JP2011051876A - Anhydrous gypsum containing fired material and solidification material - Google Patents

Anhydrous gypsum containing fired material and solidification material Download PDF

Info

Publication number
JP2011051876A
JP2011051876A JP2010022442A JP2010022442A JP2011051876A JP 2011051876 A JP2011051876 A JP 2011051876A JP 2010022442 A JP2010022442 A JP 2010022442A JP 2010022442 A JP2010022442 A JP 2010022442A JP 2011051876 A JP2011051876 A JP 2011051876A
Authority
JP
Japan
Prior art keywords
anhydrous gypsum
mass
gypsum
solidification
fired product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010022442A
Other languages
Japanese (ja)
Inventor
Yusuke Matsuyama
祐介 松山
Hiroshi Hayashi
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010022442A priority Critical patent/JP2011051876A/en
Publication of JP2011051876A publication Critical patent/JP2011051876A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anhydrous gypsum containing fired material in which the containing rate is high and the strength development is excellent when used for a solidification material, and to provide a solidification material containing the same. <P>SOLUTION: The invention provides the following anhydrous gypsum containing fired materials and solidification materials. (1) The anhydrous gypsum containing fired material contains 40-70 mass% of anhydrous gypsum, wherein the hydraulic modulus is 1.0-3.5, the silica modulus is 0.1-0.8, and the iron modulus is 5-25. (2) The anhydrous gypsum containing fired material contains 15-40 mass% of hauynite. (3) The anhydrous gypsum containing fired material contains 5-30 mass% of belite. (4) The solidification materials contain the anhydrous gypsum containing fired materials described in any of (1)-(3) above. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、無水石膏を含有する焼成物およびこれを含んでなる固化材に関する。 The present invention relates to a calcined product containing anhydrous gypsum and a solidified material comprising the calcined product.

現在市販されている固化材の構成材料には、セメント、高炉スラグおよび石膏等が使用されている。当該石膏は、無水石膏、半水石膏、リン酸石膏および二水石膏等があり、このうち二水石膏は天然二水石膏や排脱二水石膏等が使用され、無水石膏は天然無水石膏やフッ酸の製造時に副生するフッ酸無水石膏が使用されている。そして、固化材の強度発現性の点で、水和物を持たない無水石膏は、二水石膏より優れる傾向にある。
しかし、無水石膏であっても、天然無水石膏は、結晶性が良く水への溶解度が低いため、天然無水石膏を含有する固化材は、フッ酸無水石膏を含有する固化材に比べ、強度発現性は低い傾向にある。また、フッ酸無水石膏は、フッ素の含有量が高いため、フッ酸無水石膏を含有する固化材を河川や海岸域等のフッ素含有量の高い土壌に使用した場合に、その固化処理土から土壌環境基準を超過するフッ素が溶出する虞がある。
したがって、天然無水石膏やフッ酸無水石膏に代わって使用できる無水石膏源が、強く望まれているのである。
Cement, blast furnace slag, gypsum, and the like are used as constituent materials of the solidified material currently on the market. The gypsum includes anhydrous gypsum, hemihydrate gypsum, phosphate gypsum, dihydrate gypsum, etc., of which dihydrate gypsum is natural dihydrate gypsum, drained dihydrate gypsum, etc. Hydrofluoric anhydride gypsum that is by-produced during the production of hydrofluoric acid is used. And the anhydrous gypsum which does not have a hydrate exists in the tendency which is superior to dihydrate gypsum from the point of strength expression of a solidification material.
However, even with anhydrous gypsum, natural anhydrous gypsum has good crystallinity and low solubility in water, so the solidified material containing natural anhydrous gypsum is stronger than the solidified material containing hydrofluoric acid anhydrous gypsum. Sex tends to be low. Since hydrofluoric anhydride gypsum has a high fluorine content, when a solidified material containing hydrofluoric acid anhydrous gypsum is used for soil with high fluorine content in rivers, coastal areas, etc., the soil from the solidified treated soil There is a risk of elution of fluorine exceeding environmental standards.
Therefore, an anhydrous gypsum source that can be used in place of natural anhydrous gypsum and hydrofluoric acid anhydrous gypsum is strongly desired.

従来から、無水石膏源の一つとして無水石膏含有焼成物が知られている。例えば、特許文献1には、CaO原料、Al23原料、Fe23原料、SiO2原料及びCaSO4原料を熱処理して得られる物質であって、遊離石灰、カルシウムアルミノフェライト、カルシウムシリケート及び無水セッコウを含有してなり、全CaO量に対してCaSO4含有量が20%を超え、珪酸率が1.0未満であるセメント混和材が記載されている(請求項1、2)。しかし、当該セメント混和材は、膨張性能に優れる膨張材であるから(段落0003、段落0007)、膨張材以外の用途に転用することは難しい。特に当該セメント混和材を固化材として使用した場合、固化材の主要な使用態様であるスラリー状態での土壌への添加において、CaOの急激な水和によって流動性を確保できず、地盤改良を行えない虞がある。
また、本願出願人が出願した特許文献2には、10〜40重量部のカルシウムサルホアルミネートと、10〜40重量部のケイ酸2石灰と、8〜80重量部の硫酸カルシウムを主成分とする水硬性組成物とからなる鉛溶出防止材が記載されている(請求項1)。しかし、当該鉛溶出防止材は、各成分の組成物であって焼成物ではないため、各成分を計量・混合する手間や混合装置が必要になりコスト高になる。また、特許文献2に記載された硫酸カルシウムは無水石膏に限定されない。
Conventionally, an anhydrous gypsum-containing fired product is known as one source of anhydrous gypsum. For example, Patent Document 1 discloses substances obtained by heat-treating a CaO raw material, an Al 2 O 3 raw material, an Fe 2 O 3 raw material, an SiO 2 raw material, and a CaSO 4 raw material, and include free lime, calcium aluminoferrite, and calcium silicate. And a cement admixture containing CaSO 4 in excess of 20% and a silicic acid ratio of less than 1.0 with respect to the total CaO content (claims 1 and 2). However, since the cement admixture is an expansion material having excellent expansion performance (paragraphs 0003 and 0007), it is difficult to divert to a use other than the expansion material. In particular, when the cement admixture is used as a solidifying material, the fluidity cannot be ensured by rapid hydration of CaO in the addition to the soil in the slurry state, which is the main use mode of the solidifying material, and the ground can be improved. There is no fear.
Patent Document 2 filed by the applicant of the present application includes 10 to 40 parts by weight of calcium sulfoaluminate, 10 to 40 parts by weight of dicalcium silicate, and 8 to 80 parts by weight of calcium sulfate as main components. The lead elution prevention material which consists of a hydraulic composition to perform is described (Claim 1). However, since the lead elution preventing material is a composition of each component and not a fired product, a labor and a mixing device for measuring and mixing each component are required, resulting in high costs. Moreover, the calcium sulfate described in Patent Document 2 is not limited to anhydrous gypsum.

