JP2019065383A - MoNb target material - Google Patents

MoNb target material Download PDF

Info

Publication number
JP2019065383A
JP2019065383A JP2018115830A JP2018115830A JP2019065383A JP 2019065383 A JP2019065383 A JP 2019065383A JP 2018115830 A JP2018115830 A JP 2018115830A JP 2018115830 A JP2018115830 A JP 2018115830A JP 2019065383 A JP2019065383 A JP 2019065383A
Authority
JP
Japan
Prior art keywords
target material
thin film
sputtering
phase
monb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018115830A
Other languages
Japanese (ja)
Other versions
JP7110749B2 (en
Inventor
福岡 淳
Atsushi Fukuoka
淳 福岡
青木 大輔
Daisuke Aoki
大輔 青木
斉藤 和也
Kazuya Saito
和也 斉藤
英 上野
Suguru Ueno
英 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2019065383A publication Critical patent/JP2019065383A/en
Application granted granted Critical
Publication of JP7110749B2 publication Critical patent/JP7110749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

To provide a target material capable of resolving a problem of a high resistance occurring in an underlayer film of a wiring thin film and an electrode thin film and a problem of a nodule attributed to a surface roughness of a target material in sputtering, and forming a MoNb film suitable for a flat image display device capable of obtaining a stable TFT property with a low resistance.SOLUTION: A MoNb target material has a composition consisting of a Nb of 5 atom% to 30 atom%, and a rest of Mo and an inevitable impurity, and less than 1.0 Nb phase having a maximum length of more than 70 μm per 200000 μmof a sputtering surface. An average circle-equivalent diameter of the Nb phase is preferably 15 μm to 65 μm.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、平面画像表示装置の配線薄膜や電極薄膜の下地膜やカバー膜となるMoNb薄膜の形成に用いるMoNbターゲット材に関するものである。   The present invention relates to, for example, a MoNb target material used for forming a MoNb thin film to be a wiring thin film of a planar image display device, an underlayer of an electrode thin film, or a cover film of an electrode thin film.

平面画像表示装置の一種である薄膜トランジスタ(以下、「TFT」という。)型液晶ディスプレイ等の配線薄膜や電極薄膜は、低い電気抵抗値(以下、「低抵抗」という。)を有するAl、Cu、Ag、Au等の純金属からなる薄膜や、それらの合金からなる薄膜が用いられている。これらの配線薄膜や電極薄膜は、製造工程によっては加熱工程を伴う場合があり、配線や電極として要求される耐熱性、耐食性、密着性のいずれかが劣るという問題や、上記の合金を構成する元素間で拡散層を形成してしまい、必要な電気的特性が失われる等の問題が生じる場合がある。   Wiring thin films (hereinafter referred to as “TFT”) type liquid crystal displays and other electrode thin films, which are a type of flat panel display, are made of Al, Cu, or the like having low electric resistance (hereinafter referred to as “low resistance”). Thin films made of pure metals such as Ag and Au, and thin films made of alloys thereof are used. These wiring thin films and electrode thin films may involve a heating process depending on the manufacturing process, and have the problem that any of heat resistance, corrosion resistance and adhesion required as wiring and electrodes is inferior, or the above-mentioned alloy is formed A diffusion layer may be formed between elements, which may cause problems such as loss of necessary electrical characteristics.

これらの問題を解決するために、上記の配線薄膜や電極薄膜に対する下地膜やカバー膜として、高融点金属である純MoやMo合金が使用されるようになってきている。特に、Al系の配線薄膜や電極薄膜の下地膜やカバー膜には、MoNb等のMo合金薄膜が使用されており、このMo合金薄膜を形成するためのターゲット材に関しては、例えば、特許文献1のような提案がなされている。
この特許文献1は、機械加工時に、割れや欠けが発生する可能性の高い、Mo合金ターゲットにおいて、硬さのばらつきを低減することが提案されており、切削工具のチップの摩耗や破損を抑制しつつ、Mo合金ターゲット材本体の破損を抑制することができるという点で有用な技術である。
In order to solve these problems, pure Mo or Mo alloy, which is a high melting point metal, has come to be used as a base film or a cover film for the above wiring thin film and electrode thin film. In particular, a Mo alloy thin film such as MoNb is used as a base film or a cover film of an Al-based wiring thin film or electrode thin film, and for a target material for forming this Mo alloy thin film, for example, Suggestions like are being made.
In this Patent Document 1, it is proposed to reduce the variation in hardness in the Mo alloy target, which has a high possibility of cracking or chipping at the time of machining, and suppresses the wear and breakage of the cutting tool tip While being, it is a useful technique at the point that the failure | damage of Mo alloy target material main body can be suppressed.

