JP2019120138A - 制御装置、ガスタービン、制御方法及びプログラム - Google Patents

制御装置、ガスタービン、制御方法及びプログラム Download PDF

Info

Publication number
JP2019120138A
JP2019120138A JP2017253217A JP2017253217A JP2019120138A JP 2019120138 A JP2019120138 A JP 2019120138A JP 2017253217 A JP2017253217 A JP 2017253217A JP 2017253217 A JP2017253217 A JP 2017253217A JP 2019120138 A JP2019120138 A JP 2019120138A
Authority
JP
Japan
Prior art keywords
control
flow rate
fuel
gas turbine
fuel flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017253217A
Other languages
English (en)
Other versions
JP6935327B2 (ja
Inventor
圭介 山本
Keisuke Yamamoto
圭介 山本
一茂 高木
Kazushige Takaki
一茂 高木
真人 岸
Masato Kishi
真人 岸
進也 内田
Shinya Uchida
進也 内田
永 中原
Hisashi Nakahara
永 中原
光 片野
Hikaru KATANO
光 片野
佳一 宇井
Keiichi Ui
佳一 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2017253217A priority Critical patent/JP6935327B2/ja
Priority to CN201880075562.9A priority patent/CN111386390B/zh
Priority to DE112018005654.6T priority patent/DE112018005654T5/de
Priority to KR1020207014468A priority patent/KR102326643B1/ko
Priority to US16/766,421 priority patent/US12012905B2/en
Priority to PCT/JP2018/044184 priority patent/WO2019130976A1/ja
Publication of JP2019120138A publication Critical patent/JP2019120138A/ja
Application granted granted Critical
Publication of JP6935327B2 publication Critical patent/JP6935327B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/228Dividing fuel between various burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/46Emergency fuel control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/54Control of fuel supply conjointly with another control of the plant with control of working fluid flow by throttling the working fluid, by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】急速に負荷を降下させて運転を継続するガスタービン制御を可能にする制御装置を提供する。【解決手段】制御装置は、ガスタービンの目標出力と実際の出力との偏差に基づくフィードバック制御により燃料流量指令値を出力する通常制御と、フィードバック制御を行うことなくガスタービンの出力を所定の第1時間で所定の目標出力まで低下させる燃料流量指令値を出力する負荷降下制御との何れかを選択して実行し、負荷降下制御が選択された場合、負荷降下制御の実行と並行して、空燃比が所定範囲に収まるようにガスタービンの圧縮機に流入する空気流量を低下させる制御を行う。【選択図】図5

