JP2019120986A - 無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法 - Google Patents

無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法 Download PDF

Info

Publication number
JP2019120986A
JP2019120986A JP2017253142A JP2017253142A JP2019120986A JP 2019120986 A JP2019120986 A JP 2019120986A JP 2017253142 A JP2017253142 A JP 2017253142A JP 2017253142 A JP2017253142 A JP 2017253142A JP 2019120986 A JP2019120986 A JP 2019120986A
Authority
JP
Japan
Prior art keywords
flight
path
flight path
cultivated land
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017253142A
Other languages
English (en)
Inventor
重之 奥田
Shigeyuki Okuda
重之 奥田
崇 大浦
Takashi Oura
崇 大浦
渡邊 泰夫
Yasuo Watanabe
泰夫 渡邊
吉彦 竹平
Yoshihiko Takehira
吉彦 竹平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Data Costumer Service Corp
Original Assignee
NTT Data Costumer Service Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Data Costumer Service Corp filed Critical NTT Data Costumer Service Corp
Priority to JP2017253142A priority Critical patent/JP2019120986A/ja
Publication of JP2019120986A publication Critical patent/JP2019120986A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catching Or Destruction (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】薬剤の散布を行う飛行経路を生成し、この飛行経路に基づいて無人飛行体を飛行させる制御を行う無人飛行機の飛行経路制御システムを提供する。【解決手段】本発明の無人飛行機の飛行経路制御システムは、圃場における耕作地に薬剤を無人飛行体を用いて散布する際、当該無人飛行体の耕作地における散布する経路として、3次元空間における空間飛行経路を生成し、当該空間飛行経路における無人飛行体の飛行を制御するシステムであり、圃場の2次元平面地図に対して投影した際、耕作地の外周である耕作地境界の内部に含まれる、3次元空間における無人飛行体の空間飛行経路を生成する飛行経路生成サーバと、無人飛行体の飛行位置を2次元平面地図に投影した際、耕作地境界外に飛行位置を逸脱させず、飛行位置が空間飛行経路を2次元平面地図に投影した2次元経路に沿うように無人飛行体を制御する飛行制御サーバとを備える。【選択図】図1