特開2002−3254号公報Japanese Patent Laid-Open No. 2002-3254 特開平11−104596号公報JP-A-11-104596

したがって、本発明は、無水石膏の含有率が高く、固化材に使用した場合に、強度発現性に優れた無水石膏含有焼成物およびこれを含む固化材を提供することを目的とする。 Accordingly, an object of the present invention is to provide an anhydrous gypsum-containing fired product having a high content of anhydrous gypsum and excellent strength development when used as a solidifying material, and a solidifying material containing the same.

本発明者は、上記課題を解決するために鋭意研究した結果、特定の水硬率、珪酸率および鉄率を有し、かつ無水石膏を所定量以上含有する焼成物は、固化材に使用した場合に強度発現性に優れることを見い出し本発明を完成した。
即ち、本発明は、水硬率が1.0〜3.5、珪酸率が0.1〜0.8および鉄率が5〜25であって、無水石膏を40〜70質量%含有する無水石膏含有焼成物である(請求項1)。
本発明は、前記の無水石膏含有焼成物において、アウイン(3CaO・3Al・CaSO)を15〜40質量%含有するものを含む(請求項2)。アウインを前記所定量含有することにより、固化材の初期の強度発現性を更に高めることができる。
また、本発明は、前記または前々記の無水石膏含有焼成物において、ビーライト(2CaO・SiO)を5〜30質量%含有するものを含む(請求項3)。ビーライトを前記所定量含有することにより、固化材の中・長期の強度発現性を更に高めることができる。
また、本発明には、以上の無水石膏含有焼成物を含む固化材も含まれる(請求項4)。
ここで、前記の水硬率、珪酸率および鉄率は以下の計算式により算出した。
水硬率=CaO/(SiO+Al+Fe
珪酸率=SiO/(Al+Fe
鉄率=Al/Fe
なお、CaO、SiO、AlおよびFeの単位は質量%である。
また、クリンカ中の各鉱物量を以下の計算式により算出した。
無水石膏の量()=1.7×(SO3−0.26×(Al−0.64×Fe
アウインの量=1.99×(Al23−0.64×Fe23
ビーライトの量=2.87×SiO2
なお、各鉱物量、SiO、SO、AlおよびFeの単位は質量%である。
As a result of earnest research to solve the above-mentioned problems, the present inventor used a calcined product having a specific hydraulic rate, silicic acid rate and iron rate and containing a predetermined amount or more of anhydrous gypsum as a solidifying material. In this case, the present invention was completed.
That is, the present invention has a hydraulic modulus of 1.0 to 3.5, a silicic acid ratio of 0.1 to 0.8, an iron ratio of 5 to 25, and an anhydrous gypsum containing 40 to 70 mass% of anhydrous gypsum. A fired product containing gypsum (claim 1).
The present invention includes the anhydrous gypsum-containing fired product containing 15 to 40% by mass of Auin (3CaO.3Al 2 O 3 .CaSO 4 ) (Claim 2). By containing the predetermined amount of auin, the initial strength development of the solidified material can be further enhanced.
The present invention, in the or before last's rating anhydrite-containing baked product, belite and (2CaO · SiO 2) include those containing 5 to 30 wt% (claim 3). By containing the predetermined amount of belite, the medium / long-term strength development of the solidified material can be further enhanced.
The present invention also includes a solidified material containing the above anhydrous gypsum-containing fired product (claim 4).
Here, the hydraulic rate, silicic acid rate, and iron rate were calculated according to the following formulas.
Hydraulic modulus = CaO / (SiO 2 + Al 2 O 3 + Fe 2 O 3 )
Silicic acid ratio = SiO 2 / (Al 2 O 3 + Fe 2 O 3 )
Iron ratio = Al 2 O 3 / Fe 2 O 3
Incidentally, CaO, units of SiO 2, Al 2 O 3 and Fe 2 O 3 is the mass%.
The amount of each mineral in the clinker was calculated according to the following calculation formula.
Amount of anhydrous gypsum () = 1.7 × (SO 3 −0.26 × (Al 2 O 3 −0.64 × Fe 2 O 3 )
Amount of Auin = 1.99 × (Al 2 O 3 −0.64 × Fe 2 O 3 )
Amount of belite = 2.87 × SiO 2
Each mineral amount, the unit of SiO 2, SO 3, Al 2 O 3 and Fe 2 O 3 is the mass%.

