。そのため、精度良くTLCを測定することが困難であった。また、肺容量曲線(ボリュームカーブ)やRV等の他の呼吸機能指標を得ることはできなかった。RVについては、別途被検者に深呼吸を行わせて正面及び側面から強制最大呼気位の胸部単純X線画像の撮影を行って得られた画像から推定することができるが、TLCの場合と同様に、胸部正面、胸部側面を独立に撮影するので、両者の撮影時の呼吸位相がずれて肺の大きさが異なってしまうことが多く、精度良く肺野の体積を推定することができず、精度良くRVを測定することが困難であった。
本実施形態では、胸部正面の動態画像と胸部側面の動態画像において、呼吸運動による肺野の動態に関する特徴量が最も近いフレーム画像同士の組を抽出し、抽出された組毎のフレーム画像の肺野領域に基づいて肺野の体積を推定するので、肺野の動態の位相が最も近い、肺野の大きさが略揃ったときの胸部正面と胸部側面のフレーム画像から肺野の体積を推定することができ、肺野の体積の推定精度を向上させることができるとともに、呼吸機能指標の推定精度を向上させることができる。また、肺容量曲線を始めとする、呼吸機能検査で得られるTLC以外の呼吸機能指標についても推定することが可能となる。
以上、本実施形態について説明したが、上記実施形態における記述内容は、本発明の好適な一例であり、これに限定されるものではない。
例えば、上記実施形態においては、肺野の動態に関する特徴量として肺尖と横隔膜の頂点との距離を用いることとしたが、これに限定されず、呼吸により位置が殆ど変化しないと見なせる構造物上のある位置と呼吸位相に応じて位置が変化する構造物上のある位置を胸部正面と胸部側面の画像の両方で指定できるのであれば、それらの距離を用いても同様の効果が得られる。例えば、大動脈弓と横隔膜の頂点の距離、第三胸椎上端と横隔膜の頂点等を特徴量としてもよい。さらに、特徴量は距離に限定されるものではなく、例えば、肺野面積、肺野内の濃度値(例えば、平均値、最大値、最小値等の代表値)等を特徴量としてもよい。上述のように、これらは呼吸による肺の動態に応じて変化するものであり、呼吸よる肺野の大きさの変化に非常に高い相関がある特徴量である。なお、肺野面積及び肺野内の濃度値は、同じ位相であっても正面の画像と側面の画像で絶対値が異なるため、特徴量として用いる際には、例えば、最大値と最小値を使って規格化して用いる。
また、例えば、上記実施形態においては、胸部正面と胸部側面の画像から算出した肺野の面積から肺野の体積を求める手法を用いた例について説明したが、胸部正面と胸部側面の画像を用いて肺野の体積を求める手法としては、上記に限定されない。
例えば、参照文献3や参照文献4に記載のように、肺野の断面形状が楕円形であり、肺野が一連の楕円形の円筒形として表されているとの知見に基づいて肺野の体積を求めることとしてもよい。例えば、胸部正面及び胸部側面のフレーム画像から肺野(胸郭)や心臓、脊柱等の領域を認識し、両画像を同じ垂直平面内で整列させ、それらを多数の水平スライスに分割し、スライス内の肺野及び肺野内の各構造物(例えば、心臓、脊椎等)の直径(胸部正面画像における各構造物領域の幅)及び厚さ(胸部側面画像の各構造物領域の幅)を求めて各スライスにおける肺野及び構造物の断面領域(楕円)の面積を推定し、肺野の断面領域の面積から各構造物の断面領域の面積を差し引いて、全てのスライスからの情報を合計することにより、肺野の体積を求めることとしてもよい(参照文献4:R J Pierce et al. “Estimation of lung volumes from chest radiographs using shape information”, Thorax 1979 34: 726-734)。
上記の肺の断面形状が楕円であるとの知見に基づく肺の体積の推定手法(楕円に基づく体積の推定手法と呼ぶ)では、胸部正面と胸部側面のフレーム画像から心臓等の構造物の領域を算出する必要があるが、心臓は、心拍に伴ってその大きさが変化するため、肺野のみならず、心臓についても胸部正面と胸部側面の心周期における位相が最も近いフレーム画像の組を抽出し、抽出したフレーム画像の組に基づいて体積を求めることが好ましい。
また、上記実施形態においては、本発明を胸部正面と胸部側面の動態画像から呼吸機能指標を推定する場合に適用した例について説明したが、心機能の評価指標を推定する場合にも本発明を適用することができる。例えば、制御部31は、胸部正面と胸部側面の動態画像の各フレーム画像から心臓輪郭を認識して心臓の動態に関する特徴量を算出し、算出した特徴量が心拡張末期及び/又は心収縮末期付近で最も近いフレーム画像の組を抽出し、抽出した胸部正面と胸部側面のフレーム画像に基づいて心臓の体積を推定し、推定した体積に基づいて心機能の評価指標を推定することとしてもよい。心機能を評価する指標としては、例えば、心拡張末期及び/又は心収縮末期の心臓の体積を挙げることができる。
