JP4979365B2 - Concrete using concrete admixture - Google Patents

Concrete using concrete admixture Download PDF

Info

Publication number
JP4979365B2
JP4979365B2 JP2006337961A JP2006337961A JP4979365B2 JP 4979365 B2 JP4979365 B2 JP 4979365B2 JP 2006337961 A JP2006337961 A JP 2006337961A JP 2006337961 A JP2006337961 A JP 2006337961A JP 4979365 B2 JP4979365 B2 JP 4979365B2
Authority
JP
Japan
Prior art keywords
concrete
mass
shell
crushed
admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006337961A
Other languages
Japanese (ja)
Other versions
JP2007186409A (en
Inventor
泰秀 北条
一見 福田
祥弘 篠田
洋介 福井
政志 下倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2006337961A priority Critical patent/JP4979365B2/en
Publication of JP2007186409A publication Critical patent/JP2007186409A/en
Application granted granted Critical
Publication of JP4979365B2 publication Critical patent/JP4979365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明はコンクリート混和材に関し、詳しくは、コンクリートに多量に混和してもコンクリートの強度低下が少なく且つ高い流動性が得られるコンクリート混和材に関する。また、本発明はコンクリートに関し、詳しくは、良好な強度及び流動性が得られ、通常のコンクリートと同様に施工することができる貝殻粉砕物を含有するコンクリートに関する。   The present invention relates to a concrete admixture, and more particularly, to a concrete admixture in which even if a large amount is mixed with concrete, the strength of the concrete is small and high fluidity is obtained. In addition, the present invention relates to concrete, and more particularly, to concrete containing shell pulverized material that has good strength and fluidity and can be constructed in the same manner as ordinary concrete.

昨今、我が国における天然及び養殖貝類の水産加工場から排出される貝殻の量は年間100万tを超えている。貝殻の排出は一部の自治体内に偏っており、その自治体の多くでは貝殻処理が社会問題となっている。貝殻の処理法としては、粉砕もしくはそのままの状態での埋め立て処分が殆どである。しかし排出量と処理量のバランスが崩れている事から、年々累積され野積み状態になっている。そこで貝殻をより多く処理するために、コンクリートの材料の一部として貝殻又は貝殻粉砕物を用いることが提案されている(例えば特許文献1、特許文献2及び特許文献3参照)。   Recently, the amount of shells discharged from fish processing plants for natural and cultured shellfish in Japan exceeds 1 million tons per year. Shell discharge is biased in some municipalities, and shell processing is a social problem in many municipalities. Most shells are crushed or landfilled as they are. However, since the balance between the amount of emissions and the amount of processing is broken, it has been accumulated year by year. In order to treat more shells, it has been proposed to use shells or ground shells as part of the concrete material (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

しかし、貝殻の処理量を増やすためにコンクリート1m3当たりの貝殻粉砕物の使用量を増大させると、コンクリートの流動性が充分に得られず、硬化後のコンクリートの強度が貝殻粉砕物を全く含有しないコンクリートの強度に比べ著しく低下するという問題がある。このため、コンクリート1m3当たりの貝殻粉砕物の使用量を単に増大させたコンクリートは、使用方法や使用用途が限られてしまい、結果として、貝殻の処理量を増やせないという問題がある。
特開2002−241165号公報 特開2004−51461号公報 特開平11−228206号公報
However, increasing the amount of the shell ground product per concrete 1 m 3 in order to increase the throughput of the shells, the fluidity of the concrete can not be obtained sufficiently, completely free strength of concrete shells pulverized after curing There is a problem that the strength of the concrete is not significantly reduced. For this reason, the concrete which only increased the usage-amount of the shell pulverized material per 1 m < 3 > of concrete will have a problem that a usage method and a use application are limited, and as a result, the processing amount of a shell cannot be increased.
JP 2002-241165 A JP 2004-51461 A JP 11-228206 A