本発明によれば、無水石膏の含有率が高く、固化材に使用した場合に、強度発現性に優れた無水石膏含有焼成物およびこれを含む固化材を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, when the content rate of anhydrous gypsum is high and it uses it for a solidification material, the anhydrous gypsum containing baking products excellent in intensity | strength expression and the solidification material containing this can be provided.

以下に、本発明について詳しく説明する。
本発明の無水石膏含有焼成物は、固化材の強度発現性を高めるために好適な、特定の水硬率、珪酸率および鉄率を有し、かつ特定量の無水石膏を含有するものである。
具体的には、前記の水硬率、珪酸率、鉄率および無水石膏の含有率は、以下の通りである。
(1)前記の水硬率は、1.0〜3.5で好ましく、1.8〜2.2がより好ましい。当該水硬率が1.0未満では固化性能のないゲーレナイト(2CaO・Al・SiO)が生成して強度発現性が低下するとともに、CaSO原料からSOが揮発する虞があり、当該水硬率が3.5を超えると、反応性の高いフリーライム(f−CaO)が生成しやすくなる虞がある。
(2)前記の珪酸率は、0.1〜0.8が好ましく、0.2〜0.4がより好ましい。当該珪酸率が0.1未満では、試薬を使用せずに天然材料を使用する限り実製造が困難であり、当該珪酸率が0.8を超えると前記と同様に固化性能のないゲーレナイトが生成して強度発現性が低下するとともに、CaSO原料からSOが揮発する虞がある。
(3)前記の鉄率は、5〜25が好ましく、15〜20がより好ましい。当該鉄率が5未満では焼成物の表面が溶融し易くなって、焼成工程において焼成物が塊状になる虞や焼成炉壁に融着する虞があり、当該鉄率が25を超えると焼成温度によっては反応性の高いCAが生成する虞や、クリンカリングし難い傾向がある。
(4)前記の無水石膏の含有率は、40〜70質量%が好ましく、55〜65質量%がより好ましい。無水石膏の含有率が40質量%未満では、無水石膏の含有量が少なく固化材の強度発現性が十分でない場合があり、無水石膏の含有率が70質量%を超えると焼成時においてSOの揮発量が増大する傾向にある。
The present invention is described in detail below.
The anhydrous gypsum-containing fired product of the present invention has a specific hydraulic rate, silicic acid rate and iron rate, and contains a specific amount of anhydrous gypsum, which is suitable for increasing the strength development of the solidified material. .
Specifically, the hydraulic ratio, silicic acid ratio, iron ratio, and anhydrous gypsum content are as follows.
(1) The hydraulic modulus is preferably 1.0 to 3.5, and more preferably 1.8 to 2.2. If the hydraulic modulus is less than 1.0, gehlenite (2CaO.Al 2 O 3 .SiO 2 ) having no solidification performance is generated and strength development is lowered, and SO 3 may be volatilized from the CaSO 4 raw material. If the hydraulic modulus exceeds 3.5, highly reactive free lime (f-CaO) may be easily generated.
(2) The silicic acid ratio is preferably 0.1 to 0.8, and more preferably 0.2 to 0.4. When the silicic acid ratio is less than 0.1, actual production is difficult as long as natural materials are used without using reagents. When the silicic acid ratio exceeds 0.8, gehlenite having no solidification performance is generated as described above. As a result, strength development is reduced and SO 3 may be volatilized from the CaSO 4 raw material.
(3) 5-25 are preferable and, as for the said iron rate, 15-20 are more preferable. If the iron ratio is less than 5, the surface of the fired product is easily melted, and the fired product may be agglomerated in the firing process or fused to the firing furnace wall. Depending on the case, there is a possibility that highly reactive C 3 A may be formed, and clinkering tends to be difficult.
(4) The content of the anhydrous gypsum is preferably 40 to 70% by mass, and more preferably 55 to 65% by mass. If the content of anhydrous gypsum is less than 40% by mass, the content of anhydrous gypsum may be small and the strength development of the solidified material may not be sufficient. If the content of anhydrous gypsum exceeds 70% by mass, the SO 3 content may be reduced during firing. The volatilization amount tends to increase.

また、本発明の無水石膏含有焼成物は、アウインを15〜40質量%、好ましくは20〜30質量%含有してもよい。
アウインの含有率が15質量%未満では初期強度の発現性が十分でなく、アウインの含有率が40質量%を超えると、無水石膏の生成量が減少して、無水石膏の含有率が40質量%未満になる場合がある。
Moreover, the anhydrous gypsum-containing fired product of the present invention may contain 15-40% by weight of Auin, preferably 20-30% by weight.
When the content of Auin is less than 15% by mass, the initial strength is not sufficiently developed. When the content of Auin exceeds 40% by mass, the amount of anhydrous gypsum produced decreases and the content of anhydrous gypsum is 40% by mass. %.

また、本発明の無水石膏含有焼成物は、ビーライトを5〜30質量%、好ましくは10〜20質量%含有してもよい。
ビーライトの含有率が5質量%未満では中・長期強度の発現性が十分でなく、ビーライトの含有率が30質量%を超えると、前記と同様に無水石膏の生成量が減少して、無水石膏の含有率が40質量%未満になる場合がある。
Moreover, the anhydrous gypsum-containing fired product of the present invention may contain 5-30% by mass of belite, preferably 10-20% by mass.
If the content of belite is less than 5% by mass, the medium / long-term strength is not sufficiently developed. If the content of belite exceeds 30% by mass, the amount of anhydrous gypsum produced is reduced as described above. The anhydrous gypsum content may be less than 40% by mass.