Description

本発明は、制御装置、ガスタービン、制御方法及びプログラムに関する。
ガスタービン発電プラントで異常が生じた場合、負荷遮断を行って対処することがある。負荷遮断を行うと、ガスタービンは停止する。発電プラントから再び電力を供給するためには、ガスタービンを再稼働する必要がある。その為、発電事業者は、負荷遮断から再稼働して再び電力供給が可能となるまでの間、発電による利益機会を逸失する。これに対し、異常が生じた場合でも、ガスタービンを停止することなく、負荷を下げた状態で運転を継続し、異常への対処が完了した後に定格出力まで回復させるような運転に対するニーズがある。このような運転が可能であれば、発電事業者は、発電機会の逸失を回避することができる。
特許文献1には、負荷遮断時における複数の燃料系統に対する燃料配分の制御方法について記載されている。特許文献1の制御方法によれば、負荷遮断時に燃焼器での失火を防ぐことができる。
特開2014−159786号公報
負荷遮断の代わりに上記の運転を実現するためには、安全確保や機器保護のために急速に、例えば、毎分800%以上の速度で負荷を降下させつつ、ガスタービンの運転を継続しなければならない。この運転を実現するためには、1)圧縮機のサージを回避しながら圧縮機の空気吸入量を低下させる、2)燃焼器の失火を防ぐ、といった技術課題が存在する。これまでに、これらの技術課題を解決する技術は提供されていない。
そこで本発明は、上述の課題を解決することのできる制御装置、ガスタービン、制御方法及びプログラムを提供することを目的としている。
本発明の第1の態様によれば、制御装置は、ガスタービンの目標出力と実際の出力との偏差に基づくフィードバック制御により燃料流量指令値を算出する通常制御と、フィードバック制御を行うことなく前記ガスタービンの出力を所定の第1時間で所定の目標出力まで低下させるような前記燃料流量指令値を算出する負荷降下制御との何れかを選択して実行する燃料流量指令算出部と、前記燃料流量指令算出部による前記負荷降下制御の実行と並行して、燃空比が所定範囲に収まるように前記ガスタービンの圧縮機に流入する空気流量を低下させる制御を行う空気吸入流量制御部と、を備える。
また、本発明の第2の態様によれば、前記負荷降下制御を選択した場合、燃料流量指令算出部は、前記燃料流量指令値を前記目標出力に相当する値へ低下させるまでの低下速度を、大気温度に応じて変更する。
また、本発明の第3の態様によれば、前記負荷降下制御が選択された場合に、前記燃料流量指令値を前記目標出力に相当する値へ低下させるまでの第1時間と、前記圧縮機に流入する空気流量を所定の目標流量に低下させるまでの第2時間との差が所定の値以下である。
また、本発明の第4の態様によれば、前記第1時間および第2時間が、2秒以上5秒以下の範囲である。
また、本発明の第5の態様によれば、前記負荷降下制御が選択された場合の前記ガスタービンの出力の低下速度が、100%毎分より高速である。
また、本発明の第6の態様によれば、前記負荷降下制御が選択された場合の前記ガスタービンの出力の低下速度が、800%毎分以上、2000%毎分以下である。
また、本発明の第7の態様によれば、前記負荷降下制御が選択された場合の前記ガスタービンの前記目標出力が、前記ガスタービンの定格出力の30%以上40%以下である。
また、本発明の第8の態様によれば、前記制御装置は、前記負荷降下制御時に前記ガスタービンの燃焼器で異常燃焼が発生している場合、前記燃料流量指令値が、前記目標出力に相当する値に到達するタイミングで、前記燃焼器に設けられた複数のノズルのうち、最も上流側に設けられた第1ノズルからの燃料供給を停止する停止制御と、前記第1ノズルを除く他の前記ノズルの間での燃料供給配分比を、前記停止制御後の配分比に切り替える配分切換制御とを実行する燃料配分制御部、をさらに備える。
また、本発明の第9の態様によれば、前記燃料配分制御部は、前記第1ノズルを除く他の前記ノズルのうち、前記燃焼器で形成される予混合火炎を保炎する予混火炎を形成するための前記ノズルの前記燃料供給配分比について、前記第1ノズルからの燃料供給の停止による一時的な燃料供給量の減少を補う補正を行う。
また、本発明の第10の態様によれば、前記制御装置は、前記ガスタービンの燃焼器に設けられた複数のノズルのうち、燃焼振動に関係する第2ノズルに対する燃料配分比について、前記負荷降下制御時の一の時刻における負荷に応じた燃焼負荷指令値と、前記一の時刻における前記第2ノズルの前記燃料配分比との関係が、燃焼振動が生じる可能性が高い関係となることを回避するような補正を前記第2ノズルの前記燃料配分比に対して行う第2燃料配分制御部、をさらに備える。
また、本発明の第11の態様によれば、ガスタービンは、圧縮機と、燃焼器と、タービンと、上記の何れかに記載の制御装置を備える。
また、本発明の第12の態様によれば、制御方法は、ガスタービンの目標出力と実際の出力との偏差に基づくフィードバック制御により燃料流量指令値を算出する通常制御と、フィードバック制御を行うことなく前記ガスタービンの出力を所定の第1時間で所定の目標出力まで低下させるような前記燃料流量指令値を算出する負荷降下制御との何れかを選択して実行するステップと、前記負荷降下制御の実行と並行して、燃空比が所定範囲に収まるように前記ガスタービンの圧縮機に流入する空気流量を低下させる制御を行うステップと、を有する。
また、本発明の第13の態様によれば、プログラムは、コンピュータを、ガスタービンの目標出力と実際の出力との偏差に基づくフィードバック制御により燃料流量指令値を算出する通常制御と、フィードバック制御を行うことなく前記ガスタービンの出力を所定の第1時間で所定の目標出力まで低下させるような前記燃料流量指令値を算出する負荷降下制御との何れかを選択して実行する手段、前記負荷降下制御の実行と並行して、燃空比が所定範囲に収まるように前記ガスタービンの圧縮機に流入する空気流量を低下させる制御を行う手段、として機能させる。
本発明によれば、圧縮機のサージや燃焼器における失火を防ぎつつ急速に負荷を低下させ、ガスタービンの運転を継続することができる。
本発明に係る一実施形態におけるガスタービンプラントの系統図である。 本発明に係る一実施形態における燃焼器の第1の断面図である。 本発明に係る一実施形態における燃焼器の要部断面図である。 本発明に係る一実施形態における燃焼器の第2の断面図である。 本発明に係る一実施形態における制御装置のブロック図である。 本発明に係る一実施形態における制御方法を説明する図である。 本発明に係る一実施形態における燃料流量指令値の制御例を示す図である。 本発明に係る一実施形態におけるIGV開度の制御例を示す図である。 本発明に係る一実施形態における燃料ノズルの制御例を示す第1の図である。 本発明に係る一実施形態における燃料ノズルの制御例を示す第2の図である。 負荷変化時における燃料供給配分比とCLCSOの関係の一例を示す図である。 本発明に係る一実施形態における制御の一例を示すフローチャートである。 本発明に係る一実施形態における制御を実行したときの制御値及び状態量のタイミングチャートである。 本発明に係る一実施形態における制御による効果を説明する図である。 本発明の一実施形態における制御装置のハードウェア構成の一例を示す図である。
<実施形態>
以下、本発明の一実施形態によるガスタービンの瞬時負荷低下制御について図1〜図15を参照して説明する。
図1は、本発明に係る一実施形態におけるガスタービンプラントの系統図である。
図2は、本発明に係る一実施形態における燃焼器の第1の断面図である。
図3は、本発明に係る一実施形態における燃焼器の要部断面図である。
本実施形態のガスタービンプラントは、図1に示すように、ガスタービン10と、ガスタービン10の駆動で発電する発電機29と、を備えている。ガスタービン10は、空気を圧縮する圧縮機11と、圧縮機11で圧縮された空気中で燃料Fを燃焼させて燃焼ガスを生成する燃焼器31と、高温高圧の燃焼ガスにより駆動するタービン21と、を備えている。
圧縮機11は、軸線を中心として回転する圧縮機ロータ13と、この圧縮機ロータ13を回転可能に覆う圧縮機ケーシング12と、この圧縮機ケーシング12の吸込み口に設けられているIGV(inlet guide vane)14と、を有する。IGV14は、複数のガイドベーン15と、複数のガイドベーン15を駆動する駆動器16とを有し、圧縮機ケーシング12内に吸い込まれる空気の流量を調節する。
タービン21は、燃焼器31からの燃焼ガスにより、軸線を中心として回転するタービンロータ23と、このタービンロータ23を回転可能に覆うタービンケーシング22と、を有する。タービンロータ23と圧縮機ロータ13とは、同一の軸線を中心として回転するもので、相互に連結されて、ガスタービンロータ28を成している。このガスタービンロータ28には、発電機29のロータが接続されている。
燃焼器31は、図2に示すように、タービンケーシング22に固定されている外筒32と、タービンケーシング22内に配置され、燃焼ガスをタービン21の燃焼ガス流路中に送る燃焼筒(又は尾筒)33と、この燃焼筒33内に燃料及び空気を供給する燃料供給器41と、を備える。
燃料供給器41は、図2に示すように、内筒42と、内筒42の中心軸線上に配置されているパイロットバーナ43と、このパイロットバーナ43を中心として周方向に等間隔で配置されている複数のメインバーナ53と、外筒32の内周側で内筒42の外周側に配置されているトップハットノズル51と、を有する。なお、以下では、内筒42の中心軸線が延びる方向で、燃焼筒33内で燃焼ガスGが流れていく側を下流側とし、その反対側を上流側とする。
パイロットバーナ43は、内筒42の中心軸線上に配置されているパイロットノズル44と、パイロットノズル44の外周を囲みパイロットノズル44と同軸に設けられた筒状のパイロットガイド45と、を有する。パイロットノズル44の外周には、パイロットガイド45によって形成されたパイロット空気Apを流通させるためのパイロット空気流路48が形成されている。パイロットノズル44の外周には、例えば、円周方向等間隔に複数個のパイロットスワラ43aが設置されている。このパイロットスワラ43aは、パイロット空気流路48を通流するパイロット空気Apにスワール(渦流)を生起させ、パイロットノズル44から噴出されるパイロット燃料Fpとの混合を促進させるものである。パイロットノズル44から噴射されたパイロット燃料Fpは、このパイロット空気流路48から噴出したパイロット空気Ap中で燃焼して、予混火炎49を形成する。
