JP7278070B2 - Rapid hardening material - Google Patents

Rapid hardening material Download PDF

Info

Publication number
JP7278070B2
JP7278070B2 JP2018242645A JP2018242645A JP7278070B2 JP 7278070 B2 JP7278070 B2 JP 7278070B2 JP 2018242645 A JP2018242645 A JP 2018242645A JP 2018242645 A JP2018242645 A JP 2018242645A JP 7278070 B2 JP7278070 B2 JP 7278070B2
Authority
JP
Japan
Prior art keywords
mass
powder
cement
sulfite
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018242645A
Other languages
Japanese (ja)
Other versions
JP2020105029A (en
Inventor
隆人 野崎
和貴 小須田
康秀 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018242645A priority Critical patent/JP7278070B2/en
Publication of JP2020105029A publication Critical patent/JP2020105029A/en
Application granted granted Critical
Publication of JP7278070B2 publication Critical patent/JP7278070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、速硬性付与用材料に関する。 TECHNICAL FIELD The present invention relates to a material for imparting rapid hardening properties.

地盤(土壌)の改良方法として、地盤にセメント等の固化材を添加、混合し、これを水和硬化させることで、地盤と固化材の混合物の強度を向上させる方法が知られている。
また、優れた速硬性を有する固化材として、特許文献1には、ビーライト(2CaO・SiO)、アウイン(3CaO・3Al・CaSO)、II型無水石こう及びフェライト相(4CaO・Al・Fe)を必須成分とし、フリーライム(f・CaO)量が2重量%未満である建設汚泥用速硬型固化材が記載されている。
As a method for improving the ground (soil), a method is known in which a solidifying material such as cement is added to the ground, mixed, and then hydrated to harden, thereby improving the strength of the mixture of the ground and the solidifying material.
In addition, as a solidifying material having excellent rapid hardening property, Patent Document 1 discloses belite (2CaO.SiO 2 ), auin (3CaO.3Al 2 O 3 .CaSO 4 ), type II anhydrous gypsum and ferrite phase (4CaO. Al 2 O 3 .Fe 2 O 3 ) as an essential component and a free lime (f.CaO) content of less than 2% by weight.

特開2002-224694号公報JP-A-2002-224694

地盤の改良において、速硬性に優れた固化材が求められている。
そこで、本発明の目的は、セメント系固化材に添加することで、セメント系固化材に速硬性を付与することができる材料を提供することである。
There is a demand for solidifying materials with excellent rapid hardening properties for soil improvement.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a material capable of imparting rapid hardening properties to a cement-based solidifying material by adding it to the cement-based solidifying material.

本発明者は、上記課題を解決するために鋭意検討した結果、ビーライト及びアウインを含むアウイン系粉末と亜硫酸塩粉末を、特定の配合割合で含む速硬性付与用材料によれば、上記目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]~[6]を提供するものである。
[1] ビーライト及びアウインを含むアウイン系粉末と、亜硫酸塩粉末とからなる速硬性付与用材料であって、上記アウイン系粉末と上記亜硫酸塩粉末の合計量100質量部中の上記アウイン系粉末の量が60~95質量部であることを特徴とする速硬性付与用材料。
[2] さらに、消石灰を含み、上記アウイン系粉末と上記亜硫酸塩粉末の合計量100質量部に対する上記消石灰の量が1~10質量部である前記[1]に記載の速硬性付与用材料。
[3] 上記アウイン系粉末100質量%中、上記ビーライトの割合が15~40質量%であり、かつ、上記アウインの割合が30~70質量%である前記[1]又は[2]に記載の速硬性付与用材料。
[4] 上記亜硫酸塩粉末が、亜硫酸のアルカリ金属塩の粉末である前記[1]~[3]のいずれかに記載の速硬性付与用材料。
[5] 前記[1]~[4]のいずれかに記載の速硬性付与用材料、及び、ポルトランドセメントを含むことを特徴とするセメント系固化材。
[6] 上記セメント系固化材100質量%中、上記速硬性付与用材料の割合が5~30質量%である前記[5]に記載のセメント系固化材。
[7] 前記[5]又は[6]に記載のセメント系固化材を用いて、地盤を改良することを特徴とする地盤改良方法。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have found that a fast-hardening material containing an ain-based powder containing belite and an ain and a sulfite powder in a specific mixing ratio achieves the above-mentioned object. I found that it can be achieved, and completed the present invention.
That is, the present invention provides the following [1] to [6].
[1] A material for imparting rapid hardening comprising an ain-based powder containing belite and ain and a sulfite powder, wherein the ain-based powder is contained in 100 parts by mass of the total amount of the ain-based powder and the sulfite powder. 60 to 95 parts by mass of a rapid hardening material.
[2] The quick-hardening material according to [1], further comprising slaked lime, wherein the amount of the slaked lime is 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the Auin-based powder and the sulfite powder.
[3] The above-mentioned [1] or [2], wherein the ratio of the belite is 15 to 40% by mass and the ratio of the auin is 30 to 70% by mass in 100% by mass of the Auin-based powder. A material for imparting rapid hardening.
[4] The rapid hardening material according to any one of [1] to [3], wherein the sulfite powder is an alkali metal sulfite powder.
[5] A cement-based solidifying material comprising the rapid hardening material according to any one of [1] to [4] and Portland cement.
[6] The cement-based solidifying material according to [5], wherein the rate of the quick-hardening material is 5 to 30% by mass in 100% by mass of the cement-based solidifying material.
[7] A ground improvement method, which comprises improving the ground using the cement-based solidification material according to [5] or [6].