なお、心臓輪郭の認識については、ユーザー操作による手動による心臓輪郭の指定に基づいて認識してもよいし、エッジ検出、動的輪郭モデル、領域分割等の公知の画像処理技術を用いて自動的に認識してもよい。心臓の体積の推定手法としては、例えば、参照文献4に記載のように、楕円に基づく体積の推定を用いることができる。
心臓の動態に関する特徴量としては、例えば、心臓領域の面積、幅、濃度の高周波成分(例えば、平均値、最大値、最小値等の代表値)等を用いることができる。これらは心拍による心臓の動態に応じて変化するものであり、心拍による心臓の大きさの変化に非常に高い相関がある特徴量である。なお、心臓領域の面積、幅、濃度の高周波成分の値は、心周期における同じ位相で撮影したものであっても正面の画像と側面の画像で絶対値が異なるため、特徴量として用いる際には、例えば、最大値と最小値を使って規格化して用いる。
心拡張末期及び/又は心収縮末期付近のフレーム画像であるか否かは、例えば、フレーム画像から算出した特徴量の値が予め設定された範囲内であるか否かに基づいて判断することができる。
また、上記実施形態のステップS13においては、胸部正面の動態画像と胸部側面の動態画像から複数組のフレーム画像の組を抽出することとして説明したが、これに限定されず、1組のフレーム画像の組を抽出することとしてもよい。
例えば、呼吸機能指標としてTLCのみを求める場合には、胸部正面の動態画像と胸部側面の動態画像から、算出された特徴量の値が強制最大吸気位付近(深呼吸時の最大吸気位付近)において最も近いフレーム画像の組を抽出し、抽出されたフレーム画像に基づいて肺野の体積を求めてTLCを推定すればよい。また、例えば、呼吸機能指標としてRVのみを求める場合には、胸部正面の動態画像と胸部側面の動態画像から、算出された特徴量の値が強制最大呼気位付近(深呼吸時の最大呼気位付近)において最も近いフレーム画像の組を抽出し、抽出されたフレーム画像に基づいて肺野の体積を求めてRVを推定すればよい。これにより、処理時間を短縮することができる。所定の呼吸位相付近のフレーム画像であるか否かは、例えば、フレーム画像から算出した特徴量の値が予め設定された範囲内であるか否かに基づいて判断することができる。
また、上記実施形態においては、正面と側面の異なる2方向から撮影した動態画像を用いて被写体の体積を推定する場合を例にとり説明したが、撮影する方向は正面と側面に限定されず、他の異なる複数の方向から撮影された動態画像を用いて被写体の体積を推定することとしてもよい。
また、上記実施形態においては、肺野や心臓を被写体とした動態画像に本願発明を適用した場合を例にとり説明したが、例えば、手足の関節等の他の部位を被写体とした動態画像に本発明を適用することとしてもよい。
また、例えば、上記の説明では、本発明に係るプログラムのコンピュータ読み取り可能な媒体としてハードディスクや半導体の不揮発性メモリー等を使用した例を開示したが、この例に限定されない。その他のコンピュータ読み取り可能な媒体として、CD−ROM等の可搬型記録媒体を適用することが可能である。また、本発明に係るプログラムのデータを通信回線を介して提供する媒体として、キャリアウエーブ(搬送波)も適用される。
その他、動態画像解析システムを構成する各装置の細部構成及び細部動作に関しても、本発明の趣旨を逸脱することのない範囲で適宜変更可能である。
100 動態画像解析システム
1 撮影装置
11 放射線源
12 放射線照射制御装置
13 放射線検出部
14 読取制御装置
2 撮影用コンソール
21 制御部
22 記憶部
23 操作部
24 表示部
25 通信部
26 バス
3 診断用コンソール
31 制御部
32 記憶部
33 操作部
34 表示部
35 通信部
36 バス
次いで、抽出された組毎の胸部正面と胸部側面のフレーム画像に基づいて肺野の体積が推定される(ステップS14)。
肺野の体積は、例えば、非特許文献1に記載のように、下記の(式1)、(式2)により推定することができる。
X線画像から簡易的に算出される肺野の体積=右肺の体積 + 左肺の体積
=(S_PA_R × S_LAT)^3/4 + (S_PA_L × S_LAT)^3/4 ・・・(式1)
肺野の体積の推定値 = 0.67 ×(X線画像から簡易的に算出される肺野の体積)+ 160
[ml]
・・・(式2)
ここで、S_PA_Rは胸部正面のフレーム画像における右肺の面積、S_PA_Lは胸部正面のフレーム画像における左肺の面積、S_LATは胸部側面における肺野の面積である(図4参照)。各肺野の面積は、各肺野の肺野輪郭内の画素数に基づいて求めることができる。

