JP6823799B2 - Laminated wiring film for electronic components and sputtering target material for coating layer formation - Google Patents

Laminated wiring film for electronic components and sputtering target material for coating layer formation Download PDF

Info

Publication number
JP6823799B2
JP6823799B2 JP2016178563A JP2016178563A JP6823799B2 JP 6823799 B2 JP6823799 B2 JP 6823799B2 JP 2016178563 A JP2016178563 A JP 2016178563A JP 2016178563 A JP2016178563 A JP 2016178563A JP 6823799 B2 JP6823799 B2 JP 6823799B2
Authority
JP
Japan
Prior art keywords
coating layer
atomic
sputtering target
target material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016178563A
Other languages
Japanese (ja)
Other versions
JP2017066519A (en
Inventor
村田 英夫
英夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2017066519A publication Critical patent/JP2017066519A/en
Application granted granted Critical
Publication of JP6823799B2 publication Critical patent/JP6823799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/061Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Description

本発明は、例えばタッチパネル等に適用可能な電子部品用積層配線膜、およびこの電子部品用積層配線膜の導電層を覆う被覆層を形成するためのスパッタリングターゲット材に関するものである。 The present invention relates to a laminated wiring film for electronic components applicable to, for example, a touch panel, and a sputtering target material for forming a coating layer covering the conductive layer of the laminated wiring film for electronic components.

近年、ガラス基板上に薄膜デバイスを形成する液晶ディスプレイ(Liquid Crystal Display:以下、「LCD」という)、有機ELディスプレイや電子ペーパー等に利用される電気泳動型ディスプレイ等の平面表示装置(フラットパネルディスプレイ、Flat Panel Display:以下、「FPD」という)に、その画面を見ながら直接的な操作性を付与できるタッチパネルを組み合わせた新たな携帯型端末機器であるスマートフォンやタブレットPC等の製品化がされている。
これらのタッチパネルの位置検出電極としてのセンサー膜には、一般的に透明導電膜であるインジウム−スズ酸化物(Indium Tin Oxide:以下、「ITO」という)が用いられている。そして、そのブリッジ配線や引き出し配線には、より低い電気抵抗値(以下、低抵抗という。)を有する金属配線膜として、例えば、導電層のAlまたはAl合金と被覆層として純MoやMo合金とを積層した積層配線膜が用いられている。
In recent years, flat-panel display devices (flat panel displays) such as liquid crystal displays (Liquid Crystal Display: hereinafter referred to as "LCD") that form thin film devices on a glass substrate, and electrophoretic displays used for organic EL displays and electronic paper. , Flat Panel Display: (hereinafter referred to as "FPD") has been commercialized as a new portable terminal device such as a smartphone or tablet PC that combines a touch panel that can give direct operability while looking at the screen. There is.
Indium tin oxide (hereinafter referred to as "ITO"), which is a transparent conductive film, is generally used for the sensor film as the position detection electrode of these touch panels. The bridge wiring and the lead-out wiring are provided with a metal wiring film having a lower electric resistance value (hereinafter referred to as low resistance), for example, an Al or Al alloy of a conductive layer and a pure Mo or Mo alloy as a coating layer. A laminated wiring film in which the above is laminated is used.

上述の積層配線膜を形成する手法としては、スパッタリングターゲット材を用いたスパッタリング法が最適である。スパッタリング法は、物理蒸着法の一つであり、他の真空蒸着やイオンプレーティングに比較して、大面積を容易に成膜できる方法であるとともに、組成変動が少なく、優れた薄膜層が得られる有効な手法である。また、基板への熱影響も少なく、樹脂フィルム基板にも適用可能な手法である。 As a method for forming the above-mentioned laminated wiring film, a sputtering method using a sputtering target material is optimal. The sputtering method is one of the physical vapor deposition methods, and is a method that can easily form a large area as compared with other vacuum vapor deposition and ion plating, and has less composition variation, and an excellent thin film layer can be obtained. It is an effective method to be used. In addition, the heat effect on the substrate is small, and this method can be applied to a resin film substrate.

本発明者は、純Moの特性を改善する手段として、耐食性、耐熱性や基板との密着性に優れ、低抵抗な、Moに3〜50原子%のVやNbを添加したMo合金膜を提案している(特許文献1参照)。
また、本発明者は、Alからなる導電層と、被覆層としてTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Cu、Si、Geから選択される1種または2種以上の元素を7〜30原子%含有する面心立方格子構造のNi合金を下地膜に組み合わせることで、Alのヒロックを抑制し耐熱性を向上できることを提案している。(特許文献2参照)。
さらに、本発明者は、Alを主成分とする導電層に被覆層として、Mo100−x−y−Ni−Ti、10≦x≦30、3≦y≦20で表されるMo合金を採用することで、MoやMo−Nbより耐酸化性、耐湿性を改善できることを提案している。(特許文献3参照)。
As a means for improving the characteristics of pure Mo, the present inventor has provided a Mo alloy film in which 3 to 50 atomic% of V or Nb is added to Mo, which has excellent corrosion resistance, heat resistance and adhesion to a substrate, and has low resistance. It has been proposed (see Patent Document 1).
In addition, the present inventor has one or more selected from a conductive layer made of Al and Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Cu, Si, and Ge as a coating layer. It is proposed that by combining a Ni alloy having a face-centered cubic lattice structure containing 7 to 30 atomic% of the above elements with the base film, it is possible to suppress the hillock of Al and improve the heat resistance. (See Patent Document 2).
Further, the present inventor has a Mo alloy represented by Mo 100-xy- Ni x- Ti y , 10 ≦ x ≦ 30, 3 ≦ y ≦ 20 as a coating layer on a conductive layer containing Al as a main component. It is proposed that the oxidation resistance and moisture resistance can be improved more than Mo and Mo-Nb by adopting. (See Patent Document 3).

特開2002−190212号公報JP-A-2002-190212 特開2006−279022号公報Japanese Unexamined Patent Publication No. 2006-279022 特開2013−60655号公報Japanese Unexamined Patent Publication No. 2013-60655

上述したタッチパネルの基板は、スマートフォンやタブレットPC等の携帯端末機器の薄型化のために、ガラス基板からより薄型化が可能な樹脂フィルム基板を用いた方式も用いられており、上記被覆層には樹脂フィルム基板との密着性も必要となっている。
また、家電製品である調理機器の操作パネルやリモコン等は濡れた手で操作したり、産業機器や車載機器の操作パネルにおいては、高温高湿下で操作されることに加え、携帯端末機器に比較して長期間使用される。特に、車載機器は、人が操作しない間も、屋外に駐車され、高熱状況や極寒状況に長期間放置されることもあるため、積層配線膜にはさらに高い耐食性の向上が求められている。
一方、上述したタッチパネルの製造において、基板上に形成された積層配線膜は、次工程に移動する際に、大気中に長時間放置される場合がある。また、FPDの端子部等に信号線ケーブルを取り付ける際に、大気中で加熱される場合がある。このため、積層配線膜には耐酸化性の向上が要求されている。
また、表示装置であるLCDの高精細化に伴い、タッチパネル用の金属配線膜にも表示画素に沿った細い幅でかつ高精度に加工するためのエッチング性も要求されている。
As the above-mentioned touch panel substrate, a method using a resin film substrate that can be made thinner than the glass substrate is also used in order to make the portable terminal device such as a smartphone or tablet PC thinner, and the coating layer is used. Adhesion with the resin film substrate is also required.
In addition, the operation panels and remote controls of cooking equipment, which are home appliances, can be operated with wet hands, and the operation panels of industrial equipment and in-vehicle equipment can be operated under high temperature and high humidity, as well as for mobile terminal equipment. It is used for a long time in comparison. In particular, in-vehicle devices may be parked outdoors even when not operated by humans and may be left for a long period of time in a high heat condition or an extremely cold condition. Therefore, the laminated wiring film is required to have higher corrosion resistance.
On the other hand, in the above-mentioned manufacturing of the touch panel, the laminated wiring film formed on the substrate may be left in the atmosphere for a long time when moving to the next step. Further, when the signal line cable is attached to the terminal portion of the FPD or the like, it may be heated in the atmosphere. Therefore, the laminated wiring film is required to have improved oxidation resistance.
Further, with the increase in definition of LCD, which is a display device, the metal wiring film for a touch panel is also required to have an etching property for processing with a narrow width along the display pixel and with high accuracy.