本発明の速硬性付与用材料によれば、該材料をセメント系固化材に添加することで、セメント系固化材に速硬性を付与することができる。
なお、本明細書中、「速硬性の付与」とは、速硬性を有するセメント系固化材に対して、その速硬性を向上させる場合を含む。
According to the rapid hardening material of the present invention, rapid hardening can be imparted to the cement-based solidifying material by adding the material to the cement-based solidifying material.
In this specification, the term "imparting fast-hardening property" includes the case of improving the fast-hardening property of a cement-based solidifying material having fast-hardening property.

本発明の速硬性付与用材料は、ビーライト及びアウインを含むアウイン系粉末と、亜硫酸塩粉末とからなる速硬性付与用材料であって、アウイン系粉末と亜硫酸塩粉末の合計量100質量部中のアウイン系粉末の量が60~95質量部であるものである。以下、詳しく説明する。
本発明で用いられるアウイン系粉末は、ビーライト(2CaO・SiO;以下、「CS」ともいう。)及びアウインを含むものである。
アウイン系粉末100質量%中のビーライトの割合は、好ましくは15~40質量%、より好ましくは18~37質量%、さらに好ましくは20~35質量%、特に好ましくは23~32質量%である。該割合が15質量%以上であれば、セメント系固化材の長期強度発現性がより向上する。該割合が40質量%以下であれば、セメント系固化材の速硬性(初期材齢(例えば、1~7日)における強度(例えば、一軸圧縮強さ)発現性)がより向上する。
The fast-hardening material of the present invention is a fast-hardening material comprising an ain-based powder containing belite and ain and a sulfite powder, and the total amount of the ain-based powder and the sulfite powder is 100 parts by mass. The amount of the Auin powder is 60 to 95 parts by mass. A detailed description will be given below.
The ain-based powder used in the present invention includes belite (2CaO.SiO 2 ; hereinafter also referred to as “C 2 S”) and ain.
The ratio of belite in 100% by mass of the Auin powder is preferably 15 to 40% by mass, more preferably 18 to 37% by mass, still more preferably 20 to 35% by mass, and particularly preferably 23 to 32% by mass. . When the ratio is 15% by mass or more, the long-term strength development of the cement-based solidifying material is further improved. When the ratio is 40% by mass or less, the cement-based solidifying material has improved rapid hardening properties (development of strength (eg, unconfined compression strength) at an initial age (eg, 1 to 7 days)).

アウイン系粉末100質量%中のアウイン(カルシウムサルフォアルミネート:3CaO・3Al・CaSO)の割合は、好ましくは30~70質量%、より好ましくは35~67質量%、さらに好ましくは40~65質量%、特に好ましくは45~60質量%である。該割合が30質量%以上であれば、セメント系固化材の速硬性がより向上する。該割合が70質量%以下であれば、セメント系固化材の長期強度発現性がより向上する。 The proportion of auin (calcium sulfoaluminate: 3CaO.3Al.sub.2O.sub.3.CaSO.sub.4 ) in 100% by mass of the auin-based powder is preferably 30 to 70 % by mass, more preferably 35 to 67% by mass, and still more preferably 40 to 65% by weight, particularly preferably 45 to 60% by weight. If the ratio is 30% by mass or more, the rapid hardening property of the cement-based solidifying material is further improved. If the ratio is 70% by mass or less, the long-term strength development of the cement-based solidifying material is further improved.

アウイン粉末中のビーライト及びアウインの各含有率は、アウイン粉末全量(100質量%)中の割合として、アウイン粉末の化学成分に基づき、下記の計算式を用いて算出される。
ビーライト(質量%)=2.87×SiO(質量%)
アウイン(質量%)=1.99×(Al(質量%)-0.64×Fe(質量%))
The contents of belite and ain in the ain -based powder are calculated as percentages in the total amount of the ain -based powder (100% by mass) based on the chemical components of the ain -based powder and using the following formulas.
Belite (% by mass) = 2.87 x SiO2 (% by mass)
Auin (% by mass) = 1.99 x (Al 2 O 3 (% by mass) - 0.64 x Fe 2 O 3 (% by mass))

