JP2019103282A - 電力変換装置及びその製造方法 - Google Patents

電力変換装置及びその製造方法 Download PDF

Info

Publication number
JP2019103282A
JP2019103282A JP2017232898A JP2017232898A JP2019103282A JP 2019103282 A JP2019103282 A JP 2019103282A JP 2017232898 A JP2017232898 A JP 2017232898A JP 2017232898 A JP2017232898 A JP 2017232898A JP 2019103282 A JP2019103282 A JP 2019103282A
Authority
JP
Japan
Prior art keywords
bearing
positioning
semiconductor
wall
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017232898A
Other languages
English (en)
Other versions
JP6969333B2 (ja
Inventor
秀晃 立花
Hideaki Tachibana
秀晃 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017232898A priority Critical patent/JP6969333B2/ja
Publication of JP2019103282A publication Critical patent/JP2019103282A/ja
Application granted granted Critical
Publication of JP6969333B2 publication Critical patent/JP6969333B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】半導体モジュールの放熱性を確保しつつ、製造コストを低減することができる、電力変換装置及びその製造方法を提供すること。【解決手段】電力変換装置1は、半導体モジュール21と冷却管22とを積層してなる半導体積層ユニット2と、半導体積層ユニット2の積層方向Xの一端に配され、半導体積層ユニット2を積層方向Xに弾性的に加圧する加圧部材3と、半導体積層ユニット2及び加圧部材3を収容する筐体4と、筐体4に設けられた支承壁41と加圧部材3との間に介在する支承体5と、を有する。加圧部材3は、半導体積層ユニット2を押圧する押圧部31と、押圧部31の両側に形成された一対の被支承部32とを有する。一対の被支承部32のそれぞれと支承壁41との間に、支承体5が個別に設けてある。各支承体5は、複数の支承ブロック50を積層方向Xに重ねてなる。【選択図】図1