Description

本発明は、無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法に関する。
従来から、農業においては、薬剤を散布するために専用の散布車を用いているが、広大な農地に対して散布に多くの時間を要し、かつ同時期に農作業が輻輳する等により何らかの効率化を図りたい、及び気候により散布車が農地に入れない場合がある等の課題がある。
一方、ドローンに代表される小型の無人飛行体が存在する。特に、ドローンは、現在、農業の分野を含む、趣味・農業・物流・警備など様々な分野で利用されており、それぞれの分野において、使い勝手の良い機種の開発が進んでいる(例えば、特許文献1参照)。
そして、農業では人口の減少、高齢化により農業の機械化、大規模適用が求められている背景から、ドローンを圃場において大規模に適用し省力化を図りたいという要望がある。
農薬を散布する際に、このドローンと総称されるマルチコプターの飛行方法には、以下に示す2種類の方法がある。
一つは、GPS(global positioning system)を用いた位置情報と慣性装置からの姿勢情報とを活用し、プロポ(プロポーショナル式制御方法)と総称される操縦装置による手動操縦飛行である。
もう一つは、同じくGPSを用いた位置情報と慣性航法装置を活用し、飛行計画範囲の地図上にウエイポイント(飛行体の航路上の特定の位置)を設置し、ドローンがそのウエイポイントに添って飛行する様にプログラムされた経路に沿い飛行する自動飛行である。
空撮の分野においては、特に飛行の領域が特定されているわけではないため、GPSの精度で手動操縦飛行及び自動飛行の各々に対して十分な程度の活用が可能である。
しかし、上述した農業分野において、活用対象が大規模圃場である場合、飛行範囲が広大なため、圃場に薬剤を散布する際、目視による手動操縦飛行では圃場における対象地域に対応して正確に散布を行うことが困難であり、農地境界を逸脱せずに正確な自動飛行の実現が望まれている。
特開2017−24488号公報
上述した圃場において薬剤を散布する対象としては、作物が栽培されている耕作地となる。
この耕作地に対して、むやみに薬剤を散布するのではなく、作物の全てに均等に薬剤を散布するために、農機が走行して種や苗などの作物を配置した列(作物列)に対し、平行に散布する等、対象面積当たりの均一適量散布を行うことが重要である。
また、飛行経路は、散布する範囲が耕作地内に正確に含まれるように生成される必要がある、このため、圃場における耕作地の範囲を、正確に飛行経路を計画する地図上に示し、この耕作地範囲を基準として、ドローンなどの無人飛行体の飛行経路を生成する必要がある。
しかしながら、圃場における耕作地の範囲の位置情報精度が不十分である場合が多く、散布に必要な正確な高精度位置情報による飛行経路を生成することができない。
上述の課題を鑑み、本発明は、薬剤の散布を行う飛行経路を高精度で生成し、この飛行経路に基づいて無人飛行体を高精度に飛行させる制御を行う無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法を提供することを目的とする。
この発明は上述した課題を解決するためになされたもので、本発明の無人飛行機の飛行経路制御システムは、圃場における耕作地に薬剤を無人飛行体を用いて散布する際、当該無人飛行体の前記耕作地における散布する経路として、3次元空間における空間飛行経路を生成し、当該空間飛行経路における前記無人飛行体の飛行を制御する飛行経路制御システムであり、前記圃場の2次元平面地図に対して投影した際、前記耕作地の外周である耕作地境界の内部に含まれる、3次元空間における前記無人飛行体の空間飛行経路を生成する飛行経路生成サーバと、前記無人飛行体の飛行位置を前記2次元平面地図に投影した際、前記耕作地境界外に前記飛行位置を逸脱させず、前記飛行位置が前記空間飛行経路を前記2次元平面地図に投影した2次元経路に沿うように前記無人飛行体を制御する飛行制御サーバとを備えることを特徴とする。
本発明の無人飛行機の飛行経路制御システムは、前記飛行経路生成サーバが、農機が前記耕作地において自動操舵を行う場合、前記耕作地における前記農機が移動した軌跡データのなかから最外周の軌跡データを耕作地移動外周として抽出し、当該耕作地移動外周を前記農機幅に対応させて補正し、前記耕作地境界を生成し、前記耕作地境界の内部において、前記農機の移動する方向に平行な飛行方向基準線を生成し、この飛行経路基準線に対して平行に、所定の前記薬剤の散布幅に対応して前記2次元経路を生成し、3次元空間に対して散布する表面からの高度に前記2次元経路を配置して、前記空間飛行経路を生成するとともに、風向と反対方向に対し風量により設定する調整位置変分を飛行経路に反映し散布位置を調整できることを特徴とする。
本発明の無人飛行機の飛行経路制御システムは、前記飛行経路生成サーバが、前記圃場を撮像した撮像画像の各々をオルソ画像変換し、当該圃場全体の正射投影画像を生成し、前記正射投影画像から前記耕作地の前記耕作地境界を抽出し、前記耕作地境界の内部において、前記農機の移動する方向に平行な飛行方向基準線を生成し、この飛行経路基準線に対して平行に、所定の前記薬剤の散布幅に対応して前記2次元経路を生成し、3次元空間に対して散布する表面からの高度に前記2次元経路を配置して、前記空間飛行経路を生成するとともに、風向と反対方向に対し風量により設定する調整位置変分を飛行経路に反映し散布位置を調整できることを特徴とする。
本発明の無人飛行機の飛行経路制御システムは、前記無人飛行体を複数用いて薬剤散布を行う場合、前記飛行経路生成サーバが、前記2次元経路を、前記無人飛行体毎に前記飛行方向基準線に平行な2次元経路線単位で分割し、前記2次元経路線からなる前記無人飛行体毎の空間飛行経路である部分空間飛行経路を生成し、前記飛行制御サーバが、前記無人飛行体の飛行位置を前記2次元平面地図に投影した際、前記耕作地境界外に前記飛行位置を逸脱させず、前記飛行位置が前記部分空間飛行経路を前記2次元平面地図に投影した部分2次元経路に沿うように前記無人飛行体の各々を制御することを特徴とする。
本発明の無人飛行機の飛行経路制御システムは、前記圃場の監視員が携帯し、前記無人飛行体の飛行位置が前記2次元平面地図に投影された画像が表示され、前記監視員が前記無人飛行体及び前記圃場における状態を監視し、前記薬剤の散布続行が危険と判断した際、前記無人飛行体の強制的な操縦が可能な携帯端末をさらに備えることを特徴とする。
本発明の無人飛行機の飛行経路制御方法は、圃場における耕作地に薬剤を無人飛行体を用いて散布する際、当該無人飛行体の前記耕作地における散布する経路として、3次元空間における空間飛行経路を生成し、当該空間飛行経路における前記無人飛行体の飛行を制御する飛行経路制御方法であり、飛行経路生成サーバが、前記圃場の2次元平面地図に対して投影した際、前記耕作地の外周である耕作地境界の内部に含まれる、3次元空間における前記無人飛行体の空間飛行経路を生成する飛行経路生成過程と、飛行制御サーバが、前記無人飛行体の飛行位置を前記2次元平面地図に投影した際、前記耕作地境界外に前記飛行位置を逸脱させず、前記飛行位置が前記空間飛行経路を前記2次元平面地図に投影した2次元経路に沿うように前記無人飛行体を制御する飛行制御過程とを含むことを特徴とする。
本発明によれば、薬剤の散布を行う飛行経路を生成し、この飛行経路に基づいて無人飛行体を飛行させる制御を行う無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法を提供することができる。
本発明の一実施形態に係る無人飛行機の飛行経路制御システムの構成例の概要を示す説明図である。 本実施形態の飛行経路生成サーバ11による、無人飛行体の飛行経路の生成を説明する概念図である。 飛行制御サーバ14がRTK等高精度位置情報C−posiを求める処理を説明する概念図である。 飛行制御サーバ14による風に対応した無人飛行体10の制御を説明する概念図である。 圃場200における耕作地300の耕作地境界300Dを、画像処理から抽出する処理を説明する概念図である。 無人飛行体10が薬剤の散布を行っている耕作地における周囲状況を確認する監視員が携帯する携帯端末における処理を説明する図である。 一つ耕作地に対する薬剤の散布を複数の無人飛行体により行う際の飛行経路の構成を示す概念図である。 飛行経路400における散布飛行部40Bに沿って飛ばずに、所定の領域毎に対して飛行して薬剤を散布する制御を説明する概念図である。
以下、本発明の実施の形態について図面を用いて説明する。図1は、本発明の一実施形態に係る無人飛行機の飛行経路制御システムの構成例の概要を示す説明図である。飛行経路制御システム1は、無人飛行体10_1、無人飛行体10_2、無人飛行体10_3、飛行経路生成サーバ11、圃場地図データベース12、飛行経路データベース13、飛行制御サーバ14、飛行制御データベース15、固定基地局16、固定基地局サーバ17、監視用携帯端末18_1及び18_2の各々を備えている。
ここで、図1においては、後述する電子基準点としての固定基地局16のみが記載されているが、本実施形態においては、図に示さない複数個の固定基地局が設けられており、固定基地局16を含む固定基地局群が備えられている。固定基地局群における固定基地局の各々は、圃場200内あるいは圃場200近傍における異なる位置にそれぞれ設置されている。または衛星Sから直接の高精度位置情報を活用できる場合は、地上の固定基地局群を設置しない構成としても良い。監視用携帯端末18_1及び18_2の各々は、圃場200を監視するナビゲータ20_1、20_2それぞれが携帯している。
同様に、図1において衛星Sのみが記載されているが、本実施形態においては、図に示さないGPS(Global Positioning System)衛星あるいはGLONASS(Global Navigation Satellite System)衛星等の衛星群を用いて、後述する無人飛行体の位置の検出を、ネットワーク型RTK(Real Time Kinematic)−GPS測位により上記固定基地局16と連携して行う。または、衛星Sから直接の高精度位置情報を活用できる場合は、地上の固定基地局群を用いず高精度位置を検出する。無人飛行体についても、無人飛行体10_1、無人飛行体10_2及び無人飛行体10_3のみが記載されているが、4個以上の複数個を用いても、あるいは1個のみを用いる構成としても良い。以下の説明において、無人飛行体10_1、無人飛行体10_2、無人飛行体10_3の各々を総称して無人飛行体10と示す場合がある。
上記飛行経路生成サーバ11、圃場地図データベース12、飛行経路データベース13、飛行制御サーバ14及び飛行制御データベース15の各々は、中央センタ100に備えられ、中央センタ100の管理者により操作されている。
固定基地局群を用いる場合における固定基地局の各々は、例えば固定基地局16は、上述したように、圃場200内部あるいは圃場200周辺における所定の地域に設置されている。そして、固定基地局16は、衛星Sが発信する衛星送信位置情報S−infoを衛星受信部16Rにより受信し、受信した衛星送信位置情報S−infoを自身に接続された固定基地局サーバ17に対して出力する。
固定基地局群を用いる場合、固定基地局サーバ17は、供給される衛星送信位置情報S−infoを、中央センタ100の飛行制御サーバ14に対して送信可能な(飛行制御サーバ14が利用可能な)形式(例えば、NTRIP(Networked Transport of RTCM(Radio Technical Commission For Maritime Services) via Internet Protocol )形式)に変換し、RTK位置補正情報B−dataとして中央センタ100(飛行経路生成サーバ11及び飛行制御サーバ14の各々)に対して、インターネットなどの通信回線を介して送信する。
無人飛行体10_1、無人飛行体10_2、無人飛行体10_3の各々には、それぞれ飛行体制御部10_1C、飛行体制御部10_2C、飛行体制御部10_3Cと、移動衛星受信部10_1R、移動衛星受信部10_2R、移動衛星受信部10_3Rとが備えられている。以下の説明において、飛行体制御部10_1C、飛行体制御部10_2C、飛行体制御部10_3Cの各々を総称して飛行体制御部10Cと示す場合がある。また、移動衛星受信部10_1R、移動衛星受信部10_2R、移動衛星受信部10_3Rの各々を総称して移動衛星受信部10Rと示す場合がある。