アウイン系粉末は、ビーライト及びアウインの他に、他の鉱物として、アルミネート相(3CaO・Al)、フェライト相(4CaO・Al・Fe)、MgO、CaSO、CaO等を含んでいてもよい。
アウイン系粉末100質量%中の他の鉱物の合計量の割合は、好ましくは30質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下、特に好ましくは15質量%以下である。該割合が30質量%以下であれば、セメント系固化材の速硬性がより向上する。
The auin-based powder includes, in addition to belite and auin , other minerals such as an aluminate phase ( 3CaO.Al2O3 ) , a ferrite phase ( 4CaO.Al2O3.Fe2O3 ) , MgO, and CaSO4. , CaO and the like.
The ratio of the total amount of other minerals in 100% by mass of the Auin-based powder is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, and particularly preferably 15% by mass or less. . If the ratio is 30% by mass or less, the rapid hardening property of the cement-based solidifying material is further improved.

アウイン粉末のブレーン比表面積は、好ましくは2,000~6,000cm/g、より好ましくは2,500~5,500cm/g、より好ましくは3,000~5,000cm/g、特に好ましくは3,500~4,800cm/gである。該比表面積が2,000cm/g以上であれば、セメント系固化材の速硬性及び長期強度発現性がより向上する。該比表面積が6,000cm/g以上のアウイン粉末は、製造にかかるコストが過大となるため好ましくない。 The Blaine specific surface area of the Auin -based powder is preferably 2,000 to 6,000 cm 2 /g, more preferably 2,500 to 5,500 cm 2 /g, more preferably 3,000 to 5,000 cm 2 /g, Particularly preferably, it is 3,500 to 4,800 cm 2 /g. If the specific surface area is 2,000 cm 2 /g or more, the rapid hardening property and long-term strength development of the cement-based solidifying material are further improved. Auin- based powders with a specific surface area of 6,000 cm 2 /g or more are not preferable because the manufacturing costs are excessive.

アウイン系粉末と亜硫酸塩粉末の合計量100質量部中のアウイン系粉末の量は、60~95質量部、好ましくは65~93質量部、より好ましくは70~91質量部、特に好ましくは80~90質量部である。該量が60質量部未満であると、セメント系固化材の速硬性が低下する。該量が95質量部を超えると、セメント系固化材の長期強度発現性が低下する。 The amount of the auin-based powder in 100 parts by mass of the total amount of the auin-based powder and the sulfite powder is 60 to 95 parts by mass, preferably 65 to 93 parts by mass, more preferably 70 to 91 parts by mass, and particularly preferably 80 to 80 parts by mass. 90 parts by mass. If the amount is less than 60 parts by mass, the cement-based solidifying material will deteriorate in rapid hardening properties. If the amount exceeds 95 parts by mass, the long-term strength development of the cement-based solidifying material is lowered.

亜硫酸塩粉末の例としては、亜硫酸ナトリウム(NaSO)、亜硫酸水素ナトリウム(NaHSO)、亜硫酸カリウム(KSO)等の亜硫酸のアルカリ金属塩や、亜硫酸カルシウム(CaSO)等の亜硫酸のアルカリ土類金属塩や、亜硫酸アンモニウム((NHSO)等の粉末が挙げられる。
中でも、速硬性に優れる観点から、亜硫酸のアルカリ金属塩の粉末が好ましい。また、入手の容易性等の観点から、亜硫酸ナトリウム(NaSO)、及び、亜硫酸カリウム(KSO)の粉末がより好ましい。さらに、原料の入手にかかるコストを低減する観点から、亜硫酸ナトリウム(NaSO)の粉末が特に好ましい。
これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of sulfite powders include alkali metal salts of sulfite such as sodium sulfite (Na 2 SO 3 ), sodium hydrogen sulfite (NaHSO 3 ), potassium sulfite (K 2 SO 3 ), and calcium sulfite (CaSO 3 ). Powders such as alkaline earth metal salts of sulfite and ammonium sulfite ((NH 4 ) 2 SO 3 ) can be used.
Among them, a powder of an alkali metal salt of sulfite is preferable from the viewpoint of excellent rapid hardening property. Further, from the viewpoint of availability, powders of sodium sulfite (Na 2 SO 3 ) and potassium sulfite (K 2 SO 3 ) are more preferable. Furthermore, powder of sodium sulfite (Na 2 SO 3 ) is particularly preferable from the viewpoint of reducing the cost of obtaining raw materials.
These may be used individually by 1 type, and may be used in combination of 2 or more type.

アウイン系粉末と亜硫酸塩粉末の合計量100質量部中の亜硫酸塩粉末の量は、5~40質量、好ましくは7~35質量部、より好ましくは9~30質量部、特に好ましくは10~20質量部である。該量が5質量部未満であると、セメント系固化材の長期強度発現性が低下する。該量が40質量部を超えると、セメント系固化材の速硬性(初期材齢)が低下する。 The amount of sulfite powder in 100 parts by mass of the total amount of Auin-based powder and sulfite powder is 5 to 40 parts by mass, preferably 7 to 35 parts by mass, more preferably 9 to 30 parts by mass, and particularly preferably 10 to 20 parts by mass. part by mass. If the amount is less than 5 parts by mass, the long-term strength development of the cement-based solidifying material is lowered. When the amount exceeds 40 parts by mass, the rapid hardening property (initial age) of the cement-based solidifying material is lowered.