Description

本発明は、電力変換装置及びその製造方法に関する。
半導体モジュールと冷却管とを積層してなる半導体積層ユニットと、該半導体積層ユニットを積層方向に加圧する加圧部材とを備えた電力変換装置が、特許文献1に開示されている。かかる電力変換装置においては、筐体に設けられた支承壁と加圧部材との間に、支承体を介在させている。
ばね部材を有する加圧部材によって、半導体積層ユニットを所定の範囲内の加圧力にて加圧するには、加圧部材の弾性変形量を所定の範囲内に収めるようにする必要がある。ところが、半導体積層ユニットの積層方向の寸法に、ばらつきが生じることもあり、これに起因して、加圧部材による加圧力にばらつきが生じることが懸念される。
そこで、特許文献1には、円柱状の支承体として、直径の異なる複数種類の支承体を用意しておき、半導体積層ユニットの積層方向の寸法に応じて、用いる支承体を選択することが、開示されている。これにより、加圧部材の弾性変形量を所定の範囲内に収め、冷却管と半導体モジュールとの間の熱抵抗を所定の範囲内に収めている。
特開2009−27805号公報
しかしながら、複数種類の寸法の支承体を用意して、半導体積層ユニットの積層方向の寸法バラツキに対応するには、用意する支承体の種類を多くする必要がある。これは、半導体積層ユニットの積層方向の寸法バラツキが大きいほど、用意する支承体の種類を多くする必要が生じる。そうすると、例えば、半導体積層ユニットにおける半導体モジュールと冷却管との積層数が増えるほど、用意する支承体の種類を多くする必要が生じる。
また、近年の半導体素子の小型化と、大電流化とに伴い、半導体モジュールの発熱量が大きくなる傾向にある。そうすると、半導体モジュールから冷却管への放熱を効率的に行う必要があり、半導体積層ユニットへの加圧力の許容範囲も狭くなりやすい。このように、半導体積層ユニットへの加圧力の許容範囲が狭くなると、加圧部材の弾性変形量の許容範囲も狭くなる。それゆえ、支承体による加圧部材の位置の調整を厳しく行う必要が生じる。その結果、用意すべき支承体の種類を多くすることとなる。
これにより、電力変換装置の製造コストの低減が困難となる。
本発明は、かかる課題に鑑みてなされたものであり、半導体モジュールの放熱性を確保しつつ、製造コストを低減することができる、電力変換装置及びその製造方法を提供しようとするものである。
本発明の一態様は、電力変換回路の一部を構成する半導体モジュール(21)と、該半導体モジュールを冷却する冷却管(22)とを積層してなる半導体積層ユニット(2)と、
上記半導体積層ユニットの積層方向(X)の一端に配され、該半導体積層ユニットを積層方向に弾性的に加圧する加圧部材(3)と、
上記半導体積層ユニット及び上記加圧部材を収容する筐体(4)と、
上記筐体に設けられた支承壁(41)と上記加圧部材との間に介在する支承体(5)と、
を有し、
上記加圧部材は、上記半導体積層ユニットを押圧する押圧部(31)と、該押圧部の両側に形成された一対の被支承部(32)とを有し、
上記一対の被支承部のそれぞれと上記支承壁との間に、上記支承体が個別に設けてあり、
上記各支承体は、複数の支承ブロック(50)を上記積層方向に重ねてなる、電力変換装置(1)にある。
本発明の他の態様は、上記電力変換装置を製造する方法であって、
上記筐体内に、上記半導体積層ユニットと上記加圧部材とを配置し、
上記加圧部材における、上記押圧部を挟んで互いに反対側の一対の部位を、上記積層方向における上記半導体積層ユニット側へ、所定の大きさの加圧力にて押し込んで上記加圧部材を弾性変形させると共に、上記支承壁に対する上記被支承部の位置である支承目標位置を計測し、
予め用意された複数の上記支承ブロックを適宜組み合わせて、上記支承目標位置に応じた上記積層方向の寸法となるように、上記支承体を組立て、
上記一対の被支承部のぞれぞれと上記筐体の上記支承壁との間に、上記支承体をそれぞれ配置し、
上記支承体が上記被支承部と上記支承壁との間に挟持される状態とする、電力変換装置の製造方法にある。
上記電力変換装置において、上記各支承体は、複数の支承ブロックを上記積層方向に重ねてなる。そのため、複数の支承ブロックの組み合わせ方により、積層方向における支承体の寸法を適宜調整することができる。それゆえ、半導体積層ユニットの積層方向の寸法バラツキに対して、容易に対応することができる。
すなわち、半導体積層ユニットの積層方向の寸法に応じて、支承体の積層方向の寸法を適切に調整することで、半導体モジュールの放熱性を確保することができる。その一方で、複数の支承ブロックを重ねて支承体を構成する場合、支承ブロックの組合せ方により、支承体の寸法のバリエーションを増やすことができる。つまり、支承ブロックの種類を特に多くすることなく、支承体の寸法のバリエーションを多くすることができる。それゆえ、用意する支承ブロックの種類を少なくすることができる。その結果、電力変換装置の製造コストを低減することができる。
また、上記電力変換装置の製造方法においては、予め用意された複数の上記支承ブロックを適宜組み合わせて、上記支承目標位置に応じた積層方向の寸法となるように、支承体を組立てる。これにより、少ない種類の支承ブロックを適宜組み合わせて、多種の寸法の支承体を得ることができる。その結果、加圧部材に適切な加圧力を付与しつつ、製造コストを低減することができる。つまり、半導体モジュールの放熱性を確保しつつ、製造コストを低減することができる。