本発明は、上記問題を解決したものであり、コンクリート1m3当たりの貝殻粉砕物の使用量を増大させても、コンクリートの流動性が充分に得られ、硬化後のコンクリートの強度が貝殻粉砕物を全く含有しないコンクリートの強度に比べ著しく低下することのない、貝殻粉砕物を主成分とするコンクリート混和材を提供することを目的とする。また、本発明は、コンクリート1m3当たりの貝殻粉砕物の使用量を増大させても、流動性が充分に得られ、硬化後の強度が貝殻又は貝殻粉砕物を全く含有しないものの強度に比べ著しく低下することのないコンクリートを提供することを目的とする。 The present invention solves the above problem, and even if the amount of crushed shells per 1 m 3 of concrete is increased, sufficient fluidity of the concrete can be obtained, and the strength of the concrete after hardening is crushed shells. An object of the present invention is to provide a concrete admixture mainly composed of crushed shells, which does not significantly decrease the strength of concrete containing no slag. In addition, the present invention provides sufficient fluidity even when the amount of crushed shells per 1 m 3 of concrete is increased, and the strength after curing is significantly higher than the strength of those containing no shells or crushed shells. It aims at providing the concrete which does not fall.

上記目的を達成するために、本発明に係るコンクリートは、コンクリート1m 当たり、粗粒率が3.3〜5.0である貝殻粉砕物を主成分とするコンクリート混和材を200〜800kg、細骨材を300〜1100kg、粗骨材を300〜1000kg、普通ポルトランドセメントを200〜700kg、水を130〜230kg配合するものである。そして、上記貝殻粉砕物、そのふるいの公称呼び寸法10mmの通過率が80〜100質量%、5mmの通過率が50〜97質量%、2.5mmの通過率が30〜70質量%、1.2mmの通過率が19〜45質量%、0.6mmの通過率が10〜30質量%、0.3mmの通過率が5〜20質量%、0.15mmの通過率が5〜12質量%の粒度分布を有する In order to achieve the above object , the concrete according to the present invention comprises 200 to 800 kg of a concrete admixture mainly composed of crushed shells having a coarse particle ratio of 3.3 to 5.0 per 1 m 3 of concrete. 300 to 1100 kg of aggregate, 300 to 1000 kg of coarse aggregate, 200 to 700 kg of ordinary Portland cement, and 130 to 230 kg of water are blended. And the said shell crushed material is 80-100 mass%, the passage rate of the nominal nominal dimension 10 mm of the sieve is 50-97 mass%, the passage rate of 2.5 mm is 30-70 mass%, 1 .2 mm pass rate is 19 to 45% by mass, 0.6 mm pass rate is 10 to 30% by mass, 0.3 mm pass rate is 5 to 20% by mass, and 0.15 mm pass rate is 5 to 12% by mass. having a particle size distribution.

また、本発明に係るコンクリートは、上記のコンクリート混和材を含有することを特徴とするものである。コンクリートの配合比としては、水セメント比を50%以下とし、且つ以下の式(1)で求まる細粒率を40%以上にすることが好適である。

Figure 0004979365
Moreover, the concrete which concerns on this invention contains said concrete admixture, It is characterized by the above-mentioned. As the mixing ratio of concrete, it is preferable that the water cement ratio is 50% or less and the fine particle ratio obtained by the following formula (1) is 40% or more.
Figure 0004979365

本発明によれば、貝殻を上記所定の粒度に粉砕することで、コンクリート1m3当たりの貝殻粉砕物の使用量を増大させても、コンクリートの流動性が充分に得られ、硬化後のコンクリートの強度が貝殻粉砕物を全く含有しないコンクリートの強度に比べ著しく低下することのない、コンクリート混和材を得ることができる。また、本発明によれば、このコンクリート混和材を使用することで、コンクリート1m3当たりの貝殻粉砕物の使用量を増大させても、流動性が充分に得られ、硬化後の強度が貝殻粉砕物を全く含有しないものの強度に比べ著しく低下することのないコンクリートを得ることができる。本発明によれば、流動性に優れ、特殊な打設方法を用いなくても打設可能なコンクリートを得ることができる。 According to the present invention, by pulverizing the shell to the above predetermined particle size, even if the amount of crushed shell per 1 m 3 of concrete is increased, sufficient fluidity of the concrete can be obtained, and the concrete after hardening A concrete admixture can be obtained in which the strength does not significantly decrease compared to the strength of concrete that does not contain any crushed shells. In addition, according to the present invention, by using this concrete admixture, even if the amount of crushed shell per 1 m 3 of concrete is increased, sufficient fluidity is obtained, and the strength after curing is crushed by shell. It is possible to obtain a concrete that does not significantly decrease the strength of a material that does not contain any material. According to the present invention, it is possible to obtain concrete that is excellent in fluidity and can be placed without using a special placing method.