本発明者の検討によると、上述した特許文献1のMo−V、Mo−Nb合金や純Moを被覆層に適用した際には、フレキシブル基板等との密着性および耐酸化性が十分でないため、被覆層の表面が酸化により変色してしまう問題が発生する場合があることを確認した。また、人が触れた後に付着した油脂や塩が残留した状況で高温高湿雰囲気に長期間放置されたときに腐食する場合があり、特に車載機器では耐食性に係る長期の信頼性に課題があることを確認した。
また、特許文献2に記載のNi合金からなる被覆層は、細長い配線や四角状のパッドに加工するためのウェットエッチングを行なう際に、添加元素によっては、基板面内でエッチングムラが発生しやすく、配線幅にばらつきが生じるために、近年の狭い幅の配線膜を安定的に得ることが難しいという新たな課題があることを確認した。
また、特許文献3の積層配線膜は、人が触れた後に付着した油脂や塩が残留した状況で高温高湿雰囲気に長期間放置されると腐食する場合があり、特に車載機器では耐食性に係る長期の信頼性に課題があることを確認した。
According to the study by the present inventor, when the Mo-V, Mo-Nb alloy or pure Mo of Patent Document 1 described above is applied to the coating layer, the adhesion and oxidation resistance to the flexible substrate and the like are not sufficient. , It was confirmed that the problem that the surface of the coating layer is discolored due to oxidation may occur. In addition, it may corrode when left in a high-temperature and high-humidity atmosphere for a long period of time in a state where oils and fats and salts attached after being touched by a person remain, and there is a problem in long-term reliability related to corrosion resistance, especially in in-vehicle equipment. It was confirmed.
Further, the coating layer made of Ni alloy described in Patent Document 2 is likely to cause etching unevenness in the substrate surface depending on the added element when performing wet etching for processing into elongated wiring or a square pad. It was confirmed that there is a new problem that it is difficult to stably obtain a wiring film having a narrow width in recent years because the wiring width varies.
Further, the laminated wiring film of Patent Document 3 may be corroded if it is left in a high temperature and high humidity atmosphere for a long period of time in a state where oils and fats and salts adhering to it after being touched by a person remain, which is particularly related to corrosion resistance in in-vehicle devices. It was confirmed that there is a problem with long-term reliability.

本発明の目的は、AlまたはAl合金からなる導電層の少なくとも一方を覆う被覆層に、密着性、耐食性、耐酸化性を確保するとともに、安定して高精度のウェットエッチングを行なうことが可能となる新規な被覆層を有する電子部品用積層配線膜および被覆層形成用スパッタリングターゲット材を提供することにある。 An object of the present invention is to ensure adhesion, corrosion resistance, and oxidation resistance of a coating layer covering at least one of a conductive layer made of Al or an Al alloy, and to enable stable and highly accurate wet etching. It is an object of the present invention to provide a laminated wiring film for electronic parts having a novel coating layer and a sputtering target material for forming a coating layer.

本発明者は、上記課題に鑑み、AlまたはAl合金からなる導電層に積層する被覆層の合金組成に関して鋭意検討した。その結果、Moに特定の元素を添加することで、密着性、耐食性、耐酸化性を確保するとともに、安定して高精度のウェットエッチングを行なうことが可能となる新規な被覆層を見出し、本発明に到達した。 In view of the above problems, the present inventor has diligently studied the alloy composition of the coating layer laminated on the conductive layer made of Al or Al alloy. As a result, we have found a new coating layer that can secure adhesion, corrosion resistance, and oxidation resistance by adding a specific element to Mo, and can perform stable and highly accurate wet etching. The invention has been reached.

すなわち、本発明は、AlまたはAl合金からなる導電層と、該導電層の少なくとも一方の面を覆う被覆層を有する電子部品用積層配線膜において、前記被覆層はNiを30〜75原子%、MnおよびCuから選択される一種以上の元素を含有し、残部がMoおよび不可避的不純物からなる電子部品用積層配線膜の発明である。
前記被覆層は、前記Niを30〜75原子%、前記Mnを3〜25原子%含有し、且つ前記Niおよび前記Mnを合計で80原子%未満含有することが好ましい。
前記被覆層は、前記Niを30〜65原子%、前記Cuを5〜25原子%含有し、且つ前記Niおよび前記Cuを合計で75原子%未満含有することが好ましい。
前記被覆層は、前記Mnおよび前記Cuを合計で5〜40原子%含有し、且つ前記Cu、前記Mn、および前記Niを合計で75原子%未満含有することが好ましい。
前記被覆層は、前記Moの一部が、Ti、V、Nb、Ta、Cr、Wから選択される一種以上の元素で、合計1〜15原子%の範囲で置換されることがより好ましい。
That is, according to the present invention, in a laminated wiring film for electronic components having a conductive layer made of Al or an Al alloy and a coating layer covering at least one surface of the conductive layer, the coating layer contains 30 to 75 atomic% of Ni. It is an invention of a laminated wiring film for an electronic component which contains one or more elements selected from Mn and Cu, and the balance is Mo and unavoidable impurities.
The coating layer preferably contains 30 to 75 atomic% of Ni, 3 to 25 atomic% of Mn, and less than 80 atomic% of Ni and Mn in total.
The coating layer preferably contains 30 to 65 atomic% of Ni, 5 to 25 atomic% of Cu, and less than 75 atomic% of Ni and Cu in total.
The coating layer preferably contains the Mn and the Cu in a total of 5 to 40 atomic%, and the Cu, the Mn, and the Ni in a total of less than 75 atomic%.
In the coating layer, it is more preferable that a part of Mo is substituted with one or more elements selected from Ti, V, Nb, Ta, Cr, and W in a total range of 1 to 15 atomic%.

本発明は、電子部品用積層配線膜におけるAlまたはAl合金からなる導電層を覆う被覆層を形成するためのスパッタリングターゲット材であって、Niを30〜75原子%、MnおよびCuから選択される一種以上の元素を含有し、残部がMoおよび不可避的不純物からなる被覆層形成用スパッタリングターゲット材の発明である。
前記被覆層形成用スパッタリングターゲット材は、前記Niを30〜75原子%、前記Mnを3〜25原子%含有し、且つ前記Niおよび前記Mnを合計で80原子%未満含有することが好ましい。
前記被覆層形成用スパッタリングターゲット材は、前記Niを30〜65原子%、前記Cuを5〜25原子%含有し、且つ前記Niおよび前記Cuを合計で75原子%未満含有することが好ましい。
前記被覆層形成用スパッタリングターゲット材は、前記Mnおよび前記Cuを合計で5〜40原子%含有し、且つ前記Cu、前記Mn、および前記Niを合計で75原子%未満含有することが好ましい。
前記被覆層形成用スパッタリングターゲット材は、前記Moの一部が、Ti、V、Nb、Ta、Cr、Wから選択される一種以上の元素で、合計1〜15原子%の範囲で置換されることがより好ましい。
The present invention is a sputtering target material for forming a coating layer covering a conductive layer made of Al or Al alloy in a laminated wiring film for electronic parts, and Ni is selected from 30 to 75 atomic%, Mn and Cu. It is an invention of a sputtering target material for forming a coating layer, which contains one or more elements and the balance is Mo and unavoidable impurities.
The sputtering target material for forming a coating layer preferably contains 30 to 75 atomic% of Ni, 3 to 25 atomic% of Mn, and less than 80 atomic% in total of Ni and Mn.
The sputtering target material for forming a coating layer preferably contains the Ni in an amount of 30 to 65 atomic%, the Cu in an amount of 5 to 25 atomic%, and the Ni and the Cu in a total amount of less than 75 atomic%.
The sputtering target material for forming a coating layer preferably contains the Mn and the Cu in a total of 5 to 40 atomic%, and the Cu, the Mn, and the Ni in a total of less than 75 atomic%.
In the sputtering target material for forming a coating layer, a part of Mo is substituted with one or more elements selected from Ti, V, Nb, Ta, Cr, and W in a total range of 1 to 15 atomic%. Is more preferable.

本発明は、密着性、耐食性、耐酸化性に優れ、安定して高精度のウェットエッチングを行なうことが可能な被覆層をAlまたはAl合金からなる導電層と積層した新規の電子部品用積層配線膜およびその被覆層形成用のスパッタリングターゲット材を提供することができる。これにより、種々の電子部品、例えば樹脂フィルム基板上に形成するタッチパネルに対して非常に有用な技術となり、電子部品の安定製造や信頼性向上に大きく貢献できる。 The present invention is a new laminated wiring for electronic parts in which a coating layer having excellent adhesion, corrosion resistance, and oxidation resistance and capable of performing stable and highly accurate wet etching is laminated with a conductive layer made of Al or an Al alloy. A sputtering target material for forming a film and a coating layer thereof can be provided. This makes it a very useful technique for various electronic components, for example, a touch panel formed on a resin film substrate, and can greatly contribute to stable production and reliability improvement of electronic components.