以上のごとく、上記態様によれば、半導体モジュールの放熱性を確保しつつ、製造コストを低減することができる、電力変換装置及びその製造方法を提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
実施形態1における、電力変換装置の平面図。 実施形態1における、支承体の取付状態を示す拡大平面図。 実施形態1における、加圧部材及び一対の支承体の斜視図。 実施形態1における、支承ブロックの斜視図。 実施形態1における、支承ブロックの平面図。 図5のVI視図。 図5のVII視図。 実施形態1における、支承目標寸法が比較的大きい電力変換装置の製造過程の説明図。 実施形態1における、支承目標寸法が中間の大きさの電力変換装置の製造過程の説明図。 実施形態1における、支承目標寸法が比較的小さい電力変換装置の製造過程の説明図。 実施形態1における、支承目標寸法が比較的大きい電力変換装置の説明図。 実施形態1における、支承目標寸法が中間の大きさの電力変換装置の説明図。 実施形態1における、支承目標寸法が比較的小さい電力変換装置の説明図。 実施形態1における、複数種類の支承ブロックの説明図。 実施形態2における、支承体の取付状態を示す拡大平面図。 実施形態3における、支承体の取付状態を示す拡大平面図。
(実施形態1)
電力変換装置及びその製造方法に係る実施形態について、図1〜図14を参照して説明する。
本形態の電力変換装置1は、図1に示すごとく、半導体積層ユニット2と、加圧部材3と、筐体4と、支承体5と、を有する。
半導体積層ユニット2は、電力変換回路の一部を構成する半導体モジュール21と、半導体モジュール21を冷却する冷却管22とを積層してなる。加圧部材3は、半導体積層ユニット2の積層方向Xの一端に配され、半導体積層ユニット2を積層方向Xに弾性的に加圧する。筐体4は、半導体積層ユニット2及び加圧部材3を収容する。支承体5は、筐体4に設けられた支承壁41と加圧部材3との間に介在する。
加圧部材3は、半導体積層ユニット2を押圧する押圧部31と、押圧部31の両側に形成された一対の被支承部32とを有する。一対の被支承部32のそれぞれと支承壁41との間に、支承体5が個別に設けてある。各支承体5は、複数の支承ブロック50を積層方向Xに重ねてなる。
本形態の電力変換装置1は、例えば、車両等に搭載され、直流電力と交流電力との間において、電力を変換するよう構成されている。
半導体積層ユニット2は、図1に示すごとく、複数の半導体モジュール21と、該複数の半導体モジュール21を両主面から冷却する複数の冷却管22とを積層してなる。積層方向Xに隣り合う冷却管22は、その長手方向の両端部付近において連結管23によって、互いに連結されている。連結管23は、積層方向Xに変形可能に構成されている。積層方向Xの一端の冷却管22からは、冷媒を導入する冷媒導入管24と、冷媒を排出する冷媒排出管25とが突出するように形成されている。冷却管22、連結管23、冷媒導入管24、及び冷媒排出管25は、アルミニウム等の金属によって構成される。
なお、本明細書において、積層方向Xを単にX方向ともいう。また、一対の支承体5の並び方向を、Y方向という。さらに、X方向とY方向との双方に直交する方向を、Z方向という。なお、本形態においては、冷却管22の長手方向が、Y方向と一致する。
隣り合う一対の冷却管22の間には、半導体モジュール21が狭持される状態で配されている。半導体モジュール21は、例えば、IGBT(絶縁ゲートバイポーラトランジスタの略)、MOSFET(MOS型電界効果トランジスタの略)等のスイッチング素子を内蔵してなる。
筐体4は、例えば、アルミニウム、ステンレス鋼等の金属又は合金によって構成することができる。筐体4は、略直方体形状を有する。そして、図1に示すごとく、Z方向から見たとき、筐体4は矩形状を有する。そして、Z方向から見た、筐体4における4辺のうちの1辺に相当する壁部が、支承壁41となる。この支承壁41の内側面に、当接配置した一対の支承体5を介して、加圧部材3が配設されている。
また、筐体4は、X方向における支承壁41と反対側の壁部に、半導体積層ユニット2に当接する対向壁42を有する。対向壁42の内側面に、半導体積層ユニット2におけるX方向の一端に配された冷却管22が当接している。すなわち、半導体積層ユニット2は、対向壁42と支承壁41との間に配置され、加圧部材3によってX方向に加圧されている。
加圧部材3は、板バネからなる。板バネは、半導体積層ユニット2側へ突出するように湾曲した部分と、その両端において半導体積層ユニット2と反対側へ突出するように湾曲した部分とを有する。加圧部材3は、半導体積層ユニット2側へ突出するように湾曲した部分に、押圧部31を有する。また、加圧部材3は、半導体積層ユニット2と反対側へ突出するように湾曲した一対の部分に、それぞれ被支承部32を有する。支承体5は、被支承部32と支承壁41との間に介設されている。
加圧部材3と半導体積層ユニット2との間には、当接板11が配置されている。当接板11は、剛性の高い平板状部材である。当接板11は、その一方の面に加圧部材3の押圧部31が当接し、他方の面が半導体積層ユニット2に面接触する。これにより、加圧部材3が当接する冷却管22が変形してしまうことを防いでいる。
図2、図3に示すごとく、支承体5は、複数の支承ブロック50をX方向に重ねてなる。
支承ブロック50は、互いに重ねられる他の支承ブロック50との間において、X方向に直交する方向の位置決めを行うブロック位置決め部51を有する。本形態においては、ブロック位置決め部51は、Y方向の位置決めを行う。