本発明のコンクリート混和材は粗粒率が3.3〜5.0である貝殻粉砕物を主成分とすることを特徴とするものである The concrete admixture of the present invention is characterized by comprising a crushed shell shell having a coarse particle ratio of 3.3 to 5.0 as a main component .

また「粗粒率」とは、JIS A 1102「骨材のふるい分け試験方法」に従い、ふるいの呼び寸法が80、40、20、10、5、2.5、1.2、0.6、0.3および0.15mmの各ふるいにとどまる質量百分率の和を100で除した値であり、貝殻粉砕物の粒度を示す1つの指標である。貝殻粉砕物の粗粒率が5.0を超えると、コンクリート1m3当たりの貝殻粉砕物の使用量が300kgを超える場合に、硬化後のコンクリートの強度が貝殻粉砕物を全く含有しないコンクリートの強度の80%を下回ってしまう。一方、貝殻粉砕物の粗粒率が3.3未満であると、コンクリート1m3当たりの貝殻粉砕物の使用量が300kgを超える場合に、コンクリートのスランプが小さく、コンクリートを打設するのが困難になる。貝殻粉砕物の粗粒率は3.3〜4.0がより好ましく、これにより硬化後のコンクリートの強度を、貝殻粉砕物を全く含有しないコンクリートの強度と同等レベルまたはそれ以上に向上することができ、且つコンクリートのスランプをより大きくすることができる。 In addition, the “rough grain ratio” means that the nominal size of the sieve is 80, 40, 20, 10, 5, 2.5, 1.2, 0.6, 0 according to JIS A 1102 “Aggregate screening test method”. This is a value obtained by dividing the sum of the mass percentages remaining in each of the sieves of .3 and 0.15 mm by 100, and is an index indicating the particle size of the shell crushed material. When the coarse particle ratio of the shell crushed material exceeds 5.0, the strength of the concrete containing no shell pulverized material at all when the amount of shell crushed material used per 1 m 3 of concrete exceeds 300 kg. Less than 80%. On the other hand, when the coarse particle ratio of the crushed shell is less than 3.3, when the amount of crushed shell per 1 m 3 of concrete exceeds 300 kg, the concrete slump is small and it is difficult to cast concrete. become. The coarse grain ratio of the crushed shell is more preferably 3.3 to 4.0, which can improve the strength of the concrete after hardening to the same level or higher than the strength of the concrete containing no crushed shell. And the concrete slump can be made larger.