特開2016−188394号公報JP, 2016-188394, A

本発明者は、特許文献1に記載のあるMo合金としてMoNbを採用し、MoNbターゲット材(以下、単に「ターゲット材」ともいう。)を用いてMoNb薄膜を形成すると、そのMoNb薄膜の比抵抗が高くなる(以下、「高抵抗」という。)という新たな問題が生じる場合があることを確認した。そして、この高抵抗という問題は、上記した配線薄膜や電極薄膜が具備する低抵抗という本来の機能を阻害してしまい、TFT特性の不安定化といった平面画像表示装置の信頼性に悪影響を及ぼす場合がある。   The present inventor adopts MoNb as the Mo alloy described in Patent Document 1, and forms a MoNb thin film using a MoNb target material (hereinafter, also simply referred to as "target material"), the specific resistance of the MoNb thin film It has been confirmed that there may be a new problem of becoming high (hereinafter referred to as "high resistance"). Then, the problem of high resistance hinders the inherent function of low resistance provided in the above-mentioned wiring thin film and electrode thin film, and adversely affects the reliability of the flat panel display such as destabilization of TFT characteristics. There is.

また、本発明者は、成膜速度の向上を目的に、上記のターゲット材を用いて高電力でスパッタリングをすると、積算電力の増大に伴い、ターゲット材の表面粗さが大きくなり、ターゲット材のスパッタリング面にノジュールが生成される場合があることも確認した。そして、このノジュールの問題は、得られるMoNb薄膜にパーティクルが付着してしまい、TFT特性の不安定化といった平面画像表示装置の信頼性に悪影響を及ぼす場合がある。   Moreover, when the present inventor performs sputtering with high power using the above target material for the purpose of improving the deposition rate, the surface roughness of the target material increases with the increase of integrated power, and It was also confirmed that nodules may be generated on the sputtering surface. Then, the problem of the nodule may cause the adhesion of particles to the obtained MoNb thin film, which may adversely affect the reliability of the flat panel display such as the instability of the TFT characteristics.

本発明の目的は、上記課題に鑑み、配線薄膜や電極薄膜の下地膜やカバー膜に生じる高抵抗の問題と、スパッタリングにおけるターゲット材の表面粗さに起因するノジュールの問題を解決し、低抵抗で安定したTFT特性が得られる平面画像表示装置に好適なMoNb薄膜を形成可能なターゲット材を提供することである。   In view of the above problems, the object of the present invention is to solve the problem of high resistance occurring in the base film or cover film of the wiring thin film or electrode thin film and the problem of nodules caused by the surface roughness of the target material in sputtering, and low resistance It is an object of the present invention to provide a target material capable of forming a MoNb thin film suitable for a flat panel display capable of obtaining stable TFT characteristics.

本発明のMoNbターゲット材は、Nbを5原子%〜30原子%含有し、残部がMoおよび不可避的不純物からなる組成を有し、スパッタリング面の200000μm当たりで、70μmを超える最大長を有するNb相が1.0個未満である。 The MoNb target material of the present invention contains 5 atomic% to 30 atomic% of Nb, the balance being Mo and inevitable impurities, and having a maximum length of more than 70 μm per 200,000 μm 2 of the sputtering surface. There are less than 1.0 phases.

また、本発明のMoNbターゲット材は、前記スパッタリング面の200000μm当たりで、Nb相の平均円相当径が15μm〜65μmであることが好ましい。 In the MoNb target material of the present invention, the average equivalent circle diameter of the Nb phase is preferably 15 μm to 65 μm per 200,000 μm 2 of the sputtering surface.

本発明のターゲット材は、形成されるMoNb薄膜の比抵抗が高くなることを抑制できる。また、本発明のターゲット材は、高電力でのスパッタリング後においても、スパッタリング面が平滑であるため、ノジュールの生成を抑制することができる。
これにより、本発明は、パーティクルの付着が抑制され、低抵抗で平面画像表示装置の配線薄膜や電極薄膜の下地膜やカバー膜に好適なMoNb薄膜が形成可能となり、例えば、TFT型液晶ディスプレイ等の製造に有用な技術となる。
The target material of the present invention can suppress the increase in the specific resistance of the formed MoNb thin film. Further, the target material of the present invention can suppress generation of nodules because the sputtering surface is smooth even after sputtering with high power.
As a result, according to the present invention, adhesion of particles is suppressed, and a MoNb thin film suitable for the wiring thin film of the flat image display device or the base film or cover film of the electrode thin film can be formed with low resistance. It is a useful technology for the manufacture of

スパッタリング前の本発明例1となるターゲット材のスパッタリング面を走査型電子顕微鏡で観察した写真。The photograph which observed the sputtering surface of the target material used as the example 1 of this invention before sputtering by a scanning electron microscope. スパッタリング前の本発明例2となるターゲット材のスパッタリング面を走査型電子顕微鏡で観察した写真。The photograph which observed the sputtering surface of the target material used as Example 2 of this invention before sputtering by a scanning electron microscope. スパッタリング前の比較例となるターゲット材のスパッタリング面を走査型電子顕微鏡で観察した写真。The photograph which observed the sputtering surface of the target material used as the comparative example before sputtering with a scanning electron microscope. スパッタリング後の本発明例1となるターゲット材のスパッタリング面を光学顕微鏡で観察した写真。The photograph which observed the sputtering surface of the target material used as the example 1 of this invention after sputtering by an optical microscope. スパッタリング後の本発明例2となるターゲット材のスパッタリング面を光学顕微鏡で観察した写真。The photograph which observed the sputtering surface of the target material used as Example 2 of this invention after sputtering by an optical microscope. スパッタリング後の比較例となるターゲット材のスパッタリング面を光学顕微鏡で観察した写真。The photograph which observed the sputtering surface of the target material used as the comparative example after sputtering by an optical microscope.

