JP2019059886A - Solidification material - Google Patents

Solidification material Download PDF

Info

Publication number
JP2019059886A
JP2019059886A JP2017187446A JP2017187446A JP2019059886A JP 2019059886 A JP2019059886 A JP 2019059886A JP 2017187446 A JP2017187446 A JP 2017187446A JP 2017187446 A JP2017187446 A JP 2017187446A JP 2019059886 A JP2019059886 A JP 2019059886A
Authority
JP
Japan
Prior art keywords
mass
soil
belite
solidified
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017187446A
Other languages
Japanese (ja)
Other versions
JP6941018B2 (en
Inventor
智佳 岸森
Chika Kishimori
智佳 岸森
隆人 野崎
Takahito Nozaki
隆人 野崎
康秀 肥後
Yasuhide Higo
康秀 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017187446A priority Critical patent/JP6941018B2/en
Publication of JP2019059886A publication Critical patent/JP2019059886A/en
Priority to JP2021125704A priority patent/JP7116228B2/en
Application granted granted Critical
Publication of JP6941018B2 publication Critical patent/JP6941018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

To provide a solidification material capable of developing strength in short term (for example 3 hours) and sufficient work life (for example 1 hour) after a solidification treatment by using to soil, and small in increase of strength of soil solidified body after long time (for example 1 day) passed.SOLUTION: There is provided a solidification material containing hauyne-belite-based clinker ground product, high-early-strength Portland cement clinker ground product, and gypsum. The solidification material preferably has percentage of the hauyne-belite-based clinker ground product of 25 to 45 mass% in total amount (100 mass%) of the hauyne-belite-based clinker ground product, the high-early-strength Portland cement clinker ground product, and the gypsum (in terms of SO), percentage of the high-early-strength Portland cement clinker ground product of 20 to 40 mass%, and percentage of the gypsum (in terms of SO) of 25 to 45 mass%.SELECTED DRAWING: None

Description

本発明は、固化材に関する。   The present invention relates to a solidifying material.

環境保全や建設事業のコスト低減等の観点から、建設発生土の再利用が求められている。
建設発生土のうち、浚渫土等の含水比の高い土壌は、高い流動性を有するため、運搬を行う際にダンプトラック等の荷台に山積みにすることが困難である。
このため、早期に場外へ運搬可能な程度に強度を付与することを目的として、セメント系固化材や高分子系水溶性ポリマー等の固化材を用いて浚渫土等を固化改良することが知られている。
固化材として、例えば、特許文献1には、水硬率が1.0〜3.5、珪酸率が0.1〜0.8および鉄率が5〜25であって、無水石膏を40〜70質量%含有する無水石膏含有焼成物を含む固化材が記載されている。また、上記無水石膏含有焼成物は、アウインを15〜40質量%含有することが記載されている。
また、特許文献2には、ビーライト(2CaO・SiO2)、アウイン(3CaO・3Al23・CaSO4)、II型無水石こう及びフェライト相(4CaO・Al23・Fe23)を必須成分とし、フリーライム(f・CaO)量が2重量%未満である建設汚泥用速硬型固化材が記載されている。
Reuse of construction soil is required from the viewpoint of environmental protection and cost reduction of construction projects.
Among the construction-generated soils, soils with high moisture content such as clays have high fluidity, so it is difficult to pile them on a loading platform such as a dump truck when carrying.
For this reason, it is known to solidify and improve clay or the like by using a solidifying material such as a cement-based solidifying material or a high molecular weight water-soluble polymer for the purpose of imparting strength to the extent that it can be transported out of the site early. ing.
As a solidifying material, for example, Patent Document 1 has a hydraulic ratio of 1.0 to 3.5, a silica ratio of 0.1 to 0.8, and an iron ratio of 5 to 25, and 40 to A solidifying material containing an anhydrite-containing calcined product containing 70% by mass is described. Moreover, it is described that the said anhydrous gypsum containing baked material contains 15-40 mass% of auin.
Further, Patent Document 2 includes belite (2CaO · SiO 2 ), auin (3CaO · 3Al 2 O 3 · CaSO 4 ), type II anhydrous gypsum and ferrite phase (4CaO · Al 2 O 3 · Fe 2 O 3 ). A rapid-hardening solidifying material for construction sludge is described, which contains as an essential component the amount of free lime (f · CaO) less than 2% by weight.

特開2011−51876号公報JP 2011-51876 A 特開2002−224694号公報JP 2002-224694 A

浚渫土等の含水比の高い土壌に固化材を添加し混練して(以下、「固化処理」ともいう。)、土壌が場外に運搬可能な程度の強度を有するまで固化改良するためには、数日等の長時間を要することも少なくない。運搬作業の効率化の観点から、固化材は、短時間で強度を発現させうるものであることが好ましい。
一方、速硬型の固化材を用いた場合、土壌の固化処理後、短時間で固化処理後の土壌(以下、「土壌固化体」ともいう。)が急結し、ダンプトラックの荷台に土壌固化体を搬送するための配管が閉塞する等の問題がある。
また、土壌の固化処理後から長時間(例えば、1日)経過した後も、土壌固化体の強度が増進する場合、土壌固化体の強度が過度に大きくなり、土壌固化体を場外へ運搬した後、盛土等として再利用を行うための土壌固化体の取扱いが困難になるという問題がある。
そこで、本発明の目的は、土壌に対して用いることで、短時間(例えば、3時間)で土壌の強度を発現しうるが、固化処理後に十分な可使時間(例えば、1時間)を確保することができ、かつ、長時間(例えば、1日)経過後は、土壌固化体の強度の増加の程度が小さい固化材を提供することである。
In order to solidify and improve the soil to such an extent that the soil can be transported out of the field by adding the solidifying material to the soil with high water content ratio such as clay soil and kneading (hereinafter also referred to as “solidification treatment”) It often takes a long time, such as several days. From the viewpoint of improving the efficiency of the transportation operation, the solidifying material is preferably one that can develop strength in a short time.
On the other hand, in the case of using a quick-hardening type solidifying material, the soil after solidification treatment (hereinafter also referred to as "solidified material") is rapidly consolidated after the solidification treatment of the soil, and the soil of the dump truck is soiled. There is a problem that a pipe for transporting the solidified body is blocked.
In addition, when the strength of the solidified soil increased even after a long time (for example, one day) after the soil was solidified, the strength of the solidified soil became excessively large, and the solidified soil was transported out of the site After that, there is a problem that it becomes difficult to handle the solidified soil for reuse as a filling earth and the like.
Therefore, the object of the present invention is to use the soil for the strength of the soil in a short time (for example, 3 hours), but secure sufficient usable time (for example, 1 hour) after the solidification treatment It is possible to provide a solidifying material which can be reduced and the degree of increase in the strength of the solidified soil after a long time (for example, one day) has elapsed.