本発明の電子部品用積層配線膜の断面模式図の一例である。This is an example of a schematic cross-sectional view of the laminated wiring film for electronic components of the present invention.

本発明の電子部品用積層配線膜の断面模式図の一例を図1に示す。本発明の電子部品用積層配線膜は、AlまたはAl合金からなる導電層3と、この導電層3の少なくとも一方の面を覆う被覆層を有し、例えば基板1上に形成される。図1では導電層3の両面に被覆層(下地層2、キャップ層4)を形成しているところ、下地層2またはキャップ層4のいずれか一方のみを形成してもよく、適宜選択できる。尚、導電層の一方の面のみを本発明の被覆層で覆う場合には、導電層の他方の面には電子部品の用途に応じて、本発明とは別の組成の被覆層で覆うこともできる。 FIG. 1 shows an example of a schematic cross-sectional view of the laminated wiring film for electronic components of the present invention. The laminated wiring film for electronic components of the present invention has a conductive layer 3 made of Al or an Al alloy and a coating layer covering at least one surface of the conductive layer 3, and is formed on, for example, a substrate 1. In FIG. 1, where the coating layers (base layer 2 and cap layer 4) are formed on both surfaces of the conductive layer 3, only one of the base layer 2 and the cap layer 4 may be formed and can be appropriately selected. When only one surface of the conductive layer is covered with the coating layer of the present invention, the other surface of the conductive layer is covered with a coating layer having a composition different from that of the present invention depending on the use of the electronic component. You can also.

本発明の重要な特徴は、図1に示す電子部品用積層配線膜において、MoにNi、Mn、Cuを添加することで、密着性、耐食性、耐酸化性を確保するとともに、ウェットエッチング時にムラが発生しにくい被覆層を見出した点にある。以下、本発明の電子部品用積層配線膜について詳細に説明する。
尚、以下の説明において、「密着性」は、ガラス基板や樹脂フィルム基板との剥がれにくさをいい、粘着テープでの引き剥がしにより評価することができる。「耐食性」とは、高温高湿環境下における表面変質による電気的コンタクト性の劣化のしにくさをいい、配線膜の変色により確認でき、例えば反射率によって定量的に評価することができる。また、「耐酸化性」とは、酸素を含有する雰囲気で加熱した際の表面酸化に伴う電気的コンタクト性の劣化のしにくさをいい、配線膜の変色により確認でき、例えば反射率によって定量的に評価することができる。
An important feature of the present invention is that in the laminated wiring film for electronic components shown in FIG. 1, by adding Ni, Mn, and Cu to Mo, adhesion, corrosion resistance, and oxidation resistance are ensured, and unevenness occurs during wet etching. The point is that we have found a coating layer that is less likely to cause. Hereinafter, the laminated wiring film for electronic components of the present invention will be described in detail.
In the following description, "adhesion" refers to the difficulty of peeling from a glass substrate or a resin film substrate, and can be evaluated by peeling with an adhesive tape. "Corrosion resistance" refers to the difficulty of deterioration of electrical contact property due to surface deterioration in a high temperature and high humidity environment, which can be confirmed by discoloration of the wiring film, and can be quantitatively evaluated by, for example, reflectance. In addition, "oxidation resistance" refers to the difficulty in deterioration of electrical contact properties due to surface oxidation when heated in an oxygen-containing atmosphere, which can be confirmed by discoloration of the wiring film, and is quantified by, for example, reflectance. Can be evaluated.

本発明はAlまたはAl合金からなる導電層の少なくとも一方の面を覆う被覆層において、Niを30〜75原子%、MnおよびCuから選択される一種以上の元素を含有し、残部がMoおよび不可避的不純物からなることに特徴がある。 In the present invention, in a coating layer covering at least one surface of a conductive layer made of Al or an Al alloy, Ni is contained in an amount of 30 to 75 atomic%, one or more elements selected from Mn and Cu, and the balance is Mo and unavoidable. It is characterized by being composed of target impurities.

本発明の被覆層に含まれるMoは、透明導電膜であるITO膜との電気的コンタクト性とウェットエッチング性、およびその均一性に優れる元素である反面、耐食性、耐酸化性が劣る元素である。
本発明において、耐食性および耐酸化性を確保するには、Niが30原子%以上必要である。一方、Niが75原子%を越えると、Niが導電層のAlに熱拡散しやすくなり、積層配線膜の電気抵抗値を増加させるとともに、ウェットエッチング性を低下させる。このため、本発明の被覆層に添加するNiは30〜75原子%とする。
また、Mnは、ガラス基板や樹脂フィルム基板との密着性に優れ、ウェットエッチング性の改善効果が高い反面、添加量が増加すると耐酸化性を低下させる元素である。
また、Cuは、ITO膜との密着性とウェットエッチング性を改善できる反面、添加量が多いとガラス基板との密着性を低下させるとともに耐酸化性も低下させる。さらに、Cuは、Ni同様に導電層のAlに熱拡散しやすくなり、積層配線膜の電気抵抗値を増加させやすくする。
本発明の被覆層は、MoとNiに加え、MnおよびCuから選択される一種以上の元素を含有することで、耐酸化性を確保した上で、ガラス基板、樹脂フィルム基板やITO膜との密着性とウェットエッチング性を向上することができる。以下に、MnとCuを選択した理由について説明する。
Mo contained in the coating layer of the present invention is an element having excellent electrical contact property and wet etching property with an ITO film which is a transparent conductive film, and its uniformity, but is inferior in corrosion resistance and oxidation resistance. ..
In the present invention, Ni is required to be 30 atomic% or more in order to secure corrosion resistance and oxidation resistance. On the other hand, when Ni exceeds 75 atomic%, Ni tends to be thermally diffused into Al of the conductive layer, increasing the electric resistance value of the laminated wiring film and lowering the wet etching property. Therefore, the amount of Ni added to the coating layer of the present invention is 30 to 75 atomic%.
Further, Mn is an element that has excellent adhesion to a glass substrate or a resin film substrate and has a high effect of improving wet etching properties, but decreases oxidation resistance as the amount added increases.
Further, while Cu can improve the adhesion to the ITO film and the wet etching property, if the amount added is large, the adhesion to the glass substrate is lowered and the oxidation resistance is also lowered. Further, Cu easily diffuses heat into Al of the conductive layer like Ni, and easily increases the electric resistance value of the laminated wiring film.
The coating layer of the present invention contains one or more elements selected from Mn and Cu in addition to Mo and Ni to ensure oxidation resistance, and is used with a glass substrate, a resin film substrate, or an ITO film. Adhesion and wet etching properties can be improved. The reason for selecting Mn and Cu will be described below.

先ず、本発明の被覆層を構成するMo、Ni以外に添加する元素としてMnを選択した場合について説明する。Mnの有する密着性およびウェットエッチング性の改善効果は、3原子%から現れる。一方、Mnが25原子%を越えると、耐酸化性が低下する場合がある。このため、被覆層へのMnの添加量は、3〜25原子%が好ましい。より好ましくは7〜20原子%である。また、Moの有するITO膜とのコンタクト性とウェットエッチングの均一性を確保するには、NiとMnは合計で80原子%未満とすることが好ましい。 First, a case where Mn is selected as an element to be added in addition to Mo and Ni constituting the coating layer of the present invention will be described. The effect of improving the adhesion and wet etching property of Mn appears from 3 atomic%. On the other hand, if Mn exceeds 25 atomic%, the oxidation resistance may decrease. Therefore, the amount of Mn added to the coating layer is preferably 3 to 25 atomic%. More preferably, it is 7 to 20 atomic%. Further, in order to ensure the contact property of Mo with the ITO film and the uniformity of wet etching, it is preferable that Ni and Mn are less than 80 atomic% in total.

次に、本発明の被覆層を構成するMo、Ni以外に添加する元素としてCuを選択した場合について説明する。Cuの有するITO膜との密着性およびウェットエッチング性の改善効果は、5原子%から現れる。一方、Cuが25原子%を越えると、ガラス基板との密着性が低下することに加え、耐酸化性も低下するとともに、エッチャントに対して濡れやすくなり、サイドエッチング量が増加して、ウェットエッチング精度が低下する場合がある。このため、被覆層へのCuの添加量は、5〜25原子%が好ましい。より好ましくは10〜20原子%である。このとき、導電層のAlとの熱拡散を考慮すると、Niの添加量は65原子%以下とすることが好ましい。また、Moの有するウェットエッチングの均一性を確保するには、NiとCuは合計で75原子%未満とすることが好ましい。 Next, a case where Cu is selected as an element to be added in addition to Mo and Ni constituting the coating layer of the present invention will be described. The effect of improving the adhesion of Cu to the ITO film and the wet etching property appears from 5 atomic%. On the other hand, when Cu exceeds 25 atomic%, the adhesion to the glass substrate is lowered, the oxidation resistance is also lowered, the etchant is easily wetted, the side etching amount is increased, and the wet etching is performed. Accuracy may decrease. Therefore, the amount of Cu added to the coating layer is preferably 5 to 25 atomic%. More preferably, it is 10 to 20 atomic%. At this time, considering the thermal diffusion of the conductive layer with Al, the amount of Ni added is preferably 65 atomic% or less. Further, in order to ensure the uniformity of wet etching possessed by Mo, it is preferable that Ni and Cu are less than 75 atomic% in total.

