JP2019061786A - アルカリ二次電池の状態推定装置 - Google Patents

アルカリ二次電池の状態推定装置 Download PDF

Info

Publication number
JP2019061786A
JP2019061786A JP2017183786A JP2017183786A JP2019061786A JP 2019061786 A JP2019061786 A JP 2019061786A JP 2017183786 A JP2017183786 A JP 2017183786A JP 2017183786 A JP2017183786 A JP 2017183786A JP 2019061786 A JP2019061786 A JP 2019061786A
Authority
JP
Japan
Prior art keywords
reaction
current
negative electrode
cell
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017183786A
Other languages
English (en)
Other versions
JP6889401B2 (ja
Inventor
高橋 賢司
Kenji Takahashi
賢司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017183786A priority Critical patent/JP6889401B2/ja
Publication of JP2019061786A publication Critical patent/JP2019061786A/ja
Application granted granted Critical
Publication of JP6889401B2 publication Critical patent/JP6889401B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】アルカリ二次電池のセル(単電池)の内部温度を精度よく推定する。【解決手段】アルカリ二次電池のセルの状態推定装置は、セルの電流を検出する電流センサと、セルの電圧を検出するように構成された電圧センサと、セルの外面の温度を検出する温度センサと、ECUとを備える。ECUは、セルの充放電反応による発熱量、正極での酸素発生反応による発熱量、負極での酸素再結合反応による発熱量、負極のエンタルピー変化に伴なう熱変化量、充放電反応、正極での酸素発生反応、および負極での酸素再結合反応によるエントロピー変化に伴なう熱変化量を用いて、セルの内部温度を算出する。【選択図】図3