本発明者は、上記課題を解決するために鋭意検討した結果、アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物、および石膏を含む固化材によれば上記目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[6]を提供するものである。
[1] アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物、および石膏を含むことを特徴とする固化材。
[2] 上記アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物、および石膏(SO3換算)の合計量(100質量%)中、上記アウイン−ビーライト系クリンカ粉砕物の割合は、25〜45質量%であり、上記早強ポルトランドセメントクリンカ粉砕物の割合は、20〜40質量%であり、上記石膏(SO3換算)の割合は、25〜45質量%である前記[1]に記載の固化材。
[3] 上記固化材に含まれている鉱物中のアウイン、ビーライトおよびフェライト相の合計量(100質量%)中、アウインの割合は、50〜80質量%であり、ビーライトの割合は、10〜40質量%であり、フェライト相の割合は、5〜25質量%である前記[1]又は[2]に記載の固化材。
[4] 前記[1]〜[3]のいずれかに記載の固化材を、土壌に添加して混練し、土壌固化体を形成させることを特徴とする土壌の固化処理方法。
[5] 「JIS R 5201:2015(セメントの物理試験方法)」に準拠して測定した上記固化体のフロー値(15打ち)が、上記混練の終了時から1時間経過後の時点で100mm以上であり、かつ、上記混練の終了時から3時間経過後の時点で50mm以下となるように、上記固化材の添加量を定める前記[4]に記載の土壌の固化処理方法。
[6] 上記土壌が、浚渫土、泥炭、またはロームである前記[4]又は[5]に記載の土壌の固化処理方法。
As a result of intensive investigations to solve the above problems, the present inventor has found that the above object can be achieved by a solid material containing crushed auin-belite based clinker, early-strength Portland cement clinker, and gypsum. , Completed the present invention.
That is, the present invention provides the following [1] to [6].
[1] A solidifier characterized by containing auin-belite based clinker, early-strength Portland cement clinker and gypsum.
[2] The ratio of the auin-belite clinker crushed material in the total amount (100% by mass) of the auine-belite based clinker crushed material, the early-strength Portland cement clinker crushed material, and the gypsum (SO 3 equivalent) And 25 to 45% by mass, and the proportion of the above-mentioned early strong strength Portland cement clinker is 20 to 40% by mass, and the proportion of the above gypsum (in terms of SO 3 ) is 25 to 45% by mass. ] The solidified material as described in [].
[3] The proportion of auin is 50 to 80% by mass in the total amount (100% by mass) of auin, belite and ferrite phase in the mineral contained in the above solidified material, and the proportion of belite is The solidifying material according to the above [1] or [2], wherein the proportion is 10 to 40% by mass, and the proportion of the ferrite phase is 5 to 25% by mass.
[4] A method for solidifying soil, comprising adding the solidifying material according to any one of the above [1] to [3] to the soil and kneading it to form a solidified soil.
[5] The flow value (15 strikes) of the above-mentioned solidified body measured in accordance with “JIS R 5201: 2015 (physical test method of cement)” is 100 mm or more at 1 hour after the end of the kneading The method for solidifying soil according to [4], wherein the addition amount of the solidifying material is determined so as to be 50 mm or less after 3 hours from the end of the kneading.
[6] The method for solidifying soil according to [4] or [5] above, wherein the soil is clay, peat or loam.

本発明の固化材によれば、土壌に対して用いることで、短時間(例えば、3時間)で土壌(固化後の土壌固化体)の強度を、十分な大きさで発現することができる。その一方で、固化処理後、1時間程度は良好な流動性を維持することができ、十分な可使時間を確保することができる。また、長時間(例えば、1日)経過後の、土壌固化体の強度の増加の程度を小さくすることができ、盛土等として利用される土壌固化体の取扱いが容易である。   According to the solidifying material of the present invention, by using it with respect to the soil, the strength of the soil (solidified soil after solidification) can be expressed in a sufficient size in a short time (for example, 3 hours). On the other hand, good fluidity can be maintained for about one hour after the solidification treatment, and a sufficient pot life can be secured. In addition, the degree of increase in the strength of the solidified soil can be reduced after a long time (for example, one day), and handling of the solidified soil used as embankment or the like is easy.