次に、本発明の被覆層を構成するMo、Ni以外に添加する元素としてMnとCuとを選択した場合について説明する。被覆層のMnとCuの合計を5原子%以上にすることで、密着性およびウェットエッチング性の低下を抑制することができる。一方、被覆層のMnとCuの合計が40原子%を越えると、耐酸化性、密着性が低下する場合がある。このため、MnとCuの合計は、5〜40原子%、且つNi、Mn、Cuを合計で75原子%未満含有することが好ましい。さらに高いウェットエッチング性を確保するには、MnとCuの合計量は20原子%以上がより好ましい。そして、Ni、Mn、Cuの合計は、50原子%以上がさらに好ましい。
また、本発明の被覆層は、上記したMoの一部を、Ti、V、Nb、Ta、Cr、Wから選択される一種以上の元素で置換することもできる。これらの選択元素は、耐食性を改善する効果が高い元素であるが、エッチング速度を低下させる場合がある。このため、置換する量は、合計で1〜15原子%の範囲にすることが好ましい。
Next, a case where Mn and Cu are selected as elements to be added in addition to Mo and Ni constituting the coating layer of the present invention will be described. By setting the total amount of Mn and Cu in the coating layer to 5 atomic% or more, deterioration of adhesion and wet etching property can be suppressed. On the other hand, if the total amount of Mn and Cu in the coating layer exceeds 40 atomic%, the oxidation resistance and adhesion may decrease. Therefore, the total content of Mn and Cu is preferably 5 to 40 atomic%, and the total content of Ni, Mn, and Cu is preferably less than 75 atomic%. In order to secure even higher wet etching properties, the total amount of Mn and Cu is more preferably 20 atomic% or more. The total of Ni, Mn, and Cu is more preferably 50 atomic% or more.
Further, in the coating layer of the present invention, a part of the above-mentioned Mo can be replaced with one or more elements selected from Ti, V, Nb, Ta, Cr and W. These selective elements are elements that are highly effective in improving corrosion resistance, but may reduce the etching rate. Therefore, the amount of substitution is preferably in the range of 1 to 15 atomic% in total.

本発明の電子部品用積層配線膜は、低抵抗と耐食性や耐酸化性を安定的に得るために、AlまたはAl合金からなる導電層の膜厚を100〜1000nmにすることが好ましい。導電層の膜厚が100nmより薄くなると、薄膜特有の電子の散乱の影響で電気抵抗値が増加しやすくなる。一方、導電層の膜厚が1000nmより厚くなると、膜を形成するために時間が掛かったり、膜応力により基板に反りが発生しやすくなったりする。導電層の膜厚のより好ましい範囲は、200〜500nmである。
本発明の導電層には、低抵抗を得ることができる純Alが好適であるところ、上述した耐食性や耐酸化性に加え、さらに耐熱性等の信頼性を考慮して、Alに遷移金属や半金属等を添加したAl合金を用いてもよい。このとき、できる限り低抵抗が得られるように、添加元素は合計で5原子%以下の範囲にすることが好ましい。
In the laminated wiring film for electronic components of the present invention, the thickness of the conductive layer made of Al or an Al alloy is preferably 100 to 1000 nm in order to stably obtain low resistance, corrosion resistance and oxidation resistance. When the film thickness of the conductive layer is thinner than 100 nm, the electric resistance value tends to increase due to the influence of electron scattering peculiar to the thin film. On the other hand, when the film thickness of the conductive layer is thicker than 1000 nm, it takes time to form the film, and the substrate tends to warp due to the film stress. A more preferable range of the film thickness of the conductive layer is 200 to 500 nm.
Pure Al, which can obtain low resistance, is suitable for the conductive layer of the present invention. However, in addition to the above-mentioned corrosion resistance and oxidation resistance, in consideration of reliability such as heat resistance, transition metals and Al are used. An Al alloy to which a metalloid or the like is added may be used. At this time, it is preferable that the total amount of added elements is in the range of 5 atomic% or less so that the lowest possible resistance can be obtained.

本発明の電子部品用積層配線膜は、低抵抗と耐食性や耐酸化性を安定的に得るために、被覆層の膜厚を10〜100nmにすることが好ましい。被覆層を下地層として適用する場合には、膜厚を10nm以上とすることで、基板との密着性を改善することができる。また、被覆層をキャップ膜として適用する場合には、膜厚を20nm以上とすることで、被覆層の欠陥等の消失が十分になされ、耐食性や耐酸化性を向上させることができる。
一方、被覆層の膜厚が100nmを越えると、被覆層の電気抵抗値が高くなってしまい、導電層と積層した際に、電子部品用積層配線膜として低抵抗を得にくくなる。このため、被覆層の膜厚は20〜100nmとすることがより好ましい。
In the laminated wiring film for electronic components of the present invention, the film thickness of the coating layer is preferably 10 to 100 nm in order to stably obtain low resistance, corrosion resistance and oxidation resistance. When the coating layer is applied as the base layer, the adhesion to the substrate can be improved by setting the film thickness to 10 nm or more. Further, when the coating layer is applied as a cap film, by setting the film thickness to 20 nm or more, defects and the like in the coating layer can be sufficiently eliminated, and corrosion resistance and oxidation resistance can be improved.
On the other hand, if the film thickness of the coating layer exceeds 100 nm, the electric resistance value of the coating layer becomes high, and when laminated with the conductive layer, it becomes difficult to obtain low resistance as a laminated wiring film for electronic components. Therefore, the film thickness of the coating layer is more preferably 20 to 100 nm.

本発明の電子部品用積層配線膜の各層を形成するには、スパッタリングターゲットを用いたスパッタリング法が最適である。被覆層を形成する際には、例えば被覆層の組成と同一組成のスパッタリングターゲットを使用して成膜する方法や、各々の元素のスパッタリングターゲットや、Mo、Mo−Ni合金、Ni−Cu合金、Ni−Mn合金等のスパッタリングターゲット材を使用してコスパッタリングによって成膜する方法も適用できる。
スパッタリングの条件設定の簡易さや、所望組成の被覆層を得やすいという点からは、被覆層の組成と同一組成のスパッタリングターゲットを使用してスパッタリング成膜することがより好ましい。
A sputtering method using a sputtering target is optimal for forming each layer of the laminated wiring film for electronic components of the present invention. When forming the coating layer, for example, a method of forming a film using a sputtering target having the same composition as the coating layer, a sputtering target of each element, Mo, Mo-Ni alloy, Ni-Cu alloy, etc. A method of forming a film by co-sputtering using a sputtering target material such as a Ni—Mn alloy can also be applied.
From the viewpoint of easy setting of sputtering conditions and easy acquisition of a coating layer having a desired composition, it is more preferable to carry out a sputtering film formation using a sputtering target having the same composition as the coating layer.