また、本発明の無水石膏含有焼成物は、モル比で、CaO/Alは3〜10、SO/Alは1〜6.5およびCaO/SiOは3〜25が好ましい。CaO/Alが3未満では反応性の高いCAが生成し易くなる虞があり、CaO/Alが10超えると反応性の高いフリーライムが生成し易くなる虞がある。また、SO/Alが1未満では初期強度発現性が十分でなく、SO/Alが6.5を超えるとSOの揮発量が高くなる傾向にある。また、CaO/SiOが3未満では焼成が困難となる傾向にあり、CaO/SiOが25を超えるとSO揮発量が高くなる傾向にある。 Further, the anhydrous gypsum-containing fired product of the present invention has a molar ratio of 3 to 10 for CaO / Al 2 O 3, 1 to 6.5 for SO 3 / Al 2 O 3, and 3 to 25 for CaO / SiO 2. preferable. If CaO / Al 2 O 3 is less than 3, highly reactive C 3 A may be easily generated, and if CaO / Al 2 O 3 exceeds 10, highly reactive free lime may be easily generated. . Further, if SO 3 / Al 2 O 3 is less than 1, the initial strength development is not sufficient, and if SO 3 / Al 2 O 3 exceeds 6.5, the volatilization amount of SO 3 tends to increase. Further, if CaO / SiO 2 is less than 3, firing tends to be difficult, and if CaO / SiO 2 exceeds 25, the SO 3 volatilization amount tends to increase.

本発明の無水石膏含有焼成物は、前記成分のほかに、ゲーレナイトを15質量%以下、フェライト相(4CaO・Al・Fe)を2〜8質量%、およびフリーライムを0.5質量%以下含有するのが好ましい。ゲーレナイトの含有率が15質量%を越えると固化性能が低下する場合があり、フェライト相の含有率が2質量%未満ではクリンカが粉状化する虞があり、フェライト相の含有率が8質量%を超える範囲では融着のため焼成が困難となる虞がある。また、フリーライムが0.5質量%を超えると無水石膏含有焼成物がサイロ内で固結する虞がある。 The anhydrous gypsum-containing fired product of the present invention contains, in addition to the above components, 15% by mass or less of gelenite, 2 to 8% by mass of ferrite phase (4CaO · Al 2 O 3 · Fe 2 O 3 ), and 0% free lime. It is preferable to contain 5 mass% or less. If the gehlenite content exceeds 15% by mass, the solidification performance may deteriorate. If the ferrite phase content is less than 2% by mass, the clinker may be pulverized, and the ferrite phase content is 8% by mass. If it exceeds the range, firing may be difficult due to fusion. Moreover, when free lime exceeds 0.5 mass%, there exists a possibility that the anhydrous gypsum containing baked material may solidify within a silo.

次に、本発明の無水石膏含有焼成物の製造方法を説明する。
当該製造方法は、以下の原料組成物の調合・混合工程と、焼成工程と、粉砕工程とからなる。
[原料組成物の調合・混合工程]
本発明の無水石膏含有焼成物の原料組成物は、CaO原料、Al原料、Fe原料、CaSO原料を、焼成物の水硬率が1.0〜3.5、珪酸率が0.1〜0.8および鉄率が5〜25であって、焼成物中の無水石膏の含有量が40〜70質量%になるように調合・混合して調製する。
CaO原料は、石灰石、炭酸カルシウム、消石灰、貝殻等が挙げられ、Al原料は、ボーキサイト、アルミナ、アルミ残灰、建設発生土等が挙げられ、Fe原料は、銅カラミ、酸化鉄、金属鉄粉等が挙げられる。また、CaSO原料は、廃石膏ボード等の石膏廃材、無水石膏、半水石膏、二水石膏等が挙げられるが、特に、石膏廃材は、無水石膏含有焼成物のコストを低減する上で、有用である。
前記原料は粉砕して粉体状で焼成してもよく、更に当該粉体を成型または造粒して焼成してもよい。粉砕機はボールミル、アトマイザー、ローラーミル、ローラープレス、ジョークラッシャー、トップグラインダー等が、また成型機・造粒機はブリケットマシーン、パンペレタイザー、プレスペレッター、ディスクペレッター、押出し成型機、スウィング式混練造粒機等が使用できる。
前記原料が粉体状の場合において、原料を調合した後の混合装置は、傾胴ミキサー、オムニミキサー、ヘンシェルミキサー、V型ミキサー、ナウタミキサー、ボールミル、強制二軸ミキサー、ディスクミル等が使用できる。
Next, the manufacturing method of the anhydrous gypsum containing baked product of this invention is demonstrated.
The said manufacturing method consists of the preparation and mixing process of the following raw material compositions, a baking process, and a grinding | pulverization process.
[Formulation / mixing process of raw material composition]
The raw material composition of the anhydrous gypsum-containing fired product of the present invention comprises a CaO raw material, an Al 2 O 3 raw material, an Fe 2 O 3 raw material, and a CaSO 4 raw material, and the fired product has a hydraulic modulus of 1.0 to 3.5, silicic acid. It is prepared by mixing and mixing so that the rate is 0.1 to 0.8 and the iron rate is 5 to 25, and the content of anhydrous gypsum in the fired product is 40 to 70% by mass.
CaO raw material, limestone, calcium carbonate, slaked lime, shells and the like, Al 2 O 3 raw material, bauxite, alumina, aluminum residual ash, construction waste soil, and the like, Fe 2 O 3 raw material, copper Karami, Examples thereof include iron oxide and metallic iron powder. In addition, examples of the CaSO 4 raw material include gypsum waste materials such as waste gypsum board, anhydrous gypsum, hemihydrate gypsum, dihydrate gypsum, etc. In particular, gypsum waste materials are used for reducing the cost of the anhydrous gypsum-containing fired product, Useful.
The raw material may be pulverized and fired in powder form, or the powder may be molded or granulated and fired. Ball mills, atomizers, roller mills, roller presses, jaw crushers, top grinders, etc., and grinding machines and granulators are briquetting machines, pan pelletizers, press pelleters, disk pelleters, extrusion molding machines, swing type kneaders A granulator or the like can be used.
In the case where the raw material is in the form of powder, the mixing apparatus after the raw material is prepared can use a tilting barrel mixer, an omni mixer, a Henschel mixer, a V-type mixer, a nauta mixer, a ball mill, a forced biaxial mixer, a disk mill, etc. .