飛行体制御部10Cは、移動衛星受信部10Rが受信した衛星送信位置情報S−infoにより、自身の位置情報T−selfを検出し、検出した位置情報T−selfを、中央センタ100の飛行制御サーバ14に対して送信する。また、飛行体制御部10Cは、自身に取り付けられた薬剤のタンクに設けられたセンサが検出した薬剤の残量を、飛行制御サーバ14に送信する。
飛行制御サーバ14は、固定基地局群を用いる場合、固定基地局の各々からのRTK位置補正情報B−dataと、無人飛行体10の位置情報T−selfとの間の位置相関により、無人飛行体10の位置の補正に最適な高精度RTK位置補正情報C−dataを生成する。そして、飛行制御サーバ14は、位置情報T−selfを上記高精度RTK位置補正情報C−dataにより補正し、高精度RTK位置情報C−posiを生成する。飛行制御サーバ14は、高精度RTK位置情報C−posiに基づき、無人飛行体10の飛行制御を行う中央センタ出力情報C−outを生成し、無人飛行体10に対して送信する。
無人飛行体10の位置情報T−selfは、無人飛行体10の飛行体制御部10Cが移動衛星受信部10Rが受信した、移動衛星受信機Rからの衛星発信情報S−infoにより取得される。中央センタ100は、所定の管理する領域における無人飛行体10の飛行制御を行う高精度RTK位置補正情報C−dataを生成するため、例えば上記圃場200が位置する県庁などの地方自治体の庁舎、農業協同組合の本社あるいは複数の地方自治体が連合して作成した組織のデータセンタなどに設けられている。
圃場地図データベース12には、圃場毎に、圃場全体の構成と、圃場における耕作地(作物が栽培される耕作面)を特定する情報(後述する)と、耕作地の外周を示す耕作地境界データとが予め書き込まれて記憶されている。
図において、耕作地境界データは、薬剤を散布する際に無人飛行体10を制御する基準とする、耕作地300において無人飛行体10が飛行する飛行経路400を生成するために用いられる耕作地境界300Dを示すデータである。
また、この飛行経路400は、薬剤の散布方向400Dが飛行方向基準線500に対して平行である必要がある。
この飛行方向基準線500は、耕作地300において作物が植え付けられた方向、すなわち作物の栽培されている作物列に平行に設定されている。薬剤を散布する場合、上記作物列に平行に飛行して散布することにより、散布域と作物列とが交差して散布されない領域が発生しないように、作物に対して効果的に薬剤を散布する。ただし、薬剤散布を行う現地において飛行方向に道路や送電線が存在する場合等は、飛行基準線500の方向を変更することがある。この飛行方向基準線500は、耕作地300における耕作地境界300Dのデータに対応付けられて、圃場地図データベース12に書き込まれて記憶されている。
図2は、本実施形態の飛行経路生成サーバ11による、無人飛行体の飛行経路の生成を説明する概念図である。図2においては、耕作地境界300D及び飛行方向基準線500の各々を、ネットワーク型RTK−GPS測位等に基づいて、中央センタ100から送信される制御情報により、自動操舵農機(トラクタ、種まき機、植え付け機など)の走行軌跡により求めた場合を説明する。この走行軌跡のデータは、耕作地300に対応して、圃場地図データベース12に書き込まれて記憶されている。
図2における走行軌跡600Dは、自動操舵農機600が上記無線操縦によって走行した軌跡データから求めた自動操舵農機600の最外周軌跡を示している。
この自動操舵農機600の走行軌跡600Dは、すでに述べたネットワーク型RTK−GPS測位により、自動操舵農機600による耕作地の耕起、作物の種まきあるいは苗の植え付けにおける自律走行の経路を示している。
また、走行軌跡600Dは、衛星Sからの衛星送信位置情報S−infoを受信する位相衛星受信部が自動操舵農機600の中央に設けられている場合、自動操舵農機600の中心の移動の軌跡の最外周を示している。このため、飛行経路生成サーバ11は、圃場における自動操舵農機600の走行軌跡600Dの座標点列の座標点の各々に対し、この自動操舵農機600の車軸における左右の車輪間隔(左右車輪幅)の1/2を加算し、加算結果の座標点列を耕作地境界300Dとしている。また、自動操舵農機600の移動方向基準線550は、耕作地の耕起と、作物の種まきあるいは苗の植え付けにおける軌跡の線と同一あるいは平行に生成される。
そして、飛行経路生成サーバ11は、圃場200における画像データ20から求めた耕作地境界300D内において、飛行方向基準線500及び飛行経路400の各々を含む無人飛行体経路画像30を生成する。ここで、圃場200における画像データ20は、緯度経度座標からなる2次元画像データである。また、無人飛行体経路画像30は、緯度経度座標からなる2次元画像データである。
ここで、飛行経路生成サーバ11は、耕作地300内において、飛行方向基準線500を移動方向基準線550と同一の位置、あるいは移動方向基準線550と平行な線分として、無人飛行体経路画像30に生成する。また、飛行経路生成サーバ11は、無人飛行体経路画像30において、耕作地境界300Dと同様の位置に、飛行空域350における飛行境界350Dを生成する。この飛行空域350は、耕作地300に対応している。
無人飛行体10が安全に耕作地300の耕作地境界300Dの範囲内で飛行するため、無人飛行体10自らに高精度の衛星位置情報受信機が必要である。また、無人飛行体10の飛行位置を耕作地境界300Dと相対的に高精度で検出するためには、高精度の耕作地境界300Dの位置情報が必須である。
このため、本実施形態においては、上述したように、無人飛行体10に対し、移動衛星受信部10Rを設け、ネットワーク型RTK−GPS測位等により、無人飛行体10の精度の高い位置を得ている。
高精度の農地境界として耕作地境界300Dを得る方法として、本実施形態においては、すでに述べたように、RTK等高精度位置情報によって耕作地を自動操舵走行して周回した自動操舵農機600の走行軌跡のデータを用いて、耕作地境界300Dを生成している。
また、耕作地300に対して、RTK等高精度位置情報を用いた農機の導入実績がなく、自動操舵農機の高精度な周回軌跡情報が得られない場合、後述する高精度な空撮画像をオルソ変換(正射変換)することにより得られる3次元農地画像を元に、圃場における耕作地300の耕作面を区切る農地土木形状特徴から特徴抽出により耕作地境界300Dを生成する。
また、飛行経路生成サーバ11は、無人飛行体経路画像30において、薬剤が耕作地境界300Dからはみ出さないように散布域の端部が、飛行境界350D内において飛行境界350Dと所定の距離となる飛行経路400の生成を行う。上記散布域の幅が、上記飛行方向基準線500に平行な飛行方向における薬剤の散布幅、すなわち周期幅(飛行幅)dとなる。この周期幅dは、例えば、所定の薬剤を所定の高さ(高度)で散布した際における地表における散布域の幅を用いる。後述する散布飛行部40B及び旋回部400Qの各々の線分は、散布領域の移動軌跡における移動方向における中央線となる。
そして、飛行経路生成サーバ11は、管理者が画面上で設定したウエイポイントに対して最も近く、かつ飛行方向基準線500と対向する飛行境界350Dの対向辺を抽出する。
飛行経路生成サーバ11は、この飛行境界350Dの対向辺に対し、少なくとも周期幅の1/2の距離を有し、かつ飛行方向基準線500に平行な線分である散布飛行部40Bを、往路開始点362から生成する。この往路開始点362は、飛行方向基準線500に最も近い耕作地境界300Dの辺361から、上記周期幅dの1/2の距離を内部に入った座標点とする。
飛行経路生成サーバ11は、この往路開始点362を用いても良いか否かを管理者に確認する表示を行う。このとき、飛行経路生成サーバ11は、管理者が承認した場合、設定した座標点を往路開始点362とし、一方管理者が承認しない場合、管理者に往路開始点の設定を促し、管理者が設定した座標点を往路開始点として用いる。
飛行経路生成サーバ11は、往路開始点362から生成を開始した散布飛行部40Bの線分を、往路開始点362のある飛行境界350Dの辺361の対向辺363に対し、周期幅dの1/2の距離まで伸ばす。そして、飛行経路生成サーバ11は、この往路開始点362のある飛行境界350Dの辺である対向辺363から、周期幅dの1/2の距離を折返点364とする。飛行経路生成サーバ11は、この折返点364から、飛行方向基準線500に近い、飛行境界350Dの辺356から、飛行境界360Dにおける辺356に対向する辺366に向かって旋回部400Qを、周期幅dの距離で描画して生成する。この旋回部400Qは、図のように円弧形状でも、あるいは直線形状のいずれでも良い。
飛行経路生成サーバ11は、旋回部400Qの終端を復路開始点367とし、この復路開始点367から、飛行方向基準線500に対して平行な散布飛行部40Bの線分を、辺361方向に描画して生成する。
そして、飛行経路生成サーバ11は、復路開始点367から生成を開始した散布飛行部40Bの線分を、飛行境界350Dの辺361に対し、周期幅dの1/2の距離まで伸ばす。飛行経路生成サーバ11は、この飛行境界350Dの辺361から、周期幅dの1/2の距離を折返点368とする。上述した処理を繰り返すことにより、飛行経路生成サーバ11は、飛行空域350における飛行経路400の生成を行う。
また、他の飛行経路の作成方法について、以下に述べる。
飛行経路生成サーバ11は、飛行方向基準線500に垂直方向における飛行空域350の幅の距離を、飛行経路400における散布飛行部40Bの周期幅で除算し、飛行経路400における散布飛行部40Bの数を算出する。この周期幅は、例えば、所定の薬剤を所定の高さで散布した際における地表における散布域の幅を用いる。散布飛行部40Bは、散布領域の移動軌跡における移動方向における中央線となる。
そして、飛行経路生成サーバ11は、飛行空域350内において、すなわち飛行境界350Dを逸脱しないように、散布飛行部40Bを飛行方向基準線500に対して平行に、上記周期毎に生成する。このとき、飛行経路生成サーバ11は、最初に形成する散布飛行部40Bの周期幅の端部が飛行境界350Dを逸脱しない位置に配置する。この後、飛行経路生成サーバ11は、隣接する散布飛行部40Bが上記周期幅を有するように、飛行空域350内において順次配置する。この散布飛行部40Bは、飛行方向基準線500方向の長さが、作物の栽培されている作物列の長さと同一に設定される。
次に、飛行経路生成サーバ11は、無人飛行体10が進入する往路の散布飛行部40Bの一の端部の逆側の他の端部と、折り返して復路となる散布飛行部40Bの一の端部とを、無人飛行体10の旋回性能に対応させた旋回部400Qにより接続する。この旋回部400Qは、図のように円弧であっても、直線であっても良い。ただし、飛行経路生成サーバ11は、旋回部400Qが飛行境界350Dを逸脱する配置とはならないように、この旋回部400Qの形状を生成する。
そして、飛行経路生成サーバ11は、旋回部400Qにおける接続処理を、全ての散布飛行部40Bに対して行うことで、散布飛行部40Bと旋回部400Qとの各々からなる飛行経路400を生成する。
この旋回部400Qは、図のように円弧形状でも、あるいは直線形状のいずれでも良いが、旋回の幅が散布間隔になるように設定する。飛行経路生成サーバ11は、生成した飛行経路400の無人飛行体経路画像30を、圃場200毎に対応させ、飛行経路データベース13に書き込んで記憶させる。飛行経路生成サーバ11は、上記散布幅となる高さHを、散布する薬剤の散布粒度と散布流速と散布領域とから求める。この高さHは、薬剤を散布する際における無人飛行体10の地表面からの高さである。
そして、飛行経路生成サーバ11は、無人飛行体経路画像30における飛行空域350、飛行境界350D及び飛行経路400の各々の2次元座標における座標値列を、3次元空間において2次元座標における座標値に対応した上記高さHに配置して、3次元空間における座標値列として展開する。飛行経路生成サーバ11は、この2次元座標における座標値列を3次元空間に展開することで無人飛行体経路空間40を生成し、生成した無人飛行体経路空間40のデータを耕作地300に対応させ、飛行経路データベース13に書き込んで記憶させる。この無人飛行体経路空間40において、飛行経路400の座標値列における座標値の各々は、座標(緯度,経度,高さ)からなる。
飛行制御サーバ14は、圃場200における耕作地300に対して薬剤を散布する際、飛行経路データベース13から無人飛行体経路空間40のデータを読み出す。