本発明のターゲット材は、スパッタリング面の200000μm当たりで、70μmを超える最大長を有するNb相を1.0個未満とする。すなわち、本発明のターゲット材は、Moよりもスパッタリング率の低いNbを、最大長が70μm以下という粗大化していない状態でターゲット材の組織中に存在させている。これにより、本発明のターゲット材は、得られるMoNb薄膜の比抵抗が高くなることを抑制できるという効果を奏する。そして、本発明のターゲット材は、成膜速度の向上を目的に、高電力でスパッタリングした際にも、MoとNbが均一にスパッタリングされるため、スパッタリング面の表面粗さの増大が抑制され、ノジュールの生成を抑制できるという効果も奏する。
また、上記と同様の理由から、本発明のターゲット材は、そのスパッタリング面の200000μm当たりで、50μmを超える最大長を有するNb相が1.0個未満であることが好ましく、40μmを超える最大長を有するNb相が1.0個未満であることがより好ましい。
The target material of the present invention has less than 1.0 Nb phase having a maximum length of more than 70 μm per 200,000 μm 2 of the sputtering surface. That is, in the target material of the present invention, Nb, which has a sputtering rate lower than that of Mo, is present in the structure of the target material without being coarsened to a maximum length of 70 μm or less. As a result, the target material of the present invention has the effect of being able to suppress an increase in the specific resistance of the obtained MoNb thin film. Further, in the target material of the present invention, Mo and Nb are uniformly sputtered even when sputtering is performed with high power for the purpose of improving the deposition rate, so that the increase in the surface roughness of the sputtering surface is suppressed. There is also an effect that generation of nodules can be suppressed.
For the same reason as above, the target material of the present invention preferably has less than 1.0 Nb phase having a maximum length exceeding 50 μm per 200,000 μm 2 of the sputtering surface, and a maximum exceeding 40 μm More preferably, the length of the Nb phase is less than 1.0.

ここで、本発明でいうNb相の最大長および平均円相当径は、ターゲット材のスパッタリング面の任意の200000μm当たりの視野において、走査型電子顕微鏡によりMo相とNb相を高コントラストで撮影し、その画像を画像解析ソフト(例えば、OLYMPUS SOFT IMAGING SOLUTIONS GMBH製の「Scandium」)を用いて測定することができる。また、本発明では、複数のNb相が連結しているような場合のNb相の最大長は、連結したNb相の最外周で構成される最大長を採用する。 Here, the maximum length and the average equivalent circle diameter of the Nb phase in the present invention are obtained by photographing the Mo phase and the Nb phase with high contrast by a scanning electron microscope in a field of view per 200000 μm 2 of the sputtering surface of the target material. The image can be measured using image analysis software (for example, "Scandium" manufactured by OLYMPUS SOFT IMAGING SOLUTIONS GMBH). Further, in the present invention, as the maximum length of the Nb phase in the case where a plurality of Nb phases are connected, the maximum length constituted by the outermost periphery of the connected Nb phase is adopted.

そして、本発明のターゲット材は、ターゲット材の組織中に、スパッタリング率がMoよりも低いNbを微細に分散させる観点から、スパッタリング面の200000μm当たりで、Nb相の平均円相当径を15μm〜65μmにすることが好ましい。これにより、本発明のターゲット材は、成膜速度の向上を目的に、高電力でスパッタリングした際にも、MoとNbを均一にスパッタリングすることができ、ターゲット材の成分に近似した成分のMoNb薄膜を得ることができる点で好ましい。また、上記と同様の理由から、Nb相の平均円相当径は、50μm以下であることがより好ましく、45μm以下がさらに好ましい。
また、原料粉末の調整等といった生産性の観点からは、Nb相の平均円相当径は、20μm以上であることがより好ましく、25μm以上がさらに好ましい。
The target material of the present invention has an average equivalent circle diameter of 15 μm to the Nb phase per 200,000 μm 2 of the sputtering surface from the viewpoint of finely dispersing Nb having a sputtering rate lower than Mo in the structure of the target material. The thickness is preferably 65 μm. As a result, the target material of the present invention can uniformly sputter Mo and Nb even when sputtering with high power for the purpose of improving the film forming rate, and MoNb of the component approximate to the component of the target material It is preferable at the point which can obtain a thin film. Further, for the same reason as above, the average equivalent circle diameter of the Nb phase is more preferably 50 μm or less, and still more preferably 45 μm or less.
Further, from the viewpoint of productivity such as adjustment of the raw material powder, the average equivalent circle diameter of the Nb phase is more preferably 20 μm or more, and further preferably 25 μm or more.