支承ブロック50は、ブロック位置決め部51として、被支承部32側に突出した位置決め凸部511と、支承壁41側の面に設けられた位置決め凹部512とを有する。位置決め凸部511と位置決め凹部512とが互いに嵌合している。
また、支承壁41は、壁側位置決め部411を有する。壁側位置決め部411は、支承壁41に当接する支承ブロック50との間において、X方向に直交する方向の位置決めを行う。本形態においては、壁側位置決め部411は、Y方向の位置決めを行う。また、壁側位置決め部411は、支承壁41の内側面から内側へ突出した凸部である。
図4、図6、図7に示すごとく、支承ブロック50は、積層方向Xと一対の支承体5の並び方向との双方に直交する高さ方向の全体にわたり、位置決め凸部511及び位置決め凹部512を連続して形成してなる。すなわち、位置決め凸部511及び位置決め凹部512は、それぞれ、支承ブロック50のZ方向の全体にわたり、連続して形成されている。図4〜図7に示すごとく、支承ブロック50は、Z方向に直交する断面形状が、Z方向のいずれの位置においても同じ形状となる、柱状体である。すなわち、支承ブロック50は、Z方向に直交する断面形状が例えば図5に示す形状となる、柱状体である。
図4、図5に示すごとく、支承ブロック50は、基体部501と、基体部501からX方向の一方側に突出した位置決め凸部511と、基体部501におけるY方向の両端からX方向の他方側へ突出した一対の翼部502と、を有する。Y方向における一対の翼部502の間に、位置決め凹部512が形成されている。
また、図5に示すごとく、位置決め凸部511の突出端面における、Y方向の一対の角部には、面取り部521が設けてある。位置決め凹部512の底面における、Y方向の一対の内側角部には、面取り部522が設けてある。翼部502の突出端面における、Y方向の内側端の角部には、面取り部523が設けてある。なお、図4においては、面取り部を省略してある。
支承体5を構成する複数の支承ブロック50は、互いに同じ寸法及び形状の位置決め凸部511を有し、互いに同じ寸法及び形状の位置決め凹部512を有する。そして、図2、図3に示すごとく、一方の支承ブロック50の位置決め凸部511が、他方の支承ブロック50の位置決め凹部512に嵌合する。これにより、Y方向の位置決めがなされた状態で、支承ブロック50同士が組み合わされて、支承体5が形成される。
位置決め凹部512のY方向の寸法は、位置決め凸部511よりも若干大きい程度で、略同一である。また、位置決め凹部512のX方向の深さは、位置決め凸部511のX方向の長さよりも若干大きいことが、安定性の観点から好ましい。ただし、必ずしもこれに限定されるものではない。
また、図2に示すごとく、支承壁41に形成された壁側位置決め部411は、支承ブロック50の位置決め凹部512に嵌合する形状を有する。すなわち、壁側位置決め部411は、Z方向から見た形状において、支承ブロック50の位置決め凸部511と略同様の形状を有する。図1に示すごとく、壁側位置決め部411は、支承壁41において、Y方向の2か所にそれぞれ形成されている。Y方向における壁側位置決め部411の位置は、加圧部材3における一対の被支承部32が配される位置に相当する。すなわち、一対の壁側位置決め部411の配置間隔は、一対の被支承部32の配置間隔と略同等である。壁側位置決め部411は、支承壁41と一体的に形成されていてもよいし、支承壁41に固定されたものであってもよい。
上述のように、支承体5は、複数の支承ブロック50をX方向に重ねて構成されているが、支承ブロック50の積層数は、特に限定されるものではない。また、互いに積層される支承ブロック50は、同じ形状及び寸法のものであってもよいし、異なる形状及び寸法のものであってもよい。ただし、異なる形状及び寸法の支承ブロック50であっても、上述のように、位置決め凸部511及び位置決め凹部512の形状及び寸法は、支承ブロック50の間において互いに同じである。
次に、本形態の電力変換装置1を製造する方法につき、図8〜図14を用いて説明する。なお、図8〜図10は、時系列的に並べたものではなく、それぞれ異なる製品の同じ工程の状態を表すものである。図11〜図13の関係も、これと同様である。なお、図8は、図11に示す完成品の製造途中の過程を示し、図9は、図12に示す完成品の製造途中の過程を示し、図10は、図13に示す完成品の製造途中の過程を示すものである。
まず、筐体4内に、半導体積層ユニット2と加圧部材3とを配置する。
次いで、図8〜図10に示すごとく、加圧部材3における、押圧部31を挟んで互いに反対側の一対の部位を、積層方向Xにおける半導体積層ユニット2側へ、所定の大きさの加圧力Fにて押し込む。これにより、加圧部材3を弾性変形させる。このときの支承壁41に対する被支承部32の位置である支承目標位置を計測する。なお、加圧部材3における押し込まれる部位である「押圧部31を挟んで互いに反対側の一対の部位」は、被支承部32よりもY方向の外側であってもよいし、内側であってもよい。本形態においては、当該部位は、被支承部32よりも外側であり、加圧部材3におけるY方向の両端部である。
そして、例えば図14に示すように、予め用意された複数の支承ブロック50を適宜組み合わせて、上記支承目標位置に応じた積層方向Xの寸法となるように、支承体5を組立てる。
その後、図11〜図13に示すごとく、一対の被支承部32のぞれぞれと筐体4の支承壁41との間に、支承体5をそれぞれ配置する。
そして、支承体5が被支承部32と支承壁41との間に挟持される状態とする。