このとき、飛行制御サーバ14は、所定の時刻毎に、無人飛行体10の移動衛星受信部10Rが受信した位置情報T−selfを、高精度RTK位置補正情報C−data等により補正し、無人飛行体10の正確な位置を示す高精度RTK位置情報C−posiを求める。また、飛行体制御部10Cは、移動衛星受信部10Rが受信した位置情報T−selfとともに、高度計の計測した無人飛行体10の地表からの高さのデータを、飛行制御サーバ14に対して送信する。
そして、飛行制御サーバ14は、高精度RTK等位置情報C−posiと、無人飛行体10の飛行方向及び飛行速度とにより、所定時間後の飛行位置の予測される位置が飛行経路400上に位置するように、無人飛行体10の制御を行う中央センタ出力情報C−outを生成する。このとき、飛行制御サーバ14は、生成した中央センタ出力情報C−outを無人飛行体10に対して送信する。飛行制御サーバ14は、圃場200における耕作地300に農機などが進入する際に用いるウエイポイントに駐機してある無人飛行体10の飛行を開始させる。このとき、飛行制御サーバ14は、無人飛行体10に対して制御情報を送信することにより、無人飛行体経路空間40における飛行経路400の飛行を開始位置であるウエイポイントから、飛行空域350における飛行経路400に対して無人飛行体10を進入させる。
すなわち、飛行制御サーバ14は、無人飛行体10の飛行位置を2次元平面地図である圃場200における画像データ20に投影した際、耕作地境界300Dから無人飛行体の飛行位置を逸脱させず、飛行位置(高精度RTK位置情報C−posi)が飛行空域350における飛行経路400を、2次元平面地図に投影した飛行経路に沿うように無人飛行体10を制御する。
上述したように、本実施形態においては、無人飛行体10を飛行経路400に基づく飛行を行わせ、広大な耕作地に対する薬剤を散布する。
現在、日本国内では若年者の人口が減少しているため、例えば農業分野等では高齢化の傾向が強く、農業の担い手となる若年者が減少している。このため、小規模な農地の統合化が進み、一耕作単位当たりの面積が拡大し、これと並行して、農作物の価格における国際競争力を向上させる目的で、農業等の作業対象面積が益々大規模化している。
一方、農耕機材等を用いた耕作等の農機の運行に当たっては、大規模農場における耕作地において、精度の高い操縦技能において農機を走行させる必要がある。このため、農耕熟練運転者が逼迫する傾向は著しく、対策として自動操舵農機の導入により、農業の大規模化及び省力化を図る試みが進められている。
農地等での自動操舵走行にはGPS等の測位技術利用が必須であり、GPSを利用する高精度化実現方法の一つとしては、RTK方式が広く用いられている。RTK方式は、理論的にも測量用位置情報サービスの面からもcmクラスの精度の測位が可能である。RTK方式は、国土地理院にも認められ、全国で利用可能な測量用位置情報サービスにも適用されている。この測量用位置情報サービスの測量以外の利用分野として、農耕機材等の高精度位置特定及び走行経路の高精度化がある。しかしながら、その利用は農業においては自動操舵農機であるトラクタ等の畑作、水田、酪農等の陸上走行機材に用いられているのみで、無人飛行体である農業用ヘリコプタやドローンには適切な機材がなく活用されていない。
また、農機が大型化することにより農機の重量が増し、その結果、気候により耕作地の土が泥状になる場合がある。この泥状となった耕作地で作物が育った状態において、農機の走行により作物の穂部分などへの影響を避けたい場合等に、大型農機を農地にて走行させることが困難となる。
このため、農機により薬剤を散布するのではなく、無人飛行体であるヘリコプタやドローンによる、耕作地に対する薬剤散布等の需要が顕在化している。
しかしながら、すでに述べたように、上記無人飛行体に対して高精度位置情報を適用して自動飛行可能な環境が従来において整備されていない。このため、手動操縦を行う操縦者と、薬剤の散布の対象となる耕作地近傍で監視するナビゲータとの人的連携により、耕作地の範囲外に逸脱しないように、無人飛行体を運用する方法が一般的である。この結果、操縦者とナビゲータの最少2名を一組とするため、広大な耕作地においては多数の人間が必要となり、人的資源が払底しつつある農業等において、多用することは困難であり、定まった範囲の適用に留まっている。
さらに、無人飛行体による散布する際の薬剤は、広い領域に散布されることから、トラクタで牽引するスプレーヤ等と総称される散布用農業機材に適応できる薬剤濃度に比較し、薬剤濃度が約数10倍〜100倍の濃度で散布する必要がある。
このため、他の作物を育成している対象でない耕作地への逸脱散布を厳に回避する必要がある。この逸脱散布の防止策として、高精度位置情報を無人飛行体に搭載していない従来の散布方法においては、複数のナビゲータによる、人的目視により無人飛行体を運用せざるを得ない状態にある。
無人飛行体に高精度位置情報を搭載しても課題が残る。それは農機、例えばトラクタにおける自動操舵の場合は、走行対象地域の地図精度が粗くても、対象とする耕作地等の地域内に人的にトラクタを運転して位置を確認して開始ポイントを高精度に設定する。そして、設定した開始ポイントからの相対位置を高精度に確保しながら、農機の走行軌跡を生成または生成軌跡に追従するように自動操舵できる。しかしながら、ドローンなどの無人飛行体の場合、開始位置は空間であり人的に設定することが困難である。
また、トラクタ等の場合は、対象の耕作地の端まで走行した時にはその状態を、運転者または自動的に耕作地の端であることを感知し、車輪が農地に直接接地した状態で旋回することにより耕作地境界を逸脱せずに次の走行を再開できる。
しかしながら、無人飛行体の場合、耕作地のように空間には物理的な端が存在しないため、何らかの方法で農地の端を高精度に認識し旋回を誘導する必要がある。
そのため、現在の手動操縦の無人飛行体の農作地等の端部における方向を変えるための旋回を、人的目視と、無人飛行体の操縦者及びナビゲータの相互連絡により行っている。
無人飛行体を高精度に耕作地内で自動飛行させるため、地上を走行する農機とは異なり、自動操舵機能と高精度位置情報とに加え、飛行範囲を実際の耕作地の位置と連携付けた高精度の飛行指定範囲位置情報が必須である。
上述した課題を解決するため、本実施形態においては、ネットワーク型RTK−GPS等測位により自動操舵走行する自動操舵農機の走行軌跡のデータを用い、作物を栽培する耕作地の周囲を示す耕作地境界を求め、この耕作地境界と重なる飛行境界を形成している。そして、この飛行境界を無人飛行体が逸脱しないように、飛行境界内の飛行空域において飛行経路を生成する。また、現在無人飛行体に用いられていないネットワーク型RTK−GPS測位等の方式を採用して、生成した飛行経路を飛行させる制御を行い、耕作地内において高い精度で薬剤の散布を実現している。
このため、本実施形態によれば、耕作地に対応した飛行空域を生成し、かつ耕作地境界に対応した飛行境界を生成し、この飛行境界内における飛行空域に飛行経路を生成するため、この飛行経路を飛行させる制御を行う。
この結果、本実施形態によれば、従来、空域に端部が無いために無人飛行体を自動飛行できなかった耕作地の上空に、上記飛行境界を設定することにより、農地境界を逸脱せずに薬剤の散布の対象となる耕作地を逸脱することなく、無人飛行体を飛行させて薬剤散布を行うことができる。
図3は、飛行制御サーバ14が高精度RTK位置情報C−posiを求める処理を説明する概念図である。
固定基地局サーバ17は、衛星Sから衛星送信位置情報S−infoを受信し、受信したデータをRTK位置補正情報B−dataとして、飛行制御サーバ14に対して送信する。また、他の固定基地局群における固定基地局サーバ17の各々も、同様に、衛星Sから衛星送信位置情報S−infoを受信し、受信したデータをRTK位置補正情報B−dataとして、飛行制御サーバ14に対して送信する。
また、無人飛行体10の飛行体制御部10Cは、移動衛星受信部10Rが受信した位置情報T−selfを飛行制御サーバ14に対して、高度計の計測した高さのデータとともに送信する。
飛行制御サーバ14は、無人飛行体10から供給される位置情報T−selfと、固定基地局16と固定基地局群との各々から送信されるRTK位置補正情報B−dataとの間の位置相関により、高精度RTK位置補正情報C−dataを生成する。そして、飛行制御サーバ14は、高精度RTK位置補正情報C−dataにより位置情報T−selfを補正し、高精度RTK位置情報C−posiを生成する。この生成された高精度RTK位置情報C−posiは、緯度経度の2次元座標系における座標点581となる。ここで、散布域は、耕作地300における飛行経路400を生成する際に用いる、無人飛行体10から散布される薬剤の散布域である。
図4は、飛行制御サーバ14による風に対応した無人飛行体10の制御を説明する概念図である。図4(a)は、ほぼ風が吹いていない場合における無人飛行体10の制御を示している。一方、図4(b)は、矢印P方向に風速Vの風が吹いている場合における無人飛行体10の制御を示している。
すでに説明したように、図4(a)に示す無風状態において、散布粒度(粒径)Bの薬剤を、散布流速V1の流速で、高さHから散布した場合、散布域の半径である散布域半径R1は、R1=f(V1,H,B)の関数により求められる。
したがって、高精度RTK位置情報C−posiが無人飛行体10の中心位置を示しているため、飛行境界350Dと対向する散布飛行部40B(すなわち、飛行境界350Dに最も近い散布飛行部40B)から、散布域半径R1に所定の余裕距離を加算した距離だけ、飛行境界350Dから飛行空域350内における位置に生成する必要がある。
また、図4(b)においては、風速V2の風が矢印P方向に吹いている場合に、矢印Wの方向に無人飛行体10の位置制御が行われる。矢印Pは、散布飛行部40Bに対して垂直方向に吹いている。散布飛行部40Bに垂直でなくとも、散布飛行部40Bに対して垂直方向の風速の成分を風速V2として用いる。
このとき、飛行制御サーバ14は、風による散布ずれDを、D=f1(V1,V2,H,B)の関数、すなわち散布流速V1、風速V2、散布の高さH及び散布粒度Bを変数とする関数f1により求める。また、飛行制御サーバ14は、風速V2の影響による散布域半径R2を、R2=f2(V1,V2,H,B,R1)の関数、すなわち散布流速V1、風速V2、散布の高さH、散布粒度B及び無風時の散布域半径R1を変数とする関数f2により求める。
ここで、自身に吹いている風速V2を無人飛行体10が計測することはできない。このため、無人飛行体10がマルチコプター(所謂ドローン)の場合、飛行高さ、飛行方向及び飛行速度の制御を行う各プロペラの回転数の制御情報から、上述した風向及び風速V2を算出する。すなわち、マルチコプターにおいては、所定の飛行方向及び飛行速度による飛行に対応して、風向及び風速V2に応じて各プロペラの回転数の制御情報が設定されている。このため、所定の飛行方向及び飛行速度と、各プロペラの回転数それぞれから風向及び風速を求める関数、あるいはテーブルを生成することができる。上記関数またはテーブルは、飛行制御データベース15に予め書き込まれて記憶されている。
中央センタ出力情報C−outは、飛行経路400上の予測位置に対応する所定の飛行方向及び飛行速度で無人飛行体10を、高精度RTK位置情報C−posiにより位置制御させる各プロペラの回転数の制御情報である。このため、飛行制御サーバ14は、このときの飛行方向及び飛行速度と、各プロペラの回転数とから、上記関数またはテーブルを用いて風向及び風速V2を求める。
これにより、飛行制御サーバ14は、求めた風速V2と、薬剤の散布流速V1、散布の高さH及び散布粒度Bの各々とを、関数f1に代入することにより、風による散布ずれDを算出する。また、飛行制御サーバ14は、散布ずれDが発生する方向を、求めた風向により決定する。
同様に、飛行制御サーバ14は、求めた風速V2と、散布流速V1、散布の高さH、散布粒度B及び散布域半径R1の各々とを、関数f2に代入することにより、風による散布域半径R2を算出する。また、飛行制御サーバ14は、散布域半径R1が風による影響により散布域半径R2となる方向を、求めた風向により決定する。
ここで、飛行制御サーバ14は、求めた風速V2が予め設定された風速閾値を超えるか否かの判定を行う。このとき、飛行制御サーバ14は、風速V2が風速閾値を超えた場合、飛行経路400における位置を、「D+R2−R1」分、飛行境界350Dから飛行空域350内に対して移動させる補正を行い、補正後の位置で無人飛行体10が飛行するように制御する。一方、飛行制御サーバ14は、風速V2が風速閾値以下の場合、飛行経路400の飛行する位置の補正を行わない。これにより、飛行制御サーバ14は、風向と反対方向に対し風量により設定する調整位置変分(上記「D+R2−R1」分)を、無人飛行体10の飛行経路に反映して、薬剤の散布位置を調整できる。