本発明のターゲット材は、Nbを5原子%〜30原子%含有し、残部がMoおよび不可避的不純物からなる組成を有する。Nbの含有量は、配線薄膜や電極薄膜の下地膜やカバー膜としてMoNb薄膜を使用した際に、低抵抗性やエッチャントに対する耐エッチング性等の特性を維持することができる、平面画像表示装置の製造が可能な範囲として規定する。そして、上記と同様の理由から、Nbの含有量は、7原子%以上が好ましく、9原子%以上がより好ましい。また、上記と同様の理由から、Nbの含有量は、20原子%以下が好ましく、15原子%以下がより好ましい。   The target material of the present invention has a composition containing 5 atomic% to 30 atomic% of Nb, with the balance being Mo and unavoidable impurities. The content of Nb can maintain characteristics such as low resistance and etching resistance to an etchant when an MoNb thin film is used as a base film or a cover film of a wiring thin film or electrode thin film. It defines as the range which can be manufactured. And, for the same reason as above, the content of Nb is preferably 7 atomic% or more, more preferably 9 atomic% or more. Further, for the same reason as above, the content of Nb is preferably 20 atomic% or less, and more preferably 15 atomic% or less.

本発明のターゲット材の製造方法の一例を説明する。本発明のターゲット材は、例えば、Mo粉末とNb粉末を原料粉末として用意し、この原料粉末を混合して加圧容器に充填し、この加圧容器を加圧焼結して焼結体を作製し、この焼結体に機械加工および研磨を施して得ることができる。ここで、原料粉末に用いるMo粉末は、平均粒径(累積粒度分布のD50、以下「D50」という。)が2μm〜10μmのMo粉末や、このMo粉末とD50が25μm〜55μmのMo粉末を混合した混合Mo粉末を用いることで、ターゲット材中のMo相の偏析を抑制できる点で好ましい。   An example of the method for producing a target material of the present invention will be described. In the target material of the present invention, for example, Mo powder and Nb powder are prepared as raw material powders, the raw material powders are mixed and filled in a pressure vessel, and the pressure vessel is pressure sintered to obtain a sintered body. The sintered body can be obtained by machining and polishing. Here, the Mo powder used as the raw material powder is Mo powder having an average particle size (D50 of cumulative particle size distribution, hereinafter referred to as "D50") of 2 μm to 10 μm, or Mo powder of this Mo powder and D50 of 25 μm to 55 μm. It is preferable at the point which can suppress segregation of Mo phase in a target material by using the mixed Mo powder mixed.

原料粉末に用いるNb粉末は、D50が25μm〜65μmのNb粉末を篩にかけて、得られる70μmアンダーのNb粉末を使用することで、最大長が70μmを超える粗大なNb相がなく、Nb相の平均円相当径が15μm〜65μmの範囲にある、均一で微細な組織を有するターゲット材を得ることができる点で好ましい。
また、成膜速度の向上を目的に、より高電力でのスパッタリングを想定し、ノジュールの生成を抑制するためには、D50が25μm〜65μmのNb粉末を篩にかけて、得られる45μmアンダーのNb粉末を使用することがより好ましい。
そして、本発明のターゲット材を得るには、上記の原料粉末を加圧焼結する前に、上記の加圧容器を400℃〜500℃に加熱して真空脱気してから封止をすることにより、次工程の加圧焼結でNbが粒成長することを抑制できる点で好ましい。
The Nb powder used as the raw material powder is obtained by sieving an Nb powder with a D50 of 25 μm to 65 μm and using the obtained 70 μm under Nb powder, there is no coarse Nb phase having a maximum length exceeding 70 μm, and the average of the Nb phase It is preferable at the point which can obtain the target material which has a uniform and fine structure | tissue in which the equivalent circle diameter is in the range of 15 micrometers-65 micrometers.
In addition, in order to improve the deposition rate, sputtering with higher power is assumed, and in order to suppress the generation of nodules, Nb powder of 45 μm under obtained by sieving N50 powder having a D50 of 25 μm to 65 μm. It is more preferred to use
And, in order to obtain the target material of the present invention, the above-mentioned pressurized container is heated to 400 ° C. to 500 ° C. for vacuum degassing and then sealed before the above raw material powder is pressure sintered. It is preferable at the point which can suppress that Nb grain-grows by pressure sintering of the following process by this.

加圧焼結は、例えば、熱間静水圧プレスやホットプレスを適用することが可能であり、1000℃〜1500℃、80MPa〜160MPa、1時間〜15時間の条件で行なうことが好ましい。これらの条件の選択は、得ようとするターゲット材の成分、サイズ、加圧焼結装置等に依存する。例えば、熱間静水圧プレスは、低温高圧の条件が適用しやすく、ホットプレスは、高温低圧の条件が適用しやすい。本発明では、長辺が2m以上の大型のターゲット材を得ることが可能な熱間静水圧プレスを用いることが好ましい。   The pressure sintering can be performed by, for example, hot isostatic pressing or hot pressing, and is preferably performed under conditions of 1000 ° C. to 1500 ° C., 80 MPa to 160 MPa, and 1 hour to 15 hours. The choice of these conditions depends on the composition of the target material to be obtained, the size, the pressure sintering apparatus and the like. For example, hot isostatic pressing is likely to be applied under low temperature and high pressure conditions, and hot pressing is likely to be applied under high temperature and low pressure conditions. In the present invention, it is preferable to use a hot isostatic press capable of obtaining a large target material having a long side of 2 m or more.