本発明は、上記の被覆層を得るために、Niを30〜75原子%、MnおよびCuから選択される一種以上の元素を含有し、残部がMoおよび不可避的不純物からなる被覆層形成用スパッタリングターゲット材である。
本発明の構成元素であるMo、Ni、Mn、Cuにおいて、Niは磁性体であるが、本発明の組成範囲であれば、本発明の被覆層形成用スパッタリングターゲット材のキュリー温度が常温(25℃)以下、即ち非磁性となるため、一般のマグネトロンスパッタで容易にスパッタすることが可能である。そして、本発明の被覆層形成用スパッタリングターゲット材は、Niを30〜75原子%、Mnを3〜25原子%含有し、且つNiとMnを合計で80原子%未満含有し、残部がMoおよび不可避的不純物からなることが好ましい。
また、本発明の被覆層形成用スパッタリングターゲット材は、Niを30〜65原子%、Cuを5〜25原子%含有し、且つNiとCuを合計で75原子%未満とし、残部がMoおよび不可避的不純物からなることが好ましい。
また、本発明の被覆層形成用スパッタリングターゲット材は、MnおよびCuを合計で5〜40原子%含有し、且つNi、Mn、Cuを合計で75原子%未満含有し、残部がMoおよび不可避的不純物からなることが好ましい。
また、本発明の被覆層形成用スパッタリングターゲット材は、上記のMoの一部を、Ti、V、Nb、Ta、Cr、Wから選択される一種以上の元素で置換してもよい。置換する量は、合計で1〜15原子%の範囲にすることが好ましい。
In the present invention, in order to obtain the above-mentioned coating layer, Ni is contained in 30 to 75 atomic%, one or more elements selected from Mn and Cu, and the balance is Mo and unavoidable impurities. It is a target material.
In Mo, Ni, Mn, and Cu, which are the constituent elements of the present invention, Ni is a magnetic substance, but within the composition range of the present invention, the Curie temperature of the sputtering target material for forming a coating layer of the present invention is room temperature (25). Since it is below ° C.), that is, it is non-magnetic, it can be easily sputtered by general magnetron sputtering. The sputtering target material for forming a coating layer of the present invention contains 30 to 75 atomic% of Ni and 3 to 25 atomic% of Mn, and contains less than 80 atomic% of Ni and Mn in total, and the balance is Mo and It preferably consists of unavoidable impurities.
Further, the sputtering target material for forming a coating layer of the present invention contains 30 to 65 atomic% of Ni and 5 to 25 atomic% of Cu, and contains less than 75 atomic% of Ni and Cu in total, and the balance is Mo and unavoidable. It is preferably composed of target impurities.
Further, the sputtering target material for forming a coating layer of the present invention contains 5 to 40 atomic% of Mn and Cu in total, and contains less than 75 atomic% of Ni, Mn and Cu in total, and the balance is Mo and inevitable. It preferably consists of impurities.
Further, in the sputtering target material for forming a coating layer of the present invention, a part of the above Mo may be replaced with one or more elements selected from Ti, V, Nb, Ta, Cr and W. The amount to be substituted is preferably in the range of 1 to 15 atomic% in total.

平衡状態図において、MoとNiは、Mo側ではNiがほとんど固溶域を持たないが、Ni側においては広い固溶域を有する元素であり、中間組成において多くの金属間化合物を発現する。また、MoとMnは、Mo側で広い固溶域を有し、Mn側でも高温域で広い固溶域を有する元素である。MoとCuは、Mo側、Cu側ともほとんど固溶域をもたない元素である。
さらに、NiとMn、NiとCu、MnとCuは、いずれも広い固溶域を有する元素である。そして、NiとCuは全率固溶であり、NiとMn、MnとCuも高温域で全率固溶する合金化しやすい元素であるが、Mnを含むと、相変態により低温域では金属間化合物が発現しやすい。
以上のことから、本発明の被覆層形成用スパッタリングタ−ゲット材は、合金化しにくいMoとCuを含むにも関わらず、NiやMnを含有させることで、組成によっては合金化させることも可能である。本発明では、必要となる被覆層の膜特性に合わせて調整した組成により、スパッタリングターゲット材の最適な製造方法を選定することができる。以下、本発明の被覆層形成用スパッタリングターゲット材の製造方法について説明する。
In the equilibrium phase diagram, Mo and Ni are elements in which Ni has almost no solid solution region on the Mo side but has a wide solid solution region on the Ni side, and expresses many intermetallic compounds in the intermediate composition. Further, Mo and Mn are elements having a wide solid solution region on the Mo side and a wide solid solution region on the Mn side in a high temperature region. Mo and Cu are elements that have almost no solid solution region on both the Mo side and the Cu side.
Further, Ni and Mn, Ni and Cu, and Mn and Cu are all elements having a wide solid solution range. Ni and Cu are completely solid-dissolved, and Ni and Mn and Mn and Cu are also elements that are easily alloyed in a high-temperature range. However, when Mn is contained, intermetallic elements are present due to phase transformation. The compound is easily expressed.
From the above, although the sputtering target material for forming a coating layer of the present invention contains Mo and Cu which are difficult to alloy, it can be alloyed depending on the composition by containing Ni and Mn. Is. In the present invention, the optimum production method of the sputtering target material can be selected by the composition adjusted according to the required film characteristics of the coating layer. Hereinafter, a method for producing the sputtering target material for forming a coating layer of the present invention will be described.

本発明の被覆層形成用スパッタリングターゲット材の製造方法としては、例えば所定の組成に調整した原料を溶解して作製したインゴットを機械加工を施してスパッタリングターゲット材を製造する方法や粉末焼結法も適用可能である。粉末焼結法では、例えばガスアトマイズ法で合金粉末を製造して原料粉末とすることや、複数の合金粉末や純金属粉末を本発明の最終組成となるように混合した混合粉末を原料粉末とすることが可能である。
原料粉末の焼結方法としては、熱間静水圧プレス、ホットプレス、放電プラズマ焼結、押し出しプレス焼結等の加圧焼結を用いることが可能である。本発明は、上述したように合金化しにくいMoとCuを含むことに加え、MoとNiの組成比率により金属間化合物を発現しやすく塑性加工性が低下するために、例えばタッチパネル用の大型のスパッタリングターゲット材を安定して製造するためには、最終組成となる合金粉末を加圧焼結する製造方法が好適である。
また、本発明の被覆層形成用スパッタリングターゲット材は、磁性体であるNiを含有するために、添加する元素を選定し、キュリー点が常温以下となる合金粉末を加圧焼結することが好ましい。このとき、上記合金粉末は、最終組成に調整した合金溶湯をアトマイズ法により容易に得ることができる。そして、アトマイズ法によるMoとの合金化は、キュリー点を常温以下の合金粉末とするのに有効である。
また、合金粉末としては、溶解したインゴットを粉砕して作製することも可能である。また、種々のNi合金粉末とMo粉末を混合する方法や、種々の合金粉末を製造し、最終組成となるように混合する方法も適用できる。
合金粉末の平均粒径が5μm未満であると、得られるスパッタリングターゲット材中の不純物が増加してしまう。一方、合金粉末の平均粒径が300μmを超えると高密度の焼結体を得にくくなる。したがって、合金粉末の平均粒径は、5〜300μmにすることが好ましい。尚、本発明でいう平均粒径は、JIS Z 8901で規定される、レーザー光を用いた光散乱法による球相当径で表わす。
Examples of the method for producing a sputtering target material for forming a coating layer of the present invention include a method for producing a sputtering target material by machining an ingot produced by melting a raw material adjusted to a predetermined composition and a powder sintering method. Applicable. In the powder sintering method, for example, an alloy powder is produced by a gas atomization method to obtain a raw material powder, or a mixed powder obtained by mixing a plurality of alloy powders or pure metal powders so as to have the final composition of the present invention is used as a raw material powder. It is possible.
As a method for sintering the raw material powder, it is possible to use pressure sintering such as hot hydrostatic pressure pressing, hot pressing, discharge plasma sintering, and extrusion press sintering. In addition to containing Mo and Cu that are difficult to alloy as described above, the present invention easily expresses intermetallic compounds due to the composition ratio of Mo and Ni and reduces plastic workability. Therefore, for example, large-scale sputtering for a touch panel In order to stably produce the target material, a production method in which the alloy powder having the final composition is pressure-sintered is preferable.
Further, since the sputtering target material for forming a coating layer of the present invention contains Ni, which is a magnetic material, it is preferable to select an element to be added and pressure-sinter the alloy powder having a Curie point of room temperature or lower. .. At this time, the alloy powder can be easily obtained by an atomizing method in a molten alloy having a final composition. Then, alloying with Mo by the atomizing method is effective for making an alloy powder having a Curie point of room temperature or lower.
Further, as the alloy powder, it is also possible to produce by pulverizing the melted ingot. Further, a method of mixing various Ni alloy powders and Mo powders and a method of producing various alloy powders and mixing them so as to have a final composition can also be applied.
If the average particle size of the alloy powder is less than 5 μm, impurities in the obtained sputtering target material will increase. On the other hand, if the average particle size of the alloy powder exceeds 300 μm, it becomes difficult to obtain a high-density sintered body. Therefore, the average particle size of the alloy powder is preferably 5 to 300 μm. The average particle size referred to in the present invention is represented by the equivalent sphere diameter by the light scattering method using laser light specified in JIS Z 8901.