メインバーナ53は、パイロット空気用筒45の外周を囲む筒状のメイン空気用内筒55と、メイン空気用内筒55の外周を囲む筒状のメイン空気用外筒56と、メイン空気用内筒55の外周側とメイン空気用外筒56の内周側との間の環状の空間を周方向に複数に分割する仕切板57と、複数の仕切板57の相互間に配置されているメインノズル54と、を有する。メイン空気用内筒55とメイン空気用外筒56と複数の仕切板57で画定される複数の空間は、圧縮機11からの圧縮空気Acがメイン空気Amとして流れるメイン空気流路58を成している。メイン空気流路58を流れるメイン空気Amには、メイン空気流路58内に配置されているメインノズル54からメイン燃料Fmが噴射される。このため、メイン空気流路58内でメインノズル54の先端(下流端)よりも下流側には、メイン空気Amとメイン燃料Fmとが混ざり合った予混合気体が流れる。この予混合気体は、メイン空気流路58から流出すると燃焼(予混合燃焼)して、予混合火炎59を形成する。前述の予混火炎49は、この予混合火炎59を保炎する役目を担っている。
外筒32の内周側と内筒42の外周側との空間は、圧縮機11からの圧縮空気Acを内筒42内に導く圧縮空気流路52を成している。トップハットノズル51は、この圧縮空気流路52にトップハット燃料Ftを噴射する。このため、トップハット燃料Ftが圧縮空気流路52に噴射されると、メイン空気Am及びパイロット空気Ap中にトップハット燃料Ftが混入することになる。
本実施形態のガスタービンプラントは、さらに、図1及び図2に示すように、パイロットノズル44にパイロット燃料Fpを送るパイロット燃料ライン61と、メインノズル54にメイン燃料Fmを送るメイン燃料ライン62と、トップハットノズル51にトップハット燃料Ftを送るトップハット燃料ライン63と、パイロット燃料Fpの流量を調節するパイロット流量調節弁65と、メイン燃料Fmの流量を調節するメイン流量調節弁66と、トップハット燃料Ftの流量を調節するトップハット流量調節弁67と、これらの流量調節弁65,66,67の動作等を制御する制御装置100と、を備える。
パイロット燃料ライン61、メイン燃料ライン62及びトップハット燃料ライン63は、いずれも燃料ライン60から分岐したラインである。パイロット流量調節弁65は、パイロット燃料ライン61に設けられ、メイン流量調節弁66は、メイン燃料ライン62に設けられ、トップハット流量調節弁67は、トップハット燃料ライン63に設けられている。
本実施形態のガスタービンプラントは、さらに、図1に示すように、ガスタービンロータ28の回転数Nを計測する回転数計71と、発電機29の出力を計測する出力計72と、圧縮機11が吸い込む空気Aの温度である大気温度を計測する温度計73と、圧縮機11が吸い込む空気の圧力である大気圧Piを計測する圧力計74と、タービン21の最終段直後の燃焼ガスの温度であるブレードパス温度Tbを計測する温度計75と、タービン21の最終段よりも下流側の排気ダクト内の排気ガスの温度Teを計測する温度計76と、を備える。
図4は、本発明に係る一実施形態における燃焼器の第2の断面図である。
図4は、燃焼器31の燃焼ガスGの流れる方向に垂直な断面を模式的に示した図である。図4に示すように、燃焼器31は、中心にパイロットノズル44を設けており、このパイロットノズル44の外周側に、3つのメインノズル54(第一メインノズル54a)を円周方向に並べて設けている。そして、燃焼器31は、パイロットノズル44の外周側に、5つのメインノズル54(第二メインノズル54b)を円周方向に並べて設けている。なお、各ノズルの配置や数は、適宜設定することができる。
図5は、本発明に係る一実施形態における制御装置のブロック図である。
図示するように制御装置100は、入力受付部101、センサ情報取得部102、異常検知部103、燃料流量指令算出部104、燃料流量配分算出部105、流量調節弁制御部106、IGV開度制御部107、記憶部108を備えている。制御装置100は、コンピュータによって構成される。
入力受付部101は、ユーザからの指示操作の入力や、他装置からの各種信号の入力を受け付ける。入力受付部101は、例えば、瞬時負荷降下制御の実行を示す信号(瞬時負荷降下制御中信号)の入力を受け付ける。
センサ情報取得部102は、ガスタービンプラントが備える各センサが計測した値を取得する。例えば、センサ情報取得部102は、出力計72が計測した発電機29の出力や温度計73が計測した大気温度を取得する。
異常検知部103は、例えば、センサ情報取得部102が取得した温度計75による計測値(ブレードパス温度Tb)に基づいて、異常燃焼が生じたことを検知する。例えば、ブレードパス温度Tbが単位時間あたりに所定の値以上変動する場合、異常検知部103は、異常燃焼が発生したと判定する。
燃料流量指令算出部104は、ガスタービン10の目標出力と実際の出力との偏差に基づくフィードバック制御により燃料流量指令値を算出する通常制御と、フィードバック制御を行うことなくガスタービン10の出力を所定の時間をかけて所定の目標出力まで低下させるような燃料流量指令値を算出する瞬時負荷降下制御との何れかを選択して燃料流量指令値の算出を行う。所定の時間とは、例えば、2〜5秒である。この時間は、燃焼器31における失火や異常燃焼を回避するために適した時間である。所定の目標出力とは、例えば、定格出力を100%としたときの30〜40%に相当する出力である。本明細書では、2〜5秒の間に出力を30〜40%程度に低下させる制御を瞬時負荷降下制御とよぶ。
瞬時負荷降下制御では、発電機29からの出力を、800〜2000%/分、13〜33%/分程度の速度で低下させる。燃料流量指令算出部104は、瞬時負荷降下制御を実行する場合、ガスタービン10の出力を目標出力へ低下させるまでの低下速度を大気温度に応じて切り替える。
なお、一例では、35%程度の負荷への降下が異常燃焼を回避でき、且つ安定燃焼可能な負荷であり、負荷降下に要する時間が2秒以下となると圧縮機サージリスクが高まり、5秒以上になると異常燃焼による機器焼損リスクが高くなることがわかっている。なお、ここでは一例として30%〜40%程度の負荷としているが、異常燃焼を回避でき、且つ安定燃焼可能な負荷であれば、本実施形態の瞬時負荷降下制御を、所定の時間に例えば50%以上の負荷に低下させる制御に適用してもよい。
燃料流量配分算出部105は、例えば、タービン入口温度(タービン21へ流入する燃焼ガスの温度)に基づいて記憶部108が記憶するタービン入口温度とパイロットノズル44へ供給する燃料の配分比(PLB比率)との関係を規定する関数からパイロットノズル44への配分比を算出する。同様に燃料流量配分算出部105は、タービン入口温度とトップハットノズル51へ供給する燃料の配分比(TH比率)との関係を規定する関数からトップハットノズル51へ供給する燃料の配分比を算出する。そして、燃料流量配分算出部105は、パイロットノズル44及びトップハットノズル51への配分比の和を100%から減算して、残りのメインノズル54(第一メインノズル54aおよび第二メインノズル54b)へ供給する燃料の配分比を算出する。燃料流量配分算出部105は、燃料流量指令算出部104が算出した燃料流量指令値に各燃料系統(パイロット燃料ライン61、メイン燃料ライン62、トップハット燃料ライン63)への配分比を乗じて、燃料系統ごとに燃料流量指令値を計算する。各燃料系統への燃料流量指令値を算出すると、燃料流量配分算出部105は、それらの値を流量調節弁制御部106へ出力する。
流量調節弁制御部106は、燃料系統別の燃料流量指令値に基づいて、各燃料系統に設けられた流量調節弁(パイロット流量調節弁65、トップハット流量調節弁67、メイン流量調節弁66)の弁開度を算出する。具体的には、流量調節弁制御部106は、流量調節弁ごとに用意された燃料流量指令値と、流量調節弁の入口圧力および出口圧力と、燃料密度と、燃料温度とに基づいて、これらのパラメータに対応する弁開度を算出する記憶部108が記憶する関数等を用いて、各流量調節弁の弁開度を算出する。そして流量調節弁制御部106は、算出した弁開度に基づいて、パイロット流量調節弁65、トップハット流量調節弁67、メイン流量調節弁66を制御する。
IGV開度制御部107は、燃料流量指令算出部104が通常制御を実行するときには、ガスタービン10の出力に応じてIGVの開度を制御する。また、IGV開度制御部107は、燃料流量指令算出部104が瞬時負荷降下制御を実行するときには、燃焼器31における空燃比が適切な所定範囲(失火や異常燃焼が生じない範囲)に収まるようにIGV14の開度を制御する。具体的には、燃料流量指令算出部104が負荷を低下させる時間(2〜5秒)と同程度の時間をかけて、IGV14の開度を、瞬時負荷降下制御開始時の開度から負荷降下時の出力に対応する開度(例えば、全閉)へと変化させる。
記憶部108は、種々のデータを記憶する。
図6は、本発明に係る一実施形態における制御方法を説明する図である。
図6に本実施形態の瞬時負荷降下制御を用いて2〜5秒間に負荷を制御開始前の100%から35%に降下させたときの燃料流量指令値CSOとIGV14の開度の関係を示す。
図6の上図は、瞬時負荷降下制御時に燃料流量指令算出部104が算出する燃料流量指令値CSO(control signal output)の推移を示す。上図の横軸は時間、縦軸はCSOの大きさを示す。燃料流量指令値CSOの大きさとガスタービン10の出力とは正の相関関係があり、CSOが大きくなるほどガスタービン10の出力も増加する。また、ある出力値について、大気温度が高温になるほどCSOの値は小さく、大気温度が低温になるほどCSOの値は大きくなる。つまり、ガスタービン10から同じ出力を行う場合でも大気温度によってCSOの値は異なる。図6上図のグラフL1は大気温度が10℃の場合のCSO、グラフL2は大気温度が20℃の場合のCSOを示している。燃料流量指令算出部104は、瞬時負荷降下制御後の出力と、CSOとガスタービン10の出力の関係を規定する関数とに基づいて瞬時負荷降下制御後の出力に対応するCSOを算出する。燃料流量指令算出部104は、瞬時負荷降下制御前後のCSOと、出力を低下させる時間(2〜5秒の範囲での所定時間)に基づいて、燃料流量指令値CSOの低下計画情報を算出する。低下計画情報には、例えば、出力を低下させる時間における所定時間ごとのCSOの値が含まれる。燃料流量指令算出部104は、例えば、図6上図に示すように一定の低下速度でCSOを低下させるような低下計画情報を算出する。他の例として、燃料流量指令算出部104は、例えば、瞬時負荷降下制御開始からの経過時間に応じてCSO低下速度が変化するような低下計画情報を算出してもよい。