また、飛行制御サーバ14は、飛行経路400における現在の位置において、散布ずれD及び散布域半径R2に対応させ、薬剤の散布領域が飛行境界350Dから飛行空域350外にはみ出さないか否かの判定を行う構成としても良い。このとき、飛行制御サーバ14は、判定結果が飛行境界350Dから飛行空域350外にはみ出す場合、飛行経路400における位置を、「D+R2−R1」分、飛行境界350Dから飛行空域350内に対して移動させる補正を行い、補正後の位置で無人飛行体10が飛行するように制御する。一方、飛行制御サーバ14は、判定結果が飛行境界350Dから飛行空域350外にはみ出す場合、飛行経路400の飛行する位置の補正を行わない。これにより、飛行制御サーバ14は、風向と反対方向に対し風量により設定する調整位置変分(上記「D+R2−R1」分)を、無人飛行体10の飛行経路に反映して、薬剤の散布位置を調整できる。
図5は、圃場200における耕作地300の耕作地境界300Dを、画像処理から抽出する処理を説明する概念図である。
図5(a)は、圃場200を空撮した撮像画像を示している。空撮に際しては撮像位置の緯度経度及び撮像した高度の各々は正確に求められている。飛行経路生成サーバ11は、上述のように空撮した複数の撮像画像をオルソ処理を行うことにより、複数の撮像画像から3次元農地画像(形状)を生成し、この3次元農地画像と地上の水平位置とを対応させ、耕作地境界300Dの画像抽出を行う。このとき、飛行経路生成サーバ11は、耕作地300における農機の走行軌跡(農機の轍)の画像抽出も同時に行う。そして、飛行経路生成サーバ11は、この農機の走行軌跡に平行な飛行方向基準線500の生成を行う。
図5(b)は、上述した図5(a)の3次元農地画像における耕作地300の耕作地境界300D近傍の断面を示している。すなわち、図5(b)は、図5(a)における線分A−Aにおける断面形状(農地土木形状特徴)を示している。圃場200において、耕作地300の外周として耕作地境界300Dが設けられている。
また、圃場200において、耕作地境界300Dの外周には水路200Sが設けられ、の水路200Sの外周にはさらに道路200Bが設けられている。
図5(a)で説明した3次元農地画像における耕作地境界300Dが、両側に配置される耕作地300及び水路200Sの各々に対して突出した形状をしているため、飛行経路生成サーバ11は、この突出形状を抽出することにより、耕作地境界300Dを画像抽出することができる。
また、領域380における耕作地境界300Dは、水路200S及び凸状の形状を有していない。そのため、飛行経路生成サーバ11は、この領域380において、農機の走行軌跡の最外周により、耕作地境界300Dを決定する。すなわち、圃場200において、作物が栽培されている領域のみに薬剤を散布する必要がある。このため、以前に耕作地として使用されていた場所も、必要に応じて新たに作物を栽培しない年もあり、農地土木形状特徴の画像抽出のみでは、薬剤を散布する耕作地300を抽出することができない場合がある。このような場合、飛行経路生成サーバ11は、3次元農地画像から農機の走行軌跡の外周を画像抽出し、農地土木形状特徴から抽出した耕作地境界と合成して、薬剤の散布を行う耕作地300の耕作地境界300Dを生成する。
上述した構成により、本実施形態は、ネットワーク型RTK−GPS測位の技術を導入しておらず、自動操舵農機の走行軌跡のデータを共有できない耕作地の場合においても、オルソ変換が行える複数の耕作地の航空写真と、オルソ変換により得られた3次元農地画像から耕作地における耕作地境界の土木特徴抽出を行い、かつ農機の走行した軌跡である轍を抽出することにより、農作地境界及び移動方向基準線を生成することができ、無人飛行体経路画像における飛行境界及び飛行方向基準線を生成することができる。
図6は、無人飛行体10が薬剤の散布を行っている耕作地における周囲状況を確認する監視員が携帯する監視用携帯端末における処理を説明する図である。
無人飛行体10は、特に農薬散布等において、その操縦性能が操縦者のみでは農地境界逸脱を目視で確認できないことから、補助者としてナビゲータ(監視員)を操縦者の反対側の農地境界に対面上に配置し、農地境界の端に到達前に操縦者に対し、旗やトランシーバ等により位置状態を知らせる運用方法が取られている。
本実施形態においては、飛行経路生成サーバ11が生成した飛行経路400を、飛行制御サーバ14がネットワーク型RTK−GPS測位等による自走制御を行うため、高精度に耕作地境界300D内における薬剤散布が行われる。
しかしながら、耕作地300の近傍における突発的な状況の変化には、飛行制御サーバ14、あるいは中央センタ100で飛行制御サーバ14の表示画面を見てサーバ及び無人飛行体10の管理を行う管理者が即座に対応することができない。
このため、本実施形態においては、ナビゲータが無人飛行体10の薬剤の散布を行う飛行の際、無人飛行体10の飛行位置及び飛行状態、かつ薬剤を散布している耕作地300の近傍の状態をナビゲータが目視及び手元の監視用携帯端末に一括して表示される無人飛行体10の飛行位置及び飛行状態などの情報により監視する。そして、この監視に基づいて、ナビゲータが無人飛行体10による薬剤の散布の停止等が必要な場合の際、携帯している監視用携帯端末から無人飛行体10を直接に制御して安全状態を確保している。
図6において、画面700は、ナビゲータが携帯する監視用携帯端末(図1における監視用携帯端末18)の表示画面を示している。画面700には、表示欄700A、700B、700C、700D、700E、700F、700G、700H及び700Iが表示されている。
表示欄700Aには、現在の年月日が表示される。表示欄700Bには、現在の時刻が表示される。表示欄700Cには、散布する薬剤の管理の重要性を示す管理レベルが表示される。表示欄700Dには、現在薬剤を散布している耕作地300を特定する情報が表示される。表示欄700Eには、無人飛行体10の地表面からの飛行高度H(m)が表示される。表示欄700Fには、対象空域縦方向基準線752(後述)からの垂直方向における無人飛行体10の距離である横位置XX(m)が表示される。表示欄700Gには、境界逸脱リスクライン754(後述)に至るまでの進行方向における無人飛行体10の残飛行距離である残距離YY(m)が表示される。表示欄700Hには、散布する薬剤の残量が散布残量L(l)として表示される。表示欄700Iには、飛行空域350内の飛行経路400の総距離における飛行終了した距離の割合が散布進捗(%)として表示される。
後述する位置確認画像領域750及び風情報画像720の画像データとともに、上述した散布する薬剤の管理の重要性を示す管理レベル、薬剤を散布している耕作地300を特定する情報、飛行高度H、横位置XX、残距離YY、散布残量L及び散布進捗の各々は、飛行制御サーバ14からナビゲータの監視用携帯端末に対して送信される。
位置確認画像領域750は、耕作地300における無人飛行体10の飛行位置を確認するための画像が表示されている。対象空域縦方向基準線752は、飛行方向基準線751(図1における飛行方向基準線500と同様)に対して略平行な基準線であり、飛行方向基準線751に略平行な耕作地境界300Dに沿って描画されている。対象空域横方向基準線753は、対象空域縦方向基準線752に対応した耕作地境界300Dの辺と略直交な耕作地境界300Dの辺に沿って描画されている。
投影点400Tは、飛行空域350内の飛行経路400を飛行している無人飛行体10の位置を、圃場200における画像データ20に投影した点である。ナビゲータは、この投影点400Tの位置を監視することにより、飛行空域350における無人飛行体10の飛行位置、すなわち耕作地境界300Dと無人飛行体10との位置関係をリアルタイムに観察することができる。
また、耕作地境界300D内には、境界逸脱リスクライン754が描画されている。この境界逸脱リスクライン754は、飛行境界350Dからはみ出し(逸脱)を、すなわち耕作地境界300Dからはみ出しに注意する線を示している。ナビゲータは、投影点400Tがこの境界逸脱リスクライン754に到達した際、投影点400Tの後の動向に注意する必要がある。
飛行軌跡線757は、投影点400Tの移動軌跡、すなわち飛行空域350における無人飛行体10の飛行経路400における飛行軌跡の投影された線分を示している。
ウエイポイント755は、無人飛行体10が飛行を開始した、すなわち耕作地300に進入したIN(イン)ポイントを示している。
ウエイポイント756は、無人飛行体10が飛行を終了した、すなわち耕作地300から退出したOUT(アウト)ポイントを示している。
風情報画像720は、無人飛行体10に対して吹いている風の情報を示す画像である。矢印画像721は、風の吹いている風向を示している。
方位マーク画像724は、風情報画像720及び位置確認画像領域750における方位を示している。
風速画像722は、中央に風速(m/s)を示す数字が記載され、風速に応じた半径の円領域を示している。この風速画像722は、風速が増加するに従い、半径も大きくなる。
風速注意枠画像723は、無人飛行体10を飛行させることが可能な最大風速を示す枠であり、最大風速に応じた半径を有する円である。
強制操作ボタン画像群710は、無人飛行体10の飛行位置、飛行状態や耕作地300近傍の状態により、飛行制御サーバ14による無人飛行体10の飛行制御を一時停止し、ナビゲータが無人飛行体10の強制操作を行うためのボタン画像として画面700に表示されている。以下の強制操作ボタン画像群710のいずれを押下(タッチ)するかの状態は、予めマニュアルにより明確に定義され、ナビゲータ間において共有されている。
再飛行ボタン画像711は、押下された場合、一時停止された飛行制御サーバ14による無人飛行体10の飛行制御を再開させるボタン画像である。
緊急散布停止ホバリングボタン画像712は、境界逸脱リスクライン754に到達し、耕作地境界300Dを超えて耕作地300からはみ出しそうな場合、あるいは風速が最大風速を超える場合、ナビゲータが押下するボタン画像である。ナビゲータがこの緊急停止ホバリングボタン画像712押下することにより、無人飛行体10は、強制的に押下された位置において薬剤散布を停止するとともにホバリングを行う。
緊急散布停止着陸ボタン画像713は、風速が最大風速を超える突風が吹いたり、薬剤を散布している耕作地300に観光客などの一般人が進入しそうなときなど、そのまま飛行を継続させることが危険とナビゲータが感じた場合に押下される。ナビゲータがこの緊急着陸ボタン画像713を押下することにより、無人飛行体10は、強制的に押下された位置において、薬剤の散布を中止するとともに緊急着陸を行う。
緊急散布停止リターンボタン画像714は、境界逸脱リスクライン754に到達し、耕作地境界300Dを超えて耕作地300からはみ出しそうな場合、あるいは耕作地300の近傍に観光客などの一般人が近づいてきたりした場合に押下される。ナビゲータがこの緊急着陸ボタン画像713を押下することにより、無人飛行体10は、強制的に押下された位置において、薬剤の散布を停止するとともに開始地点までリターン(戻る)する。
監視用携帯端末は、強制操作ボタン画像群710において、緊急散布停止ホバリングボタン画像712、緊急散布停止着陸ボタン画像713及び緊急散布停止リターンボタン画像714の各々のボタン画像が押下された場合、中央センタ100の飛行制御サーバ14に対して、無人飛行体10の制御の一時停止を要求する制御停止信号を送信する。これにより、飛行制御サーバ14は、無人飛行体10に対する飛行制御を一時停止する。また、監視用携帯端末は、再飛行ボタン画像711が押下された場合、中央センタ100の飛行制御サーバ14に対して、一時停止していた無人飛行体10の飛行制御を、一時停止した位置から再開する制御を要求する制御開始信号を送信する。
本発明によれば、従来目視で操縦者を支援するナビゲータが、自身の携帯する監視用形態端末の表示画面により、正確な無人飛行体の飛行位置、進行方向リスクラインなでの残距離及び薬剤の散布状態を把握し、自身の監視領域において不測の状態が発生した緊急時において、無人飛行体の飛行制御を中央センタの制御下から切り離し、移動を停止してホバリング、薬剤の散布を停止、緊急着陸等の機体制御を直接に行うことが可能となり、環境状況によっては、特に操縦者を設ける必要もなく省力化を図れ、かつナビゲータが緊急時に無人飛行体を強制的に制御することができるため、無人飛行体を安全に薬剤を散布するための飛行制御を実現できる。