Description

本開示は、水酸化ニッケルを有する正極と水素吸蔵合金を有する負極とを含む単電池(アルカリ二次電池のセル)の内部温度を推定する技術に関する。
特許第4775524号公報(特許文献1)には、リチウムイオン二次電池のセルの内部温度と外部温度との差の関係を示す熱伝導方程式を用いて、セルの内部温度を推定する装置が開示されている。
特許第4775524号公報
しかしながら、特許文献1に開示された熱伝導方程式は、リチウムイオン二次電池を前提とした熱伝導式である。そのため、アルカリ二次電池のセルの内部温度を、特許文献1に開示された熱伝導方程式を単純に用いて推定しただけでは、アルカリ二次電池のセルの内部温度の推定精度が悪化してしまうことが懸念される。
本開示は、上述の課題を解決するためになされたものであって、その目的は、アルカリ二次電池のセル(単電池)の内部温度を精度よく推定することである。
本開示による状態推定装置は、水酸化ニッケルを有する正極と水素吸蔵合金を有する負極とを含む単電池の状態推定装置であって、単電池の電流を検出するように構成された電流センサと、単電池の電圧を検出するように構成された電圧センサと、単電池の外面の温度を検出するように構成された温度センサと、単電池の内部温度を算出するように構成された制御装置とを備える。制御装置は、電流センサ、電圧センサおよび温度センサの検出結果を用いて、単電池の正極抵抗、負極抵抗、正極反応抵抗、および負極反応抵抗を算出する。制御装置は、電圧センサおよび温度センサの検出結果を用いて、正極での酸素発生反応に消費される電流である酸素発生電流を算出する。制御装置は、電流センサの検出値および酸素発生電流を用いて正極での充放電反応に消費される電流である正極主反応電流を算出する。制御装置は、電流センサの検出値、正極主反応電流、正極抵抗、および負極抵抗を用いて、単電池の充放電反応による第1発熱量を算出する。制御装置は、酸素発生電流および正極反応抵抗を用いて、正極での酸素発生反応による第2発熱量を算出する。制御装置は、電圧センサおよび温度センサの検出値を用いて、負極での酸素再結合反応に消費される電流である酸素再結合電流を算出する。制御装置は、酸素再結合電流および負極反応抵抗を用いて、負極での酸素再結合反応による第3発熱量を算出する。制御装置は、負極のエンタルピー変化に伴なう熱変化量を電流センサの検出値を用いて算出する。制御装置は、充放電反応、正極での酸素発生反応、および負極での酸素再結合反応によるエントロピー変化に伴なう熱変化量を温度センサの検出値を用いて算出する。制御装置は、温度センサの検出値、第1〜3発熱量、エンタルピー変化に伴なう熱変化量、およびエントロピー変化に伴なう熱変化量を用いて、単電池の内部温度を算出する。
上記構成によれば、単電池の充放電反応による第1発熱量、正極での酸素発生反応による第2発熱量、負極での酸素再結合反応による第3発熱量、エンタルピー変化に伴なう熱変化量、エントロピー変化に伴なう熱変化量を考慮して、アルカリ二次電池のセルの内部温度が推定される。そのため、アルカリ二次電池のセル(単電池)の内部温度を精度よく推定することができる。
電池システムの全体構成の一例を示す図である。 セルの内部で生じる反応を模式的に示す図である。 ECUの処理手順の一例を示すフローチャートである。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
<全体構成>
図1は、本実施の形態によるアルカリ二次電池の状態推定装置が適用される、電池システム1の全体構成の一例を示す図である。
電池システム1は、セル10と、電圧センサ31と、電流センサ32と、温度センサ33と、ECU(Electronic Control Unit)100とを備える。電池システム1は、複数のセル10を含む電池モジュールに蓄えられた電力を用いて走行可能な電動車両(ハイブリッド自動車、電気自動車など)などに搭載することができる。
セル10は、図示しない負荷(たとえば電動車両の駆動力を発生するモータジェネレータなど)に供給するための電力を蓄える。セル10は、水酸化ニッケルを正極に有するとともに水素吸蔵合金を負極に有するアルカリ二次電池(ニッケル水素二次電池:NiMH)である。
電圧センサ31は、セル10の端子間電圧を検出する。電流センサ32は、セル10を流れる電流を検出する。温度センサ33は、セル10のケース13(図2参照)の外面に取り付けられ、セル10の外部温度を検出する。以下では、電圧センサ31による検出値を「電池電圧V」とも記載し、電流センサ32による検出値を「電池電流I」とも記載し、温度センサ33による検出値を「電池外部温度T」とも記載する。