ここで、焼結温度は、1000℃以上にすることで、焼結が促進され、緻密なターゲット材を得ることができる点で好ましい。また、焼結温度は、1500℃以下にすることで、Nbの粒成長が抑制され、均一で微細な組織を得ることができる点で好ましい。
加圧力は、80MPa以上にすることで、焼結が促進され、緻密なターゲット材を得ることができる点で好ましい。また、加圧力は、160MPa以下にすることで、汎用の加圧焼結装置を用いることができる点で好ましい。
焼結時間は、1時間以上にすることで、焼結が促進され、緻密なターゲット材を得ることができる点で好ましい。また、焼結時間は、15時間以下にすることで、製造効率を阻害することなく、Nbの粒成長が抑制された、緻密なターゲット材を得ることができる点で好ましい。
Here, by setting the sintering temperature to 1000 ° C. or higher, sintering is promoted, which is preferable in that a dense target material can be obtained. Also, by setting the sintering temperature to 1500 ° C. or less, grain growth of Nb is suppressed, which is preferable in that uniform and fine structure can be obtained.
By setting the pressure to 80 MPa or more, sintering is promoted, which is preferable in that a dense target material can be obtained. Moreover, it is preferable at the point which can use a general purpose pressure sintering apparatus by setting a pressure to 160 Mpa or less.
The sintering time is preferably 1 hour or more in that sintering is promoted and a dense target material can be obtained. In addition, setting the sintering time to 15 hours or less is preferable in that a dense target material in which grain growth of Nb is suppressed can be obtained without inhibiting production efficiency.

D50が4μmのMo粉末と、D50が55μmのNb粉末に篩を用いて70μmアンダーとしたNb粉末とを、Nbを10原子%含有し、残部がMoおよび不可避的不純物からなる組成となるように、クロスロータリー混合機で混合して混合粉末を用意した。
次に、軟鋼製の加圧容器に上記で用意した混合粉末を充填して、脱気口を有する上蓋を溶接した。そして、この加圧容器を450℃の温度で真空脱気をして封止をした後、1250℃、145MPa、10時間の条件で熱間静水圧プレス処理を行ない、本発明例1のターゲット材の素材となる焼結体を得た。
A composition containing 10 atomic% of Nb and the balance of Mo and unavoidable impurities, with Mo powder of D50 of 4 μm and Nb powder of 70 μm under using a Nb powder of D50 of 55 μm with a sieve The mixture was mixed with a cross rotary mixer to prepare a mixed powder.
Next, a pressurized container made of mild steel was filled with the mixed powder prepared above, and an upper lid having a degassing port was welded. Then, this pressurized container is sealed by vacuum degassing at a temperature of 450 ° C., and then subjected to hot isostatic pressing under the conditions of 1250 ° C., 145 MPa and 10 hours, and the target material of Inventive Example 1 The sintered body used as the raw material of was obtained.

D50が4μmのMo粉末と、D50が35μmのNb粉末に篩を用いて45μmアンダーとしたNb粉末とを、Nbを10原子%含有し、残部がMoおよび不可避的不純物からなる組成となるように、クロスロータリー混合機で混合して混合粉末を用意した。
次に、軟鋼製の加圧容器に上記で用意した混合粉末を充填して、脱気口を有する上蓋を溶接した。そして、この加圧容器を450℃の温度で真空脱気をして封止をした後、1250℃、145MPa、10時間の条件で熱間静水圧プレス処理を行ない、本発明例2のターゲット材の素材となる焼結体を得た。
A composition containing 10 atomic% of Nb and the balance of Mo and unavoidable impurities, with Mo powder having D50 of 4 μm and Nb powder with 45 μm under using Nb powder with D50 of 35 μm and containing 10 atomic% of Nb The mixture was mixed with a cross rotary mixer to prepare a mixed powder.
Next, a pressurized container made of mild steel was filled with the mixed powder prepared above, and an upper lid having a degassing port was welded. Then, the pressurized container is sealed by vacuum degassing at a temperature of 450 ° C., and then subjected to hot isostatic pressing under the conditions of 1250 ° C., 145 MPa and 10 hours, and the target material of Inventive Example 2 The sintered body used as the raw material of was obtained.