上記支承目標位置は、上述のように、所定の大きさの加圧力Fにて加圧部材3を押し込んだときの、支承壁41に対する被支承部32の位置をいう。つまり、図8〜図10に示すごとく、押圧治具6によって、加圧部材3の両端部を、X方向における半導体積層ユニット2側へ押し込む。そうすると、加圧力に応じて、加圧部材3が弾性変形すると共に、半導体積層ユニット2も圧縮される。上記所定の大きさの加圧力Fは、半導体積層ユニット2をX方向に加圧する際に適切な大きさの加圧力である。この所定の加圧力Fは、半導体モジュール21の冷却性を充分に確保しつつ、半導体モジュール21を含めた半導体積層ユニット2への損傷を防ぐために必要な適正な範囲にある加圧力である。そして、この所定の加圧力Fは、予め設計されている。
この所定の大きさの加圧力Fにて加圧部材3を押し込んだとき、図8〜図10に示すごとく、半導体積層ユニット2の固体バラツキに起因して、半導体積層ユニット2によって、その圧縮量が異なり得る。その結果、加圧部材3の被支承部32と支承壁41との間の寸法が、製品によって異なり得る。それゆえ、このときの支承壁41に対する被支承部32の位置、すなわち支承目標位置を計測しておく。支承目標位置は、この位置で被支承部32を支承することで、所定の大きさの加圧力Fにて、半導体積層ユニット2を加圧できることとなる位置でもある。ここで、被支承部32が、支承目標位置にあるときの支承壁41と被支承部32との間のX方向の寸法を、支承目標寸法Gという。
次いで、加圧部材3を、上記所定の大きさの加圧力Fよりも更に大きい加圧力にて、X方向の半導体積層ユニット2側へ押し込む。これにより、被支承部32と支承壁41との間の寸法を、上記支承目標寸法Gよりも若干大きくしておく。この状態で、一対の被支承部32のそれぞれと支承壁41との間に、支承体5をそれぞれ配置する。このとき、支承体5のX方向の寸法が、支承目標位置に応じた寸法となるように、支承体5を組立てたうえで、支承壁41と被支承部32との間に配置する。また、このとき、支承体5における支承壁41側の端部の支承ブロック50の位置決め凹部512を、支承壁41に設けた壁側位置決め部411に嵌合させる。
その後、押圧治具6による加圧部材3を押し込む加圧力を低下させる。これにより、加圧部材3が復元する方向に一対の被支承部32が支承壁41側へ変位する。そして、一対の被支承部32が、それぞれ、一対の支承体5に当接する。この状態において、加圧部材3は、上記所定の大きさの加圧力Fが作用した状態で、半導体積層ユニット2と支承壁41との間に介在する。
上述のように、計測された支承目標位置に応じて、支承体5のX方向の寸法を適切な寸法にするように、複数の支承ブロック50を組み合わせて、支承体5を組立てる。つまり、予め、支承ブロック50を多数用意しておき、組み合わせる支承ブロック50の数や、種類を変更することで、寸法を適宜調整する。
本形態において、予め用意する複数の支承ブロック50には、図14に示すごとく、積層方向Xの寸法が互いに異なる複数種類の支承ブロック50を含む。例えば、X方向の寸法が互いに異なる3種類の支承ブロック50a、50b、50cを、それぞれ複数個ずつ用意しておく。ここで、X方向の寸法は、位置決め凹部512の底面と、位置決め凸部511の頂面との間の寸法とする。
そうすると、これら3種類の支承ブロック50a、50b、50cの組合せの仕方により、3種類を大きく超える多種類の寸法の支承体5を得ることができる。支承体5を組立てるにあたっては、3種類の支承ブロック50a、50b、50cのうち、2種類のみを用いてもよいし、1種類を複数個用いてもよい。或いは、積層する支承ブロック50の個数も、2個以上であればよく、3個以上の支承ブロック50を用いてもよい。そうすると、3種類の支承ブロック50の組合せ方により、極めて多くの種類の寸法の支承体5を得ることができる。
それゆえ、例えば、計測した支承目標寸法Gが、図8のように比較的大きい場合と、図10のように比較的小さい場合と、図9のようにその中間の場合とで、それぞれ組み合わせる支承ブロック50の種類や数を変更して、支承体5を組立てる。そして、図11〜図13のように、それぞれ適切に組み立てた支承体5を、加圧部材3の被支承部32と支承壁41との間に配置する。これにより、半導体積層ユニット2のX方向の寸法バラツキに対応して、適切な加圧力を、加圧部材3に容易に生じさせることができる。
次に、本実施形態の作用効果につき説明する。
上記電力変換装置1において、各支承体5は、複数の支承ブロック50をX方向に重ねてなる。そのため、複数の支承ブロック50の組み合わせ方により、X方向における支承体5の寸法を適宜調整することができる。それゆえ、半導体積層ユニット2のX方向の寸法バラツキに対して、容易に対応することができる。
すなわち、半導体積層ユニット2のX方向の寸法に応じて、支承体5のX方向の寸法を適切に調整することで、半導体モジュール21の放熱性を確保することができる。その一方で、複数の支承ブロック50を重ねて支承体5を構成する場合、支承ブロック50の組合せ方により、支承体5の寸法のバリエーションを増やすことができる。つまり、支承ブロック50の種類を特に多くすることなく、支承体5の寸法のバリエーションを多くすることができる。それゆえ、用意する支承ブロック50の種類を少なくすることができる。その結果、電力変換装置1の製造コストを低減することができる。
支承ブロック50は、ブロック位置決め部51を有する。これにより、互いに重ね合される支承ブロック50同士の位置決めを行うことができる。その結果、加圧部材3を安定して支承することができる。