ECU100は、図示しないCPU(Central Processing Unit)およびメモリを内蔵する。ECU100は、センサ31〜33からの情報(電池電圧V、電池電流I、電池外部温度T)およびメモリに記憶された情報などに基づいて所定の演算処理を実行し、演算結果に基づいてセル10の内部温度を推定する。
<アルカリ二次電池の内部温度の推定>
上述の特許文献1に記載されているように、セル10の内部温度と外部温度との差は、下記の式(1)に示す熱伝導方程式で推定することができる。
Figure 2019061786
式(1)において、「T」はセル10の内部温度を示し、「T」はセル10の外部温度(温度センサ33による検出値)を示し、「t」は時間を示し、「Δt」は時間刻みを示し、「λ」は熱伝導率を示し、「ρ」は密度を示し、「c」は比熱を示し、「x」は熱拡散距離を示し、「q」はセル10の内部における単位体積当たりの発熱量を示し、「k1」および「k2」はそれぞれ補正係数を示す。
また、式(1)は、下記の式(2)で表わすことができる。
Figure 2019061786
式(2)の「α」および「β」は、それぞれ下記の式(3)、(4)によって表わされる。
Figure 2019061786
Figure 2019061786
ここで、セル10の内部温度Tは、補正係数k1,k2を調整することによって、セル内部の最大温度や、セルの内部抵抗を反映する温度(以下「性能温度」ともいう)と見なすことができる。
セル10の内部温度Tは、上記の式(1)あるいは式(2)〜(4)で表わされる熱伝導式を用いることによって推定することができる。
しかしながら、特許文献1に開示された上記の式(1)〜(4)は、リチウムイオン二次電池を前提とした熱伝導式である。そのため、ニッケル水素二次電池のセル10の内部温度T(セル内部の最大温度あるいは性能温度)を、リチウムイオン二次電池を前提とした上記の式(1)〜(4)を単純に用いて推定しただけでは、内部温度Tの推定精度が悪化してしまうことが懸念される。特に、ニッケル水素二次電池の副反応が大きい使用条件下(たとえばSOC(State Of Charge)の高い状態で連続的に放電あるいは充電する場合)では、内部温度Tの推定精度が顕著に悪化し得る。以下、この点について詳しく説明する。
図2は、ニッケル水素二次電池のセル10の内部で生じる反応を模式的に示す図である。セル10は、金属製のケース13で覆われている。セル10の内部には、水酸化ニッケルを有する正極11と、負極12と、それらをイオン的に結合するアルカリ性の電解液とが備えられる。
ニッケル水素二次電池のセル10の内部においては、まず、リチウムイオン二次電池と同様に、電池の主反応(充放電反応)が生じる。さらに、セル10の内部においては、ニッケル水素二次電池の特有の副反応として、正極での自己放電(酸素発生)反応、負極での再結合反応(正極で発生した酸素が負極に移動し、水素と反応してOHに戻る反応)が生じる。したがって、セル10の内部で発生する発熱量には、主反応による発熱量qmainと、正極での酸素発生反応による発熱量qgenと、負極での酸素再結合反応による発熱量qcombとが含まれることになる。
ここで、正極の主反応に消費される電流(以下「正極主反応電流Imain,p」ともいう)と、正極の副反応(酸素発生)に消費される電流(以下「酸素発生電流Igen」ともいう)と、セル10の総電流(電流センサ32によって検出される電池電流I)との関係は、下記の式(5)で表わされる。
Figure 2019061786
酸素発生電流Igenは、セル10のOCV(Open Circuit Voltage、起電圧)および温度に依存する特性を有することが知られている。そのため、たとえば、OCVおよび温度と酸素発生電流Igenとの対応関係を示すマップを予め実験等によって求めておき、このマップを参照して実際のセル10のOCVおよび温度に対応する酸素発生電流Igenを算出することができる。
あるいは、下記の式(6)に示すような電気化学反応式(ターフェル式)に基づいて、センサ31〜33からの情報(電池電圧V、電池電流I、電池外部温度T)を入力として、酸素発生電流Igenを逐次算出することも可能である。
Figure 2019061786
式(6)において、「α」は電極反応の移動係数を示し、「F」はファラデー定数を示し、「Ueq,gen」は酸素発生の基準電圧を示し、「i0,gen」は酸素発生の交換電流密度を示す。
なお、式(6)の「V」は、電池電圧Vから、直流抵抗由来のオーム損と、負極反応抵抗由来の過電圧との影響を除いた値である。直流抵抗、負極反応抵抗は、温度やOCVのマップあるいは関数として予め保持しておくことができる。また、電気化学反応式としては、バトラーボルマー式を利用してもよい。