[焼成工程]
前記調合工程で得られた原料組成物を、1100〜1500℃、好ましくは1200〜1375℃、より好ましくは1275〜1300℃で焼成する。当該焼成温度が1100℃未満では焼成が十分に進行せず、当該焼成温度が1500℃を超えると無水石膏が分解してSOが揮発する虞がある。また、焼成炉としては、乾式ロータリーキルン、湿式ロータリーキルン、ケトル炉、電気炉、流動層焼成炉、気流焼成炉等が使用できる。
[Baking process]
The raw material composition obtained in the blending step is fired at 1100 to 1500 ° C, preferably 1200 to 1375 ° C, more preferably 1275 to 1300 ° C. If the calcination temperature is lower than 1100 ° C., the calcination does not proceed sufficiently. If the calcination temperature exceeds 1500 ° C., anhydrous gypsum may decompose and SO 3 may volatilize. As the firing furnace, a dry rotary kiln, a wet rotary kiln, a kettle furnace, an electric furnace, a fluidized bed firing furnace, an airflow firing furnace, or the like can be used.

[粉砕工程]
前記焼成工程で得られた焼成物を、ボールミル、アトマイザーまたはジョークラッシャー等の粉砕機により粉砕する。粉砕後の焼成物のブレーン比表面積は、3000〜6000cm/gが好ましく、3750〜4250cm/gがより好ましい。当該ブレーン比表面積が3000cm/g未満では反応性が低下する虞があり、当該ブレーン比表面積が6000cm/gを超えるとスラリーにして使用する場合に当該スラリーの流動性が低下する虞がある。なお、前記ブレーン比表面積は、JIS A 6206:1997「コンクリート用高炉スラグ微粉末」に準拠して測定される。具体的には、ポロシティーは、0.400から0.700の範囲において、圧縮供試体がブレーン空気透過装置のセルに粉末度測定校正用試料と同程度の圧力で詰められる程度の量となるように試料の質量を計量して測定する。
[Crushing process]
The fired product obtained in the firing step is pulverized by a pulverizer such as a ball mill, an atomizer, or a jaw crusher. Blaine specific surface area of the fired product after pulverization is preferably 3000~6000cm 2 / g, 3750~4250cm 2 / g is more preferable. The Blaine specific surface area is less than 3000 cm 2 / g there is a possibility that the reactivity decreases, the fluidity of the slurry may be decreased when the Blaine specific surface area is used in the slurry exceeds 6000 cm 2 / g . The specific surface area of the brain is measured according to JIS A 6206: 1997 “Blast Furnace Slag Fine Powder for Concrete”. Specifically, the porosity is in the range of 0.400 to 0.700 so that the compression specimen can be packed in the cell of the brane air permeation device with the same pressure as the fineness measurement calibration sample. Measure and measure the mass of the sample.

次に、本発明の固化材について説明する。
本発明の固化材は、前記の無水石膏含有焼成物の粉末をセメントとともに調合・混合して製造される。当該セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント等のポルトランドセメント、高炉セメント、フライアッシュセメント等の混合セメントが使用できる。特に、以下のボーグ式により算出したエーライト(3CaO・SiO)の含有率が50〜75質量%となるセメントが強度発現性の観点からより好ましい。

エーライト=(4.071×CaO)―(7.60×SiO)―(6.718×Al)―(1.430×Fe)―(2.852×SO
なお、エーライト、CaO、SiO、Al、FeおよびSOの単位は質量%である。
無水石膏含有焼成物の混合量は、セメント100重量部に対し、10〜50重量部が好ましく、15〜25重量部がより好ましい。無水石膏含有焼成物の混合量が10重量部未満または50重量部を超えると、固化材の強度発現性が低下する傾向にある。
Next, the solidified material of the present invention will be described.
The solidified material of the present invention is produced by blending and mixing the above anhydrous gypsum-containing fired powder together with cement. As the cement, ordinary cements such as Portland cement and early-strength Portland cement, and mixed cements such as blast furnace cement and fly ash cement can be used. In particular, a cement in which the content of alite (3CaO · SiO 2 ) calculated by the following Borg formula is 50 to 75% by mass is more preferable from the viewpoint of strength development.

Alite = (4.071 × CaO) − (7.60 × SiO 2 ) − (6.718 × Al 2 O 3 ) − (1.430 × Fe 2 O 3 ) − (2.852 × SO 3 )
The unit of alite, CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 and SO 3 is mass%.
The mixing amount of the anhydrous gypsum-containing fired product is preferably 10 to 50 parts by weight and more preferably 15 to 25 parts by weight with respect to 100 parts by weight of cement. When the amount of the anhydrous gypsum-containing fired product is less than 10 parts by weight or more than 50 parts by weight, the strength development property of the solidified material tends to decrease.