本発明の被覆層形成用スパッタリングターゲット材は、主要構成元素のMo、Ni、Mn、Cu以外の不可避的不純物の含有量は少ないことが好ましく、本発明の作用を損なわない範囲で、酸素、窒素、炭素、Fe、Al、Si等の不可避的不純物を含んでもよい。ここで、各主要構成元素は、主要構成元素全体に対する原子%、主要元素以外の不可避的不純物は、スパッタリングターゲット材全体における質量ppmで表わす。例えば、酸素、窒素は各々1000質量ppm以下、炭素は200質量ppm以下、Al、Siは100質量ppm以下等にすることが好ましい。そして、本発明の被覆層形成用のスパッタリングターゲット材における金属成分全体の純度は、99.9質量%以上であることが好ましい。 The sputtering target material for forming a coating layer of the present invention preferably contains a small amount of unavoidable impurities other than the main constituent elements Mo, Ni, Mn, and Cu, and oxygen and nitrogen are not impaired within the range of the action of the present invention. , Carbon, Fe, Al, Si and the like may be contained. Here, each major constituent element is represented by atomic% with respect to the entire major constituent elements, and unavoidable impurities other than the major constituent elements are represented by mass ppm in the entire sputtering target material. For example, it is preferable that oxygen and nitrogen are 1000 mass ppm or less, carbon is 200 mass ppm or less, Al and Si are 100 mass ppm or less, and the like. The purity of the entire metal component in the sputtering target material for forming the coating layer of the present invention is preferably 99.9% by mass or more.

先ず、表1に示す被覆層を形成するためのスパッタリングターゲットを作製した。尚、No.4、No.5、No.8は、電解Niと塊状のMo原料、無酸素銅のブロック、Mnフレーク、Tiブロックを所定量に秤量した後、真空溶解炉にて溶解鋳造法によりインゴットを作製した。
また、No.1〜No.3、No.6、No.7、No.9、No.10、No.11は、非磁性となるNi−30原子%Moのアトマイズ粉末とMo粉末とCu粉末、Mn粉末、Ti粉末を所定の組成となるように混合し、軟鋼製の缶に充填した後、加熱しながら真空排気して封止した。次に、封止した缶を熱間静水圧プレス装置に入れて、900℃、100MPa、3時間の条件で焼結させて焼結体を作製した。
得られた各インゴットおよび各焼結体にSmCo磁石を近づけたところ、磁石には付着しないことを確認した。また、上記で得た各インゴットおよび各焼結体の一部を磁気特性測定用のケースに入れて、理研電子株式会社製の振動試料型磁力計(型式番号:VSM−5)を用いて、常温(25℃)で磁気特性を測定したところ、非磁性であることを確認した。
これらのインゴットおよび焼結体を機械加工により、直径100mm、厚さ5mmのスパッタリングターゲット材を作製した。また、導電層を形成するための純Alのスパッタリングターゲット材は、三菱マテリアル株式会社製の純度4Nのものを用いた。
First, a sputtering target for forming the coating layer shown in Table 1 was prepared. In addition, No. 4, No. 5, No. In No. 8, an electrolytic Ni, a massive Mo raw material, an oxygen-free copper block, an Mn flake, and a Ti block were weighed to a predetermined amount, and then an ingot was prepared by a melting casting method in a vacuum melting furnace.
In addition, No. 1-No. 3, No. 6, No. 7, No. 9, No. 10, No. No. 11 is a mixture of non-magnetic Ni-30 atomic% Mo atomized powder, Mo powder, Cu powder, Mn powder, and Ti powder so as to have a predetermined composition, filled in a mild steel can, and then heated. While vacuum exhausting, it was sealed. Next, the sealed can was placed in a hot hydrostatic pressure press device and sintered at 900 ° C., 100 MPa for 3 hours to prepare a sintered body.
When the SmCo magnet was brought close to each of the obtained ingots and each sintered body, it was confirmed that the SmCo magnet did not adhere to the magnet. In addition, each ingot and a part of each sintered body obtained above are placed in a case for measuring magnetic characteristics, and a vibrating sample magnetometer (model number: VSM-5) manufactured by Riken Denshi Co., Ltd. is used. When the magnetic characteristics were measured at room temperature (25 ° C.), it was confirmed that the magnetism was non-magnetic.
These ingots and sintered bodies were machined to prepare a sputtering target material having a diameter of 100 mm and a thickness of 5 mm. Further, as the pure Al sputtering target material for forming the conductive layer, a material having a purity of 4N manufactured by Mitsubishi Materials Corporation was used.

次に、上述の各被覆層形成用スパッタリングターゲット材を銅製のバッキングプレートにろう付けした後、アルバック株式会社製のスパッタ装置(型式番号:CS−200)に取り付け、Ar雰囲気、圧力0.5Pa、電力500Wの条件でスパッタテストを実施したところ、いずれのスパッタリングターゲット材もスパッタすることが可能であった。
次に、コーニング社製の25mm×50mmのガラス基板(製品番号:EagleXG)を上記スパッタ装置の基板ホルダ−に取り付けて、厚さ50nmの下地膜、厚さ300nmのAlの導電層、厚さ50nmのキャップ層を順次形成して試料を作製し、密着性と耐酸化性を評価した。また、フィルム基板およびITO膜付きフィルム基板についても、ガラス基板と同様な方法で試料を作製した。
密着性の評価は、ガラス基板上ではJIS K 5400で規定された方法で行なった。先ず、上記で形成した被覆層の表面に、2mm角のマス目をカッターナイフで入れ、住友スリーエム株式会社製の透明粘着テープ(製品名:透明美色)を貼り、透明粘着テープを引き剥がして、被覆層の残存の有無で評価をした。被覆層が1マスも剥がれなかったものを○、1〜10マス剥がれたものを△、11マス以上剥がれたものを×として評価した。フィルム基板およびITO膜付きフィルム基板では、膜表面に透明粘着テープ(製品名:透明美色)を貼り、その後、透明粘着テープを引き剥がして、まったく剥がれなかったものを○、10%以下の面積が剥がれたものを△、10%を超える面積が剥がれたものを×として評価した。
また、耐酸化性の評価は、各試料を大気雰囲気において150℃〜300℃の温度で30分間の加熱処理を行ない、反射率と電気抵抗値を測定した。反射率は、コニカミノルタ株式会社製の分光測色計(型式番号:CM2500d)を用いて測定した。また、電気抵抗値は、ダイヤインスツルメント製4端子の薄膜抵抗率計(形式番号:MCP−T400)を用いて測定した。評価した結果を表1に示す。
Next, after each of the above-mentioned sputtering target materials for forming a coating layer was brazed to a copper backing plate, it was attached to a sputtering apparatus (model number: CS-200) manufactured by ULVAC Co., Ltd., and Ar atmosphere, pressure 0.5 Pa, When the sputtering test was carried out under the condition of a power of 500 W, it was possible to sputter any sputtering target material.
Next, a 25 mm × 50 mm glass substrate (product number: EagleXG) manufactured by Corning Inc. was attached to the substrate holder of the sputtering apparatus, and a base film having a thickness of 50 nm, a conductive layer of Al having a thickness of 300 nm, and a thickness of 50 nm were attached. A sample was prepared by sequentially forming the cap layers of the above, and the adhesion and oxidation resistance were evaluated. For the film substrate and the film substrate with ITO film, samples were prepared in the same manner as the glass substrate.
The adhesion was evaluated on the glass substrate by the method specified by JIS K 5400. First, a 2 mm square square is inserted into the surface of the coating layer formed above with a cutter knife, a transparent adhesive tape (product name: transparent beauty color) manufactured by Sumitomo 3M Ltd. is attached, and the transparent adhesive tape is peeled off. , The presence or absence of residual coating layer was evaluated. Those in which the coating layer was not peeled off by 1 square were evaluated as ◯, those in which 1 to 10 squares were peeled off were evaluated as Δ, and those in which 11 or more squares were peeled off were evaluated as ×. For film substrates and film substrates with ITO film, a transparent adhesive tape (product name: transparent beauty color) is attached to the film surface, and then the transparent adhesive tape is peeled off, and those that did not peel off at all are ○, area of 10% or less. Those with peeled off were evaluated as Δ, and those with an area of more than 10% peeled off were evaluated as ×.
In the evaluation of oxidation resistance, each sample was heat-treated at a temperature of 150 ° C. to 300 ° C. for 30 minutes in an air atmosphere, and the reflectance and electrical resistance were measured. The reflectance was measured using a spectrocolorimeter (model number: CM2500d) manufactured by Konica Minolta Co., Ltd. The electrical resistivity value was measured using a 4-terminal thin film resistivity meter (model number: MCP-T400) manufactured by Dia Instruments. The evaluation results are shown in Table 1.