上記より、正極主反応電流Imain,pは、Imain,p=I−Igenとなる。なお、正極上での副反応(酸素発生)が無視できるレベルの電圧領域では、酸素発生電流Igenはゼロと近似することができる。
同様に、負極上での副反応(酸素吸収)に消費される電流(以下「酸素再結合電流Icomb」ともいう)も、セル10のOCVおよび温度に依存する特性を有することが知られている。そのため、たとえば、OCVおよび温度と酸素再結合電流Icombとの対応関係を示すマップを予め実験等によって求めておき、このマップを参照して実際のセル10のOCVおよび温度に対応する酸素再結合電流Icombを算出することができる。
あるいは、下記の式(7)に示すような電気化学反応式(ターフェル式)に基づいて、センサ31〜33からの情報(電池電圧V、電池電流I、電池外部温度T)を入力として、酸素再結合電流Icombを逐次算出することも可能である。
Figure 2019061786
式(7)において、「Ueq,comb」は酸素吸収の基準電圧を示し、「i0,comb」は酸素吸収の交換電流密度を示す。ここで、酸素吸収の基準電圧Ueq,combおよび交換電流密度i0,combは、酸素発生時と同様の値としてもよいし、異なる値であってもよい。
なお、式(7)の「V」は、式(6)と同様、電池電圧Vから、直流抵抗由来のオーム損と、負極反応抵抗由来の過電圧との影響を除いた値である。本開示では、正極から負極への酸素移動には、時間遅れがあることを前提としている。また、セル10内の酸素量がゼロになった場合、式(7)の反応は生じないとしてモデル構築を行なっている。
一方、負極の水素吸蔵合金に水素が吸蔵される際は、下記の式(8)に従い、負極のエンタルピー変化(△H[kJ/mol])に伴う熱変化量qを考慮するのが望ましい。負極の水素吸蔵合金に吸蔵される水素モル数は、酸素再結合電流Icombおよびファラデー定数から算出することができるため、負極のエンタルピー変化に伴う熱変化量qも逐次算出することができる(後述の式(14)参照)。
Figure 2019061786
さらに、リチウムイオン二次電池における正極および負極のエントロピー変化は一般的に小さく無視可能なレベルであるが、ニッケル水素二次電池における正極および負極のエントロピー変化はリチウムイオン二次電池に比べて比較的大きい。そのため、ニッケル水素二次電池のセル10の内部の発熱量を算出する際には、各反応によるエントロピー変化に伴なう熱変化量q(後述の式(15)参照)を考慮するのが望ましい。
以上より、本実施の形態によるECU100は、主反応による発熱量qmain、正極での酸素発生反応による発熱量qgen、負極での酸素再結合反応による発熱量qcomb、負極でのエンタルピー変化に伴なう熱変化量q、各反応のエントロピー変化に伴なう熱変化量qという、5つの熱変化量を考慮して、ニッケル水素二次電池のセル10の内部温度を推定する。そのため、ニッケル水素二次電池のセル10の内部温度を精度よく推定することができる。
<<セルの内部温度の推定フロー>>
図3は、ECU100がセル10の内部温度を推定する場合に実行する処理手順の一例を示すフローチャートである。まず、ECU100は、センサ31〜33からそれぞれ電池電圧V、電池電流Iおよび電池外部温度Tを取得する(ステップS10)。
次いで、ECU100は、直流抵抗R、正極抵抗R、負極抵抗R、正極反応抵抗Rc,p、負極反応抵抗Rc,nを算出する(ステップS12)。直流抵抗Rは、電子抵抗およびイオン抵抗に関連する抵抗成分である。正極抵抗Rは、電池内で正極に由来する抵抗成分の総和である。負極抵抗Rは、電池内で負極に由来する抵抗成分の総和である。正極反応抵抗Rc,pは、正極活物質と電解液との界面における電荷移動に関連する抵抗成分である。負極反応抵抗Rc,nは、負極活物質と電解液との界面における電荷移動に関連する抵抗成分である。
ECU100は、たとえば、セル10の状態(電池電圧V、電池電流Iおよび電池外部温度T)と各抵抗(直流抵抗R、正極抵抗R、負極抵抗R、正極反応抵抗Rc,p、負極反応抵抗Rc,n)との対応関係をそれぞれ規定する複数のマップ(Rマップ、Rマップ、Rマップ、Rc,pマップ、Rc,nマップ)をメモリから読出し、読み出したマップを参照して現在のセル10の状態に対応する各抵抗の値を算出する。なお、これらのマップは、予め実験等によって求めてメモリに記憶しておくことができる。
次いで、ECU100は、正極上での酸素発生電流Igenを算出する(ステップS14)。たとえば、ECU100は、既に述べたように、OCV(電池電圧V)および温度(電池外部温度T)と酸素発生電流Igenとの対応関係を規定するマップ、あるいは上述の式(6)に示すような電気化学反応式から、酸素発生電流Igenを算出する。
次いで、ECU100は、正極上での酸素発生電流Igenを電池電流Iから差し引いた値を、正極主反応電流Imain,pとして算出する(ステップS16)。