ここで、燃料流量指令算出部104が、大気温度に依らない所定の低下速度でCSOを低下させることとした場合の例をグラフL1´に示す。グラフL1´は、大気温度20℃の場合と同じ速度でCSOを低下させたときのCSOの推移を示す。この場合、CSOが出力35%相当の値に低下するのは時刻t3である。出力35%相当の値に到達するタイミングが遅くなると、燃料投入量が相対的に増加するため火炎温度が超過するおそれがある。また、これとは逆に大気温度20℃の場合に、大気温度10℃の場合と同様の速度でCSOを低下させると、CSOが出力35%相当の値に到達するタイミングが早まり、燃料投入量が相対的に減少して失火の可能性がある。このようにCSOの低下速度を、大気温度に関係なく固定すると、燃焼器31の火炎に対する制御性が低下し、瞬時負荷降下前後を通じてガスタービン10の運転を継続することができない。そこで、燃料流量指令算出部104は、CSOの低下速度を大気温度に応じて変更する。これにより、燃焼器31での火炎温度挙動がロバストになり、失火耐性を向上させることができる。
図6の下図は、瞬時負荷降下制御時にIGV開度制御部107が算出するIGV14の開度の推移を示す。下図の横軸は時間、縦軸はIGV14の開度を示す。IGV14の開度と圧縮機11に流入する空気流量とは正の相関関係があり、IGV14の開度が大きくなるほど空気流量は増加する。また、ガスタービン10の出力とIGV14の開度の関係についても正の相関関係があり、出力が大きいときには開度を大きくし、出力が小さいときには開度を小さくする。図6下図のグラフL3は、IGV開度制御部107が算出するIGV14の開度である。IGV開度制御部107は、瞬時負荷降下制御後の出力(35%相当)と、IGV14の開度とガスタービン10の出力の関係を規定する関数とに基づいて瞬時負荷降下制御後の出力に対応するIGV14の開度を算出する。IGV開度制御部107は、瞬時負荷降下制御前後のIGV14の開度と、CSOを低下させる時間(2〜5秒)に基づいて、IGV14の開度を現在の開度から所定の目標開度(例えば全閉)へ低下させる低下計画情報を算出する。IGV開度制御部107は、例えば、図6下図に示すように開度を一定の割合で低下させるような低下計画情報を算出する。低下計画情報には、例えば、開度を低下させる時間における所定時間ごとのIGV開度の値が含まれる。この他にも、例えば、IGV開度制御部107は、瞬時負荷降下制御開始からの経過時間に応じて開度の低下速度が変化するような低下計画情報を算出してもよい。
IGV開度制御部107は、燃料流量指令算出部104がCSOの低下を開始すると(時刻t1)、同じ時刻(時刻t1´)にIGV14の開度の低下制御を開始する。あるいは、CSOの出力から実際の燃料制御が行われるまでの遅れを考慮して時刻t1´は、時刻t1より少し遅らせてもよい。そして、IGV開度制御部107は、燃焼器31の火炎が安定する燃空比を維持する空気流量を吸入できるような変化速度でIGV14を閉じていく。燃焼器31の火炎の安定のためには、IGV14の開度の低下に要する時間とCSOの低下に要する時間とは一致していること、あるいは、2つの時間の差が所定の許容範囲内であることが望ましい。換言すると、IGV開度制御部107は、燃料流量指令算出部104がCSOを目標値まで低下し終える時刻t2と、IGV14の開度が目標値となる時刻t2´との差(時刻t1´を遅らせた場合は、その遅延分の遅れがあってもよい)が許容範囲となる時間内にIGV目標開度を達成できるような変化速度で、IGV14の開度を低下させる。換言すれば、IGV開度制御部107は、燃料流量指令算出部104がCSOを目標値まで低下し終える時間と、圧縮機11に流入する空気流量が所定の目標流量に低下するまで時間との差が所定の許容範囲内となるようにIGV14の開度を低下させる。
図6を用いて説明した制御により、燃焼器31の火炎を正常な状態に保ちつつ、ガスタービン10の出力を瞬時(2〜5秒間)に35%程度まで降下させることができる。また、出力を低下させた後もその出力での運転を継続することができる。
次に図7、図8を参照して、図6で説明した制御に係る制御装置の構成例を説明する。
図7は、本発明に係る一実施形態における燃料流量指令値の制御例を示す図である。
図7に、燃料流量指令算出部104による通常制御および瞬時負荷降下制御の制御方法を示す。燃料流量指令算出部104は、制御指令値上書き機能付きのPI制御器104aと、CSOの低下速度算出機能付きの切替器104bとを備えている。
(通常制御)
通常制御時は、燃料流量指令算出部104は、ガスタービン10の目標出力と、実際の出力の偏差を計算する。PI制御器104aは、この偏差を0にする制御指令値LDCSO(load limit control signal output)を算出する。燃料流量指令算出部104は、負荷に基づく制御指令値であるLDCSO以外にも、ガスタービンの回転速度に基づく制御指令値、排ガス温度に基づく制御指令値、燃焼ガス温度に基づく制御指令値などを算出し、これらの中の最小値を選択して、その値を燃料流量指令値CSOとして設定する。そして、上記のとおり、燃料流量配分算出部105が各燃料系統の燃料配分比を算出し、流量調節弁制御部106が燃料流量指令値CSOと配分比に従ってパイロット流量調節弁65、トップハット流量調節弁67、メイン流量調節弁66の開度を制御する。これにより燃焼器31への燃料供給量が制御される。
(瞬時負荷降下制御)
瞬時負荷降下制御時には、PI制御で動作させると負荷の急激な降下に制御が追い付かないため切替器104bを用いて、100%負荷相当のCSOから35%負荷相当のCSOに切り替える。また、PI制御器104aからの出力を、35%負荷相当のCSOにトラッキングさせることで、急激な変化に追従させる。つまり、切替器104bが、2〜5秒で出力を低下させるためのLDCSOを生成し、このLDCSOでPI制御によるLDCSOを上書きする。
まず、入力受付部101が、瞬時負荷降下制御中信号を取得すると、燃料流量指令算出部104は、瞬時負荷降下制御中信号を切替器104bに入力する。すると、切替器104bは、温度計73が計測した大気温度と、瞬時負荷降下制御前のCSOと、35%負荷に相当する大気温度に応じたCSOと、CSOを低下させる時間(2〜5秒の間の所定時間)とに基づいて、CSOの低下速度を算出する。なお、CSOを低下させる時間や負荷の低下率(35%)は予め定められている。
切替器104bは、算出した低下速度に基づく所定時間ごとのCSOと瞬時負荷降下制御中信号を、PI制御器104aへ出力する。PI制御器104aは、瞬時負荷降下制御中信号を取得すると、瞬時負荷降下制御中信号とともに取得した負荷降下に追従するCSOで、PI制御によって算出したLDCSOを上書きし、上書きした値をLDCSOとして出力する。その後の制御については通常制御と同様である。
図7を用いて説明した制御により、燃料流量指令算出部104は、通常制御と、瞬時負荷降下制御を切り替えて実行することができる。また、瞬時負荷降下制御では、燃料流量指令算出部104は、負荷降下中に急激に変化する出力の、その時々の出力に応じた燃料流量指令値CSOを算出する。これにより、所定時間内(2〜5秒以内)にガスタービン10の出力を定格負荷の35%程度にまで低下させることができる。
なお、図7では、LDCSOによってCSOを大気温度に応じた低下速度で低下する制御例を説明したが、これに限定されない。例えば、通常制御と同様の方法で算出したCSOに対し、大気温度に応じた低下速度を実現するための所定時間ごとの燃料流量指令値CSOを算出してもよい。
図8は、本発明に係る一実施形態におけるIGV開度の制御例を示す図である。
図8に、IGV開度制御部107による通常制御および瞬時負荷降下制御のIGV制御を示す。IGV開度制御部107は、切替器107aと、ガスタービン10の出力とIGV14の開度の関係を規定した関数107bと、切替器107cと、IGV14の開度の変化速度を制御する制御器107dとを備えている。
(通常制御)
通常制御時は、瞬時負荷降下制御中信号の入力が無い、この場合、切替器107aには、現在のガスタービン10の出力が入力され、切替器107cには、通常のIGV14の開度変化速度が入力される。通常の開度変化速度とは、例えば400%/分程度である。関数107bは、現在のガスタービン10の出力に応じた目標IGV開度を算出し制御器107dへ出力する。制御器107dは、目標IGV開度と通常の開度変化速度とを取得して、取得したこれらの値と現在のIGV14の開度を用いて、現在の開度から目標IGV開度まで、通常の開度変化速度でIGV14の開度を変化させるためのIGV開度指令値を算出する。
(瞬時負荷降下制御)
瞬時負荷降下制御時には、瞬時負荷降下制御中信号が、切替器107aと切替器107cに入力される。すると、切替器107aには、負荷降下時のガスタービン10の出力(例えば35%相当)が入力され、切替器107cには、瞬時負荷降下用のIGV14の開度変化速度が入力される。瞬時負荷降下用の開度変化速度とは、全開から全閉の切替時間が2〜5秒になる速度(750%/分〜2000%/分程度)であるが、この範囲にある速度のうち、CSOとほぼ同じ時間をかけてIGV14の開度を目標開度まで低下させることができる速度が予め設定され、この値が入力される。関数107bは、負荷降下時のガスタービン10の出力(35%相当)に応じた目標IGV開度を算出し制御器107dへ出力する。制御器107dは、目標IGV開度と瞬時負荷降下用の開度変化速度とを取得して、取得したこれらの値と現在のIGV14の開度を用いて、現在の開度から目標IGV開度まで、瞬時負荷降下用の開度変化速度でIGV14の開度を変化させることができるIGV開度指令値を算出する。
図8を用いて説明した制御により、IGV開度制御部107は、通常制御と、瞬時負荷降下制御を切り替えて実行することができる。また、瞬時負荷降下制御では、IGV開度制御部107は、燃料流量指令算出部104によるCSOの低下と同期するようにIGV開度を低下させる。これにより、急速に負荷を降下させる状況でも燃空比を適切な範囲に維持し、燃焼器31における失火等を防ぐことができる。なお、IGV開度制御部107は、IGV14の開度変化速度を大気温度に応じて変更してもよい。
次に瞬時負荷降下制御におけるパイロット流量調節弁65とトップハット流量調節弁67の制御について説明する。