本発明の速硬性付与用材料は、セメント系固化材の速硬性をより向上させる観点から、さらに、消石灰を含んでいてもよい。
アウイン系粉末と亜硫酸塩粉末の合計量100質量部に対する消石灰の量は、好ましくは1~10質量部、より好ましくは2~9質量部、特に好ましくは3~8質量部である。該量が1質量部以上であれば、セメント系固化材の速硬性がより向上する。該量が10質量部を超えると、消石灰を添加することによる、セメント系固化材の速硬性向上の効果は頭打ちとなる。
The quick-hardening material of the present invention may further contain slaked lime from the viewpoint of further improving the quick-hardening property of the cement-based solidifying material.
The amount of slaked lime is preferably 1 to 10 parts by mass, more preferably 2 to 9 parts by mass, and particularly preferably 3 to 8 parts by mass with respect to 100 parts by mass of the total amount of the Auin powder and the sulfite powder. If the amount is 1 part by mass or more, the rapid hardening property of the cement-based solidifying material is further improved. If the amount exceeds 10 parts by mass, the effect of adding slaked lime to improve the rapid hardening property of the cement-based solidifying material reaches a ceiling.

本発明のセメント系固化材は、上述した速硬性付与用材料、及び、ポルトランドセメントを含むものである。
セメント系固化材が、上述した速硬性付与用材料を含むことによって、該速硬性付与材を含まないセメント系固化材(例えば、市販のセメント系固化材)と比較して、セメント系固化材に速硬性を付与するまたはセメント系固化材の速硬性をより向上することができる。
ポルトランドセメントの例としては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい
セメント系固化材100質量%中、ポルトランドセメントの割合は、好ましくは15~99質量%、より好ましくは20~98質量%、さらに好ましくは25~97質量%、特に好ましくは30~96質量%である。
セメント系固化材100質量%中、速硬性付与用材料の割合は、好ましくは5~30質量%、より好ましくは7~25質量%、さらに好ましくは8~20質量%、特に好ましくは10~15質量%である。該割合を上記数値範囲内にすることで、セメント系固化材の速硬性をより向上させることができる。
The cementitious solidifying material of the present invention contains the above-described quick-hardening material and Portland cement.
Since the cement-based solidifying material contains the above-described quick-hardening material, the cement-based solidifying material is more effective than a cement-based solidifying material that does not contain the quick-hardening material (for example, a commercially available cement-based solidifying material). It can impart rapid hardening properties or improve the rapid hardening properties of cementitious solidifying materials.
Examples of Portland cement include various Portland cements such as ordinary Portland cement, high-early-strength Portland cement, moderate-heat Portland cement, and low-heat Portland cement. These may be used alone or in combination of two or more. The proportion of Portland cement in 100% by mass of the cement-based solidifying material is preferably 15 to 99% by mass, more preferably 20 to 99% by mass. 98% by mass, more preferably 25 to 97% by mass, particularly preferably 30 to 96% by mass.
In 100% by mass of the cementitious solidifying material, the ratio of the fast-hardening material is preferably 5 to 30% by mass, more preferably 7 to 25% by mass, still more preferably 8 to 20% by mass, and particularly preferably 10 to 15% by mass. % by mass. By setting the ratio within the above numerical range, the rapid hardening property of the cement-based solidifying material can be further improved.

また、セメント系固化材は、ポルトランドセメントの他に、必要に応じて他の材料を含んでもよい。他の材料の例としては、高炉スラグ微粉末、フライアッシュ、石灰石粉末、生石灰、ドロマイト、及び、軽焼ドロマイト等が挙げられる。これらは1種を単独で含んでもよく、2種以上を含んでいてもよい。
セメント系固化材中の他の材料の含有率は、本発明の効果に悪影響を与えない観点から、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下、特に好ましくは0質量%である。
Moreover, the cement-based solidifying material may contain other materials in addition to Portland cement, if necessary. Examples of other materials include ground blast furnace slag, fly ash, limestone powder, quicklime, dolomite, and light burnt dolomite. These may contain 1 type independently and may contain 2 or more types.
From the viewpoint of not adversely affecting the effects of the present invention, the content of other materials in the cementitious solidifying material is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, especially Preferably it is 0% by mass.