本発明の固化材は、アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物、および石膏を含むものである。
アウイン−ビーライト系クリンカ粉砕物は、アウイン(3CaO・3Al23・CaSO4)、および、ビーライト(2CaO・SiO2)を含むものである。
アウイン−ビーライト系クリンカ粉砕物中のアウインの含有率は、好ましくは40〜80質量%である。該含有率が40質量%以上であれば、固化処理後、短時間(例えば、3時間)経過後の土壌固化体の強度をより大きくすることができる。該含有率が80質量%以下であれば、固化材の強度発現性をより向上することができる。
アウイン−ビーライト系クリンカ粉砕物中のビーライトの含有率は、好ましくは20〜40質量%である。該含有率が20質量%以上であれば、固化材の強度発現性をより向上することができる。該含有率が40質量%以下であれば、固化処理後、長時間(例えば、1日)経過した後の土壌固化体の強度の増加の程度をより小さくすることができる。
The solidifying material of the present invention includes a ground product of auin-belite based clinker, a early-strength Portland cement clinker-ground product, and gypsum.
Auin - belite based clinker grind, Auin (3CaO · 3Al 2 O 3 · CaSO 4), and is intended to include belite (2CaO · SiO 2).
The content of auin in the auin-belite based clinker is preferably 40 to 80% by mass. If the content is 40% by mass or more, the strength of the solidified soil after a short time (for example, 3 hours) can be increased after the solidification treatment. If the content is 80% by mass or less, strength development of the solidified material can be further improved.
The content of belite in the crushed auin-belite based clinker is preferably 20 to 40% by mass. When the content is 20% by mass or more, strength development of the solidified material can be further improved. If the content is 40% by mass or less, the degree of increase in the strength of the solidified soil after a long time (for example, one day) has elapsed after the solidification can be made smaller.

アウイン−ビーライト系クリンカ粉砕物は、フェライト相(4CaO・Al23・Fe23)を含んでいてもよい。
アウイン−ビーライト系クリンカ粉砕物中のフェライト相の含有率は、好ましくは2〜30質量%である。該含有率が2質量%以上であれば、アウイン−ビーライト系クリンカを製造する際に、得られたクリンカが粉状化することを防ぐことができる。該含有率が30質量%以下であれば、融着によってアウイン−ビーライト系クリンカの製造が困難になることを防ぐことができる。
The crushed auin-belite based clinker may contain a ferrite phase (4CaO · Al 2 O 3 · Fe 2 O 3 ).
The content of the ferrite phase in the ground product of auin-belite based clinker is preferably 2 to 30% by mass. When the content is 2% by mass or more, powdering of the obtained clinker can be prevented when producing an auin-belite-based clinker. When the content is 30% by mass or less, it is possible to prevent the production of the auin-belite based clinker from being difficult due to the fusion.

アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物、および石膏(SO3換算)の合計量(100質量%)中、アウイン−ビーライト系クリンカ粉砕物の割合は、好ましくは25〜45質量%、より好ましくは28〜42質量%、特に好ましくは30〜40質量%である。該割合が25質量%以上であれば、固化処理後、短時間(例えば、3時間)経過後の土壌固化体の強度をより大きくすることができる。該割合が45質量%以下であれば、固化材の強度発現性をより向上することができる。 Auin - belite based clinker ground product, high-early-strength Portland cement clinker ground product, and the gypsum total amount of (SO 3 conversion) (100 mass%), Auin - proportion of belite based clinker ground product is preferably 25 to It is 45% by mass, more preferably 28 to 42% by mass, and particularly preferably 30 to 40% by mass. If the ratio is 25% by mass or more, the strength of the solidified soil after a short time (for example, 3 hours) can be increased after the solidification treatment. When the ratio is 45% by mass or less, strength development of the solidified material can be further improved.

アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物、および石膏(SO3換算)の合計量(100質量%)中、早強ポルトランドセメントクリンカ粉砕物の割合は、好ましくは20〜40質量%、より好ましくは23〜37質量%、特に好ましくは25〜35質量%である。該割合が20質量%以上であれば固化処理後、短時間(例えば、3時間)経過後の土壌固化体の強度をより大きくすることができる。該割合が40質量%以下であれば、固化処理後の可使時間をより長くすることができる。 The proportion of crushed early cinder cement clinker in the total amount (100% by mass) of crushed auin-belite based clinker, crushed early cinder Portland cement clinker and gypsum (SO 3 equivalent) is preferably 20 to 40. % By mass, more preferably 23 to 37% by mass, particularly preferably 25 to 35% by mass. If the proportion is 20% by mass or more, the strength of the solidified soil after a short time (for example, 3 hours) can be further increased after the solidification treatment. If the ratio is 40% by mass or less, the pot life after solidification can be made longer.

石膏の例としては、2水石膏、半水石膏及び無水石膏等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、強度発現性の観点から無水石膏が好ましい。
アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物、および石膏(SO3換算)の合計量(100質量%)中、石膏(SO3換算)の割合は、好ましくは25〜45質量%、より好ましくは28〜42質量%、特に好ましくは30〜40質量%である。該割合が25質量%以上であれば、固化処理後の可使時間をより長くすることができる。該割合が45質量%以下であれば、固化材の強度発現性をより向上することができる。
Examples of gypsum include dihydrate gypsum, hemihydrate gypsum and anhydrite. One of these may be used alone, or two or more of these may be used in combination. Among them, anhydrous gypsum is preferred from the viewpoint of strength development.
The proportion of gypsum (in terms of SO 3 ) in the total amount (100% by mass) of crushed auin-belite-based clinker, early-strength Portland cement clinker, and gypsum (in terms of SO 3 ) is preferably 25 to 45 mass %, More preferably 28 to 42% by mass, particularly preferably 30 to 40% by mass. If the ratio is 25% by mass or more, the pot life after solidification can be made longer. When the ratio is 45% by mass or less, strength development of the solidified material can be further improved.