後述するように、パイロット流量調節弁65とトップハット流量調節弁67の制御については、通常制御、瞬時負荷降下制御に加え、異常燃焼を伴う場合の瞬時負荷降下制御が加わる。従来は、異常燃焼が生じたときには機器保護の観点から負荷を切り離す負荷遮断を行うことが多い。しかし、負荷遮断を行うと発電機会の逸失が生じる。そこで、本実施形態では、負荷遮断の代わりに瞬時負荷降下制御によって機器保護を図る制御方法を提供する。これが、異常燃焼を伴う場合の瞬時負荷降下制御である。異常燃焼が生じている場合、異常燃焼が長時間継続するとノズル焼損などの機器破損が生じるため、異常燃焼の検知から4秒程度で35%程度に負荷降下させるとともに、負荷降下が完了したタイミングでトップハットノズル51からの燃料の供給を遮断する制御を行う。また、パイロット火炎を保持できずに吹き消えてしまう失火現象を回避するため、トップハットノズル51からの燃料供給遮断と同時にパイロットノズル44へ供給する燃料を一時的に増大させる制御を行う。
図9は、本発明に係る一実施形態における燃料ノズルの制御例を示す第1の図である。
図9に、燃料流量配分算出部105、流量調節弁制御部106による通常制御および瞬時負荷降下制御におけるトップハットノズル51からの燃料供給量の算出処理を示す。
燃料流量配分算出部105は、燃焼負荷指令値CLCSOとトップハットノズル51への燃料の配分比(TH比率)の関係を規定する関数105aと、切替器105bとを備える。流量調節弁制御部106は、トップハット流量調節弁67の開度を算出する弁開度演算部106aを備えている。
(通常制御)
まず、燃料流量配分算出部105は、タービン21のタービン出力、IGV開度、大気温度に基づいて、燃焼負荷指令値CLCSOを算出する。燃焼負荷指令値CLCSOとは、タービン21のタービン入口温度と正の相関性を持つパラメータである。次に関数105aは、燃焼負荷指令値CLCSOに対するTH比率を算出する。次に燃料流量配分算出部105は、燃料流量指令値CSOとTH比率を乗じてトップハット系統への燃料流量指令値を算出する。
流量調節弁制御部106では、弁開度演算部106aが、トップハット系統への燃料流量指令値と、トップハット流量調節弁67の入口圧力および出口圧力と、燃料密度と燃料温度とに基づいて、トップハット流量調節弁67への弁開度指令値を算出する。
(瞬時負荷降下制御)
瞬時負荷降下制御時には、関数105aが算出したTH比率に弁開度調整用のバイアスh1を加算する。バイアスh1は、急激な負荷変動中に生じがちな燃焼振動へ対応するために必要な所定の補正量である。燃焼振動へ対応するための補正量(バイアスh1)については、後にパイロット流量調節弁65の制御とともに説明する。以降の処理は、通常制御と同様である。
(異常燃焼を伴う場合の瞬時負荷降下制御)
瞬時負荷降下制御時に異常燃焼が生じている場合、CSOが所定の目標値(例えば、出力35%相当に対応するCSO)に低下するまでは、上記の「瞬時負荷降下制御」の制御を行う。CSOが所定の目標値に到達すると、燃料流量指令算出部104が、CSOが所定の目標値へ到達したことを示す信号を生成し、燃料流量配分算出部105へ出力する。燃料流量配分算出部105では、CSOが所定の目標値へ到達したことを示す信号(図中「CSOが35負荷相当に到達」)が切替器105bに入力される。すると、切替器105bは、TH比率0%を出力する。燃料流量配分算出部105は、トップハット系統への燃料流量指令値0を流量調節弁制御部106へ出力する。すると、流量調節弁制御部106が算出するトップハット流量調節弁67への弁開度指令値は0%となり、トップハット流量調節弁67が閉じられる。これにより、トップハットノズル51からの燃料の供給が遮断される。このように異常燃焼が生じたときに瞬時負荷降下制御によってCSOが所定の目標値まで低下すると、ノズル焼損などを防ぐために燃料流量配分算出部105は、TH比率に0%を設定する。すると、燃料流量配分算出部105は、燃料流量指令値CSOに対する配分比を、残りのパイロット系統とメイン系統とに再配分する処理を行う。次にパイロット流量調節弁65の制御について説明する。
図10は、本発明に係る一実施形態における燃料ノズルの制御例を示す第2の図である。
図10に、燃料流量配分算出部105、流量調節弁制御部106による通常制御および瞬時負荷降下制御におけるパイロットノズル44からの燃料供給量の算出処理を示す。
燃料流量配分算出部105は、燃焼負荷指令値CLCSOとパイロットノズル44への燃料の配分比(PLB比率)の関係を規定する関数105cおよび関数105eと、切替器105dとを備える。関数105cは通常時、つまりTH比率が0%ではないときの関数、関数105eは、異常燃焼が生じたときにTH比率を0%とした後に残りのパイロット系統およびメイン系統への配分比を算出するために用いる関数である。流量調節弁制御部106は、パイロット流量調節弁65の開度を算出する弁開度演算部106bを備えている。
(通常制御)
まず、燃料流量配分算出部105は、タービン出力、IGV開度、大気温度に基づいて、燃焼負荷指令値CLCSOを算出する。次に関数105cは、燃焼負荷指令値CLCSOに対するPLB比率を算出する。切替器105dは、このPLB比率を出力する。次に燃料流量配分算出部105は、燃料流量指令値CSOとPLB比率を乗じてパイロット系統への燃料流量指令値を算出する。
流量調節弁制御部106では、弁開度演算部106bが、パイロット系統への燃料流量指令値と、パイロット流量調節弁65の入口圧力および出口圧力と、燃料密度と燃料温度とに基づいて、パイロット流量調節弁65への弁開度指令値を算出する。
(瞬時負荷降下制御)
瞬時負荷降下制御時には、通常制御と同様にして関数105cが算出したPLB比率に、燃焼振動への対応として、弁開度調整用のバイアス値h2を加算する。以降の処理は、通常制御と同様である。
(異常燃焼を伴う場合の瞬時負荷降下制御)
瞬時負荷降下制御時に異常燃焼が生じている場合、CSOが所定の目標値(例えば、出力35%相当に対応するCSO)に低下するまでは、上記の「瞬時負荷降下制御」の制御を行う。CSOが所定の目標値に到達すると、CSOが所定の目標値へ到達したことを示す信号(図中「CSOが35負荷相当に到達」)が、燃料流量配分算出部105に入力される。すると、燃料流量配分算出部105は、PLB比率の算出に用いる関数を関数105cから関数105eへ切り替える。関数105eは、CLCSOに対するPLB比率を算出する。次に燃料流量配分算出部105は、PLB比率にトップハット系統遮断に対応するための弁開度調整用のバイアスh3を加算してPLB比率を算出する。切替器105dは、バイアスh3を加算した後のPLB比率を出力する。次に燃料流量配分算出部105は、燃料流量指令値CSOとPLB比率を乗じてパイロット系統への燃料流量指令値を算出する。
流量調節弁制御部106は、通常制御と同様にしてパイロット流量調節弁65に対する弁開度指令値を算出する。
ここで、パイロット系統に関する弁開度調整用のバイアスh2およびバイアスh3について説明する。
(燃焼振動に対する補正)
図11は、負荷変化時における燃料供給配分比とCLCSOの関係の一例を示す図である。
図11の縦軸はPLB比率、横軸はCLCSOを示す。図11にPLB比率とCLCSOと燃焼振動の関係を示す。領域A4、領域A5は燃焼振動が発生する領域である。グラフA1は、燃焼振動が発生しないPLB比率とCLCSOの関係を示す運転ラインを示している。グラフA2は、負荷を上げたとき(CLCSOが上昇する)の運転ラインの一例であり、運転ラインA3は、負荷を下げたときの運転ラインの一例である。どちらの場合も、燃焼振動が発生する可能性がある。燃料流量配分算出部105は、グラフA1に示すような、燃焼振動発生領域を回避できるPLB比率を算出する必要があるが、瞬時負荷降下制御においては、グラフA3のような運転ラインとなり易い。
ガスタービン10の出力が変動すると、それに伴いタービン21の入口温度、つまりCLCSOの値も変化する。燃料流量配分算出部105は、タービン21の入口温度をガスタービン10の出力に基づいて算出するが、負荷変動が急激な場合、ある時点でCLCSO(タービン入口温度)とPLB比率の関係が燃焼振動が生じない関係(例えばグラフA1上の点)であったとしても実際には、燃焼振動発生領域に含まれるような関係となってしまうことがある。例えば、燃料流量配分算出部105がCLCSOに基づいてPLB比率等の配分比を算出してから、実際に各燃料系統の弁開度を作動させ、各燃料系統から供給される燃料流量が算出した配分比どおりになるまでには、弁動作遅れ、各燃料系統の流量調整弁(トップハット流量調節弁67)とノズルまでの配管系統の容量の影響などによる圧力応答遅れ、燃料流量の変動による燃焼遅れなどによって時間がかかる。一方、CLCSO(タービン入口温度)は、ガスタービン10の出力に基づいて算出されるが、瞬時負荷制御中のガスタービン10の出力は、燃料流量指令算出部104による上記制御により急激に降下する。するとそれに伴い、CLCSOも低下する。すると、ある時刻でCLCSOの値が「CLCSO1」であることに基づいて算出したPLB比率「PLB1」は、実際にその比率に基づく燃料流量供給が実現される時刻におけるCLCSOの値「CLCSO2」との関係では燃焼振動発生領域に含まれる関係となってしまう。そこで、瞬時負荷制御中は、バイアスh2を加算して、PLB比率とCLCSO(タービン入口温度)の関係が、燃焼振動が生じる可能性が高い関係となることを回避するように補正する。図9を用いて説明したように燃料流量配分算出部105は、TH比率についても、バイアスh1を加算して、TH比率とCLCSOの関係が、燃焼振動が生じる可能性が高い関係となることを回避するように補正する。
(トップハット遮断に対する補正)
また、異常燃焼を伴う場合の瞬時負荷降下制御において、CSOが目標値に到達したときには、トップハットノズル51からの燃料の供給が遮断される。上記のとおり、トップハット遮断と同時にパイロット系統とメイン系統の間で配分比を再設定する処理を行うが、実際に再設定後の配分比となるまでには、弁動作遅れ、圧力応答遅れ、燃焼遅れ等の影響により時間がかかり、それまでの間は、トップハット系統遮断の影響で一時的にパイロット系統に供給される燃料が減少する。すると、パイロット系統の火炎が保持できずに失火するおそれがある。そこで、失火を回避するため、パイロットノズル44へ供給する燃料を一時的に増大させる弁開度調整用のバイアスh3を加算する補正を行う。