D50が4μmのMo粉末とD50が115μmのNb粉末とを、Nbを10原子%含有し、残部がMoおよび不可避的不純物からなる組成となるように、クロスロータリー混合機で混合して混合粉末を用意した。
次に、軟鋼製の加圧容器に上記で用意した混合粉末を充填して、脱気口を有する上蓋を溶接した。そして、この加圧容器を450℃の温度で真空脱気をして封止をした後、1250℃、145MPa、10時間の条件で熱間静水圧プレス処理を行ない、比較例のターゲット材の素材となる焼結体を得た。
The mixed powder is mixed by a cross rotary mixer such that Mo powder containing 4 μm of D50 and Nb powder containing D50 containing 15 atomic% of Nb is contained in the composition consisting of Mo and unavoidable impurities. Prepared.
Next, a pressurized container made of mild steel was filled with the mixed powder prepared above, and an upper lid having a degassing port was welded. And after carrying out vacuum degassing and sealing this pressure vessel at a temperature of 450 ° C., hot isostatic pressing is performed under the conditions of 1250 ° C., 145 MPa, 10 hours, and the material of the target material of the comparative example The sintered body which becomes is obtained.

上記で得た各焼結体に、機械加工および研磨を施して、それぞれ、直径180mm×厚さ5mmのターゲット材を作製した。
上記で得た各ターゲット材のスパッタリング面を走査型電子顕微鏡の反射電子像で、任意の横:591μm×縦:435μm(面積:257085μm)の視野のうち、200000μmとなる視野を3視野観察して、各視野内に存在する各Nb相の最大長を測定し、最大長が70μmを超えるNb相の個数を計測した。また、各視野に存在するNb相の円相当径を測定し、3視野の平均円相当径を算出した。
ここで、計測は、走査型電子顕微鏡によりMo相とNb相を高コントラストで撮影し、その画像について、OLYMPUS SOFT IMAGING SOLUTIONS GMBH製の画像解析ソフト(Scandium)を用いて行なった。その結果を表1に示す。
また、スパッタリング前の各ターゲット材のスパッタリング面を走査型電子顕微鏡で観察した結果を図1〜図3に示す。
Each sintered body obtained above was subjected to machining and polishing to produce target materials each having a diameter of 180 mm and a thickness of 5 mm.
The sputtering surfaces of the target material obtained above by the reflection electron image of a scanning electron microscope, any horizontal: 591μm × Vertical: 435μm (area: 257085μm 2) of the field of view of the three field observation visual field as the 200000Myuemu 2 Then, the maximum length of each Nb phase present in each field of view was measured, and the number of Nb phases whose maximum length exceeded 70 μm was measured. Further, the circle equivalent diameter of the Nb phase present in each visual field was measured, and the average circular equivalent diameter of the three visual fields was calculated.
Here, the measurement was performed by photographing the Mo phase and the Nb phase with a high contrast by a scanning electron microscope, and using the image analysis software (Scandium) manufactured by OLYMPUS SOFT IMAGING SOLUTIONS GMBH for the image. The results are shown in Table 1.
Moreover, the result of having observed the sputtering surface of each target material before sputtering with a scanning electron microscope is shown in FIGS.

各ターゲット材について、キヤノンアネルバ株式会社製のDCマグネトロンスパッタ装置(型式:C3010)を用いて、Ar雰囲気、圧力0.5Pa、電力500Wの条件で、厚さが300nmのMoNb薄膜をガラス基板上に形成して、比抵抗測定用の試料を3枚ずつ得た。そして、比抵抗の測定は、株式会社ダイヤインスツルメント製の4端子薄膜抵抗率測定器(MCP−T400)を用いた。その結果を表1に示す。   For each target material, a MoNb thin film with a thickness of 300 nm was deposited on a glass substrate under an Ar atmosphere, a pressure of 0.5 Pa, and a power of 500 W using a DC magnetron sputtering apparatus (type: C3010) manufactured by Canon Anelva Corporation. It formed, and obtained three samples for resistivity measurement. And the measurement of a specific resistance used the 4-terminal thin film resistivity measuring device (MCP-T400) made from Diamond Instruments. The results are shown in Table 1.

各ターゲット材について、キヤノンアネルバ株式会社製のDCマグネトロンスパッタ装置(型式:C3010)を用いて、Ar雰囲気、圧力0.5Pa、電力1000W、スパッタリング時間30分の条件でスパッタリングを実施した。
そして、各ターゲット材について、スパッタリング前後におけるスパッタリング面の表面粗さを測定した。表面粗さは、株式会社ミツトヨ製の小形表面粗さ測定機(SU−210)を用いて、研磨方向に対して直角方向におけるJIS B 0601:2001で規定される算術平均粗さ(Ra)を測定した。その結果を表1に示す。
また、スパッタリング後の各ターゲット材のスパッタリング面を光学顕微鏡で観察した結果を図4〜図6に示す。
For each target material, sputtering was performed under the conditions of an Ar atmosphere, a pressure of 0.5 Pa, a power of 1000 W, and a sputtering time of 30 minutes using a DC magnetron sputtering apparatus (type: C3010) manufactured by Canon Anelva Corporation.
And the surface roughness of the sputtering surface in before and behind sputtering was measured about each target material. The surface roughness is an arithmetic mean roughness (Ra) defined in JIS B 0601: 2001 in a direction perpendicular to the polishing direction using a small surface roughness measuring machine (SU-210) manufactured by Mitutoyo Corporation. It was measured. The results are shown in Table 1.
Moreover, the result of having observed the sputtering surface of each target material after sputtering with an optical microscope is shown in FIGS.