本発明の固化材に含まれている鉱物中のアウイン、ビーライトおよびフェライト相の合計量(100質量%)中、アウインの割合は、好ましくは50〜80質量%、より好ましくは55〜75質量%、特に好ましくは60〜70質量%である。該割合が50質量%以上であれば、固化処理後、短時間(例えば、3時間)経過後の土壌固化体の強度をより大きくすることができる。該割合が80質量%以下であれば、固化材の強度発現性をより向上することができる。
本発明の固化材に含まれている鉱物中のアウイン、ビーライトおよびフェライト相の合計量(100質量%)中、ビーライトの割合は、好ましくは10〜40質量%、より好ましくは15〜35質量%、特に好ましくは20〜30質量%である。該割合が10質量%以上であれば、固化材の強度発現性をより向上することができる。該割合が40質量%以下であれば、固化処理後、長時間(例えば、1日)経過後の土壌固化体の強度の増加の程度をより小さくすることができる。
本発明の固化材に含まれている鉱物中のアウイン、ビーライトおよびフェライト相の合計量(100質量%)中、フェライト相の割合は、製造の容易性等の観点から、好ましくは5〜25質量%、より好ましくは7〜20質量%、特に好ましくは8〜15質量%である。
The proportion of auin in the total amount (100% by mass) of auin, belite and ferrite phase in the mineral contained in the solidified material of the present invention is preferably 50 to 80% by mass, more preferably 55 to 75% %, Particularly preferably 60 to 70% by mass. If the proportion is 50% by mass or more, the strength of the solidified soil after a short time (for example, 3 hours) can be increased after the solidification treatment. When the ratio is 80% by mass or less, strength development of the solidified material can be further improved.
The proportion of belite is preferably 10 to 40% by mass, more preferably 15 to 35, based on the total amount (100% by mass) of auin, belite and ferrite phase in the mineral contained in the solidified material of the present invention. % By weight, particularly preferably 20 to 30% by weight. If the ratio is 10% by mass or more, strength development of the solidified material can be further improved. If the proportion is 40% by mass or less, the degree of increase in the strength of the solidified soil after a long time (for example, one day) after the solidification processing can be made smaller.
The proportion of the ferrite phase in the total amount (100% by mass) of the auin, belite and ferrite phase in the mineral contained in the solidified material of the present invention is preferably 5 to 25 from the viewpoint of easiness of production etc. % By mass, more preferably 7 to 20% by mass, particularly preferably 8 to 15% by mass.

本発明の土壌の固化処理方法は、上述した固化材を、土壌に添加して混練し、土壌固化体を形成させるものである。
固化処理の対象となる土壌の例としては、浚渫土、泥炭、ローム、または有機質土等が挙げられる。
また、固化処理の対象となる土壌の含水比は、好ましくは40%以上、より好ましくは50%以上、特に好ましくは60%以上である。
本発明の固化材によれば、含水比が40%以上の土壌を対象とした場合であっても、短時間(例えば、3時間)で強度を発現することができ、固化処理後、1時間程度は流動性を維持することができる。また、固化処理後、長時間(例えば、1日)経過後は、土壌固化体の強度の増加の程度を小さくすることができる。上記含水比の上限値は、特に限定されないが、通常、1,200%である。
なお、「含水比」(単位:%)とは、土壌の絶対乾燥状態の質量に対する、土壌に含まれている水の質量の百分率([水の質量]×100/[絶対乾燥状態の土壌の質量])をいう。
The method for solidifying soil according to the present invention is to add the above-mentioned solidifying material to the soil and knead it to form a solidified soil.
Examples of soil to be subjected to solidification treatment include clay, peat, loam, organic soil and the like.
The water content of the soil to be solidified is preferably 40% or more, more preferably 50% or more, and particularly preferably 60% or more.
According to the solidifying material of the present invention, even when the soil having a water content ratio of 40% or more is targeted, the strength can be expressed in a short time (for example, 3 hours), and one hour after the solidifying treatment The degree can maintain liquidity. Moreover, after a long time (for example, one day) has passed after the solidification treatment, the degree of increase in the strength of the solidified soil can be reduced. The upper limit of the water content ratio is not particularly limited, but is usually 1,200%.
The “water content ratio” (unit:%) is the percentage of the mass of water contained in the soil with respect to the mass of the soil in the absolute dry state ([mass of water] × 100 / [in the soil in the absolute dry state Say mass]).

本発明において、固化材を土壌に添加して混練する方法の例としては、土壌に固化材を粉体のまま添加して混合するドライ添加方法や、固化材に水を加えてスラリーとした後に、該スラリーを土壌に添加して混合するスラリー添加方法等が挙げられる。
固化材の添加量は、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して測定した土壌固化体のフロー値(15打ち)が、混練の終了時から1時間経過後の時点で100mm以上であり、かつ、上記混練の終了時から3時間経過後の時点で50mm以下となるように定めることが好ましい。
上記フロー値が、混練の終了時から1時間経過後の時点で、100mm以上(好ましくは105mm以上、より好ましくは110mm以上)であれば、混練後、1時間程度は、土壌固化体が高い流動性を有していることから、ダンプトラックの荷台に土壌固化体を搬送する等の作業性が良好となる。
また、上記フロー値が、混練の終了時から3時間経過後の時点で、50mm以下(好ましくは40mm以下、より好ましくは30mm以下)であれば、混練後、短時間(例えば、3時間)で土壌固化体の流動性が低下することから、ダンプトラックの荷台に積み上げられた土壌固化体の取扱いが容易になる。
In the present invention, as an example of a method of adding the solidifying material to the soil and kneading it, a dry addition method of adding the solidifying material to the soil as it is in powder form and mixing, or after adding water to the solidifying material to make a slurry And a slurry addition method of adding and mixing the slurry to the soil.
The amount of solidified material added is the flow value (15 strikes) of the solidified soil measured in accordance with “JIS R 5201: 2015 (physical test method for cement)” at the time after 1 hour has passed from the end of kneading. It is preferable to set so that it is 100 mm or more, and 50 mm or less when 3 hours have elapsed from the end of the above-mentioned kneading.
If the above-mentioned flow value is 100 mm or more (preferably 105 mm or more, more preferably 110 mm or more) when 1 hour has passed from the end of kneading, the flow of solidified soil is high for about 1 hour after kneading Since it has the property, the workability such as transporting the solidified soil to the loading platform of the dump truck becomes good.
In addition, if the flow value is 50 mm or less (preferably 40 mm or less, more preferably 30 mm or less) when 3 hours have passed from the end of the kneading, a short time (for example, 3 hours) after the kneading The reduced fluidity of the solidified soil facilitates handling of the solidified soil piled up on the dump truck bed.