次いで、ECU100は、主反応による発熱量qmainを算出する(ステップS18)。まず、ECU100は、正極主反応による発熱量qmain,p、負極主反応による発熱量qmain,nを下記の式(9)、式(10)を用いてそれぞれ算出する。
Figure 2019061786
Figure 2019061786
そして、ECU100は、下記の式(11)に示すように、正極主反応による発熱量qmain,pと負極主反応による発熱量qmain,nとの合計を、主反応による発熱量qmainとして算出する。
Figure 2019061786
次いで、ECU100は、下記の式(12)を用いて、正極での酸素発生反応による発熱量qgenを算出する(ステップS20)。
Figure 2019061786
次いで、ECU100は、負極での酸素再結合電流Icombを算出する(ステップS22)。たとえば、ECU100は、既に述べたように、OCV(電池電圧V)および温度(電池外部温度T)と酸素再結合電流Icombとの対応関係を規定するマップ、あるいは上述の式(7)に示すような電気化学反応式から、酸素再結合電流Icombを算出する。
次いで、ECU100は、下記の式(13)を用いて、負極での酸素再結合反応による発熱量qcombを算出する(ステップS24)。
Figure 2019061786
次いで、ECU100は、下記の式(14)を用いて、負極でのエンタルピー変化に伴う熱変化量qを算出する(ステップS26)。
Figure 2019061786
式(14)において、「ΔH」はエンタルピー変化量(単位:kJ/mol)を示し、「M」は反応モル数を示す。
次いで、ECU100は、下記の式(15)を用いて、各反応によるエントロピー変化に伴なう熱変化量qを考慮するのが望ましい。
(ステップS28)。
Figure 2019061786
式(15)において、「T・ΔSmain」は主反応によるエントロピー変化に伴なう熱変化量を示し、「T・ΔSgen」は正極での酸素発生反応によるエントロピー変化に伴なう熱変化量を示し、「T・ΔScomb」は負極での酸素再結合反応によるエントロピー変化に伴なう熱変化量を示す。なお、主反応によるエントロピー変化に伴なう熱変化量T・ΔSmainは、正極のエントロピー変化に伴なう熱変化量と、負極のエントロピー変化に伴なう熱変化量との総和である。
次いで、ECU100は、セル10の内部温度Tを算出する(ステップS30)。
まず、ECU100は、セル10の内部における単位体積当たりの発熱量qを、下記の式(16)を用いて算出する。すなわち、ECU100は、主反応による発熱量qmain、正極での酸素発生反応による発熱量qgen、負極での酸素再結合反応による発熱量qcomb、負極でのエンタルピー変化に伴なう熱変化量q、および各反応のエントロピー変化に伴なう熱変化量qの5つの熱変化量の総和を、セル10の内部における単位体積当たりの発熱量qとして算出する。
Figure 2019061786
そして、上記の式(16)を用いて算出された発熱量q(t)および温度センサ33によって検出された外部温度T(T)を、上記の式(1)に代入することによって、セル10の内部温度Tを算出する。
以上のように、本実施の形態によるECU100は、主反応による発熱量qmain、正極での酸素発生反応による発熱量qgen、負極での酸素再結合反応による発熱量qcomb、負極でのエンタルピー変化に伴なう熱変化量q、各反応のエントロピー変化に伴なう熱変化量qという、5つの熱変化量を考慮して、ニッケル水素二次電池のセル10の内部温度を推定する。そのため、ニッケル水素二次電池のセル10の内部温度を精度よく推定することができる。
<変形例>
上述の実施の形態によるセル10においては、ケース13が熱伝導性の高い金属製であるため、温度センサ33の取付位置に関わらず、セル10の表面温度が常にほぼ一定と仮定することができる。そのため、図3のステップS30において、温度センサ33によって検出された外部温度T(T)を、そのまま上記の式(1)に代入するようにしていた。
しかしながら、ニッケル水素二次電池では、セルの外装体に樹脂が用いられることも想定される。セルの外装体に樹脂が用いられる場合、温度センサ33の取付位置によっては、セルの外装体の熱抵抗(温度差)を考慮するようにしてもよい。すなわち、温度センサ33の値をセルの外装体由来の熱抵抗を考慮して補正した上で、上記の式(1)に代入するようにしてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電池システム、10 セル、11 正極、12 負極、13 ケース、31 電圧センサ、32 電流センサ、33 温度センサ。