セメント系固化材を用いた地盤の改良は、改良処理の対象となる地盤にセメント系固化材を用いることで行われる。具体的な方法としては、地盤にセメント系固化材を粉体のまま添加して混合するドライ添加方法や、セメント系固化材(粉体)に水を加えてスラリーとした後に、該スラリーを地盤に添加して混合するスラリー添加方法等が挙げられる。なお、上記スラリーの水/粉体の質量比は、地盤の性状によっても異なるが、好ましくは0.4~3.0、より好ましくは0.7~1.4である。該質量比が0.4未満では、施工性が低くなる。該質量比が3.0を超えると、ブリーディングが生じ易くなり、また強度発現性が低下する。
また、セメント用固化材の添加量は、土壌1mに対し、好ましくは50~600kg、より好ましくは100~500kg、特に好ましくは150~400kgである。
Ground improvement using a cement-based solidification material is performed by using a cement-based solidification material for the ground to be improved. As a specific method, there is a dry addition method in which the cement-based solidification material is added to the ground as it is in powder form and mixed, or a slurry is prepared by adding water to the cement-based solidification material (powder), and then the slurry is added to the ground. and a slurry addition method of adding to and mixing. The water/powder mass ratio of the slurry is preferably 0.4 to 3.0, more preferably 0.7 to 1.4, although it varies depending on the properties of the ground. If the mass ratio is less than 0.4, workability is low. When the mass ratio exceeds 3.0, bleeding tends to occur and strength development is lowered.
The amount of cement solidifying material to be added is preferably 50-600 kg, more preferably 100-500 kg, particularly preferably 150-400 kg, per 1 m 3 of soil.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)市販の固化材(粉体);ポルトランドセメントを含むもの、太平洋セメント社製
(2)アウイン系粉末;アウイン:57質量%、ビーライト:30質量%、ブレーン比表面積:4,500cm/g
(3)亜硫酸ナトリウム(NaSO);粉末状の試薬
(4)亜硫酸カリウム(KSO);粉末状の試薬
(5)亜硫酸カルシウム(CaSO);粉末状の試薬
(6)無水石膏
(7)消石灰
(8)土壌;関東ローム、含水比:176.1%
EXAMPLES The present invention will be specifically described below by way of examples, but the present invention is not limited to these examples.
[Materials used]
(1) Commercially available solidifying material (powder); containing Portland cement, manufactured by Taiheiyo Cement Co., Ltd. (2) Auin powder; Auin: 57% by mass, Belite: 30% by mass, Blaine specific surface area: 4,500 cm 2 /g
(3) sodium sulfite ( Na2SO3 ) ; powdered reagent (4) potassium sulfite ( K2SO3 ) ; powdered reagent (5) calcium sulfite ( CaSO3 ); powdered reagent (6) anhydrous Gypsum (7) slaked lime (8) soil; Kanto loam, water content: 176.1%

[実施例1~7、比較例1~6]
上記土壌1mに対して、上記材料を、表1に示す添加量で添加・混合して固化改良土を作製した。
得られた固化改良土の材齢1日、7日における一軸圧縮強さを「JIS A 1216:2009(土の一軸圧縮試験方法)」に準じて測定した。結果を表1に示す。
[Examples 1 to 7, Comparative Examples 1 to 6]
To 1 m 3 of the above soil, the above materials were added and mixed in the amounts shown in Table 1 to prepare solidified improved soil.
The unconfined compressive strength of the obtained solidified improved soil at the age of 1 day and 7 days was measured according to "JIS A 1216:2009 (test method of unconfined compression of soil)". Table 1 shows the results.

Figure 0007278070000001
Figure 0007278070000001

表1から、実施例1~5と、比較例1~2(市販の固化材のみを使用した場合)、比較例4(亜硫酸のアルカリ金属塩(NaSO)の粉末を使用した場合)及び比較例5(消石灰を使用した場合)を比較すると、実施例1~5の一軸圧縮強さ(材齢1日:93.0~114.6kN/m、材齢7日:147.5~178.1kN/m)は、比較例1~2、4~5の一軸圧縮強さ(材齢1日:69.2~79.0kN/m、材齢7日:112.8~135.9kN/m)よりも大きいことがわかる。
また、実施例1~5と、比較例3(アウイン系粉末と無水石膏を添加した場合)を比較すると、実施例1~5の材齢1日における一軸圧縮強さ(93.0~114.6kN/m)は、比較例3の材齢1日における一軸圧縮強さ(98.9kN/m)と同程度であり、実施例1~5の材齢7日における一軸圧縮強さ(147.5~178.1kN/m)は、比較例3の材齢7日における一軸圧縮強さ(138.1kN/m)よりも大きいことがわかる。
From Table 1, Examples 1 to 5, Comparative Examples 1 and 2 (when only a commercially available solidifying material is used), and Comparative Example 4 (when an alkali metal salt of sulfite (Na 2 SO 3 ) powder is used) and Comparative Example 5 (when using slaked lime), the uniaxial compressive strength of Examples 1 to 5 (age 1 day: 93.0 to 114.6 kN / m 2 , age 7 days: 147.5 ~ 178.1 kN/m 2 ) is the uniaxial compressive strength of Comparative Examples 1-2, 4-5 (1 day of age: 69.2 to 79.0 kN/m 2 , 7 days of age: 112.8 ~ 135.9 kN/m 2 ).
Further, when comparing Examples 1 to 5 with Comparative Example 3 (where Auin powder and anhydrite were added), the unconfined compressive strength (93.0 to 114.0%) of Examples 1 to 5 in 1 day of material age. 6 kN/m 2 ) is comparable to the uniaxial compressive strength (98.9 kN/m 2 ) at 1 day of material age in Comparative Example 3, and the uniaxial compressive strength at 7 days of material age in Examples 1 to 5 ( 147.5 to 178.1 kN/m 2 ) is greater than the unconfined compressive strength (138.1 kN/m 2 ) of Comparative Example 3 at a material age of 7 days.