Claims (9)

  1. 異なる複数の方向から周期性を持つ被写体の動態を放射線撮影することにより得られた複数の動態画像の各フレーム画像から、前記被写体の動態に関する特徴量を算出する特徴量算出手段と、
    前記特徴量算出手段により算出された特徴量に基づいて、前記複数の動態画像間において互いに前記被写体の動態の位相が最も近いフレーム画像の組を少なくとも1組以上抽出する抽出手段と、
    前記抽出手段により抽出された組毎のフレーム画像に基づいて前記被写体の体積を推定し、推定した体積に基づいて、前記被写体の機能の評価指標を推定する推定手段と、
    を備える動態画像解析装置。
  2. 前記抽出手段は、前記複数の動態画像から、互いに前記算出された特徴量の値が最も近いフレーム画像の組を少なくとも1組以上抽出する請求項1に記載の動態画像解析装置。
  3. 前記複数の動態画像は、胸部正面の動態画像と胸部側面の動態画像であり、
    前記特徴量算出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像の各フレーム画像から肺野の動態に関する特徴量を算出し、
    前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が所定の呼吸位相付近において最も近いフレーム画像の組を抽出し、
    前記推定手段は、前記胸部正面の動態画像から抽出されたフレーム画像の肺野領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の肺野領域の情報とに基づいて前記肺野の体積を推定し、推定した体積に基づいて、前記肺野の呼吸機能の評価指標を推定する請求項1又は2に記載の動態画像解析装置。
  4. 前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が強制最大吸気位付近において最も近いフレーム画像の組を抽出し、
    前記推定手段は、前記胸部正面の動態画像から抽出されたフレーム画像の肺野領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の肺野領域の情報とに基づいて前記肺野の体積を推定し、推定した体積を全肺気量として推定する請求項3に記載の動態画像解析装置。
  5. 前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が強制最大呼気位付近において最も近いフレーム画像の組を抽出し、
    前記推定手段は、前記胸部正面の動態画像から抽出されたフレーム画像の肺野領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の肺野領域の情報とに基づいて前記肺野の体積を推定し、推定した体積を残気量として推定する請求項3又は4に記載の動態画像解析装置。
  6. 前記複数の動態画像は、胸部正面の動態画像と胸部側面の動態画像であり、
    前記特徴量算出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像の各フレーム画像から肺野の動態に関する特徴量を算出し、
    前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が最も近いフレーム画像の組を時間軸に沿って等間隔又は不等間隔で抽出し、
    前記推定手段は、前記抽出された組毎に、前記胸部正面の動態画像から抽出されたフレーム画像の肺野領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の肺野領域の情報とに基づいて前記肺野の体積を推定し、推定した体積の時間変化を示す波形を生成して肺容量曲線を推定する請求項1〜5のいずれか一項に記載の動態画像解析装置。
  7. 前記複数の動態画像は、胸部正面の動態画像と胸部側面の動態画像であり、
    前記特徴量算出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像の各フレーム画像から心臓の動態に関する特徴量を算出し、
    前記抽出手段は、前記胸部正面の動態画像と前記胸部側面の動態画像から、互いに前記算出された特徴量の値が心拡張末期付近及び/又は心収縮末期付近において最も近いフレーム画像の組を抽出し、
    前記推定手段は、前記抽出された組毎に、前記胸部正面の動態画像から抽出されたフレーム画像の心臓領域の情報と前記胸部側面の動態画像から抽出されたフレーム画像の心臓領域の情報とに基づいて前記心臓の体積を推定し、推定した体積に基づいて、心機能の評価指標を推定する請求項2に記載の動態画像解析装置。
  8. 前記推定手段により推定された評価指標を表示する表示手段を備える請求項1〜7のいずれか一項に記載の動態画像解析装置。
  9. 前記表示手段は、さらに、前記抽出手段により前記複数の動態画像から抽出されたフレーム画像の組を並べて表示する請求項8に記載の動態画像解析装置。
JP2018003173A 2018-01-12 2018-01-12 動態画像解析装置及びプログラム Active JP7020125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003173A JP7020125B2 (ja) 2018-01-12 2018-01-12 動態画像解析装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003173A JP7020125B2 (ja) 2018-01-12 2018-01-12 動態画像解析装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2019122449A true JP2019122449A (ja) 2019-07-25
JP7020125B2 JP7020125B2 (ja) 2022-02-16

Family

ID=67397186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003173A Active JP7020125B2 (ja) 2018-01-12 2018-01-12 動態画像解析装置及びプログラム

Country Status (1)