Claims (1)

  1. 水酸化ニッケルを有する正極と水素吸蔵合金を有する負極とを含む単電池の状態推定装置であって、
    前記単電池の電流を検出するように構成された電流センサと、
    前記単電池の電圧を検出するように構成された電圧センサと、
    前記単電池の外面の温度を検出するように構成された温度センサと、
    前記単電池の内部温度を算出するように構成された制御装置とを備え、
    前記制御装置は、
    前記電流センサ、前記電圧センサおよび前記温度センサの検出結果を用いて、前記単電池の正極抵抗、負極抵抗、正極反応抵抗、および負極反応抵抗を算出し、
    前記電圧センサおよび前記温度センサの検出結果を用いて、前記正極での酸素発生反応に消費される電流である酸素発生電流を算出し、
    前記電流センサの検出値および前記酸素発生電流を用いて前記正極での充放電反応に消費される電流である正極主反応電流を算出し、
    前記電流センサの検出値、前記正極主反応電流、前記正極抵抗、および前記負極抵抗を用いて、前記単電池の充放電反応による第1発熱量を算出し、
    前記酸素発生電流および前記正極反応抵抗を用いて、前記正極での酸素発生反応による第2発熱量を算出し、
    前記電圧センサおよび前記温度センサの検出値を用いて、前記負極での酸素再結合反応に消費される電流である酸素再結合電流を算出し、
    前記酸素再結合電流および前記負極反応抵抗を用いて、前記負極での酸素再結合反応による第3発熱量を算出し、
    前記負極のエンタルピー変化に伴なう熱変化量を前記電流センサの検出値を用いて算出し、
    前記充放電反応、前記正極での酸素発生反応、および前記負極での酸素再結合反応によるエントロピー変化に伴なう熱変化量を前記温度センサの検出値を用いて算出し、
    前記温度センサの検出値、前記第1〜3発熱量、前記エンタルピー変化に伴なう熱変化量、および前記エントロピー変化に伴なう熱変化量を用いて、前記単電池の内部温度を算出する、アルカリ二次電池の状態推定装置。
JP2017183786A 2017-09-25 2017-09-25 アルカリ二次電池の状態推定装置 Active JP6889401B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017183786A JP6889401B2 (ja) 2017-09-25 2017-09-25 アルカリ二次電池の状態推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183786A JP6889401B2 (ja) 2017-09-25 2017-09-25 アルカリ二次電池の状態推定装置