また、前記の固化材に、長期強度発現性の更なる向上のために高炉スラグ微粉末を混合してもよい。当該高炉スラグ微粉末のブレーン比表面積は、3000〜8000cm/gが好ましく、3500〜6000cm/gがより好ましく、3750〜4250cm/gが更に好ましい。当該ブレーン比表面積が3000cm/g未満では強度発現性が低く、当該ブレーン比表面積が8000cm/gを超えるとサイロから落下しない等のトラブルの原因となり易い。当該高炉スラグ微粉末の混合量は、セメント100重量部に対し、30〜90重量部が好ましく、40〜70重量部がより好ましい。高炉スラグ微粉末の混合量が30重量部未満では、長期強度発現性の向上効果が低く、高炉スラグ微粉末の混合量が90重量%を超えると、初期・中期の強度発現性が低下する傾向にある。
更に、前記の固化材に、固化処理土からの六価クロムの溶出量を低減するために、六価クロムの還元剤を混合してもよい。当該六価クロムの還元剤としては、例えば、硫酸第一鉄1水塩または硫酸第一鉄7水塩等が使用できる。硫酸第一鉄は、水に易溶であるため、六価クロムの還元性が阻害されない限り特にその粒径は制限されない。当該六価クロムの還元剤の混合量は、セメント100重量部に対し、0.2〜3.0重量部が好ましく、0.5〜2.0重量部がより好ましい。六価クロムの還元剤の混合量が0.2重量部未満では六価クロムの還元が不十分であり、六価クロムの還元剤の混合量が3.0重量%を超えても、六価クロムの還元が飽和する傾向にある。
前記の固化材成分の混合において、傾胴ミキサー、オムニミキサー、ヘンシェルミキサー、V型ミキサー、ナウタミキサー、ボールミル、強制二軸ミキサー等の混合装置が使用できる。
Moreover, you may mix the blast furnace slag fine powder with the said solidification material for the further improvement of long-term strength expression. Blaine specific surface area of the powder the blast furnace slag is preferably 3000~8000cm 2 / g, more preferably 3500~6000cm 2 / g, more preferably 3750~4250cm 2 / g. If the Blaine specific surface area is less than 3000 cm 2 / g, strength development is low, and if the Blaine specific surface area exceeds 8000 cm 2 / g, troubles such as not falling from the silo are likely to occur. The mixing amount of the blast furnace slag fine powder is preferably 30 to 90 parts by weight, and more preferably 40 to 70 parts by weight with respect to 100 parts by weight of cement. If the mixing amount of the blast furnace slag fine powder is less than 30 parts by weight, the effect of improving the long-term strength development is low, and if the mixing amount of the blast furnace slag fine powder exceeds 90% by weight, the initial and medium-term strength development tends to decrease. It is in.
Furthermore, in order to reduce the elution amount of hexavalent chromium from the solidified soil, a reducing agent for hexavalent chromium may be mixed with the solidified material. As the hexavalent chromium reducing agent, for example, ferrous sulfate monohydrate or ferrous sulfate heptahydrate can be used. Since ferrous sulfate is easily soluble in water, its particle size is not particularly limited as long as the reducing property of hexavalent chromium is not inhibited. The mixing amount of the hexavalent chromium reducing agent is preferably 0.2 to 3.0 parts by weight and more preferably 0.5 to 2.0 parts by weight with respect to 100 parts by weight of cement. If the mixing amount of the reducing agent of hexavalent chromium is less than 0.2 parts by weight, the reduction of hexavalent chromium is insufficient, and even if the mixing amount of the reducing agent of hexavalent chromium exceeds 3.0% by weight, Chromium reduction tends to saturate.
In mixing the solidifying material components, a mixing apparatus such as a tilting barrel mixer, an omni mixer, a Henschel mixer, a V-type mixer, a Nauta mixer, a ball mill, a forced biaxial mixer, or the like can be used.

本発明の固化材の対象土として、例えば、火山灰質粘性土、シルト、粘土、有機質粘土、高有機質土、礫質土、砂質土等が挙げられる。前記対象土に対する本発明の固化材の混合量は対象土に含まれる固化阻害成分の種類および含有量により決まるが、本発明の固化材の混合量は対象土1mに対し50〜400kgが好ましい。 Examples of the target soil of the solidifying material of the present invention include volcanic ash clay, silt, clay, organic clay, highly organic soil, gravelly soil, and sandy soil. The mixing amount of the solidification material of the present invention with respect to the target soil is determined by the type and content of the solidification inhibiting component contained in the target soil, but the mixing amount of the solidification material of the present invention is preferably 50 to 400 kg with respect to 1 m 3 of the target soil. .

以下に本発明を実施例により詳細に説明するが、本発明はこれに限定されるものではない。
[無水石膏含有焼成物の製造]
CaO原料として炭酸カルシウム(試薬1級、関東化学社製)、Al原料としてα-アルミナ(試薬1級、関東化学社製)、Fe原料として酸化鉄(試薬1級、関東化学社製)、CaSO原料として二水石膏(試薬1級、関東化学社製)を使用して、表1の調合表に従い、各原料を調合した後、ディスクミルにより混合した。次に、混合した原料を電気炉(製品名:KSL−2、中外エンジニアリング社製)に入れ、温度1000℃で30分焼成して脱炭酸を行い、その後1275℃まで20分かけて昇温させ、更に1275℃で30分焼成することにより、無水石膏含有焼成物a〜pを得た。当該焼成物は1100℃にて電気炉より取り出し、室温まで冷却した後、ディスクミルによりブレーン比表面積が4000±200cm/gになるまで粉砕した。得られた無水石膏含有焼成物a〜p中の無水石膏の含有率、水硬率、珪酸率、鉄率を表2に示した。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.
[Production of anhydrous gypsum-containing baked product]
Calcium carbonate (reagent grade 1, manufactured by Kanto Chemical Co.) as the CaO raw material, α-alumina (reagent grade 1, manufactured by Kanto Chemical Co.) as the Al 2 O 3 raw material, and iron oxide (reagent grade 1, Kanto) as the Fe 2 O 3 raw material Chemicals), dihydrate gypsum (reagent grade 1, manufactured by Kanto Chemical Co., Inc.) was used as a CaSO 4 raw material, and each raw material was prepared according to the preparation table of Table 1, and then mixed by a disk mill. Next, the mixed raw material is put into an electric furnace (product name: KSL-2, manufactured by Chugai Engineering Co., Ltd.), calcined at 1000 ° C. for 30 minutes, decarboxylated, and then heated to 1275 ° C. over 20 minutes. Furthermore, the anhydrous gypsum containing baked material ap was obtained by baking at 1275 degreeC for 30 minutes. The fired product was taken out from the electric furnace at 1100 ° C., cooled to room temperature, and then pulverized by a disk mill until the Blaine specific surface area became 4000 ± 200 cm 2 / g. Table 2 shows the anhydrous gypsum content, hydraulic modulus, silicic acid rate, and iron rate in the obtained anhydrous gypsum-containing fired products a to p.