上述した実施形態は、一つの耕作地に対する薬剤の散布を一台の無人飛行体により行う例を説明した。以下、一つの耕作地に対する薬剤の散布を複数台の無人飛行体により行う構成を説明する。
無人飛行体を農業で適用する場合に二つの適用方法がある、一つは農地状態等を空撮によりセンシングする適用方法である。もう一つは農地に肥料、農薬等の薬剤を散布する適用方法である。農地の空撮においては、無人飛行体が現在も多く用いられているが、特に同一エリアを複数機体で実施しなければならない要素は稀である。
一方、薬剤の散布は、散布目的の重量物を搭載して飛行するため、対空時間が短く、大規模化する農地を迅速に防除するため、同一の散布対象の耕作地を複数の無人飛行体で効率良く、速やかに散布することが望まれる。
図7は、一つ耕作地に対する薬剤の散布を複数の無人飛行体により行う際の飛行経路の構成を示す概念図である。図7においては、複数台の一例として、無人飛行体10_1及び10_2の2台の無人飛行体を用いた薬剤の散布の説明を行う。
図7(a)は、無人飛行体10_1及び10_2の2台の無人飛行体を編隊飛行させ、それぞれに薬剤の散布を行わせる場合を示している。この場合、飛行経路生成サーバ11は、耕作地300に対応した飛行空域350に、無人飛行体10_1の飛行経路400_1(部分2次元経路)と、無人飛行体10_2の飛行経路400_2の2つの飛行経路を生成する。
図2で説明した際に、飛行経路400における散布飛行部40Bを周期幅dで生成する説明を行った。図7において、飛行経路生成サーバ11は、飛行経路400_1及び飛行経路400_2の各々における散布飛行部40Bを周期幅dの2倍の2dおきに生成する点が異なる。また、飛行経路400_1及び飛行経路400_2の各々は、それぞれの散布飛行部40Bが周期幅dの距離で対向して生成される。
ただし、飛行経路生成サーバ11は、飛行経路400_1の生成において、この飛行境界350Dの辺365に対し、少なくとも周期幅dの1/2の距離を有し、かつ飛行方向基準線500に平行な線分である散布飛行部40Bを、往路開始点362_1から生成する。この往路開始点362_1は、飛行方向基準線500に最も近い耕作地境界300Dの辺361から、上記周期幅dの1/2の距離を内部に入った座標点とする。
また、飛行経路生成サーバ11は、飛行経路400_2の生成において、この飛行境界350Dの辺365に対し、少なくとも周期幅dの距離を有し、かつ飛行方向基準線500に平行な線分である散布飛行部40Bを、往路開始点362_2から生成する。この往路開始点362_2は、飛行方向基準線500に最も近い耕作地境界300Dの辺361から、上記周期幅dの1/2の距離を内部に入った座標点とする。
飛行経路生成サーバ11は、飛行経路400_1の生成において、往路開始点362_1から生成を開始した散布飛行部40Bの線分を、往路開始点362_1のある飛行境界350Dの辺361の対向辺363に対し、周期幅dの1/2の距離まで伸ばす。そして、飛行経路生成サーバ11は、この往路開始点362_1のある飛行境界350Dの辺である対向辺363から、周期幅dの1/2の距離を折返点364_1とする。飛行経路生成サーバ11は、この折返点364_1から、飛行方向基準線500に近い、飛行境界350Dの辺356から、飛行境界360Dにおける辺356に対向する辺366に向かって旋回部400Qを、周期幅dの2倍の距離で描画して生成する。
同様に、飛行経路生成サーバ11は、飛行経路400_2の生成において、往路開始点362_2から生成を開始した散布飛行部40Bの線分を、往路開始点362_2のある飛行境界350Dの辺361の対向辺363に対し、周期幅dの1/2の距離まで伸ばす。そして、飛行経路生成サーバ11は、この往路開始点362_1のある飛行境界350Dの辺である対向辺363から、周期幅dの1/2の距離を折返点364_2とする。飛行経路生成サーバ11は、この折返点364_2から、飛行方向基準線500に近い、飛行境界350Dの辺356から、飛行境界360Dにおける辺356に対向する辺366に向かって旋回部400Qを、周期幅dの2倍の距離で描画して生成する。
上述した旋回部400Qは、図のように円弧形状でも、あるいは直線形状のいずれでも良い。
飛行経路生成サーバ11は、飛行経路400_1の生成において、旋回部400Qの終端を復路開始点367_1とし、この復路開始点367_1から、飛行方向基準線500に対して平行な散布飛行部40Bの線分を、辺361方向に描画して生成する。
そして、飛行経路生成サーバ11は、復路開始点367から生成を開始した散布飛行部40Bの線分を、飛行境界350Dの辺361に対し、周期幅dの1/2の距離まで伸ばす。飛行経路生成サーバ11は、この飛行境界350Dの辺361から、周期幅dの1/2の距離を折返点368_1とする。
同様に、飛行経路生成サーバ11は、飛行経路400_2の生成において、旋回部400Qの終端を復路開始点367_2とし、この復路開始点367_2から、飛行方向基準線500に対して平行な散布飛行部40Bの線分を、辺361方向に描画して生成する。
そして、飛行経路生成サーバ11は、復路開始点367から生成を開始した散布飛行部40Bの線分を、飛行境界350Dの辺361に対し、周期幅dの1/2の距離まで伸ばす。飛行経路生成サーバ11は、この飛行境界350Dの辺361から、周期幅dの1/2の距離を折返点368_2とする。
上述した処理を繰り返すことにより、飛行経路生成サーバ11は、飛行空域350における飛行経路400_1及び400_2の各々の生成を行う。
これにより、飛行制御サーバ14は、ネットワーク型RTK−GPS測位等を用いた無人飛行体10_1と10_2との各々位置検出に基づき、無人飛行体10_1及び10_2の各々を、飛行経路400_1、400_2それぞれにおける編隊飛行の制御を行う。
また、図7(a)の場合、無人飛行体を2台として説明したが、無人飛行体をN台使用する場合には、飛行空域350において、N台の無人飛行体が編隊飛行ができるように、散布飛行部40Bを生成し、それらをN個おきに旋回部400Qで接続し、飛行経路400_1から飛行経路400_Nそれぞれが生成される。
図7(b)は、耕作地300に対する飛行空域350を、飛行空域350_1及び350_2の各々に分割し、無人飛行体10_1、10_2それぞれの担当領域とする例を示している。飛行経路生成サーバ11は、図2で説明した飛行経路400を飛行空域350内で生成する処理と同様の処理を、飛行空域350_1及び350_2の各々において行う。そして、飛行経路生成サーバ11は、飛行空域350_1及び350_2の各々において、飛行経路400_1、400_2のそれぞれを生成する。
これにより、飛行制御サーバ14は、RTK方式による無人飛行体10_1と10_2との位置検出に基づき、無人飛行体10_1及び10_2の各々を、飛行空域350_1の飛行経路400_1と、飛行空域350_2の400_2とのそれぞれにおいて飛行制御を行う。
また、図7(b)の場合、無人飛行体を2台として説明したが、無人飛行体をN台使用する場合には、飛行空域350を、飛行空域350_1から350_NのN個に分割し、それぞれにおいて飛行経路400_1から400_Nそれぞれが生成される。
本実施形態によれば、上述したように、一つの耕作地に対して複数の無人飛行体を飛行させて薬剤の散布を行う際、耕作地に対して使用する無人飛行体の機体数に対応して、それぞれの無人飛行体の飛行経路を独立して生成、すなわち複数の無人飛行体が編隊飛行を行う方式、または薬剤の散布の対象となる耕作地を複数に分割してそれぞれに部分飛行経路を生成する方式のいずれかを用い生成した飛行経路を、複数の無人飛行体それぞれを飛行させるため、対象とする耕作地に対する薬剤を散布する時間の短縮を行うことが可能となる。
また、本実施形態によれば、上述した構成により、複数の無人飛行体を用いた大規模散布に当たっても、無人飛行体の各々に対して、耕作地から逸脱しないように飛行する飛行経路を形成しているため、少人数で安全に、無人飛行体による耕作地への薬剤の散布に対する運用が可能となる。
図8は、飛行経路400における散布飛行部40Bに沿って飛ばずに、所定の領域毎に対して飛行して薬剤を散布する制御を説明する概念図である。
上述した実施形態においては、無人飛行体10が飛行空域350における飛行経路400に沿って飛行し、耕作地300の作物全体に対して薬剤を散布する例を説明した。
図8においては、全体的な薬剤の散布ではなく、局所的な領域に作物が病気になり、その領域に薬剤を散布したり、局所的に害虫が発生して、その領域に害虫駆除のための薬剤を散布したりする場合における、薬剤の散布について説明している。
無人飛行体10は、飛行制御サーバ14の制御により、飛行空域350に進入地点10STAから進入し、薬剤の散布領域801、802、803及び804を順番に最短コースで飛行し、退出地点10STPから退出する。ここで、無人飛行体10は、散布領域の各々において、散布領域の大きさによっては、薬剤の散布のために旋回する場合もある。
中央センタ100の管理者は、例えば、害虫の発生した領域に基づき、飛行経路生成サーバ11に対して、圃場200における画像データ20における局所的な薬剤散布を行う散布領域の位置データを入力する。これにより、飛行経路生成サーバ11は、画像データ20における散布領域を、無人飛行体経路画像30における飛行空域350の対応する座標点に対して展開する。
そして、飛行経路生成サーバ11は、進入地点10STA及び退出地点10STPの間における飛行空域350の散布領域を示す座標点を、最短距離で接続する接続線分805を形成し、局所飛行経路800に対応する無人飛行体経路画像30を生成する。局所飛行経路800は、すでに生成されている飛行空域350内に形成され、飛行境界350Dのデータも含まれている。飛行経路生成サーバ11は、生成した局所飛行経路800のデータを、飛行経路データベース13に書き込んで記憶させる。
中央センタ100の管理者が飛行制御サーバ14に対して耕作地300に対する薬剤の散布を開始する制御を行うことにより、飛行制御サーバ14が飛行経路データベース13から局所飛行経路800の無人飛行体経路画像30のデータを読み出して無人飛行体10の稼働を開始する。このとき、無人飛行体10は、ナビゲータなどにより運搬され、進入地点10STA近傍のウエイポイントに配備されている。
飛行制御サーバ14は、読み込んだ無人飛行体経路画像30における局所飛行経路800の座標値列に対応するように、無人飛行体10を所定の高さHにより飛行させる。このとき、飛行制御サーバ14は、局所飛行経路800の接続線分805上の座標点における薬剤の散布を行わず、局所飛行経路800における散布領域で局所的な薬剤散布の制御を行う。また、飛行制御サーバ14は、薬剤の散布幅に比較して散布領域が広い場合、無人飛行体10を散布領域内において旋回させて薬剤の散布を行わせる。
上述したように、本発明によれば、耕作地において、薬剤の散布の必要がない領域に対する不必要な飛行を低減させ、害虫や病気が発生した散布領域のみに効果的に薬剤を散布することができ、散布の時間を短縮するとともに、不必要な薬剤の使用を抑制することができる。
また、図1の飛行経路生成サーバ11及び飛行制御サーバ14の各々の機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより無人飛行体の飛行経路の生成、及び無人飛行体の飛行経路に基づく飛行制御を行う処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1…飛行経路制御システム
10,10_1,10_2,10_3…無人飛行体
10_1C,10_2C,10_3C…飛行体制御部
10_1R,10_2R,10_3R…移動衛星受信部
11…飛行経路生成サーバ
12…圃場地図データベース
13…飛行経路データベース
14…飛行制御サーバ
15…飛行制御データベース
16…固定基地局
16R…
17…固定基地局サーバ
18_1,18_1…監視用携帯端末
20_1,20_2…ナビゲータ
100…中央センタ
200…圃場
300…耕作地
300D…耕作地境界
350…飛行空域
350D…飛行境界
400,400_1,400_2…飛行経路
400B…散布飛行部
400D…散布方向
400Q…旋回部
400T…投影点
550…移動方向基準線
600…自動操舵農機
600D…走行軌跡
700…画面
700A,700B,700C,700D,700E,700F,700H,700I…表示欄
711…再飛行ボタン画像
712…緊急散布停止ホバリングボタン画像
713…緊急散布停止着陸ボタン画像
714…緊急散布停止リターンボタン画像
720…風情報画像
750…位置確認画像領域
S…衛星