土壌1m当たりの固化材の添加量は、土壌の種類や含水比によっても異なるが、土壌固化体の強度をより大きくする観点からは、好ましくは50kg以上、より好ましくは60kg以上、特に好ましくは80kg以上である。該添加量は、固化処理のコストの低減の観点からは、好ましくは500kg以下、より好ましくは400kg以下である。 The amount of solidifying material added per 1 m 3 of soil varies depending on the type of soil and the moisture content, but from the viewpoint of increasing the strength of the solidified soil, it is preferably 50 kg or more, more preferably 60 kg or more, particularly preferably 80 kg or more. The amount of addition is preferably 500 kg or less, more preferably 400 kg or less, from the viewpoint of reducing the cost of solidification treatment.

得られた土壌固化体の、「JIS A 1228:2009(締固めた土のコーン指数試験方法)」に準拠して測定した、混練の終了時から3時間経過後の時点におけるコーン指数は、好ましくは380kN/m以上、より好ましくは385kN/m以上、さらに好ましくは390kN/m以上、特に好ましくは400kN/m以上である。
該コーン指数が380kN/m以上であれば、土壌固化体が十分な強度を有することから、ダンプトラックの荷台に積み上げられた土壌固化体の取扱いが容易になる。
The cone index of the obtained solidified soil, measured according to "JIS A 1228: 2009 (cone index test method for compacted soil)", after 3 hours from the end of kneading, is preferably it is 380kN / m 2 or more, more preferably 385kN / m 2 or more, more preferably 390kN / m 2 or more, and particularly preferably 400 kN / m 2 or more.
If the cone index is 380 kN / m 2 or more, the soil solidified body has sufficient strength, which facilitates handling of the soil solidified body piled up on the bed of the dump truck.

得られた土壌固化体は、混練の終了後から1日経過以降の強度の増加の程度が小さいものである。
得られた土壌硬化体の、「JIS A 1216:2009(土の一軸圧縮試験方法)」に準拠して測定した、混練の終了時から1日経過後の時点における一軸圧縮強さと混練の終了時から7日経過後の時点における一軸圧縮強さから算出される、一軸圧縮強さの増加率((7日経過後の時点における一軸圧縮強さ−1日経過後の時点における一軸圧縮強さ)/1日経過後の時点における一軸圧縮強さ×100%)は、好ましくは80%以下、より好ましくは70%以下、特に好ましくは50%以下である。該増加率が80%以下であれば、土壌固化体の強度が時間の経過とともに過度に大きくならず、土壌固化体を場外へ運搬した後、該土壌固化体を盛土等として再利用する目的で行われる土壌固化体の取扱いが容易になる。
The obtained solidified soil has a small degree of increase in strength one day after the end of the kneading.
From the end of the uniaxial compressive strength and the end of the kneading one day after the end of the kneading, measured according to “JIS A 1216: 2009 (uniaxial compression test method of the soil)”, of the obtained hardened soil body The rate of increase in uniaxial compressive strength calculated from uniaxial compressive strength at 7 days ((1-axial compressive strength at 7 days after 1 day-uniaxial compressive strength at 1 day) / 1 day The uniaxial compression strength at a time point of 100%) is preferably 80% or less, more preferably 70% or less, and particularly preferably 50% or less. If the increase rate is 80% or less, the strength of the solidified soil does not become excessively large with the passage of time, and after transporting the solidified soil out of the site, for the purpose of reusing the solidified soil as embankment etc. Handling of the solidified soil will be facilitated.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)土壌A〜G;詳細は表1に示す。
(2)アウイン−ビーライト系クリンカ粉砕物;アウイン:40〜80質量%、ビーライト:20〜40質量%、フェライト相:2〜30質量%の条件を満たすもの
(3)早強ポルトランドセメントクリンカ粉砕物;太平洋セメント社製
(4)石膏;無水石膏
(5)セメント系固化材;汎用型のセメント系固化材
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[Material used]
(1) Soils A to G: Details are shown in Table 1.
(2) Auin-belite based clinker; Auin: 40 to 80% by mass, belite: 20 to 40% by mass, ferrite phase: 2 to 30% by mass satisfying the conditions (3) early strength Portland cement clinker Ground material; Made by Pacific Cement Co., Ltd. (4) Gypsum; Anhydrite (5) Cement-based solidifying material; General-purpose cement-based solidifying material