本発明のコンクリート混和材の主成分である貝殻粉砕物は、ふるいの公称呼び寸法10mmの通過率が80〜100質量%、5mmの通過率が50〜97質量%、2.5mmの通過率が30〜70質量%、1.2mmの通過率が20〜45質量%、0.6mmの通過率が10〜30質量%、0.3mmの通過率が5〜20質量%、0.15mmの通過率が5〜12質量%の粒度分布を有することが、コンクリート1m3当たりの貝殻粉砕物の使用量を300kg〜500kgとしてもコンクリートのスランプを10cm以上とすることができるので好ましい。特にふるいの公称呼び寸法10mmの通過率が95〜100質量%、5mmの通過率が80〜97質量%、2.5mmの通過率が50〜70質量%、1.2mmの通過率が30〜45質量%、0.6mmの通過率が20〜30質量%、0.3mの通過率が10〜20質量%、0.15mmの通過率が5〜12質量%の粒度分布を有することが、コンクリートの強度を高くすることができるのでより好ましい。 The crushed shell, which is the main component of the concrete admixture of the present invention, has a screen having a nominal nominal size of 10 mm, a pass rate of 80 to 100% by mass, a 5 mm pass rate of 50 to 97% by mass, and a pass rate of 2.5 mm. 30-70% by mass, 1.2 mm pass rate 20-45% by mass, 0.6 mm pass rate 10-30% by mass, 0.3 mm pass rate 5-20% by mass, 0.15 mm pass It is preferable to have a particle size distribution with a rate of 5 to 12% by mass, since the slump of concrete can be 10 cm or more even if the amount of crushed shell per 1 m 3 of concrete is 300 kg to 500 kg. In particular, the screen has a nominal nominal size of 10 mm with a pass rate of 95 to 100% by mass, a 5 mm pass rate of 80 to 97% by mass, a 2.5 mm pass rate of 50 to 70% by mass, and a 1.2 mm pass rate of 30 to 30%. It has a particle size distribution of 45% by mass, a 0.6 mm pass rate of 20-30% by weight, a 0.3m pass rate of 10-20% by weight, and a 0.15 mm pass rate of 5-12% by weight, It is more preferable because the strength of the concrete can be increased.

本発明に用いる貝殻の種類は特に限定されないが、粉砕を行い易いことから二枚貝の貝殻が好ましく、入手のし易さから帆立貝の貝殻、アコヤ貝の貝殻、牡蠣の貝殻、アサリの貝殻、赤貝の貝殻、ハマグリの貝殻が好ましい。   The type of the shell used in the present invention is not particularly limited, but a bivalve shell is preferable because it can be easily crushed. Shells and clam shells are preferred.

また、貝殻を粉砕する方法及び装置は特に限定されず、ジョークラッシャー、ボールミル、ロッドミル等の各種の粉砕装置を用いることができ、二種以上の粉砕装置を組み合わせて用いることもできる。また、貝殻を粉砕後、ふるい分けを行って、所定の寸法以上の粒径を有する貝殻粉砕物を更に粉砕し、所定の粗粒率及び粒度分布にすることができる。また、粉砕により得られた二種以上の粗粒率及び粒度分布の貝殻粉砕物を合わせて、所定の範囲内の粒度としても良い。 Moreover, the method and apparatus which grind | pulverizes a shell are not specifically limited, Various crushers, such as a jaw crusher, a ball mill, a rod mill, can be used, and it can also be used in combination of 2 or more types of grinders. In addition, after pulverizing the shell, it can be sieved to further pulverize the shell pulverized product having a particle size equal to or larger than a predetermined size to obtain a predetermined coarse particle ratio and particle size distribution . Moreover, it is good also as a particle size within a predetermined range combining two or more kinds of coarse particles ratio and particle size distribution obtained by pulverization.

本発明のコンクリート混和材には、貝殻粉砕物以外に、本発明の効果を損なわない範囲でモルタルやコンクリートに使用できる混和材料を添加することができる。この混和材料としては、例えば高性能減水剤、高性能AE減水剤、AE減水剤、流動化剤、減水剤を含むセメント分散剤、防水材(剤)、急結剤(材)、急硬剤(材)、顔料、撥水剤、発泡剤、起泡剤、消泡剤、遅延剤、硬化促進剤、収縮低減剤、膨張材、増粘剤、水和熱抑制剤、保水剤、防錆剤、セメント用ポリマー、石粉、粘土鉱物粉末、スラグ粉末、フライアッシュ、繊維、シリカフューム、フィラー等が挙げられ、これらの一種又は二種以上を本発明による効果を阻害しない範囲で使用することができる。特に、本発明のコンクリート混和材にセメント分散剤を含有すると、コンクリートの単位水量を小さくすることができるので、本発明のコンクリート混和材を用いたコンクリートの適用範囲が広がり好ましい。   To the concrete admixture of the present invention, an admixture that can be used for mortar and concrete can be added in addition to the crushed shell, as long as the effects of the present invention are not impaired. Examples of the admixture include high-performance water-reducing agent, high-performance AE water-reducing agent, AE water-reducing agent, fluidizing agent, cement dispersant containing water-reducing agent, waterproofing agent (agent), quick setting agent (material), and rapid hardening agent. (Material), pigment, water repellent, foaming agent, foaming agent, antifoaming agent, retarder, curing accelerator, shrinkage reducing agent, expansion material, thickener, hydration heat inhibitor, water retention agent, rust prevention Agent, polymer for cement, stone powder, clay mineral powder, slag powder, fly ash, fiber, silica fume, filler and the like, and one or two or more of these can be used within a range not inhibiting the effect of the present invention. . In particular, when a cement dispersant is contained in the concrete admixture of the present invention, the unit water amount of the concrete can be reduced, so that the range of application of the concrete using the concrete admixture of the present invention is preferred.