Country Link
JP (1) JP7020125B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045360A (ja) * 2019-09-19 2021-03-25 コニカミノルタ株式会社 放射線撮影システム及び撮影制御装置
JP2021087464A (ja) * 2019-12-02 2021-06-10 コニカミノルタ株式会社 医用画像解析システム、プログラム及び医用画像解析方法
JP2021146012A (ja) * 2020-03-23 2021-09-27 コニカミノルタ株式会社 プログラム、動態解析装置及び診断支援システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238932A (ja) * 1996-03-05 1997-09-16 Toshiba Corp 心機能診断装置
JP2004000411A (ja) * 2002-04-03 2004-01-08 Canon Inc 動画像表示方法、動画像処理方法、プログラム、コンピュータ可読記憶媒体、動画像表示装置、動画像処理装置、動画像表示システム、動画像処理システム、画像診断支援方法、及び画像診断支援システム
US20050215890A1 (en) * 2003-11-07 2005-09-29 Wilson Lon P First pass and/or gated blood pool imaging system including multiple camera heads
WO2014054379A1 (ja) * 2012-10-04 2014-04-10 コニカミノルタ株式会社 画像処理装置及びプログラム
WO2017060097A1 (en) * 2015-10-07 2017-04-13 Koninklijke Philips N.V. Device, system and method for determining a respiratory feature of a subject based on a breathing gas
JP2018000281A (ja) * 2016-06-28 2018-01-11 コニカミノルタ株式会社 動態解析システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238932A (ja) * 1996-03-05 1997-09-16 Toshiba Corp 心機能診断装置
JP2004000411A (ja) * 2002-04-03 2004-01-08 Canon Inc 動画像表示方法、動画像処理方法、プログラム、コンピュータ可読記憶媒体、動画像表示装置、動画像処理装置、動画像表示システム、動画像処理システム、画像診断支援方法、及び画像診断支援システム
US20050215890A1 (en) * 2003-11-07 2005-09-29 Wilson Lon P First pass and/or gated blood pool imaging system including multiple camera heads
WO2014054379A1 (ja) * 2012-10-04 2014-04-10 コニカミノルタ株式会社 画像処理装置及びプログラム
WO2017060097A1 (en) * 2015-10-07 2017-04-13 Koninklijke Philips N.V. Device, system and method for determining a respiratory feature of a subject based on a breathing gas
JP2018000281A (ja) * 2016-06-28 2018-01-11 コニカミノルタ株式会社 動態解析システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045360A (ja) * 2019-09-19 2021-03-25 コニカミノルタ株式会社 放射線撮影システム及び撮影制御装置
JP2021087464A (ja) * 2019-12-02 2021-06-10 コニカミノルタ株式会社 医用画像解析システム、プログラム及び医用画像解析方法
JP2021146012A (ja) * 2020-03-23 2021-09-27 コニカミノルタ株式会社 プログラム、動態解析装置及び診断支援システム
JP7472573B2 (ja) 2020-03-23 2024-04-23 コニカミノルタ株式会社 プログラム、動態解析装置及び診断支援システム

Also Published As

Publication number Publication date
JP7020125B2 (ja) 2022-02-16

Similar Documents

Publication Publication Date Title
JP5672147B2 (ja) 胸部診断支援情報生成システム
JP6597548B2 (ja) 動態解析システム
JP6772908B2 (ja) 動態解析システム及びプログラム
JP5962237B2 (ja) 胸部診断支援情報生成方法
JP6418091B2 (ja) 胸部画像表示システム及び画像処理装置
JP6743662B2 (ja) 動態画像処理システム
JP7047574B2 (ja) 動態画像解析装置、動態画像解析システム、動態画像解析プログラム及び動態画像解析方法
JP6690774B2 (ja) 動態解析システム、プログラム及び動態解析装置
JP2017176202A (ja) 動態解析システム
JP6740910B2 (ja) 動態画像処理システム
JP2019058368A (ja) 動態解析装置及び動態解析システム
JP7020125B2 (ja) 動態画像解析装置及びプログラム
JP5617577B2 (ja) 胸部診断支援情報生成方法
JP2017169830A (ja) 動態解析装置
JP2021194140A (ja) 画像処理装置及び画像処理方法
JP2018196693A (ja) 動態解析システム
JP7255725B2 (ja) 動態画像解析システム及び動態画像解析プログラム
JP7255329B2 (ja) 動態画像解析装置、動態画像解析システム及びプログラム
JP2018064848A (ja) 動態解析システム
JP6962030B2 (ja) 動態解析装置、動態解析システム、動態解析プログラム及び動態解析方法
JP2020081185A (ja) 動態画像解析装置及び動態画像解析システム
JP7424532B1 (ja) 放射線画像解析装置及びプログラム
JP2019092612A (ja) 動態撮影システム
JP6888721B2 (ja) 動態画像処理装置、動態画像処理プログラム及び動態画像処理方法
JP2017217047A (ja) 画像表示システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7020125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150