次に本実施形態の瞬時負荷降下制御の処理の流れについて説明する。
図12は、本発明に係る一実施形態における制御の一例を示すフローチャートである。
まず、燃料流量指令算出部104およびIGV開度制御部107が瞬時負荷降下制御を実行するか否かを判定する(ステップS11)。たとえば、入力受付部101が瞬時負荷降下制御中信号を取得したり、異常検知部103が異常燃焼を検知したりすると、燃料流量指令算出部104等は、瞬時負荷降下制御を実行すると判定する。それ以外の場合、燃料流量指令算出部104は、通常制御によるCSO算出を行う(ステップS11;No)。具体的には、図7を用いて説明したように燃料流量指令算出部104は、ガスタービン10の目標出力と実出力に基づくフィードバック制御を行ってLDCSOを算出する等の制御により燃料流量指令値CSOを算出する(ステップS12)。次に燃料流量配分算出部105がCSOに基づいて、トップハット系統、パイロット系統、メイン系統への燃料配分比を算出し、流量調節弁制御部106がそれぞれの配分比に基づいて、パイロット流量調節弁65、メイン流量調節弁66、トップハット流量調節弁67の弁開度制御を行う(ステップS13)。ステップS12、13と並行して、IGV開度制御部107は通常制御によるIGV開度の算出を行い(ステップS14)、IGV14の開度を通常の変化速度で変化させる制御を行う(ステップS15)。ステップS14、ステップS15の処理については図8を用いて説明したとおりである。
一方、瞬時負荷降下制御を実行する場合と判定した場合(ステップS11;Yes)、燃料流量指令算出部104は、瞬時負荷降下制御によるCSO算出を行う(ステップS16)。具体的には、図6、図7を用いて説明したように、燃料流量指令算出部104は、大気見合いのCSO低下速度を算出し、その低下速度に応じたCSOを出力する。次に燃料流量配分算出部105および流量調節弁制御部106が、瞬時負荷降下制御による弁開度制御を行う(ステップS17)。具体的には、通常制御と同様に燃料流量配分算出部105が、トップハット系統、パイロット系統、メイン系統への燃料配分比を算出する。このとき、燃料流量配分算出部105は、図9、図10を用いて説明したようにTH比率にバイアスh1を加算し、PLB比率にバイアスh2を加算する。流量調節弁制御部106は、パイロット流量調節弁65、メイン流量調節弁66、トップハット流量調節弁67の弁開度制御を行う。
また、ステップS16、ステップS17と並行して、IGV開度制御部107は瞬時負荷降下制御によるIGV開度の算出を行い(ステップS18)、IGV14の開度を瞬時負荷降下制御時の変化速度で変化させる制御を行う(ステップS19)。ステップS18、ステップS19の処理については図8を用いて説明したとおりである。IGV開度制御部107は、燃料流量指令算出部104による瞬時負荷降下制御用CSOの出力とほぼ同時刻にIGV開度制御を開始する。また、IGV開度制御部107は、CSOが目標値まで低下する時間と同程度の時間(2〜5秒)をかけてIGV14の開度を目標開度まで閉じる。
ステップS16およびステップS17の処理によって、CSOが所定の目標値に低下すると、燃料流量指令算出部104はCSOが所定の目標値へ到達したことを示す信号を、燃料流量配分算出部105へ出力する。燃料流量配分算出部105が、CSOが所定の目標値まで低下したことを示す信号を取得する。
すると、燃料流量配分算出部105は、瞬時負荷降下制御開始時または現在、異常検知部103によって異常燃焼の発生が検出されているか否かを判定する(ステップS20)。異常燃焼が生じている場合(ステップS20;Yes)、燃料流量配分算出部105は、TH比率に0%を設定し、PLB比率を更新する。また、燃料流量配分算出部105は、PLB比率にバイアスh3を加算する。流量調節弁制御部106は、トップハットノズル51からの燃料供給を遮断し(ステップS21)、パイロットノズル44およびメインノズル54からの燃料供給量を新たな配分比に基づいて調整する。異常燃焼が生じていない場合(ステップS20;No)、ステップS21の処理は実行しない。
図13に本実施形態の瞬時負荷降下制御における制御値とガスタービン10の状態量の経時的変化を示す。図13は、本発明に係る一実施形態における制御を実行したときの制御値及び状態量のタイミングチャートである。
図13の左側の上から順に瞬時負荷降下制御中信号の有無、CSO、IGV14の開度、パイロット流量調節弁65の開度、トップハット流量調節弁67の開度の各制御値についてのタイミングチャートを示す。これまでに説明したように、制御装置100は、瞬時負荷降下制御の開始から2〜5秒の間の所定時間にCSOとIGV開度を、瞬時負荷降下後の出力に応じた目標値と目標開度に低下させる。また、負荷低下後にトップハット流量調節弁67の開度を0とし、一方、パイロット流量調節弁65の開度を10秒程度増加させる。これらの制御により、右側の各タイミングチャートに示す状態量が得られる。
図13の右側の上から順にガスタービン出力、車室圧力、パイロット火炎温度の各状態量についてのタイミングチャートを示す。CSOおよびIGV開度の低下に伴いガスタービン出力が低下し、車室圧力も徐々に低下する。その結果、パイロット火炎温度は、閾値SH1に到達し失火を免れる。また、図13の右側の一番下にIGV開度と車室圧力の比を示す。IGV開度と車室圧力の比(グラフPS)は、サージ領域SH2に抵触することなく圧縮機11のサージを回避することができる。
上記のとおり、燃空比が所定範囲から乖離すると環境性能悪化もしくは失火のリスクが高まる。その為、瞬時負荷降下制御では、CSO及びIGV開度の低下時間を概ね一致させる。また、低下時間が長すぎると異常燃焼の時間が長時間化してノズル焼損などの機器破損に繋がる。一方、低下時間が短すぎると圧縮機11にサージが発生し機器破損に繋がる。比較のため、CSOおよびIGV開度をさらに高速に低下させた場合のIGV開度と車室圧力の比を示す(グラフPL)。この場合、IGV開度が急激に低下するのに対し、車室圧力の低下には時間を要する。その結果、IGV開度と車室圧力の比はグラフPLのような推移となり、サージ領域SH2に抵触する。その結果、圧縮機11のサージが発生する可能性が増大する。これら制御値と状態量の関係から、CSO及びIGV開度の低下は2〜5秒程度で行うと良く、負荷降下時の程度については、定格負荷の35%程度が最も異常燃焼の回避や安定燃焼に適していることが確認されている。
次に本実施形態の瞬時負荷降下制御による効果を説明する。
図14は、本発明に係る一実施形態における制御による効果を説明する図である。従来であれば、異常燃焼を検知した場合、機器保護のために負荷遮断を行っている(破線のグラフ)。負荷遮断を行うと、発電事業者は、時刻taからtbまでの間、発電機会を逸失する。これに対し、負荷遮断の代わりに瞬時負荷降下制御を行う。すると、ガスタービン10の負荷を瞬時に降下させつつ安定して運転を継続することが可能となる。これにより、ガスタービン10の運転停止を回避し(実線のグラフ)、プラント稼働率を向上して発電機会の逸失を回避することができる。
図15は、本発明の一実施形態における制御装置のハードウェア構成の一例を示す図である。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える例えばPC(Personal Computer)やサーバ端末装置である。上述の制御装置100は、コンピュータ900に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、記憶部108に対応する記憶領域を主記憶装置902に確保する。また、CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
なお、少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、入出力インタフェース904を介して接続される磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。また、当該プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、当該プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であっても良い。
入力受付部101、センサ情報取得部102、異常検知部103、燃料流量指令算出部104、燃料流量配分算出部105、流量調節弁制御部106、IGV開度制御部107の全て又は一部は、マイコン、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)等のハードウェアを用いて実現されてもよい。
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
燃料流量配分算出部105は、燃料配分制御部、第2燃料配分制御部の一例である。IGV開度制御部107は、空気吸入流量制御部の一例である。2〜5秒の範囲での所定時間は第1時間および第2時間の一例である。トップハットノズル51は第1ノズルの一例、パイロットノズル44は第2ノズルの一例である。
10・・・ガスタービン
11・・・圧縮機
14・・・IGV
21・・・タービン
31・・・燃焼器
33・・・燃焼筒(又は尾筒)
43・・・パイロットバーナ
43a・・・パイロットスワラ
44・・・パイロットノズル
51・・・トップハットノズル
53・・・メインバーナ
54・・・メインノズル
60・・・燃料ライン
61・・・パイロット燃料ライン
62・・・メイン燃料ライン
63・・・トップハット燃料ライン
65・・・パイロット流量調節弁
66・・・メイン流量調節弁
67・・・トップハット流量調節弁
71・・・回転数計
72・・・出力計
73・・・温度計
74・・・圧力計
75・・・温度計
76・・・温度計
100・・・制御装置
101・・・入力受付部
102・・・センサ情報取得部
103・・・異常検知部
104・・・燃料流量指令算出部
104a・・・PI制御器
104b・・・切替器
105・・・燃料流量配分算出部
105b、105d・・・切替器
105a、105c、105e・・・関数
106・・・流量調節弁制御部
107・・・IGV開度制御部
107a,107c・・・切替器
107b・・・関数
107d・・・制御器
108・・・記憶部
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース

Claims (13)

  1. ガスタービンの目標出力と実際の出力との偏差に基づくフィードバック制御により燃料流量指令値を算出する通常制御と、フィードバック制御を行うことなく前記ガスタービンの出力を所定の第1時間で所定の目標出力まで低下させるような前記燃料流量指令値を算出する負荷降下制御との何れかを選択して実行する燃料流量指令算出部と、
    前記燃料流量指令算出部による前記負荷降下制御の実行と並行して、燃空比が所定範囲に収まるように前記ガスタービンの圧縮機に流入する空気流量を低下させる制御を行う空気吸入流量制御部と、
    を備える制御装置。
  2. 前記負荷降下制御を選択した場合、燃料流量指令算出部は、前記燃料流量指令値を前記目標出力に相当する値へ低下させるまでの低下速度を、大気温度に応じて変更する、
    請求項1に記載の制御装置。
  3. 前記負荷降下制御が選択された場合に、前記燃料流量指令値を前記目標出力に相当する値へ低下させるまでの第1時間と、前記圧縮機に流入する空気流量を所定の目標流量に低下させるまでの第2時間との差が所定の値以下である、
    請求項1に記載の制御装置。
  4. 前記第1時間および第2時間が、2秒以上5秒以下の範囲である、
    請求項1から請求項3の何れか1つに記載の制御装置。
  5. 前記負荷降下制御が選択された場合の前記ガスタービンの出力の低下速度が、100%毎分より高速である、
    請求項1から請求項4の何れか1つに記載の制御装置。
  6. 前記負荷降下制御が選択された場合の前記ガスタービンの出力の低下速度が、800%毎分以上、2000%毎分以下である、
    請求項1から請求項4の何れか1つに記載の制御装置。
  7. 前記負荷降下制御が選択された場合の前記ガスタービンの前記目標出力が、前記ガスタービンの定格出力の30%以上40%以下である、
    請求項1から請求項6の何れか1つに記載の制御装置。
  8. 前記負荷降下制御時に前記ガスタービンの燃焼器で異常燃焼が発生している場合、前記燃料流量指令値が、前記目標出力に相当する値に到達するタイミングで、前記燃焼器に設けられた複数のノズルのうち、最も上流側に設けられた第1ノズルからの燃料供給を停止する停止制御と、前記第1ノズルを除く他の前記ノズルの間での燃料供給配分比を、前記停止制御後の配分比に切り替える配分切換制御とを実行する燃料配分制御部、
    をさらに備える請求項1から請求項7の何れか1つに記載の制御装置。
  9. 前記燃料配分制御部は、前記第1ノズルを除く他の前記ノズルのうち、前記燃焼器で形成される予混合火炎を保炎する予混火炎を形成するための前記ノズルの前記燃料供給配分比について、前記第1ノズルからの燃料供給の停止による一時的な燃料供給量の減少を補う補正を行う、
    請求項8に記載の制御装置。
  10. 前記ガスタービンの燃焼器に設けられた複数のノズルのうち、燃焼振動に関係する第2ノズルに対する燃料配分比について、前記負荷降下制御時の一の時刻における負荷に応じた燃焼負荷指令値と、前記一の時刻における前記第2ノズルの前記燃料配分比との関係が、燃焼振動が生じる可能性が高い関係となることを回避するような補正を前記第2ノズルの前記燃料配分比に対して行う第2燃料配分制御部、
    をさらに備える請求項1から請求項9の何れか1項に記載の制御装置。
  11. 圧縮機と、
    燃焼器と、
    タービンと、
    請求項1から請求項10の何れか1つに記載の制御装置と、
    を備えるガスタービン。
  12. ガスタービンの目標出力と実際の出力との偏差に基づくフィードバック制御により燃料流量指令値を算出する通常制御と、フィードバック制御を行うことなく前記ガスタービンの出力を所定の第1時間で所定の目標出力まで低下させるような前記燃料流量指令値を算出する負荷降下制御との何れかを選択して実行するステップと、
    前記負荷降下制御の実行と並行して、燃空比が所定範囲に収まるように前記ガスタービンの圧縮機に流入する空気流量を低下させる制御を行うステップと、
    を有する制御方法。
  13. コンピュータを、
    ガスタービンの目標出力と実際の出力との偏差に基づくフィードバック制御により燃料流量指令値を算出する通常制御と、フィードバック制御を行うことなく前記ガスタービンの出力を所定の第1時間で所定の目標出力まで低下させるような前記燃料流量指令値を算出する負荷降下制御との何れかを選択して実行する手段、
    前記負荷降下制御の実行と並行して、燃空比が所定範囲に収まるように前記ガスタービンの圧縮機に流入する空気流量を低下させる制御を行う手段、
    として機能させるためのプログラム。
JP2017253217A 2017-12-28 2017-12-28 制御装置、ガスタービン、制御方法及びプログラム Active JP6935327B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017253217A JP6935327B2 (ja) 2017-12-28 2017-12-28 制御装置、ガスタービン、制御方法及びプログラム
CN201880075562.9A CN111386390B (zh) 2017-12-28 2018-11-30 用于燃气轮机的控制装置和方法、燃气轮机以及存储介质
DE112018005654.6T DE112018005654T5 (de) 2017-12-28 2018-11-30 Steuervorrichtung, gasturbine, steuerverfahren und programm
KR1020207014468A KR102326643B1 (ko) 2017-12-28 2018-11-30 제어 장치, 가스 터빈, 제어 방법 및 프로그램
US16/766,421 US12012905B2 (en) 2017-12-28 2018-11-30 Control device, gas turbine, control method, and program
PCT/JP2018/044184 WO2019130976A1 (ja) 2017-12-28 2018-11-30 制御装置、ガスタービン、制御方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253217A JP6935327B2 (ja) 2017-12-28 2017-12-28 制御装置、ガスタービン、制御方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2019120138A true JP2019120138A (ja) 2019-07-22
JP6935327B2 JP6935327B2 (ja) 2021-09-15