Claims (6)

  1. 圃場における耕作地に薬剤を無人飛行体を用いて散布する際、当該無人飛行体の前記耕作地における散布する経路として、3次元空間における空間飛行経路を生成し、当該空間飛行経路における前記無人飛行体の飛行を制御する無人飛行機の飛行経路制御システムであり、
    前記圃場の2次元平面地図に対して投影した際、前記耕作地の外周である耕作地境界の内部に含まれる、3次元空間における前記無人飛行体の空間飛行経路を生成する飛行経路生成サーバと、
    前記無人飛行体の飛行位置を前記2次元平面地図に投影した際、前記耕作地境界外に前記飛行位置を逸脱させず、前記飛行位置が前記空間飛行経路を前記2次元平面地図に投影した2次元経路に沿うように前記無人飛行体を制御する飛行制御サーバと
    を備えることを特徴とする無人飛行機の飛行経路制御システム。
  2. 前記飛行経路生成サーバが、
    農機が前記耕作地において自動操舵を行う場合、前記耕作地における前記農機が移動した軌跡データのなかから最外周の軌跡データを耕作地移動外周として抽出し、当該耕作地移動外周を前記農機の幅に対応させて補正し、前記耕作地境界を生成し、
    前記耕作地境界の内部において、前記農機の移動する方向に平行な飛行方向基準線を生成し、この飛行経路基準線に対して平行に、所定の前記薬剤の散布幅に対応して前記2次元経路を生成し、3次元空間に対して散布する表面からの高度に前記2次元経路を配置して、前記空間飛行経路を生成するとともに、風向と反対方向に対し風量により設定する調整位置変分を飛行経路に反映し散布位置を調整できる
    ことを特徴とする請求項1に記載の無人飛行機の飛行経路制御システム。
  3. 前記飛行経路生成サーバが、
    前記圃場を撮像した撮像画像の各々をオルソ画像変換し、当該圃場全体の正射投影画像を生成し、前記正射投影画像から前記耕作地の前記耕作地境界を抽出し、
    前記耕作地境界の内部において、農機の移動する方向に平行な飛行方向基準線を生成し、この飛行経路基準線に対して平行に、所定の前記薬剤の散布幅に対応して前記2次元経路を生成し、3次元空間に対して散布する表面からの高度に前記2次元経路を配置して、前記空間飛行経路を生成するとともに、風向と反対方向に対し風量により設定する調整位置変分を飛行経路に反映し散布位置を調整できる
    ことを特徴とする請求項1に記載の無人飛行機の飛行経路制御システム。
  4. 前記無人飛行体を複数用いて薬剤散布を行う場合、
    前記飛行経路生成サーバが、
    前記2次元経路を、前記無人飛行体毎に前記飛行方向基準線に平行な2次元経路線単位で分割し、前記2次元経路線からなる前記無人飛行体毎の空間飛行経路である部分空間飛行経路を生成し、
    前記飛行制御サーバが、
    前記無人飛行体の飛行位置を前記2次元平面地図に投影した際、前記耕作地境界外に前記飛行位置を逸脱させず、前記飛行位置が前記部分空間飛行経路を前記2次元平面地図に投影した部分2次元経路に沿うように前記無人飛行体の各々を制御する
    ことを特徴とする請求項2または請求項3に記載の無人飛行機の飛行経路制御システム。
  5. 前記圃場の監視員が携帯し、前記無人飛行体の飛行位置が前記2次元平面地図に投影された画像が表示され、前記監視員が前記無人飛行体及び前記圃場における状態を監視し、前記薬剤の散布続行が危険と判断した際、前記無人飛行体の強制的な操縦が可能な携帯端末を
    さらに備える
    ことを特徴とする請求項1から請求項4のいずれか一項に記載の無人飛行機の飛行経路制御システム。
  6. 圃場における耕作地に薬剤を無人飛行体を用いて散布する際、当該無人飛行体の前記耕作地における散布する経路として、3次元空間における空間飛行経路を生成し、当該空間飛行経路における前記無人飛行体の飛行を制御する無人飛行機の飛行経路制御方法であり、
    飛行経路生成サーバが、前記圃場の2次元平面地図に対して投影した際、前記耕作地の外周である耕作地境界の内部に含まれる、3次元空間における前記無人飛行体の空間飛行経路を生成する飛行経路生成過程と、
    飛行制御サーバが、前記無人飛行体の飛行位置を前記2次元平面地図に投影した際、前記耕作地境界外に前記飛行位置を逸脱させず、前記飛行位置が前記空間飛行経路を前記2次元平面地図に投影した2次元経路に沿うように前記無人飛行体を制御する飛行制御過程と
    を含むことを特徴とする無人飛行機の飛行経路制御方法。
JP2017253142A 2017-12-28 2017-12-28 無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法 Pending JP2019120986A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017253142A JP2019120986A (ja) 2017-12-28 2017-12-28 無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253142A JP2019120986A (ja) 2017-12-28 2017-12-28 無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法