Figure 2019059886
Figure 2019059886

[固化材の作製]
アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物および石膏を、合計量(100質量%)中、アウイン−ビーライト系クリンカ粉砕物の割合が35質量%、早強ポルトランドセメントクリンカ粉砕物の割合が30質量%、無水石膏の割合がSO3換算で35質量%となる量で混合して、固化材を得た。
得られた固化材に含まれている鉱物中のアウイン、ビーライトおよびフェライト相の合計量(100質量%)中、アウイン、ビーライト、及びフェライト相の割合をXRD/リートベルト法を用いて、各々、解析したところ、アウイン:65質量%、ビーライト:25質量%、フェライト相:10質量%であった。
[Preparation of solidifying material]
Auin-belite-based clinker, early-strength Portland cement clinker and gypsum in the total amount (100% by mass), the proportion of auin-belite-based clinker is 35% by mass, pre-strong portland cement clinker The solid material was obtained by mixing in an amount such that the proportion of the material was 30% by mass, and the proportion of the anhydrous gypsum was 35% by mass in terms of SO 3 conversion.
The proportions of auin, belite and ferrite phase in the total amount (100% by mass) of auin, belite and ferrite phase in minerals contained in the obtained solidified material using the XRD / Lietveld method When each was analyzed, it was an auin: 65 mass%, a belite: 25 mass%, and a ferrite phase: 10 mass%.

[実施例1〜7]
表2に示す種類の土壌に、上記固化材を表1に示す固化材添加量で添加した後、ソイルミキサを用いて低速で90秒間混練し、さらに高速で90秒間混練を行い、土壌固化体を得た。
「JIS R 5201:2015(セメントの物理試験方法)」に準拠して、得られた土壌固化体の、混練直後、混練の終了時から1時間経過後、および、混練の終了後から3時間経過後のフロー値(15打ち)を測定した。
また、得られた土壌固化体を用いて、「JGS 0821−2009(安定処理土の静的締固めによる供試体作製方法)」に準拠して供試体を作製した。得られた供試体を用いて、「JIS A 1228:2009(締固めた土のコーン指数試験方法)」に準拠して、混練の終了時から3時間経過後、及び、6時間経過後のコーン指数を測定した。
さらに、上記供試体を用いて、「JIS A 1216:2009(土の一軸圧縮試験方法)」に準拠して、混練の終了時から1日経過後、および、混練の終了後から7日経過後の一軸圧縮強さを測定した。得られた一軸圧縮強さから、一軸圧縮強さの増加率((7日経過後の一軸圧縮強さ−1日経過後の一軸圧縮強さ)/1日経過後の一軸圧縮強さ×100%)を算出した。
[Examples 1 to 7]
After the solidifying material is added to the soil of the type shown in Table 2 in the amount of solidifying material addition shown in Table 1, it is kneaded at low speed for 90 seconds using a soil mixer, and is further kneaded for 90 seconds at high speed to obtain solidified soil Obtained.
Immediately after kneading, one hour after the completion of kneading, and one hour after the completion of kneading, according to "JIS R 5201: 2015 (physical test method of cement)". The later flow value (15 strokes) was measured.
Moreover, the test body was produced according to "JGS 0821-2009 (the test-piece preparation method by the static compaction of stabilization treatment soil)" using the obtained soil solidified body. Using the obtained specimen, according to “JIS A 1228: 2009 (cone index test method for compacted soil)”, after 3 hours from the end of kneading and after 6 hours The index was measured.
Furthermore, using the above-mentioned sample, in accordance with "JIS A 1216: 2009 (a method of uniaxial compression test of soil)", 1 day after the end of the kneading and 7 days after the end of the kneading. The compression strength was measured. From the obtained uniaxial compressive strength, the increase rate of uniaxial compressive strength ((uniaxial compressive strength after 7 days elapsed-uniaxial compressive strength after 1 day elapsed) / uniaxial compression strength after 1 day elapsed × 100%) Calculated.

[比較例1〜7]
上記固化材の代わりにセメント系固化材を使用する以外は実施例1と同様にして土壌固化体を得た。該土壌固化体を用いて、フロー値(15打ち)等を実施例1と同様にして測定した。
それぞれの結果を表2に示す。
Comparative Examples 1 to 7
A soil solidified body was obtained in the same manner as in Example 1 except that a cement-based solidifying material was used instead of the above-mentioned solidifying material. Using the solidified soil, the flow value (15 strokes) and the like were measured in the same manner as in Example 1.
The respective results are shown in Table 2.

Figure 2019059886
Figure 2019059886

表2から、本発明の固化材を用いた場合(実施例1〜7)、混練の終了時から1時間経過後の時点のフロー値は110〜136mmであり、かつ、混練の終了時から3時間経過後の時点のフロー値は測定不能である(流動性がない)ことがわかる。すなわち、固化処理後、1時間程度の可使時間を確保でき、かつ、3時間経過した後、土壌固化体は流動性を有しないことがわかる。
一方、セメント系固化材を用いた場合(比較例1〜5、7)、混練の終了時から3時間経過後の時点のフロー値は106〜145mmであり、3時間経過した後であっても、土壌固化体は流動性を有していることがわかる。
また、本発明の固化材を用いた場合(実施例1〜7)、混練の終了時から3時間経過後の時点のコーン指数は391〜836kN/mであり、固化処理後、短時間で土壌固化体の強度を搬送可能な程度にしうることがわかる。
一方、セメント系固化材を用いた場合(比較例1〜7)、混練の終了時から3時間経過後の時点のコーン指数は18〜374kN/mであり、土壌固化体が搬送可能な程度の強度を有していないことがわかる。
また、実施例1〜7及び比較例1〜7から、使用する固化材の種類以外の条件が同一である場合において、本発明の固化材を用いた場合における一軸圧縮強さの増加率は、本発明の固化材の代わりにセメント系固化材を用いた場合よりも小さくなることがわかる。
From Table 2, in the case of using the solidified material of the present invention (Examples 1 to 7), the flow value at a time point after 1 hour from the end of the kneading is 110 to 136 mm, and 3 from the end of the kneading It can be seen that the flow value at the time after the passage of time is not measurable (no liquidity). That is, it can be seen that a pot life of about 1 hour can be secured after the solidification treatment, and after 3 hours, the solidified soil has no fluidity.
On the other hand, when a cement-based solidifying material is used (Comparative Examples 1 to 5 and 7), the flow value after 3 hours from the end of kneading is 106 to 145 mm, and even after 3 hours It can be seen that the solidified soil has fluidity.
When the solidifying material of the present invention is used (Examples 1 to 7), the cone index at 3 hours after the end of the kneading is 391 to 836 kN / m 2 and a short time after the solidifying treatment It can be seen that the strength of the solidified soil can be made to be transportable.
On the other hand, when a cement-based solidifying material is used (comparative examples 1 to 7), the cone index at 3 hours after the end of the kneading is 18 to 374 kN / m 2 and the degree to which the solidified soil can be conveyed It can be seen that it does not have the strength of
Further, from Examples 1 to 7 and Comparative Examples 1 to 7, when the conditions other than the type of the solidifying material used are the same, the increasing rate of uniaxial compressive strength when using the solidifying material of the present invention is It turns out that it becomes smaller than the case where a cement-based solidifying material is used instead of the solidifying material of the present invention.