表1に示すように、比較例となる試料No.1は、フィルム基板、ITO付きフィルム基板上で密着性が低く、膜剥がれが生じた。また、比較例となる試料No.3は、ガラス基板、フィルム基板上で部分的に剥がれが生じた。
一方、本発明例となるMoにNi、Mn、Cuを所定量含有する被覆層を下地膜に用いた試料No.4〜No.9の積層配線膜は、剥がれもなく、高い密着性を有していることが確認できた。
また、比較例となる試料No.2、No.3、No.10、No.11、No.12、No.14、No.17では、250℃以上で反射率が低下し、耐酸化性に劣ることがわかる。また、試料No.3、No.10、No.11、No.17では、300℃の加熱を行なうと、電気抵抗値が増加した。
それに対して、本発明例となる試料No.4〜No.9、No.13、No.15、No.16は、反射率の低下、電気抵抗値の増加も少なく、高い耐酸化性を有していることが確認できた。
As shown in Table 1, the sample No. which serves as a comparative example. In No. 1, the adhesion was low on the film substrate and the film substrate with ITO, and the film peeled off. In addition, Sample No. 3, which is a comparative example, was partially peeled off on the glass substrate and the film substrate.
On the other hand, Sample No. using a coating layer containing a predetermined amount of Ni, Mn, and Cu in Mo, which is an example of the present invention, as the base film. 4 to No. It was confirmed that the laminated wiring film of No. 9 did not peel off and had high adhesion.
In addition, sample No. which is a comparative example. 2. No. 3, No. 10, No. 11, No. 12, No. 14, No. At 17, it can be seen that the reflectance decreases at 250 ° C. or higher, and the oxidation resistance is inferior. In addition, sample No. 3, No. 10, No. 11, No. In No. 17, the electric resistance value increased when heating at 300 ° C. was performed.
On the other hand, the sample No. which is an example of the present invention. 4 to No. 9, No. 13, No. 15, No. It was confirmed that No. 16 had high oxidation resistance with little decrease in reflectance and little increase in electrical resistance value.

次に、実施例1で作製した各試料を用いて、耐食性の評価を行なった。耐食性の評価は、各試料を温度85℃、相対湿度85%の雰囲気に100時間、200時間、300時間放置し、実施例1と同様な方法で反射率を測定した。その結果を表2に示す。 Next, the corrosion resistance was evaluated using each sample prepared in Example 1. For the evaluation of corrosion resistance, each sample was left in an atmosphere having a temperature of 85 ° C. and a relative humidity of 85% for 100 hours, 200 hours, and 300 hours, and the reflectance was measured by the same method as in Example 1. The results are shown in Table 2.

表2に示すように、比較例となる試料No.No.1〜No.3、No.12、No.14、No.17は、高温高湿雰囲気に100時間以上放置すると、反射率が大きく低下し、耐食性に劣ることを確認した。
それに対して、本発明例となる試料No.4〜No.9、No.13、No.15、No.16は、高温高湿雰囲気に曝しても変色は少なく、300時間経過後も高い反射率を維持しており、高い耐食性を有していることが確認できた。
As shown in Table 2, the sample Nos. No. 1-No. 3, No. 12, No. 14, No. It was confirmed that when the product 17 was left in a high temperature and high humidity atmosphere for 100 hours or more, the reflectance was greatly reduced and the corrosion resistance was inferior.
On the other hand, the sample No. which is an example of the present invention. 4 to No. 9, No. 13, No. 15, No. It was confirmed that No. 16 had little discoloration even when exposed to a high temperature and high humidity atmosphere, maintained a high reflectance even after 300 hours, and had high corrosion resistance.

次に、実施例1で作製した被覆層形成用スパッタリングターゲット材を用いて、ガラス基板上に被覆層の単層膜を形成し、ウェットエッチング性の評価を行なった。エッチャントにはAl膜用に用いている硝酸、リン酸、酢酸と水を混合したエッチャントを用いた。少ないサイドエッチングの被覆層とするには、エッチング時間のムラを抑制し、オーバーエッチング時間を少なくするとともに、エッチャントに対する濡れ性を適度に抑制することが必要である。各試料をエッチャント液に浸漬して、被覆層全面が完全に透過するまでに掛かる時間をジャストエッチング時間として測定した。また、エッチングムラは、目視で確認しながら、より明確な差とするために、膜の一部が透過した時間とジャストエッチング時間との時間差を測定した。これは、時間差が小さいほどエッチングムラは少ないことを意味する。
また、被覆層の膜表面に、エッチャントを20μl滴下し、2分後の広がり径を測定した。これは、広がり径が小さいほどサイドエッチングを抑制可能であり、精度の高いウェットエッチングを行なうことができることを意味する。各試料のウェットエッチングの評価結果を表3に示す。
Next, using the sputtering target material for forming a coating layer produced in Example 1, a single-layer film of the coating layer was formed on a glass substrate, and the wet etching property was evaluated. As the etchant, the nitric acid, phosphoric acid, acetic acid and water used for the Al film were mixed. In order to obtain a coating layer with less side etching, it is necessary to suppress uneven etching time, reduce over-etching time, and appropriately suppress wettability to etchant. Each sample was immersed in the etchant solution, and the time required for the entire surface of the coating layer to completely permeate was measured as the just etching time. Further, the etching unevenness was visually confirmed, and the time difference between the time when a part of the film was permeated and the just etching time was measured in order to make the difference clearer. This means that the smaller the time difference, the smaller the etching unevenness.
In addition, 20 μl of etchant was added dropwise to the film surface of the coating layer, and the spread diameter after 2 minutes was measured. This means that the smaller the spread diameter, the more the side etching can be suppressed, and the more accurate the wet etching can be performed. Table 3 shows the evaluation results of wet etching of each sample.

ウェットエッチング性については、比較例となる試料No.11のAl膜は、200秒で広がりも少なく均一エッチングされた。一方、比較例となる試料No.1は、泡立ちながら35秒の短時間でエッチングが可能であった。また、比較例となる試料No.10では、他の被覆層に比較して156秒とエッチング時間が長く、エッチングの早い部分と遅い部分がありエッチングムラが発生するため時間差も大きく、エッチャントが広がりやすいことを確認した。このため、均一なエッチングが行ないにくく、精度の高いエッチングには適さないことがわかる。
それに対して、本発明例となる試料No.4〜No.9、No.13、No.15、No.16は、75秒以下でウェットエッチングすることが可能であり、その時間差も少なく、広がり径も小さいことがわかる。
以上のことから、本発明の被覆層は、エッチングムラとサイドエッチングが少なく、精度の高いエッチングを行なうことが可能であることが確認できた。
Regarding the wet etching property, the sample No. which is a comparative example. The Al film of No. 11 was uniformly etched in 200 seconds with little spread. On the other hand, the sample No. which is a comparative example. No. 1 was capable of etching in a short time of 35 seconds while foaming. In addition, sample No. which is a comparative example. In No. 10, it was confirmed that the etching time was 156 seconds, which was longer than that of the other coating layers, and that there were early and late etching portions, and etching unevenness occurred, so that the time difference was large and the etchant was likely to spread. Therefore, it is difficult to perform uniform etching, and it can be seen that it is not suitable for highly accurate etching.
On the other hand, the sample No. which is an example of the present invention. 4 to No. 9, No. 13, No. 15, No. It can be seen that 16 can be wet-etched in 75 seconds or less, the time difference is small, and the spread diameter is small.
From the above, it was confirmed that the coating layer of the present invention has less etching unevenness and side etching, and can perform highly accurate etching.

1. 基板
2. 下地層(被覆層)
3. 導電層
4. キャップ層(被覆層)
1. 1. Board 2. Underlayer (coating layer)
3. 3. Conductive layer 4. Cap layer (coating layer)

Claims (8)