Publications (1)

Publication Number Publication Date
JP2019120986A true JP2019120986A (ja) 2019-07-22

Family

ID=67306350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253142A Pending JP2019120986A (ja) 2017-12-28 2017-12-28 無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法

Country Status (1)

Country Link
JP (1) JP2019120986A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678983B1 (ja) * 2019-08-15 2020-04-15 株式会社センシンロボティクス 飛行体の管理サーバ及び管理システム
CN112180988A (zh) * 2020-10-10 2021-01-05 广州海格星航信息科技有限公司 一种三维室外空间多旋翼无人机路线规划方法及存储介质
JP6810494B1 (ja) * 2020-03-04 2021-01-06 株式会社センシンロボティクス 飛行体の管理サーバ及び管理システム
JP2021033482A (ja) * 2019-08-20 2021-03-01 株式会社クボタ 飛行体の支援システム
KR20210039156A (ko) * 2019-10-01 2021-04-09 주식회사 엘지유플러스 무인 비행 장치 및 이의 동작 방법
JP2021082134A (ja) * 2019-11-21 2021-05-27 株式会社ナイルワークス ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
WO2021130816A1 (ja) * 2019-12-23 2021-07-01 株式会社ナイルワークス 散布システムおよび散布管理装置
JPWO2021144989A1 (ja) * 2020-01-17 2021-07-22
JPWO2021144988A1 (ja) * 2020-01-17 2021-07-22
WO2021177192A1 (ja) * 2020-03-05 2021-09-10 ソニーグループ株式会社 パス生成方法、パス生成装置、プログラム
CN113419525A (zh) * 2021-06-16 2021-09-21 上海联适导航技术股份有限公司 一种无人驾驶农机的控制方法、装置、设备及存储介质
WO2021205501A1 (ja) * 2020-04-06 2021-10-14 株式会社ナイルワークス 再測量要否判定装置、測量システム、ドローンシステム、および再測量要否判定方法
JP2022001842A (ja) * 2020-06-19 2022-01-06 ソフトバンク株式会社 決定装置、経路決定方法、経路決定プログラム、経路決定システムおよび飛行体装置
WO2022107760A1 (ja) * 2020-11-20 2022-05-27 ファナック株式会社 数値制御装置、及び記憶媒体
CN115443845A (zh) * 2022-09-29 2022-12-09 贵州师范学院 基于无人机的茶园茶树病变与长势监测方法
WO2023181857A1 (ja) * 2022-03-25 2023-09-28 富士フイルム株式会社 制御装置、制御方法、及び制御プログラム

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678983B1 (ja) * 2019-08-15 2020-04-15 株式会社センシンロボティクス 飛行体の管理サーバ及び管理システム
JP7274978B2 (ja) 2019-08-20 2023-05-17 株式会社クボタ 飛行体の支援システム
JP2021033482A (ja) * 2019-08-20 2021-03-01 株式会社クボタ 飛行体の支援システム
KR20210039156A (ko) * 2019-10-01 2021-04-09 주식회사 엘지유플러스 무인 비행 장치 및 이의 동작 방법
KR102309042B1 (ko) * 2019-10-01 2021-10-05 주식회사 엘지유플러스 무인 비행 장치 및 이의 동작 방법
JP7490208B2 (ja) 2019-11-21 2024-05-27 株式会社ナイルワークス ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP2021082134A (ja) * 2019-11-21 2021-05-27 株式会社ナイルワークス ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JPWO2021130816A1 (ja) * 2019-12-23 2021-12-23 株式会社ナイルワークス 散布システムおよび散布管理装置
WO2021130816A1 (ja) * 2019-12-23 2021-07-01 株式会社ナイルワークス 散布システムおよび散布管理装置
JP7011233B2 (ja) 2019-12-23 2022-01-26 株式会社ナイルワークス 散布システムおよび散布管理装置
JPWO2021144988A1 (ja) * 2020-01-17 2021-07-22
WO2021144989A1 (ja) * 2020-01-17 2021-07-22 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
WO2021144988A1 (ja) * 2020-01-17 2021-07-22 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
JP7440937B2 (ja) 2020-01-17 2024-02-29 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
JPWO2021144989A1 (ja) * 2020-01-17 2021-07-22
JP7510699B2 (ja) 2020-01-17 2024-07-04 株式会社ナイルワークス ドローンの薬剤散布フライト制御方法及び情報処理端末
JP2021139876A (ja) * 2020-03-04 2021-09-16 株式会社センシンロボティクス 飛行体の管理サーバ及び管理システム
JP6810494B1 (ja) * 2020-03-04 2021-01-06 株式会社センシンロボティクス 飛行体の管理サーバ及び管理システム
WO2021177192A1 (ja) * 2020-03-05 2021-09-10 ソニーグループ株式会社 パス生成方法、パス生成装置、プログラム
JPWO2021205501A1 (ja) * 2020-04-06 2021-10-14
JP7412038B2 (ja) 2020-04-06 2024-01-12 株式会社ナイルワークス 再測量要否判定装置、測量システム、ドローンシステム、および再測量要否判定方法
WO2021205501A1 (ja) * 2020-04-06 2021-10-14 株式会社ナイルワークス 再測量要否判定装置、測量システム、ドローンシステム、および再測量要否判定方法
JP7399911B2 (ja) 2020-06-19 2023-12-18 ソフトバンク株式会社 決定装置、経路決定方法、および、経路決定プログラム
JP2022001842A (ja) * 2020-06-19 2022-01-06 ソフトバンク株式会社 決定装置、経路決定方法、経路決定プログラム、経路決定システムおよび飛行体装置
JP2022001868A (ja) * 2020-06-19 2022-01-06 ソフトバンク株式会社 決定装置、経路決定方法、経路決定プログラム、経路決定システムおよび飛行体装置
CN112180988B (zh) * 2020-10-10 2024-03-19 广州海格星航信息科技有限公司 一种三维室外空间多旋翼无人机路线规划方法及存储介质
CN112180988A (zh) * 2020-10-10 2021-01-05 广州海格星航信息科技有限公司 一种三维室外空间多旋翼无人机路线规划方法及存储介质
WO2022107760A1 (ja) * 2020-11-20 2022-05-27 ファナック株式会社 数値制御装置、及び記憶媒体
JP7509914B2 (ja) 2020-11-20 2024-07-02 ファナック株式会社 数値制御装置、及び記憶媒体
CN113419525A (zh) * 2021-06-16 2021-09-21 上海联适导航技术股份有限公司 一种无人驾驶农机的控制方法、装置、设备及存储介质
WO2023181857A1 (ja) * 2022-03-25 2023-09-28 富士フイルム株式会社 制御装置、制御方法、及び制御プログラム
CN115443845B (zh) * 2022-09-29 2023-09-01 贵州师范学院 基于无人机的茶园茶树病变与长势监测方法
CN115443845A (zh) * 2022-09-29 2022-12-09 贵州师范学院 基于无人机的茶园茶树病变与长势监测方法

Similar Documents

Publication Publication Date Title
JP2019120986A (ja) 無人飛行機の飛行経路制御システム及び無人飛行機の飛行経路制御方法
US11703865B2 (en) Aerial operation support and real-time management
JP6621140B2 (ja) 無人飛行体による薬剤散布方法、および、プログラム
EP3119178B1 (en) Method and system for navigating an agricultural vehicle on a land area
JP6752481B2 (ja) ドローン、その制御方法、および、プログラム
US8018376B2 (en) GNSS-based mobile communication system and method
TWI550545B (zh) 包括輸入裝置之噴灑飄移系統及方法
US6799740B2 (en) Chemical application and flight guidance control system and method
US20160070261A1 (en) Automated flight control system for unmanned aerial vehicles
TWI577272B (zh) 調節噴灑系統之方法及設備、以及為噴灑系統提供指令之方法
JP7501878B2 (ja) ドローン作業支援システム及びドローン作業支援方法
KR101391359B1 (ko) 지리정보시스템을 이용한 무인항공 방제 시스템 및 그 제어방법
WO2012028386A1 (de) Verfahren zur erfassung von agrarflächen durch abfliegen mit georeferenzierter optischer aufzeichnung
JP6851106B2 (ja) 運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
WO2018189848A1 (ja) 無人飛行体による薬剤散布方法、および、プログラム
JP7037235B2 (ja) 産業機械システム、産業機械、管制装置、産業機械システムの制御方法、および、産業機械システムの制御プログラム
WO2021140657A1 (ja) ドローンシステム、飛行管理装置およびドローン
WO2021205559A1 (ja) 表示装置、ドローンの飛行可否判定装置、ドローン、ドローンの飛行可否判定方法、およびコンピュータプログラム
WO2023119871A1 (ja) 自動走行を行う農業機械のための経路計画システムおよび経路計画方法
JP7079547B1 (ja) 圃場評価装置、圃場評価方法および圃場評価プログラム
WO2021166175A1 (ja) ドローンシステム、操作器および作業エリアの定義方法
CN113934232A (zh) 基于虚拟图像控制的植保无人机航线规划系统及方法
WO2023106158A1 (ja) 自動運転を行う農業機械のための経路計画システム
WO2021205501A1 (ja) 再測量要否判定装置、測量システム、ドローンシステム、および再測量要否判定方法
WO2023112515A1 (ja) 地図生成システムおよび地図生成方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308