上記の混和材料は粉末状のものが好ましい。粉末状の混和材料であれば、コンクリートに混和する前に予め所定の割合で貝殻粉砕物と均一に混合しておき、袋やコンテナ等の容器に入れて搬送することができる。なお、本発明においてコンクリートとは、通常の粗骨材を含有するコンクリートのほかに、粗骨材を含有しないモルタルも含む意味である。   The admixture is preferably in powder form. If it is a powdery admixture, it can be uniformly mixed with a crushed shell at a predetermined ratio in advance before being mixed with concrete, and can be carried in a container such as a bag or container. In the present invention, the term “concrete” is meant to include mortar that does not contain coarse aggregate in addition to normal coarse aggregate-containing concrete.

次に、本発明のコンクリートについて説明する。本発明のコンクリートは、上記コンクリート混和材を混和したことを特徴とするものである。本発明のコンクリートには、上記コンクリート混和材以外に、セメント、骨材及び水が含まれ、更に、本発明の効果を損なわない範囲でモルタルやコンクリートに使用できる混和材料を添加することができる。この混和材料としては、例えば高性能減水剤、高性能AE減水剤、AE減水剤、流動化剤、減水剤を含むセメント分散剤、防水材(剤)、急結剤(材)、急硬剤(材)、顔料、撥水剤、発泡剤、起泡剤、消泡剤、遅延剤、硬化促進剤、収縮低減剤、増粘剤、水和熱抑制剤、膨張材、保水剤、防錆剤、水中不分離性混和剤、セメント用ポリマー、石粉、粘土鉱物粉末、スラグ粉末、フライアッシュ、繊維、シリカフューム、フィラー等が挙げられ、これらの一種又は二種以上を本発明による効果を阻害しない範囲で使用することができる。   Next, the concrete of the present invention will be described. The concrete of the present invention is characterized in that the above concrete admixture is mixed. In addition to the concrete admixture, the concrete of the present invention contains cement, aggregate, and water, and further, an admixture that can be used for mortar and concrete can be added as long as the effects of the present invention are not impaired. Examples of the admixture include high-performance water-reducing agent, high-performance AE water-reducing agent, AE water-reducing agent, fluidizing agent, cement dispersant containing water-reducing agent, waterproofing agent (agent), quick setting agent (material), and rapid hardening agent. (Material), pigment, water repellent, foaming agent, foaming agent, antifoaming agent, retarder, curing accelerator, shrinkage reducing agent, thickener, hydration heat inhibitor, expansion material, water retention agent, rust prevention Agents, water-inseparable admixture, polymer for cement, stone powder, clay mineral powder, slag powder, fly ash, fiber, silica fume, filler, etc., and these one or more types do not inhibit the effect of the present invention Can be used in a range.