また、実施例1~2(亜硫酸のアルカリ金属塩(NaSOまたはKSO)の粉末を使用した場合)と実施例4(亜硫酸のアルカリ土類金属塩(CaSO)の粉末を使用した場合)を比較すると、実施例1~2の一軸圧縮強さ(材齢1日:104.0~114.6kN/m、材齢7日:160.0~169.9kN/m)は、実施例4の一軸圧縮強さ(材齢1日:99.1kN/m、材齢7日:147.5kN/m)よりも大きいことがわかる。
すなわち、亜硫酸塩粉末として、亜硫酸のアルカリ金属塩の粉末を使用した場合(実施例1~2)、亜硫酸のアルカリ土類金属塩の粉末を使用した場合(実施例4)と比較して、速硬性をより向上しうることがわかる。
Further, Examples 1 and 2 (when using powder of alkali metal salt of sulfite (Na 2 SO 3 or K 2 SO 3 )) and Example 4 (when powder of alkaline earth metal salt of sulfite (CaSO 3 ) was used) when used), the uniaxial compressive strength of Examples 1 and 2 (1 day of material age: 104.0 to 114.6 kN/m 2 , 7 days of material age: 160.0 to 169.9 kN/m 2 ) is greater than the uniaxial compressive strength of Example 4 (1 day old: 99.1 kN/m 2 , 7 days old: 147.5 kN/m 2 ).
That is, when the alkali metal sulfite powder was used as the sulfite powder (Examples 1 and 2), compared with the case of using the alkaline earth metal sulfite powder (Example 4), It can be seen that the hardness can be further improved.

さらに、実施例1と、実施例6~7(実施例1で使用した速硬性付与用材料(アウイン系粉末及びNaSO粉末)に、更に消石灰を加えたものを使用した場合)を比較すると、実施例6~7の一軸圧縮強さ(材齢1日:125.5~126.0kN/m、材齢7日:184.1~184.5kN/m)は、実施例1の一軸圧縮強さ(材齢1日:104.0kN/m、材齢7日:160.0kN/m)よりも大きいことがわかる。
すなわち、速硬性付与用材料として、更に消石灰を添加することによって、セメント系固化材の速硬性をより向上しうることがわかる。
なお、実施例6の材齢1日における一軸圧縮強さ(125.5kN/m)を、実施例1の材齢1日における一軸圧縮強さ(104.0kN/m)と比較した場合の、一軸圧縮強さの上昇の程度(〔(実施例6の材齢1日における一軸圧縮強さ-実施例1の材齢1日における一軸圧縮強さ)/実施例1の材齢1日における一軸圧縮強さ〕×100(%))は20.6%である。また、実施例6の材齢7日における一軸圧縮強さ(184.1kN/m)を、実施例1の材齢7日における一軸圧縮強さ(160.0kN/m)と比較した場合の、一軸圧縮強さの上昇の程度は15.1%である。
Furthermore, Example 1 was compared with Examples 6 and 7 (in the case of using the quick-hardening material (auin-based powder and Na 2 SO 3 powder) used in Example 1 to which slaked lime was further added). Then, the unconfined compressive strengths of Examples 6 and 7 (material age 1 day: 125.5 to 126.0 kN/m 2 , material age 7 days: 184.1 to 184.5 kN/m 2 ) are 104.0 kN/m 2 at 1 day of age, 160.0 kN/m 2 at 7 days of age).
That is, it can be seen that the rapid hardening property of the cement-based solidifying material can be further improved by further adding slaked lime as a rapid hardening material.
In addition, when the uniaxial compressive strength (125.5 kN/m 2 ) at the material age of 1 day in Example 6 is compared with the uniaxial compressive strength (104.0 kN/m 2 ) at the material age of 1 day in Example 1 , the degree of increase in unconfined compressive strength ([(unconfined compressive strength in 1 day of material age of Example 6 - unconfined compressive strength in 1 day of material age of Example 1) / 1 day of material age in Example 1 uniaxial compressive strength]×100 (%)) is 20.6%. In addition, when the uniaxial compressive strength (184.1 kN/m 2 ) at 7 days of material age in Example 6 is compared with the uniaxial compressive strength (160.0 kN/m 2 ) at 7 days of material age in Example 1 , the degree of increase in unconfined compressive strength is 15.1%.