Family

ID=67063467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253217A Active JP6935327B2 (ja) 2017-12-28 2017-12-28 制御装置、ガスタービン、制御方法及びプログラム

Country Status (6)

Country Link
US (1) US12012905B2 (ja)
JP (1) JP6935327B2 (ja)
KR (1) KR102326643B1 (ja)
CN (1) CN111386390B (ja)
DE (1) DE112018005654T5 (ja)
WO (1) WO2019130976A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033559A1 (ja) * 2019-08-22 2021-02-25 三菱パワー株式会社 ガスタービンの燃焼制御装置、燃焼制御方法及びプログラム
WO2021200818A1 (ja) * 2020-04-02 2021-10-07 三菱パワー株式会社 制御装置、制御方法及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021850A1 (ja) * 2018-07-25 2020-01-30 富士フイルム株式会社 投影装置
US11203986B1 (en) * 2020-06-08 2021-12-21 General Electric Company Systems and methods for extended emissions compliant operation of a gas turbine engine
US11333082B2 (en) * 2020-06-12 2022-05-17 General Electric Company Systems and methods for determination of gas turbine fuel split for head end temperature control
EP4261401A1 (en) * 2022-04-11 2023-10-18 Siemens Energy Global GmbH & Co. KG Operation of a gas turbine to lower load and mel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077662A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd ガスタービンの制御装置、ガスタービン、及びガスタービンの制御方法
JP2013070063A (ja) * 2005-10-21 2013-04-18 Integrated Dynamics Engineering Gmbh 複数の設備の相対位置を監視するデバイス
JP2013096303A (ja) * 2011-10-31 2013-05-20 Mitsubishi Heavy Ind Ltd ガスタービン及びガスタービンの燃焼制御方法
JP2013113201A (ja) * 2011-11-28 2013-06-10 Mitsubishi Heavy Ind Ltd 弁制御装置、ガスタービン、及び弁制御方法
JP2015078670A (ja) * 2013-10-18 2015-04-23 三菱日立パワーシステムズ株式会社 ガスタービン制御装置、ガスタービン制御方法及びプログラム
JP2016037883A (ja) * 2014-08-06 2016-03-22 三菱日立パワーシステムズ株式会社 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法
JP2016037882A (ja) * 2014-08-06 2016-03-22 三菱日立パワーシステムズ株式会社 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法
JP2016070063A (ja) * 2014-09-26 2016-05-09 三菱重工業株式会社 ガスタービンの燃料分配制御装置、ガスタービン、及びガスタービンの燃料分配制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610717B2 (ja) * 2000-11-09 2011-01-12 三菱重工業株式会社 ガスタービン保護装置
JP3881871B2 (ja) * 2001-11-13 2007-02-14 三菱重工業株式会社 ガスタービンの燃料制御方法、及びそれに供する制御装置
JP4119909B2 (ja) * 2005-09-14 2008-07-16 三菱重工業株式会社 ガスタービンの燃焼制御装置
DE112012005659B4 (de) * 2012-01-13 2024-01-18 Mitsubishi Heavy Industries, Ltd. Brennstoff-Zufuhrvorrichtung, Brennstoff-Strömungsratensteuereinheit und Gasturbinenkraftwerk
JP2014047728A (ja) * 2012-08-31 2014-03-17 Mitsubishi Heavy Ind Ltd ガスタービンの制御装置、ガスタービン、及びガスタービンの制御方法
JP5972810B2 (ja) 2013-02-20 2016-08-17 三菱日立パワーシステムズ株式会社 ガスタービンシステム、ガスタービンの燃焼器制御装置、及びガスタービンの燃焼器制御方法
US10060625B2 (en) * 2013-03-13 2018-08-28 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor
JP6217451B2 (ja) * 2014-02-26 2017-10-25 三菱日立パワーシステムズ株式会社 燃料制御装置、燃焼器、ガスタービン、制御方法及びプログラム
JP6257035B2 (ja) * 2014-03-25 2018-01-10 三菱日立パワーシステムズ株式会社 ガスタービンの燃焼制御装置および燃焼制御方法並びにプログラム
US10358985B2 (en) * 2014-07-31 2019-07-23 Mitsubishi Heavy Industries Compressor Corporation Control device and control method
JP6807638B2 (ja) 2015-12-07 2021-01-06 三菱パワー株式会社 燃焼制御システム、ガスタービン、燃焼制御方法及びプログラム
JP6680555B2 (ja) * 2016-02-10 2020-04-15 三菱日立パワーシステムズ株式会社 ガスタービン制御装置、ガスタービン制御方法及びプログラム
US10920676B2 (en) * 2016-11-17 2021-02-16 General Electric Company Low partial load emission control for gas turbine system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070063A (ja) * 2005-10-21 2013-04-18 Integrated Dynamics Engineering Gmbh 複数の設備の相対位置を監視するデバイス
JP2012077662A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd ガスタービンの制御装置、ガスタービン、及びガスタービンの制御方法
JP2013096303A (ja) * 2011-10-31 2013-05-20 Mitsubishi Heavy Ind Ltd ガスタービン及びガスタービンの燃焼制御方法
JP2013113201A (ja) * 2011-11-28 2013-06-10 Mitsubishi Heavy Ind Ltd 弁制御装置、ガスタービン、及び弁制御方法
JP2015078670A (ja) * 2013-10-18 2015-04-23 三菱日立パワーシステムズ株式会社 ガスタービン制御装置、ガスタービン制御方法及びプログラム
JP2016037883A (ja) * 2014-08-06 2016-03-22 三菱日立パワーシステムズ株式会社 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法
JP2016037882A (ja) * 2014-08-06 2016-03-22 三菱日立パワーシステムズ株式会社 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法
JP2016070063A (ja) * 2014-09-26 2016-05-09 三菱重工業株式会社 ガスタービンの燃料分配制御装置、ガスタービン、及びガスタービンの燃料分配制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033559A1 (ja) * 2019-08-22 2021-02-25 三菱パワー株式会社 ガスタービンの燃焼制御装置、燃焼制御方法及びプログラム
JP2021032121A (ja) * 2019-08-22 2021-03-01 三菱パワー株式会社 ガスタービンの燃焼制御装置、燃焼制御方法及びプログラム
JP7252861B2 (ja) 2019-08-22 2023-04-05 三菱重工業株式会社 ガスタービンの燃焼制御装置、燃焼制御方法及びプログラム
WO2021200818A1 (ja) * 2020-04-02 2021-10-07 三菱パワー株式会社 制御装置、制御方法及びプログラム
JP2021161993A (ja) * 2020-04-02 2021-10-11 三菱パワー株式会社 制御装置、制御方法及びプログラム
US11828225B2 (en) 2020-04-02 2023-11-28 Mitsubishi Heavy Industries, Ltd. Control device, control method, and program
JP7422592B2 (ja) 2020-04-02 2024-01-26 三菱重工業株式会社 制御装置、制御方法及びプログラム

Also Published As

Publication number Publication date
WO2019130976A1 (ja) 2019-07-04
CN111386390A (zh) 2020-07-07
KR102326643B1 (ko) 2021-11-15
US12012905B2 (en) 2024-06-18
KR20200065081A (ko) 2020-06-08
US20210148291A1 (en) 2021-05-20
CN111386390B (zh) 2023-06-06
DE112018005654T5 (de) 2020-07-09
JP6935327B2 (ja) 2021-09-15

Similar Documents

Publication Publication Date Title
WO2019130976A1 (ja) 制御装置、ガスタービン、制御方法及びプログラム
US10208678B2 (en) Gas turbine combustion control device and combustion control method and program therefor
JP5868671B2 (ja) 弁制御装置、ガスタービン、及び弁制御方法
US10161317B2 (en) Gas-turbine control device, gas turbine, and gas-turbine control method
JP2011027106A (ja) ガスタービンエンジンの制御のための方法
JP6612329B2 (ja) 乾式低排出エンジン用のバルク火炎温度調節器
US10669959B2 (en) Control device, system, control method, power control device, gas turbine, and power control method
US11208959B2 (en) System and method for flexible fuel usage for gas turbines
JP2010025069A (ja) 2軸式ガスタービンシステムの制御装置
US10550716B2 (en) Gas turbine inlet guide vane control device, system and control method
US20150040571A1 (en) Method for fuel split control to a gas turbine using a modified turbine firing temperature
KR101885489B1 (ko) 유량비 산출 장치, 이것을 구비하고 있는 제어 장치, 이 제어 장치를 구비하고 있는 가스 터빈 플랜트, 유량비 산출 방법 및 연료계통의 제어 방법
US20140182297A1 (en) Gas turbine and method of controlling a gas turbine at part-load condition
EP3324023A1 (en) Systems and methods for adaptive fuel distribution in fuel circuits
US10221777B2 (en) Gas turbine combustion control device and combustion control method and program therefor
JP6801968B2 (ja) ガスタービンの制御装置および制御方法、並びにガスタービン
JP6267087B2 (ja) 動力制御装置、ガスタービン及び動力制御方法
JP2013160154A (ja) ガスタービン制御装置及び方法並びにプログラム、それを用いた発電プラント
CN111542689B (zh) 燃料供给系统、燃气轮机、发电设备、控制方法以及记录介质
JP2017141728A (ja) ガスタービン制御装置、ガスタービン制御方法及びプログラム
JP6587350B2 (ja) ガスタービン冷却系統、これを備えるガスタービン設備、ガスタービン冷却系統の制御方法
JP2015155686A (ja) ガスタービンの制御装置、ガスタービン、及びガスタービンの制御方法

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210825

R150 Certificate of patent or registration of utility model

Ref document number: 6935327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150