AlまたはAl合金からなる導電層と、該導電層の少なくとも一方の面を覆う被覆層を有する電子部品用積層配線膜において、前記被覆層はNiを30〜75原子%、Mnを3〜25原子%含有し、且つ前記Niおよび前記Mnを合計で80原子%未満含有し、残部がMoおよび不可避的不純物からなることを特徴とする電子部品用積層配線膜。 In a laminated wiring film for electronic components having a conductive layer made of Al or an Al alloy and a coating layer covering at least one surface of the conductive layer, the coating layer contains 30 to 75 atomic% of Ni and 3 to 25 atoms of Mn. A laminated wiring film for electronic components , which contains less than 80 atomic% of Ni and Mn in total, and the balance is composed of Mo and unavoidable impurities. AlまたはAl合金からなる導電層と、該導電層の少なくとも一方の面を覆う被覆層を有する電子部品用積層配線膜において、前記被覆層はNiを30〜65原子%、Cuを5〜25原子%含有し、且つ前記Niおよび前記Cuを合計で75原子%未満含有し、残部がMoおよび不可避的不純物からなることを特徴とする電子部品用積層配線膜。In a laminated wiring film for electronic components having a conductive layer made of Al or an Al alloy and a coating layer covering at least one surface of the conductive layer, the coating layer contains 30 to 65 atomic% of Ni and 5 to 25 atoms of Cu. A laminated wiring film for electronic components, which contains less than 75 atomic% of Ni and Cu in total, and the balance is composed of Mo and unavoidable impurities. AlまたはAl合金からなる導電層と、該導電層の少なくとも一方の面を覆う被覆層を有する電子部品用積層配線膜において、前記被覆層は、MnおよびCuを合計で5〜40原子%含有し、且つ前記Cu、前記Mn、およびNiを合計で75原子%未満含有し、残部がMoおよび不可避的不純物からなることを特徴とする電子部品用積層配線膜。In a laminated wiring film for electronic components having a conductive layer made of Al or an Al alloy and a coating layer covering at least one surface of the conductive layer, the coating layer contains Mn and Cu in a total amount of 5 to 40 atomic%. A laminated wiring film for electronic components, which contains the Cu, the Mn, and Ni in a total of less than 75 atomic%, and the balance is composed of Mo and unavoidable impurities. 前記被覆層は、前記Moの一部が、Ti、V、Nb、Ta、Cr、Wから選択される一種以上の元素で、合計1〜15原子%の範囲で置換されることを特徴とする請求項1ないし請求項のいずれかに記載の電子部品用積層配線膜。 The coating film is characterized in that a part of Mo is substituted with one or more elements selected from Ti, V, Nb, Ta, Cr, and W in a total range of 1 to 15 atomic%. The laminated wiring film for electronic components according to any one of claims 1 to 3 . 電子部品用積層配線膜におけるAlまたはAl合金からなる導電層を覆う被覆層を形成するためのスパッタリングターゲット材であって、Niを30〜75原子%、Mnを3〜25原子%含有し、且つ前記Niおよび前記Mnを合計で80原子%未満含有し、残部がMoおよび不可避的不純物からなることを特徴とする被覆層形成用スパッタリングターゲット材。 A sputtering target material for forming a coating layer covering a conductive layer made of Al or Al alloy in a laminated wiring film for electronic parts, which contains 30 to 75 atomic% of Ni and 3 to 25 atomic% of Mn, and A sputtering target material for forming a coating layer , which contains the Ni and Mn in a total of less than 80 atomic%, and the balance is composed of Mo and unavoidable impurities. 電子部品用積層配線膜におけるAlまたはAl合金からなる導電層を覆う被覆層を形成するためのスパッタリングターゲット材であって、Niを30〜65原子%、Cuを5〜25原子%含有し、且つ前記Niおよび前記Cuを合計で75原子%未満含有し、残部がMoおよび不可避的不純物からなることを特徴とする被覆層形成用スパッタリングターゲット材。A sputtering target material for forming a coating layer covering a conductive layer made of Al or Al alloy in a laminated wiring film for electronic parts, which contains 30 to 65 atomic% of Ni and 5 to 25 atomic% of Cu, and A sputtering target material for forming a coating layer, which contains the Ni and the Cu in a total of less than 75 atomic%, and the balance is composed of Mo and unavoidable impurities. 電子部品用積層配線膜におけるAlまたはAl合金からなる導電層を覆う被覆層を形成するためのスパッタリングターゲット材であって、MnおよびCuを合計で5〜40原子%含有し、且つ前記Cu、前記Mn、およびNiを合計で75原子%未満し、残部がMoおよび不可避的不純物からなることを特徴とする被覆層形成用スパッタリングターゲット材。A sputtering target material for forming a coating layer covering a conductive layer made of Al or Al alloy in a laminated wiring film for electronic parts, which contains 5 to 40 atomic% of Mn and Cu in total, and the Cu, said. A sputtering target material for forming a coating layer, which comprises less than 75 atomic% of Mn and Ni in total, and the balance is composed of Mo and unavoidable impurities. 前記Moの一部が、Ti、V、Nb、Ta、Cr、Wから選択される一種以上の元素で、合計1〜15原子%の範囲で置換されることを特徴とする請求項ないし請求項のいずれかに記載の被覆層形成用スパッタリングターゲット材。 Some of the Mo is, Ti, V, Nb, Ta , Cr, one or more elements selected from W, claim 5 or claims characterized in that it is replaced by a range of total 15 atomic% Item 7. The sputtering target material for forming a coating layer according to any one of Items 7 .
JP2016178563A 2015-10-01 2016-09-13 Laminated wiring film for electronic components and sputtering target material for coating layer formation Active JP6823799B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195763 2015-10-01
JP2015195763 2015-10-01

Publications (2)

Publication Number Publication Date
JP2017066519A JP2017066519A (en) 2017-04-06
JP6823799B2 true JP6823799B2 (en) 2021-02-03

Family

ID=58491991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178563A Active JP6823799B2 (en) 2015-10-01 2016-09-13 Laminated wiring film for electronic components and sputtering target material for coating layer formation

Country Status (4)

Country Link
JP (1) JP6823799B2 (en)
KR (2) KR20170039582A (en)
CN (1) CN107039097B (en)
TW (1) TWI604066B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110749B2 (en) * 2017-07-05 2022-08-02 日立金属株式会社 MoNb target material
TWI641001B (en) * 2018-01-22 2018-11-11 國立屏東科技大學 Alloy thin film resistor
KR102474944B1 (en) * 2020-04-08 2022-12-06 주식회사 큐프럼 머티리얼즈 Manufacturing method of wiring film, wiring film and display device using the same
WO2023145440A1 (en) * 2022-01-31 2023-08-03 株式会社プロテリアル Method for producing film wire
CN114855131A (en) * 2022-05-23 2022-08-05 安泰天龙(北京)钨钼科技有限公司 Preparation method of molybdenum alloy target, molybdenum alloy target and application

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859119B2 (en) 2000-12-22 2006-12-20 日立金属株式会社 Thin film wiring for electronic parts
CN101521249B (en) * 2002-09-30 2012-05-23 米亚索尔公司 Manufacturing apparatus and method for large-scale production of thin-film solar cells
JP3649238B2 (en) * 2002-10-17 2005-05-18 旭硝子株式会社 LAMINATE, SUBSTRATE WITH WIRING, ORGANIC EL DISPLAY ELEMENT, CONNECTION TERMINAL OF ORGANIC EL DISPLAY ELEMENT, AND METHOD FOR PRODUCING THEM
US7605481B2 (en) * 2003-10-24 2009-10-20 Nippon Mining & Metals Co., Ltd. Nickel alloy sputtering target and nickel alloy thin film
JP4730662B2 (en) 2005-03-02 2011-07-20 日立金属株式会社 Thin film wiring layer
JP5532767B2 (en) * 2009-09-04 2014-06-25 大同特殊鋼株式会社 NiCu alloy target material for Cu electrode protection film
JP6016083B2 (en) 2011-08-19 2016-10-26 日立金属株式会社 Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP2013133489A (en) * 2011-12-26 2013-07-08 Sumitomo Metal Mining Co Ltd Cu ALLOY SPUTTERING TARGET, METHOD FOR PRODUCING THE SAME, AND METAL THIN FILM
JP6026261B2 (en) * 2012-12-19 2016-11-16 山陽特殊製鋼株式会社 Cu-based magnetic recording alloy, sputtering target material, and perpendicular magnetic recording medium using the same
JP6292466B2 (en) * 2013-02-20 2018-03-14 日立金属株式会社 Metal thin film and Mo alloy sputtering target material for metal thin film formation
JP6361957B2 (en) * 2013-03-22 2018-07-25 日立金属株式会社 Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP6380837B2 (en) * 2013-08-21 2018-08-29 日立金属株式会社 Sputtering target material for forming coating layer and method for producing the same
JP6369750B2 (en) * 2013-09-10 2018-08-08 日立金属株式会社 LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL

Also Published As

Publication number Publication date
TWI604066B (en) 2017-11-01
KR102032085B1 (en) 2019-10-14
TW201715054A (en) 2017-05-01
KR20170039582A (en) 2017-04-11
CN107039097A (en) 2017-08-11
CN107039097B (en) 2019-04-23
KR20190010701A (en) 2019-01-30
JP2017066519A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6823799B2 (en) Laminated wiring film for electronic components and sputtering target material for coating layer formation
JP6369750B2 (en) LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL
TWI583801B (en) A sputtering target for forming a wiring film for an electronic component and a coating layer material
JP6284004B2 (en) Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material
JP6016083B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
JP5958822B2 (en) Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material
TWI576454B (en) Spraying target for forming wiring film and coating layer for electronic parts
JP6292471B2 (en) Metal thin film for electronic parts and Mo alloy sputtering target material for metal thin film formation
JP6380837B2 (en) Sputtering target material for forming coating layer and method for producing the same
JP6292466B2 (en) Metal thin film and Mo alloy sputtering target material for metal thin film formation
JP6037208B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
CN103227195B (en) The stacked wiring membrane of electronic component-use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6823799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350