Claims (6)

アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物、および石膏を含むことを特徴とする固化材。   A solidified material characterized by comprising an auin-belite based clinker crusher, a prematurely strong Portland cement clinker crusher, and gypsum. 上記アウイン−ビーライト系クリンカ粉砕物、早強ポルトランドセメントクリンカ粉砕物、および石膏(SO3換算)の合計量(100質量%)中、上記アウイン−ビーライト系クリンカ粉砕物の割合は、25〜45質量%であり、上記早強ポルトランドセメントクリンカ粉砕物の割合は、20〜40質量%であり、上記石膏(SO3換算)の割合は、25〜45質量%である請求項1に記載の固化材。 The proportion of the auine-belite-based clinker in the total amount (100% by mass) of the auine-belite-based clinker, the early-strength Portland cement clinker, and the gypsum (in terms of SO 3 ) is 25 to 25 It is 45 mass%, The ratio of the said early stage strong Portland cement clinker grinding material is 20-40 mass%, The ratio of the said gypsum (SO 3 conversion) is 25-45 mass%. Solidification material. 上記固化材に含まれている鉱物中のアウイン、ビーライトおよびフェライト相の合計量(100質量%)中、アウインの割合は、50〜80質量%であり、ビーライトの割合は、10〜40質量%であり、フェライト相の割合は、5〜25質量%である請求項1又は2に記載の固化材。   The proportion of auin is 50 to 80% by mass in the total amount (100% by mass) of auin, belite and ferrite phase in the mineral contained in the above solidified material, and the proportion of belite is 10 to 40 The solidifying material according to claim 1 or 2, which is mass%, and the proportion of the ferrite phase is 5 to 25 mass%. 請求項1〜3のいずれか1項に記載の固化材を、土壌に添加して混練し、土壌固化体を形成させることを特徴とする土壌の固化処理方法。   The solidifying method according to any one of claims 1 to 3, wherein the solidifying material according to any one of claims 1 to 3 is added to the soil and kneaded to form a solidified soil. 「JIS R 5201:2015(セメントの物理試験方法)」に準拠して測定した上記固化体のフロー値(15打ち)が、上記混練の終了時から1時間経過後の時点で100mm以上であり、かつ、上記混練の終了時から3時間経過後の時点で50mm以下となるように、上記固化材の添加量を定める請求項4に記載の土壌の固化処理方法。   The flow value (15 strikes) of the above-mentioned solidified body measured in accordance with "JIS R 5201: 2015 (physical test method of cement)" is 100 mm or more at 1 hour after the end of the kneading, The method for solidifying soil according to claim 4, wherein the addition amount of the solidifying material is determined so as to be 50 mm or less after 3 hours from the end of the kneading. 上記土壌が、浚渫土、泥炭、またはロームである請求項4又は5に記載の土壌の固化処理方法。   The method according to claim 4 or 5, wherein the soil is clay, peat or loam.
JP2017187446A 2017-09-28 2017-09-28 Solidifying material Active JP6941018B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017187446A JP6941018B2 (en) 2017-09-28 2017-09-28 Solidifying material
JP2021125704A JP7116228B2 (en) 2017-09-28 2021-07-30 Soil solidification treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187446A JP6941018B2 (en) 2017-09-28 2017-09-28 Solidifying material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021125704A Division JP7116228B2 (en) 2017-09-28 2021-07-30 Soil solidification treatment method

Publications (2)

Publication Number Publication Date
JP2019059886A true JP2019059886A (en) 2019-04-18
JP6941018B2 JP6941018B2 (en) 2021-09-29

Family

ID=66177132

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017187446A Active JP6941018B2 (en) 2017-09-28 2017-09-28 Solidifying material
JP2021125704A Active JP7116228B2 (en) 2017-09-28 2021-07-30 Soil solidification treatment method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021125704A Active JP7116228B2 (en) 2017-09-28 2021-07-30 Soil solidification treatment method

Country Status (1)