支承壁41は、壁側位置決め部411を有する。これにより、支承壁41に対する支承体5の位置決めを容易かつ確実に行うことができる。
支承ブロック50は、ブロック位置決め部51として、位置決め凸部511と、位置決め凹部512とを有する。そして、位置決め凸部511と位置決め凹部512とが互いに嵌合している。これにより、支承ブロック50の形状を簡素にしつつ、安定した位置決めを実現することができる。
支承ブロック50は、高さ方向(すなわちZ方向)の全体にわたり、位置決め凸部511及び位置決め凹部512を連続して形成してなる。これにより、支承ブロック50の組み立て、及び筐体4内への設置を容易に行うことができる。また、支承ブロック50同士のY方向の位置ずれを確実に防ぐことができる。また、支承壁41に対する支承体5のY方向の位置ずれを確実に防ぐことができる。
また、上記電力変換装置の製造方法においては、予め用意された複数の支承ブロック50を適宜組み合わせて、上記支承目標位置に応じたX方向の寸法となるように、支承体5を組立てる。これにより、少ない種類の支承ブロック50を適宜組み合わせて、多種の寸法の支承体5を得ることができる。その結果、加圧部材3に適切な加圧力を付与しつつ、製造コストを低減することができる。つまり、半導体モジュール21の放熱性を確保しつつ、製造コストを低減することができる。
また、予め用意する複数の支承ブロック50には、X方向の寸法が互いに異なる複数種類の支承ブロック50a、50b、50cを含む。これにより、組み合わせの仕方によって、支承体5の寸法のバリエーションを特に多くすることができる。その結果、より細かく、加圧部材3の加圧力を調整することができる。
以上のごとく、本実施形態によれば、半導体モジュールの放熱性を確保しつつ、製造コストを低減することができる、電力変換装置及びその製造方法を提供することができる。
(実施形態2)
本実施形態においては、図15に示すごとく、支承ブロック50の形状を、実施形態1のものとは異ならせた形態を示す。
すなわち、支承ブロック50の翼部502を、X方向に対して斜めに形成したものである。また、翼部502における、位置決め凸部511側の傾斜面503は、位置決め凸部511の頂面につながっている。そして、傾斜面503は、位置決め凸部511の頂面から、X方向における加圧部材3と反対側へ向かうほどY方向における外側へ向かうように傾斜している。
翼部502における、位置決め凹部512側の傾斜面504は、位置決め凹部512の底面につながっている。そして、傾斜面504は、位置決め凹部512の底面から、X方向における加圧部材3と反対側へ向かうほどY方向における外側へ向かうように傾斜している。
そして、壁側位置決め部411は、位置決め凹部512の底面に対向する頂面412と、傾斜面504に対向する傾斜面413とを有する。
本形態においても、複数の支承ブロック50を重ね合わせて支承体5を形成する。そして、支承体5を、支承壁41と加圧部材3の被支承部32との間に介設する。
その他の構成は、実施形態1と同様である。なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
本形態においては、位置決め凹部512が、その開口方向へ向かって広がる形状を有している。それゆえ、位置決め凹部512に対して、位置決め凸部511或いは壁側位置決め部411を、より嵌入させやすい。
その他、実施形態1と同様の作用効果を有する。
(実施形態3)
本実施形態においても、図16に示すごとく、支承ブロック50の形状を、実施形態1のものとは異ならせた形態を示す。
本形態においては、支承ブロック50が、支承壁41側に、位置決め凸部511を設け、被支承部32側に、位置決め凹部512を設けている。
すなわち、翼部502は、Y方向の外側へ向かうほど、加圧部材3側へ向かうように傾斜している。
壁側位置決め部411は、支承ブロック50の位置決め凸部511を嵌合させる凹状面414を有する。
本形態においても、複数の支承ブロック50を重ね合わせて支承体5を形成する。そして、支承体5を、支承壁41と加圧部材3の被支承部32との間に介設する。このとき、加圧部材3の被支承部32は、支承ブロック50の位置決め凹部512の底面に当接する。
その他の構成は、実施形態1と同様である。
本形態においては、位置決め凹部512或いは壁側位置決め部411に対して、位置決め凸部511を、より嵌入させやすい。
その他、実施形態1と同様の作用効果を有する。
なお、上記実施形態においては、筐体の外周の壁部の一部を、支承壁とした形態を示したが、支承壁の態様は特にこれに限らない。例えば、支承壁は、筐体の内部に配置されたものであってもよい。
また、実施形態1においては、支承ブロックを3種類用意する製造方法を示したが、用意する支承ブロックの種類の数はこれに限らない。例えば、用意する支承ブロックの種類を、4種類以上とすることにより、支承体の寸法のバリエーションをより増やすことも可能である。また、用意する支承ブロックの種類を2種類として、製造コストをより低減することも可能である。或いは、用意する支承ブロックの種類は、1種類としてもよい。この場合、1種類の支承ブロックの積層数を変更することで、支承体の寸法のバリエーションを創出することも可能である。
本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
1 電力変換装置
2 半導体積層ユニット
21 半導体モジュール
22 冷却管
3 加圧部材
31 押圧部
32 被支承部
4 筐体
41 支承壁
5 支承体
50 支承ブロック