一方、比較例3(アウイン系粉末と無水石膏を使用した場合)と比較例6(比較例3で使用したアウイン系粉末と無水石膏に、更に消石灰を加えたものを使用した場合)を比較すると、比較例6の一軸圧縮強さ(材齢1日:103.7kN/m、材齢7日:149.1kN/m)は、比較例3の一軸圧縮強さ(材齢1日:98.9kN/m、材齢7日:138.1kN/m)よりも大きいことがわかる。
ここで、比較例6の材齢1日における一軸圧縮強さ(103.7kN/m)を、比較例3の材齢1日における一軸圧縮強さ(98.9kN/m)と比較した場合の、一軸圧縮強さの上昇の程度は4.9%である。また、比較例6の材齢7日における一軸圧縮強さ(149.1kN/m)を、比較例3の材齢7日における一軸圧縮強さ(138.1kN/m)と比較した場合の一軸圧縮強さの上昇の程度は8.0%である。
すなわち、アウイン系粉末と無水石膏に、更に消石灰を加えたものを使用した場合、セメント系固化材の速硬性が向上するものの、その向上の程度は、アウイン系粉末及びNaSO粉末に、更に消石灰を加えたものを使用した場合(実施例6)に比べて低いことがわかる。
On the other hand, when comparing Comparative Example 3 (when using the Auin-based powder and anhydrous gypsum) and Comparative Example 6 (when using the Auin-based powder and anhydrous gypsum used in Comparative Example 3 with the addition of slaked lime), , The uniaxial compressive strength of Comparative Example 6 (1 day of material age: 103.7 kN/m 2 , 7 days of material age: 149.1 kN/m 2 ) is the uniaxial compressive strength of Comparative Example 3 (1 day of material age: 98.9 kN/m 2 , material age 7 days: 138.1 kN/m 2 ).
Here, the uniaxial compressive strength (103.7 kN/m 2 ) of Comparative Example 6 at a material age of 1 day was compared with the uniaxial compressive strength (98.9 kN/m 2 ) of Comparative Example 3 at a material age of 1 day. In the case, the degree of increase in unconfined compressive strength is 4.9%. In addition, when the uniaxial compressive strength (149.1 kN/m 2 ) at the age of 7 days in Comparative Example 6 is compared with the uniaxial compressive strength (138.1 kN/m 2 ) at the age of 7 days in Comparative Example 3 The degree of increase in uniaxial compressive strength of is 8.0%.
That is, when slaked lime is further added to the Auin-based powder and anhydrous gypsum, although the rapid hardening property of the cement-based solidifying material is improved, the degree of improvement is Furthermore, it can be seen that it is lower than the case where slaked lime is added (Example 6).

Claims (5)

ビーライト及びアウインを含むアウイン系粉末と、亜硫酸塩粉末と、消石灰とからなる速硬性付与用材料であって、
上記アウイン系粉末と上記亜硫酸塩粉末の合計量100質量部中の上記アウイン系粉末の量が60~95質量部であり、
上記アウイン系粉末と上記亜硫酸塩粉末の合計量100質量部に対する上記消石灰の量が1~10質量部であり、
上記アウイン系粉末100質量%中、上記ビーライトの割合が20~40質量%であり、かつ、上記アウインの割合が45~70質量%であることを特徴とする速硬性付与用材料。
A fast-hardening material comprising an ain-based powder containing belite and ain, a sulfite powder , and slaked lime ,
The amount of the ain-based powder in 100 parts by mass of the total amount of the ain-based powder and the sulfite powder is 60 to 95 parts by mass,
The amount of the slaked lime is 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the Auin-based powder and the sulfite powder,
A material for imparting rapid hardening, characterized in that the ratio of belite is 20 to 40% by weight and the ratio of ain is 45 to 70% by weight in 100% by weight of the Auin-based powder.
上記亜硫酸塩粉末が、亜硫酸のアルカリ金属塩の粉末である請求項に記載の速硬性付与用材料。 2. The rapid hardening material according to claim 1 , wherein the sulfite powder is an alkali metal sulfite powder. 請求項1又は2に記載の速硬性付与用材料、及び、ポルトランドセメントを含むことを特徴とするセメント系固化材。 3. A cementitious solidifying material comprising the rapid hardening material according to claim 1 or 2 and Portland cement. 上記セメント系固化材100質量%中、上記速硬性付与用材料の割合が5~30質量%である請求項に記載のセメント系固化材。 4. The cement-based solidifying material according to claim 3 , wherein the rate of the quick-hardening material is 5 to 30 mass % in 100 mass % of the cement-based solidifying material. 請求項3又は4に記載のセメント系固化材を用いて、地盤を改良することを特徴とする地盤改良方法。 A ground improvement method comprising improving the ground using the cement-based solidification material according to claim 3 or 4 .
JP2018242645A 2018-12-26 2018-12-26 Rapid hardening material Active JP7278070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018242645A JP7278070B2 (en) 2018-12-26 2018-12-26 Rapid hardening material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018242645A JP7278070B2 (en) 2018-12-26 2018-12-26 Rapid hardening material