[固化材の製造と一軸圧縮強さの測定]
普通ポルトランドセメント(太平洋セメント社製)100重量部に対し、無水石膏含有焼成物a〜pをそれぞれ25重量部添加した後、ヘンシルミキサーにより混合して固化材を得た。
次に、前記固化材100重量部に水を100重量部添加してスラリーを調製した後、火山灰質粘性土(関東ローム、神奈川県川崎市、含水比69.1%、湿潤密度1.52g/cm)1mに対し、固化材換算で160kg添加した後、ホバートミキサー(A120−T、ホバートジャパン社製)により室温で3分間混合した。
当該混合物を、内径50mm、長さ100mmの型枠に入れて、20℃で3日間、7日間および28日間、密閉養生して試験体を作成した後、各材齢における試験体の一軸圧縮強さを自動一軸圧縮試験装置(win土質2007、テスコ社製)により測定した。その結果(試験例1〜16)を表3に示した。
[Manufacture of solidified material and measurement of uniaxial compressive strength]
25 parts by weight of anhydrous gypsum-containing fired products a to p were added to 100 parts by weight of ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd.), and then mixed with a hensil mixer to obtain a solidified material.
Next, 100 parts by weight of water was added to 100 parts by weight of the solidified material to prepare a slurry, and then a volcanic ash clay (Kanto Loam, Kawasaki City, Kanagawa Prefecture, water content 69.1%, wet density 1.52 g / After adding 160 kg in terms of solidified material to cm 3 ) 1 m 3 , the mixture was mixed at room temperature for 3 minutes with a Hobart mixer (A120-T, manufactured by Hobart Japan).
The mixture was put into a mold having an inner diameter of 50 mm and a length of 100 mm, and sealed and cured at 20 ° C. for 3 days, 7 days and 28 days. The thickness was measured by an automatic uniaxial compression test apparatus (win soil 2007, manufactured by Tesco). The results (Test Examples 1 to 16) are shown in Table 3.

Figure 2011051876
注1)SiO、Al、Fe、CaOおよびSOの単位は質量%である。
注2)C/AはCaO/Al(モル比)、S/AはSO/Al(モル比)、C/SはCaO/SiO(モル比)をそれぞれ意味する。
Figure 2011051876
Note 1) The units of SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO and SO 3 are mass%.
Note 2) C / A means CaO / Al 2 O 3 (molar ratio), S / A means SO 3 / Al 2 O 3 (molar ratio), and C / S means CaO / SiO 2 (molar ratio). .

Figure 2011051876
Figure 2011051876

Figure 2011051876
Figure 2011051876

表3から、請求項1の条件を満たす無水石膏含有焼成物(焼成物b、c、f、g、j、k、n、o)を含む固化材を用いた試験体の一軸圧縮強さ(試験例2、3、6、7、10、11、14、15)は、材齢3日で173〜205kN/m、材齢7日で242〜277kN/m、および材齢28日で282〜323kN/mであったのに対し、請求項1のいずれかの条件を満たさない無水石膏含有焼成物(焼成物a、d、e、h、i、l)を含む固化材を用いた試験体の一軸圧縮強さ(試験例1、4、5、8、9、12)は、材齢3日で99〜156kN/m、材齢7日で141〜210kN/m、材齢28日で204〜264kN/mであった。これらの結果から、いずれの材齢においても請求項1の条件を満たす無水石膏含有焼成物を含む固化材を用いた試験体の一軸圧縮強さは、請求項1のいずれかの条件を満たさない無水石膏含有焼成物を含む固化材を用いた試験体の一軸圧縮強さよりも高いことが分かる。
また、鉄率が請求項1に記載の鉄率より低い無水石膏含有焼成物mは、溶融して塊状になったため、また、鉄率が請求項1に記載の鉄率より高い無水石膏含有焼成物pは、クリンカリングせず粉体状のままであったため、試験例13および試験例16では一軸圧縮強さを測定しなかった。
From Table 3, the uniaxial compressive strength of the test body using the solidified material containing the anhydrous gypsum-containing fired product (fired products b, c, f, g, j, k, n, o) satisfying the conditions of claim 1 ( test example 2,3,6,7,10,11,14,15) is, 173~205kN / m 2 in 3 days the age, at the age 7 days 242~277kN / m 2, and age of 28 days A solidified material containing an anhydrous gypsum-containing fired product (fired product a, d, e, h, i, l) that does not satisfy any of the conditions of claim 1 while being 282 to 323 kN / m 2 is used. uniaxial compressive strength (test example 1,4,5,8,9,12) of stomach specimens, 99~156kN / m 2 in 3 days the age, 141~210kN / m 2 at an age of 7 days, wood It was 204 to 264 kN / m 2 at the age of 28 days. From these results, the uniaxial compressive strength of the specimen using the solidified material containing the anhydrous gypsum-containing fired product that satisfies the conditions of claim 1 at any age does not satisfy any of the conditions of claim 1. It turns out that it is higher than the uniaxial compressive strength of the test body using the solidification material containing the anhydrous gypsum containing baked material.
Moreover, since the anhydrous gypsum-containing fired product m whose iron ratio is lower than the iron ratio described in claim 1 is melted and formed into a lump, the anhydrous gypsum-containing fired material whose iron ratio is higher than the iron ratio described in claim 1. Since the product p was not clinkered and remained in a powder form, in Test Example 13 and Test Example 16, the uniaxial compressive strength was not measured.