Claims (7)

  1. 電力変換回路の一部を構成する半導体モジュール(21)と、該半導体モジュールを冷却する冷却管(22)とを積層してなる半導体積層ユニット(2)と、
    上記半導体積層ユニットの積層方向(X)の一端に配され、該半導体積層ユニットを積層方向に弾性的に加圧する加圧部材(3)と、
    上記半導体積層ユニット及び上記加圧部材を収容する筐体(4)と、
    上記筐体に設けられた支承壁(41)と上記加圧部材との間に介在する支承体(5)と、
    を有し、
    上記加圧部材は、上記半導体積層ユニットを押圧する押圧部(31)と、該押圧部の両側に形成された一対の被支承部(32)とを有し、
    上記一対の被支承部のそれぞれと上記支承壁との間に、上記支承体が個別に設けてあり、
    上記各支承体は、複数の支承ブロック(50)を上記積層方向に重ねてなる、電力変換装置(1)。
  2. 上記支承ブロックは、互いに重ねられる他の支承ブロックとの間において、上記積層方向に直交する方向の位置決めを行うブロック位置決め部(51)を有する、請求項1に記載の電力変換装置。
  3. 上記支承壁は、上記支承壁に当接する上記支承ブロックとの間において、上記積層方向に直交する方向の位置決めを行う壁側位置決め部(411)を有する、請求項2に記載の電力変換装置。
  4. 上記支承ブロックは、上記ブロック位置決め部として、上記被支承部側に突出した位置決め凸部(511)と、上記支承壁側の面に設けられた位置決め凹部(512)とを有し、上記位置決め凸部と上記位置決め凹部とが互いに嵌合している、請求項2又は3に記載の電力変換装置。
  5. 上記支承ブロックは、上記積層方向と上記一対の支承体の並び方向(Y)との双方に直交する高さ方向(Z)の全体にわたり、上記位置決め凸部及び上記位置決め凹部を連続して形成してなる、請求項4に記載の電力変換装置。
  6. 請求項1〜5のいずれか一項に記載の電力変換装置を製造する方法であって、
    上記筐体内に、上記半導体積層ユニットと上記加圧部材とを配置し、
    上記加圧部材における、上記押圧部を挟んで互いに反対側の一対の部位を、上記積層方向における上記半導体積層ユニット側へ、所定の大きさの加圧力にて押し込んで上記加圧部材を弾性変形させると共に、上記支承壁に対する上記被支承部の位置である支承目標位置を計測し、
    予め用意された複数の上記支承ブロックを適宜組み合わせて、上記支承目標位置に応じた上記積層方向の寸法となるように、上記支承体を組立て、
    上記一対の被支承部のぞれぞれと上記筐体の上記支承壁との間に、上記支承体をそれぞれ配置し、
    上記支承体が上記被支承部と上記支承壁との間に挟持される状態とする、電力変換装置の製造方法。
  7. 予め用意する複数の上記支承ブロックには、上記積層方向の寸法が互いに異なる複数種類の支承ブロック(50a、50b、50c)を含む、請求項6に記載の電力変換装置の製造方法。
JP2017232898A 2017-12-04 2017-12-04 電力変換装置の製造方法 Active JP6969333B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232898A JP6969333B2 (ja) 2017-12-04 2017-12-04 電力変換装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232898A JP6969333B2 (ja) 2017-12-04 2017-12-04 電力変換装置の製造方法