Country Link
JP (2) JP6941018B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105029A (en) * 2018-12-26 2020-07-09 太平洋セメント株式会社 Material for imparting quick hardening property
CN112321254A (en) * 2020-11-04 2021-02-05 浙大宁波理工学院 Controllable low-strength material using titanium gypsum and engineering waste soil and preparation method thereof
JP2021127647A (en) * 2020-02-17 2021-09-02 三菱マテリアル株式会社 Selection method of sample preparation method, and sample preparation method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518210A (en) * 1978-07-24 1980-02-08 Nippon Cement Co Ltd Sludge solidification treating agent
JPS5957934A (en) * 1982-09-29 1984-04-03 秩父セメント株式会社 Manufacture of glass fiber reinforced concrete and low alka-line cement composition
JPH0517771A (en) * 1991-05-27 1993-01-26 Chichibu Cement Co Ltd Quick-curing type solidifying material for ultrasoft soil
JPH0925148A (en) * 1995-07-07 1997-01-28 Nippon Cement Co Ltd Cement admixture for steam cured product and cement composition for steam cured product containing the admixture
JPH0940951A (en) * 1995-07-31 1997-02-10 Chichibu Onoda Cement Corp Soil conditioner and soil conditioning method
JPH10338875A (en) * 1997-04-07 1998-12-22 Chichibu Onoda Cement Corp Lowly alkaline hydraulic composition
JP2002224694A (en) * 2001-02-01 2002-08-13 Ube Ind Ltd Quick setting type solidifying material for construction sludge
JP2005272235A (en) * 2004-03-25 2005-10-06 Taiheiyo Cement Corp Calcium sulfoaluminate based composition and method of manufacturing hardened body
JP2011051876A (en) * 2009-08-04 2011-03-17 Taiheiyo Cement Corp Anhydrous gypsum containing fired material and solidification material
JP2017132646A (en) * 2016-01-25 2017-08-03 太平洋セメント株式会社 Quality control method of hauyne and belite-containing clinker, hauyne and belite-containing clinker, and quickly curable cement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518210B2 (en) 2009-12-15 2014-06-11 エプコス アクチエンゲゼルシャフト Combiner and amplifier mechanism

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518210A (en) * 1978-07-24 1980-02-08 Nippon Cement Co Ltd Sludge solidification treating agent
JPS5957934A (en) * 1982-09-29 1984-04-03 秩父セメント株式会社 Manufacture of glass fiber reinforced concrete and low alka-line cement composition
JPH0517771A (en) * 1991-05-27 1993-01-26 Chichibu Cement Co Ltd Quick-curing type solidifying material for ultrasoft soil
JPH0925148A (en) * 1995-07-07 1997-01-28 Nippon Cement Co Ltd Cement admixture for steam cured product and cement composition for steam cured product containing the admixture
JPH0940951A (en) * 1995-07-31 1997-02-10 Chichibu Onoda Cement Corp Soil conditioner and soil conditioning method
JPH10338875A (en) * 1997-04-07 1998-12-22 Chichibu Onoda Cement Corp Lowly alkaline hydraulic composition
JP2002224694A (en) * 2001-02-01 2002-08-13 Ube Ind Ltd Quick setting type solidifying material for construction sludge
JP2005272235A (en) * 2004-03-25 2005-10-06 Taiheiyo Cement Corp Calcium sulfoaluminate based composition and method of manufacturing hardened body
JP2011051876A (en) * 2009-08-04 2011-03-17 Taiheiyo Cement Corp Anhydrous gypsum containing fired material and solidification material
JP2017132646A (en) * 2016-01-25 2017-08-03 太平洋セメント株式会社 Quality control method of hauyne and belite-containing clinker, hauyne and belite-containing clinker, and quickly curable cement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105029A (en) * 2018-12-26 2020-07-09 太平洋セメント株式会社 Material for imparting quick hardening property
JP7278070B2 (en) 2018-12-26 2023-05-19 太平洋セメント株式会社 Rapid hardening material
JP2021127647A (en) * 2020-02-17 2021-09-02 三菱マテリアル株式会社 Selection method of sample preparation method, and sample preparation method
CN112321254A (en) * 2020-11-04 2021-02-05 浙大宁波理工学院 Controllable low-strength material using titanium gypsum and engineering waste soil and preparation method thereof
CN112321254B (en) * 2020-11-04 2022-05-27 浙大宁波理工学院 Controllable low-strength material using titanium gypsum and engineering waste soil and preparation method thereof

Also Published As

Publication number Publication date
JP2021183699A (en) 2021-12-02
JP6941018B2 (en) 2021-09-29
JP7116228B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
Singh et al. Cementitious binder from fly ash and other industrial wastes
Kim Quality properties of self-consolidating concrete mixed with waste concrete powder
Oti et al. Engineering properties of unfired clay masonry bricks
CA2944599C (en) Concrete materials with modified rheology, methods of making, and uses thereof
JP7116228B2 (en) Soil solidification treatment method
Cavusoglu et al. Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures
Taha et al. Evaluation of controlled low strength materials containing industrial by-products
Qiao et al. Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir
CN101265067A (en) Water-resisting high-strength gypsum-base concrete brick or building block, and producing method thereof
Dvorkin et al. Application areas of phosphogypsum in production of mineral binders and composites based on them: A review of research results
CN105753422A (en) Phosphogypsum-based grouting material for filling solution cavity of mine
Rao Study on marble powder as partial replacement of cement in normal compacting concrete
JP5907246B2 (en) Manufacturing method of solidified body
Raja et al. Study on self compacting concrete–a review
JP6032830B2 (en) Cement-based injection material
JP5533690B2 (en) Granular materials for civil engineering work
WO2019138538A1 (en) Method for improving ground
JP4535793B2 (en) Ground injection material
JP7193439B2 (en) Soil slurry solidification method
JP2021127446A (en) Ground improvement method
JP4979365B2 (en) Concrete using concrete admixture
Safi et al. Recycling of foundry sand wastes in self-compacting mortars: Use as fine aggregates
US20180237342A1 (en) Binder Composition For Use With Aggregates
JP2003049166A (en) Delayed solidifying material for soil improvement
JP4791892B2 (en) Spray material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210903

R150 Certificate of patent or registration of utility model

Ref document number: 6941018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250