本発明のターゲット材は、図1および図2に示すように、基地となるMo相1に微細なNb相2が分散していることがわかる。そして、本発明のターゲット材は、いずれの視野においても、Nb相の平均円相当径が30μm〜49μmであった。また、最大長が70μmを超えるNb相は1個も確認されず、その3視野の平均個数は1.0個未満であることが確認できた。
また、本発明のターゲット材は、確認した3視野で、Nb相の最大長が、最大値であっても68μmであることが確認できた。
In the target material of the present invention, as shown in FIG. 1 and FIG. 2, it can be seen that fine Nb phase 2 is dispersed in Mo phase 1 as the base. And the target material of this invention was 30 micrometers-49 micrometers in average circle equivalent diameter of Nb phase also in any visual field. Further, no Nb phase having a maximum length of more than 70 μm was confirmed, and it was confirmed that the average number of the three fields of view was less than 1.0.
Moreover, it was confirmed that the maximum length of the Nb phase of the target material of the present invention is 68 μm even in the maximum value in the three fields of view confirmed.

また、本発明のターゲット材は、図4および図5に示すように、スパッタリング後の算術平均粗さRaが2.00μm未満であり、高電力の継続スパッタリングによるノジュールの生成、すなわち配線薄膜や電極薄膜の下地膜やカバー膜へのパーティクルが付着する問題に対して有用なターゲット材であることが確認できた。
また、本発明のターゲット材を用いて形成したMoNb薄膜は、比抵抗が15.2μΩ・cm以下であり、配線薄膜や電極薄膜の下地膜やカバー膜として低抵抗で有用な薄膜であることが確認できた。
Further, as shown in FIG. 4 and FIG. 5, the target material of the present invention has an arithmetic average roughness Ra after sputtering of less than 2.00 μm, and produces nodules by high power continuous sputtering, ie, wiring thin film and electrodes It has been confirmed that the target material is a useful target material for the problem of particles adhering to the thin film base film and the cover film.
The MoNb thin film formed using the target material of the present invention has a specific resistance of 15.2 μΩ · cm or less, and is a thin film useful as a base film or a cover film of a wiring thin film or electrode thin film. It could be confirmed.

一方、比較例のターゲット材は、図3に示すように、基地となるMo相1に粗大なNb相2が分散していることがわかる。そして、比較例のターゲット材は、いずれの視野においても、Nb相の平均円相当径が65μmを超えていた。また、最大長が70μmを超えるNb相が2個以上確認され、その3視野の平均個数は4.3個であった。また、比較例のターゲット材は、確認した3視野で、Nb相の最大長が、最大値で117μmもあった。   On the other hand, in the target material of the comparative example, as shown in FIG. 3, it can be seen that the coarse Nb phase 2 is dispersed in the Mo phase 1 as the base. And the target material of the comparative example had an average equivalent circle diameter of Nb phase exceeding 65 μm in any visual field. In addition, two or more Nb phases having a maximum length exceeding 70 μm were confirmed, and the average number of the three fields of view was 4.3. Further, in the target material of the comparative example, the maximum length of the Nb phase was also 117 μm at the maximum value in the three views confirmed.

また、比較例のターゲット材は、図6に示すように、スパッタリング後の算術平均粗さRaが2.20μmを超えており、高電力の継続スパッタリングにより、ノジュールの生成の虞があることが確認された。
また、比較例のターゲット材を用いて形成したMoNb薄膜は、比抵抗が15.5μΩ・cmを超えており、配線薄膜や電極薄膜の下地膜やカバー膜として、高抵抗であり、不適であることが確認された。
Further, as shown in FIG. 6, in the target material of the comparative example, it is confirmed that the arithmetic average roughness Ra after sputtering exceeds 2.20 μm, and there is a possibility of generation of nodules by continuous sputtering of high power. It was done.
Moreover, the MoNb thin film formed using the target material of the comparative example has a specific resistance exceeding 15.5 μΩ · cm, and is high resistance as a base film or a cover film of a wiring thin film or an electrode thin film, and is unsuitable. That was confirmed.

1 Mo相
2 Nb相
1 Mo phase 2 Nb phase

Claims (2)

Nbを5原子%〜30原子%含有し、残部がMoおよび不可避的不純物からなる組成を有し、スパッタリング面の200000μm当たりで、70μmを超える最大長を有するNb相が1.0個未満であるMoNbターゲット材。 Less than 1.0 Nb phase having a maximum length of more than 70 μm per 200,000 μm 2 of sputtering surface with a composition containing 5 at% to 30 at% Nb, the balance being Mo and unavoidable impurities There is a MoNb target material. 前記スパッタリング面の200000μm当たりで、Nb相の平均円相当径が15μm〜65μmである請求項1に記載のMoNbターゲット材。

The MoNb target material according to claim 1, wherein the average equivalent circular diameter of the Nb phase is 15 μm to 65 μm per 200,000 μm 2 of the sputtering surface.