Publications (2)

Publication Number Publication Date
JP2019103282A true JP2019103282A (ja) 2019-06-24
JP6969333B2 JP6969333B2 (ja) 2021-11-24

Family

ID=66974414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232898A Active JP6969333B2 (ja) 2017-12-04 2017-12-04 電力変換装置の製造方法

Country Status (1)

Country Link
JP (1) JP6969333B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581339B2 (en) 2018-05-11 2020-03-03 Denso Corporation Power conversion system and assembling method
JP2020089025A (ja) * 2018-11-21 2020-06-04 トヨタ自動車株式会社 電力変換装置
US10749437B2 (en) 2018-04-26 2020-08-18 Denso Corporation Power conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846241A (ja) * 1994-08-01 1996-02-16 Oki Electric Ind Co Ltd 発光ダイオード用位置決めスペーサ構造
JP2000038734A (ja) * 1998-07-21 2000-02-08 Nagashima Imono Kk 地下構造物の蓋受け枠装置
JP2013162541A (ja) * 2012-02-01 2013-08-19 Toyota Motor Corp 電力変換装置
JP2016029693A (ja) * 2014-07-25 2016-03-03 株式会社デンソー 積層型冷却器
JP2016059238A (ja) * 2014-09-12 2016-04-21 株式会社デンソー 電力変換装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846241A (ja) * 1994-08-01 1996-02-16 Oki Electric Ind Co Ltd 発光ダイオード用位置決めスペーサ構造
JP2000038734A (ja) * 1998-07-21 2000-02-08 Nagashima Imono Kk 地下構造物の蓋受け枠装置
JP2013162541A (ja) * 2012-02-01 2013-08-19 Toyota Motor Corp 電力変換装置
JP2016029693A (ja) * 2014-07-25 2016-03-03 株式会社デンソー 積層型冷却器
JP2016059238A (ja) * 2014-09-12 2016-04-21 株式会社デンソー 電力変換装置及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749437B2 (en) 2018-04-26 2020-08-18 Denso Corporation Power conversion device
US10581339B2 (en) 2018-05-11 2020-03-03 Denso Corporation Power conversion system and assembling method
JP2020089025A (ja) * 2018-11-21 2020-06-04 トヨタ自動車株式会社 電力変換装置
JP7099278B2 (ja) 2018-11-21 2022-07-12 株式会社デンソー 電力変換装置

Also Published As

Publication number Publication date
JP6969333B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
JP6488991B2 (ja) 電力変換装置
JP2019103282A (ja) 電力変換装置及びその製造方法
JP6197769B2 (ja) 電力変換装置及びその製造方法
JP6647991B2 (ja) 電力変換装置
JP5494210B2 (ja) 電力変換装置及びその製造方法
EP3522691A1 (en) Semiconductor apparatus
JP2015122265A (ja) 電池モジュールの製造方法
JP2019046707A (ja) 電池モジュール
JP2016029693A (ja) 積層型冷却器
WO2017033802A1 (ja) 押圧構造及び押圧ユニット
JP5333274B2 (ja) 電力変換装置
JP2011249651A (ja) コンデンサ
JP2018116832A (ja) 電池モジュール
JP2019004031A (ja) 半導体積層ユニット用の加圧部材
JP6882932B2 (ja) 電子部品の固定構造
JP2018137918A (ja) 電力変換装置
JP7133762B2 (ja) 電力変換装置とその製造方法
JP6341084B2 (ja) 積層型装置
JP6119419B2 (ja) 電力変換装置
JP6862271B2 (ja) 電力変換装置
JP5573761B2 (ja) 電力変換装置
JP5765208B2 (ja) 電力変換装置およびその製造方法
JP2019140176A (ja) 半導体装置
JP6088903B2 (ja) 電力変換装置
JP2014138449A (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R151 Written notification of patent or utility model registration

Ref document number: 6969333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151