Claims (4)

水硬率が1.0〜3.5、珪酸率が0.1〜0.8および鉄率が5〜25であって、無水石膏を40〜70質量%含有することを特徴とする無水石膏含有焼成物。 Anhydrous gypsum having a hydraulic modulus of 1.0 to 3.5, a silicic acid ratio of 0.1 to 0.8, and an iron ratio of 5 to 25, and containing 40 to 70% by mass of anhydrous gypsum Containing fired product. アウインを15〜40質量%含有することを特徴とする請求項1に記載の無水石膏含有焼成物。 The anhydrous gypsum-containing fired product according to claim 1, comprising 15 to 40% by mass of Auin. ビーライトを5〜30質量%含有することを特徴とする請求項1または2に記載の無水石膏含有焼成物。 The anhydrous gypsum-containing fired product according to claim 1 or 2, wherein 5 to 30% by mass of belite is contained. 請求項1〜3のいずれかに記載の無水石膏含有焼成物を含むことを特徴とする固化材。 A solidified material comprising the anhydrous gypsum-containing fired product according to claim 1.
JP2010022442A 2009-08-04 2010-02-03 Anhydrous gypsum containing fired material and solidification material Pending JP2011051876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022442A JP2011051876A (en) 2009-08-04 2010-02-03 Anhydrous gypsum containing fired material and solidification material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009181161 2009-08-04
JP2010022442A JP2011051876A (en) 2009-08-04 2010-02-03 Anhydrous gypsum containing fired material and solidification material

Publications (1)

Publication Number Publication Date
JP2011051876A true JP2011051876A (en) 2011-03-17

Family

ID=43941282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022442A Pending JP2011051876A (en) 2009-08-04 2010-02-03 Anhydrous gypsum containing fired material and solidification material

Country Status (1)

Country Link
JP (1) JP2011051876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111377A (en) * 2009-11-30 2011-06-09 Taiheiyo Cement Corp Solidifying material
JP2019059886A (en) * 2017-09-28 2019-04-18 太平洋セメント株式会社 Solidification material
JP2020105029A (en) * 2018-12-26 2020-07-09 太平洋セメント株式会社 Material for imparting quick hardening property

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154590A (en) * 2003-11-26 2005-06-16 Sumitomo Osaka Cement Co Ltd Dust-free solidification material and method for producing the same
JP2007051014A (en) * 2005-08-12 2007-03-01 Taiheiyo Material Kk Calcium sulfoaluminate-based clinker composition
JP2008174409A (en) * 2007-01-17 2008-07-31 Ube Ind Ltd Cement composition and cement-based solidifying material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154590A (en) * 2003-11-26 2005-06-16 Sumitomo Osaka Cement Co Ltd Dust-free solidification material and method for producing the same
JP2007051014A (en) * 2005-08-12 2007-03-01 Taiheiyo Material Kk Calcium sulfoaluminate-based clinker composition
JP2008174409A (en) * 2007-01-17 2008-07-31 Ube Ind Ltd Cement composition and cement-based solidifying material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111377A (en) * 2009-11-30 2011-06-09 Taiheiyo Cement Corp Solidifying material
JP2019059886A (en) * 2017-09-28 2019-04-18 太平洋セメント株式会社 Solidification material
JP2021183699A (en) * 2017-09-28 2021-12-02 太平洋セメント株式会社 Soil solidification method
JP2020105029A (en) * 2018-12-26 2020-07-09 太平洋セメント株式会社 Material for imparting quick hardening property
JP7278070B2 (en) 2018-12-26 2023-05-19 太平洋セメント株式会社 Rapid hardening material

Similar Documents

Publication Publication Date Title
JP3559274B2 (en) Cement admixture
Yan et al. Studies on the binder of fly ash-fluorgypsum-cement
JP6873305B1 (en) Fast-setting admixture and spray material
JP5856443B2 (en) Cement admixture and cement composition
JP2011111377A (en) Solidifying material
TWI545100B (en) Cement mix and cement composition
JP2007126294A (en) High-sulfate slag cement, high-early-strength slag cement, and method for manufacturing each of them
JP2009114011A (en) Cement additive and cement composition
JP2011051876A (en) Anhydrous gypsum containing fired material and solidification material
JP5122316B2 (en) Cement additive and cement composition
JP2007331976A (en) Cement admixture and cement composition
JP5515329B2 (en) Cement clinker, cement-based solidified material, method for solidifying soil, and method for producing cement clinker
JP2001122650A (en) Cement admixture and cement composition
JP4606632B2 (en) Cement admixture and cement composition
JP2001064053A (en) Cement admixture and cement composition
JPH1112006A (en) Cement admixture, cement composition and chemical prestressed concrete using the same
JP6837856B2 (en) Expandable admixture for exposed concrete and exposed concrete containing it
JP4606631B2 (en) Cement admixture and cement composition
JP2021017376A (en) Expandable composition for cement, and cement composition
JP7260998B2 (en) Expansive composition, cement composition and cement-concrete
JP2002068812A (en) Cement composition
JP2014185040A (en) Cement composition
JP4498555B2 (en) Cement admixture and cement composition
JP4108533B2 (en) Portland cement clinker and cement composition using the same
JP3818808B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701