JP2018115830A 2017-07-05 2018-06-19 MoNb target material Active JP7110749B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017131701 2017-07-05
JP2017131701 2017-07-05
JP2017199185 2017-10-13
JP2017199185 2017-10-13

Publications (2)

Publication Number Publication Date
JP2019065383A true JP2019065383A (en) 2019-04-25
JP7110749B2 JP7110749B2 (en) 2022-08-02

Family

ID=64989883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115830A Active JP7110749B2 (en) 2017-07-05 2018-06-19 MoNb target material

Country Status (4)

Country Link
JP (1) JP7110749B2 (en)
KR (1) KR102161580B1 (en)
CN (1) CN109207941B (en)
TW (1) TWI674325B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210019170A (en) 2019-08-12 2021-02-22 주식회사 리딩유아이 Molybdem alloy sputtering target and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104164A (en) * 1998-06-29 2000-04-11 Toshiba Corp Sputtering target
JP2017502166A (en) * 2013-10-29 2017-01-19 プランゼー エスエー Sputtering target and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432015B2 (en) * 2001-04-26 2010-03-17 日立金属株式会社 Sputtering target for thin film wiring formation
US20050230244A1 (en) * 2004-03-31 2005-10-20 Hitachi Metals, Ltd Sputter target material and method of producing the same
JP5518375B2 (en) * 2008-09-19 2014-06-11 山陽特殊製鋼株式会社 Formed body made of molybdenum alloy having excellent drillability for accelerating electrode and method for producing the same
CN102321871B (en) * 2011-09-19 2013-03-20 基迈克材料科技(苏州)有限公司 Method for producing molybdenum alloy sputtering target for flat-panel display by using hot isostatic press
JP2013083000A (en) * 2011-09-28 2013-05-09 Hitachi Metals Ltd METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL
CN102560383B (en) * 2012-01-12 2013-10-23 宝鸡市科迪普有色金属加工有限公司 Molybdenum niobium alloy plate target material processing technology
KR102316360B1 (en) * 2013-10-29 2021-10-22 플란제 에스이 Sputtering target and production method
JP6459058B2 (en) 2015-03-30 2019-01-30 日立金属株式会社 Mo alloy target
JP6823799B2 (en) * 2015-10-01 2021-02-03 日立金属株式会社 Laminated wiring film for electronic components and sputtering target material for coating layer formation
AT15356U1 (en) * 2016-09-29 2017-07-15 Plansee Se Sputtering target
CN109439990A (en) * 2018-12-29 2019-03-08 宁波高新区敦和科技有限公司 A kind of preparation process of high-compactness high-content molybdenum niobium alloy target

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104164A (en) * 1998-06-29 2000-04-11 Toshiba Corp Sputtering target
JP2017502166A (en) * 2013-10-29 2017-01-19 プランゼー エスエー Sputtering target and manufacturing method thereof

Also Published As

Publication number Publication date
KR102161580B1 (en) 2020-10-05
CN109207941A (en) 2019-01-15
CN109207941B (en) 2020-09-29
JP7110749B2 (en) 2022-08-02
KR20190005120A (en) 2019-01-15
TWI674325B (en) 2019-10-11
TW201907023A (en) 2019-02-16

Similar Documents

Publication Publication Date Title
JP6381142B2 (en) Touch screen device
JP4579709B2 (en) Al-Ni-rare earth alloy sputtering target
JP6511056B2 (en) W-Ni sputtering target
TWI534284B (en) Al-based alloy sputtering target and its manufacturing method
JP6479788B2 (en) Sputtering target and manufacturing method thereof
JP2013204052A (en) Silver-based cylindrical target and method for manufacturing the same
WO2015170534A1 (en) Sputtering target material
JP6037211B2 (en) Manufacturing method of MoTi target material
JP3967067B2 (en) Sputtering target
JP6376438B2 (en) Cu-Mn alloy sputtering target material and method for producing the same
JP2008255440A (en) MoTi ALLOY SPUTTERING TARGET MATERIAL
JP7110749B2 (en) MoNb target material
JP5988140B2 (en) Manufacturing method of MoTi target material and MoTi target material
JP5793069B2 (en) Manufacturing method of copper target material for sputtering
JP2000129432A (en) Electroconductive metallic oxide sinetred body and its use
JP4905618B2 (en) Wiring forming material, wiring forming sputtering target, wiring thin film and electronic component
JP2017218627A (en) Al alloy sputtering target
WO2021241522A1 (en) METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD
TWI821015B (en) Sputtering target and manufacturing method
JP2000185968A (en) Electroconductive metal oxide sintered compact and its use
JP6310088B2 (en) Tungsten sputtering target and manufacturing method thereof
WO2000031316A1 (en) Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
JP2020158881A (en) Mo ALLOY TARGET MATERIAL, AND MANUFACTURING METHOD THEREOF
JP2011058078A (en) SPUTTERING TARGET, Ta-W ALLOY FILM USING THE SAME, AND LIQUID CRYSTAL DISPLAY DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7110749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350