Publications (2)

Publication Number Publication Date
JP2020105029A JP2020105029A (en) 2020-07-09
JP7278070B2 true JP7278070B2 (en) 2023-05-19

Family

ID=71450491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018242645A Active JP7278070B2 (en) 2018-12-26 2018-12-26 Rapid hardening material

Country Status (1)

Country Link
JP (1) JP7278070B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191322A (en) 2000-01-13 2001-07-17 Taiheiyo Cement Corp Method for kneading hydraulic substance
JP2002047489A (en) 2000-08-04 2002-02-12 Denki Kagaku Kogyo Kk Low hexavalent chromium grout
JP2002224694A (en) 2001-02-01 2002-08-13 Ube Ind Ltd Quick setting type solidifying material for construction sludge
JP2003334568A (en) 2002-05-16 2003-11-25 Taiheiyo Cement Corp Method for treating drain containing heavy metal
JP2011051876A (en) 2009-08-04 2011-03-17 Taiheiyo Cement Corp Anhydrous gypsum containing fired material and solidification material
JP2011111377A (en) 2009-11-30 2011-06-09 Taiheiyo Cement Corp Solidifying material
JP6336840B2 (en) 2014-07-15 2018-06-06 鹿島建設株式会社 Construction method of tank and breakwater
JP2019059886A (en) 2017-09-28 2019-04-18 太平洋セメント株式会社 Solidification material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518210A (en) * 1978-07-24 1980-02-08 Nippon Cement Co Ltd Sludge solidification treating agent
JPH01289890A (en) * 1988-05-16 1989-11-21 Chichibu Cement Co Ltd Rapidly curable foundation improver
JP2802972B2 (en) * 1991-05-27 1998-09-24 秩父小野田株式会社 Rapid hardening material for ultra soft soil
JP3469368B2 (en) * 1995-07-31 2003-11-25 太平洋セメント株式会社 Soil improvement material and soil improvement method using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191322A (en) 2000-01-13 2001-07-17 Taiheiyo Cement Corp Method for kneading hydraulic substance
JP2002047489A (en) 2000-08-04 2002-02-12 Denki Kagaku Kogyo Kk Low hexavalent chromium grout
JP2002224694A (en) 2001-02-01 2002-08-13 Ube Ind Ltd Quick setting type solidifying material for construction sludge
JP2003334568A (en) 2002-05-16 2003-11-25 Taiheiyo Cement Corp Method for treating drain containing heavy metal
JP2011051876A (en) 2009-08-04 2011-03-17 Taiheiyo Cement Corp Anhydrous gypsum containing fired material and solidification material
JP2011111377A (en) 2009-11-30 2011-06-09 Taiheiyo Cement Corp Solidifying material
JP6336840B2 (en) 2014-07-15 2018-06-06 鹿島建設株式会社 Construction method of tank and breakwater
JP2019059886A (en) 2017-09-28 2019-04-18 太平洋セメント株式会社 Solidification material

Also Published As

Publication number Publication date
JP2020105029A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US9890079B2 (en) Cementitious binders containing pozzolanic materials
AU2014317428B2 (en) Binder comprising calcium sulfoaluminate cement and a magnesium compound
WO2018150753A1 (en) Geopolymer composition, and mortar and concrete using same
JP6137850B2 (en) Hydraulic composition
TWI624445B (en) Cement composition
KR100310657B1 (en) Quick-hardening cement composition having high solidity
JP7037879B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
KR20230117421A (en) Hydraulic binder with low carbon footprint and high initial strength
JPH0337145A (en) Quick setting agent for cement
JP3662052B2 (en) Mixed cement composition
US20060180052A1 (en) Chemical admixture for cementitious compositions
JP7278070B2 (en) Rapid hardening material
KR100225343B1 (en) A cement composition having high durability
US20240018059A1 (en) Composition for Activating Super Sulfated Cement
JP3051980B2 (en) High-strength concrete lining method
WO2021246288A1 (en) Cement admixture and cement composition
JPH11130500A (en) Curing accelerating assistant material for spraying material
JP2007176744A (en) Quick hardening admixture
JP2006182568A (en) Hardening accelerator and quick-hardening cement composition
JP4157720B2 (en) Slow-hardening type solidification material for soil improvement
JPH0235699B2 (en)
JPH11130499A (en) Cement composition for spraying material and spraying method
JP2014162696A (en) Cement-based solidifying material
JP7260998B2 (en) Expansive composition, cement composition and cement-concrete
JPH02302352A (en) Rapid hardening type self-leveling composition for floor covering material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230216

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230216

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20230228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230327

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150