Publications (2)

Publication Number Publication Date
JP2019061786A true JP2019061786A (ja) 2019-04-18
JP6889401B2 JP6889401B2 (ja) 2021-06-18

Family

ID=66177506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183786A Active JP6889401B2 (ja) 2017-09-25 2017-09-25 アルカリ二次電池の状態推定装置

Country Status (1)

Country Link
JP (1) JP6889401B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220030157A (ko) * 2020-09-02 2022-03-10 도요타 지도샤(주) 이차 전지의 평가 방법
CN115615343A (zh) * 2022-12-05 2023-01-17 中汽数据有限公司 动力电池安全监测方法、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151166A (ja) * 2000-11-10 2002-05-24 Japan Storage Battery Co Ltd 二次電池の温度調整方法及び温度調整装置
JP2007157348A (ja) * 2005-11-30 2007-06-21 Panasonic Ev Energy Co Ltd 二次電池用の制御装置、二次電池の温度推定方法、及びこの方法を用いた二次電池の劣化判定方法
JP2011053215A (ja) * 2009-09-02 2011-03-17 IFP Energies Nouvelles 電気化学システムの計測不能な特性を推定する改良された方法
JP2011519118A (ja) * 2008-03-28 2011-06-30 イエフペ エネルジ ヌヴェル 電気化学システムの測定できない特性を推定する方法
JP2016173957A (ja) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 二次電池冷却システム
US20170229891A1 (en) * 2016-02-05 2017-08-10 Korea Advanced Institute Of Science And Technology Optimized battery charging method based on thermodynamic information of battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151166A (ja) * 2000-11-10 2002-05-24 Japan Storage Battery Co Ltd 二次電池の温度調整方法及び温度調整装置
JP2007157348A (ja) * 2005-11-30 2007-06-21 Panasonic Ev Energy Co Ltd 二次電池用の制御装置、二次電池の温度推定方法、及びこの方法を用いた二次電池の劣化判定方法
JP2011519118A (ja) * 2008-03-28 2011-06-30 イエフペ エネルジ ヌヴェル 電気化学システムの測定できない特性を推定する方法
JP2011053215A (ja) * 2009-09-02 2011-03-17 IFP Energies Nouvelles 電気化学システムの計測不能な特性を推定する改良された方法
JP2016173957A (ja) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 二次電池冷却システム
US20170229891A1 (en) * 2016-02-05 2017-08-10 Korea Advanced Institute Of Science And Technology Optimized battery charging method based on thermodynamic information of battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220030157A (ko) * 2020-09-02 2022-03-10 도요타 지도샤(주) 이차 전지의 평가 방법
CN114200332A (zh) * 2020-09-02 2022-03-18 丰田自动车株式会社 二次电池的评价方法
KR102571885B1 (ko) * 2020-09-02 2023-08-28 도요타 지도샤(주) 이차 전지의 평가 방법
CN114200332B (zh) * 2020-09-02 2024-01-16 丰田自动车株式会社 二次电池的评价方法
CN115615343A (zh) * 2022-12-05 2023-01-17 中汽数据有限公司 动力电池安全监测方法、电子设备和存储介质

Also Published As

Publication number Publication date
JP6889401B2 (ja) 2021-06-18

Similar Documents

Publication Publication Date Title
EP2804249B1 (en) Method for controlling and device for controlling secondary battery
JP5287844B2 (ja) 二次電池の残存容量演算装置
JP5009223B2 (ja) 二次電池の残存容量推定方法及び装置
CN111164437B (zh) 用于诊断电池的设备和方法
JP6947014B2 (ja) 二次電池システムおよび二次電池の制御方法
US20190004115A1 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
JP2006275797A (ja) 蓄電デバイスの残存容量演算装置
US11181584B2 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
US11079440B2 (en) Management device, energy storage module, management method, and computer program
CN110462412B (zh) 用于估计电池的soc的装置和方法
JP2021009103A (ja) 電池制御システム
KR20190056079A (ko) 배터리 여유 용량 추정 장치 및 방법
US11754631B2 (en) Chargeable battery temperature estimation apparatus and chargeable battery temperature estimation method
JP2012198175A (ja) バッテリ状態監視装置
JP2010040324A (ja) 電池モジュールの充電状態推定方法およびこれを利用した充電方法
JP6889401B2 (ja) アルカリ二次電池の状態推定装置
JP5886225B2 (ja) 電池制御装置及び電池制御方法
KR20220094464A (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 전기 차량
JP2015228325A (ja) 電池システム
JP2016004726A (ja) 電池システム
JP6365820B2 (ja) 二次電池の異常判定装置
JP7428135B2 (ja) 蓄電素子の管理装置、蓄電装置、車両、及び、蓄電素子の管理方法
JP2007053058A (ja) 二次電池の内圧推定装置及びそれを備えた二次電池の充電制御装置
JP2023047092A (ja) 電池の充電方法
JP2020187050A (ja) 電池システム及び車両、並びに電池システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210504

R151 Written notification of patent or utility model registration

Ref document number: 6889401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151