本発明で使用するセメントは、水和反応により硬化する水硬性セメントであれば何れのものでも良く、例えば普通、早強、超早強、低熱、中庸熱、白色等の各種ポルトランドセメント、エコセメント、並びにこれらポルトランドセメントまたはエコセメントにフライアッシュ、高炉スラグ、シリカヒューム等を混合した各種混合セメント、カラーセメント、アルミナセメント、カルシウムアルミネート、カルシウムナトリウムアルミネート、カルシウムサルホアルミネート等の急硬成分を主体とする急硬性セメント、超速硬セメント、無水石膏、半水石膏等が例示でき、これらの一種又は二種以上を使用することができる。   The cement used in the present invention may be any hydraulic cement that hardens by a hydration reaction, for example, various ordinary Portland cements such as normal strength, early strength, very early strength, low heat, moderate heat, and white, ecocement. In addition, various hardened components such as fly ash, blast furnace slag, silica fume, etc. mixed with these Portland cement or Eco cement, color cement, alumina cement, calcium aluminate, calcium sodium aluminate, calcium sulfoaluminate, etc. Examples thereof include rapid hardening cement, super fast setting cement, anhydrous gypsum, hemihydrate gypsum, and the like, and one or more of these can be used.

本発明で使用する骨材としては、例えば、川砂、陸砂、海砂、砕砂、珪砂、川砂利、陸砂利、砕石及び人工骨材等が挙げられ、これらの一種又は二種以上を使用することができる。骨材は、10mmのふるいを全て通過し、5mmのふるいを85質量%以上通過する細骨材や、5mmのふるいに85質量%以上とどまる粗骨材を含む。   Examples of the aggregate used in the present invention include river sand, land sand, sea sand, crushed sand, quartz sand, river gravel, land gravel, crushed stone, and artificial aggregate, and one or more of these are used. be able to. Aggregates include fine aggregates that pass through all 10 mm screens and pass over 85% by mass over 5 mm sieves, and coarse aggregates that remain over 85% by mass on 5 mm sieves.

本発明のコンクリートの配合比としては、例えば、コンクリート1m3当たり、上記コンクリート混和材を200〜800kg、細骨材を300〜1100kg、粗骨材を300〜1000kg、セメントを200〜700kg、水を130〜230kgとする上記コンクリート混和材を300〜600kg、細骨材を300〜800kg、粗骨材を500〜1000kg、セメントを250〜500kg、水を150〜200kgとすることがより好ましく、上記コンクリート混和材を300〜500kg、細骨材を300〜600kg、粗骨材を700〜1000kg、セメントを290〜400kg、水を160〜180kgとすることが更により好ましい。このとき、上記コンクリート混和材、細骨材および粗骨材の合計は1700〜2000kgとすることが好ましい。 As the mixing ratio of the concrete of the present invention, for example, the concrete admixture is 200 to 800 kg, the fine aggregate is 300 to 1100 kg, the coarse aggregate is 300 to 1000 kg, the cement is 200 to 700 kg, water per 1 m 3 of concrete. 130-230 kg . More preferably, the concrete admixture is 300 to 600 kg, the fine aggregate is 300 to 800 kg, the coarse aggregate is 500 to 1000 kg, the cement is 250 to 500 kg, and the water is 150 to 200 kg. It is even more preferable to set it to ˜500 kg, fine aggregate 300 to 600 kg, coarse aggregate 700 to 1000 kg, cement 290 to 400 kg, and water 160 to 180 kg. At this time, the total of the concrete admixture, fine aggregate and coarse aggregate is preferably 1700 to 2000 kg.

本発明のコンクリートの配合比としては、特に、水セメント比を50%以下とし、且つ次式(1)で求まる細粒率を40%以上とすることが好ましい。この条件にすることで、材齢28日の圧縮強度が40N/mm2以上となるコンクリートを得ることができる。なお、式(1)中の「粒径5mm以下の貝殻粉砕物」とは、JIS A 1102「骨材のふるい分け試験方法」に従い貝殻粉砕物を試料としてふるい分け試験を行い、公称呼び寸法5mmのふるいを通過する貝殻粉砕物のことをいう。 As the blending ratio of the concrete of the present invention, it is particularly preferable that the water cement ratio is 50% or less and the fine particle ratio obtained by the following formula (1) is 40% or more. By setting it as this condition, a concrete having a compressive strength of 28 days of age of 40 N / mm 2 or more can be obtained. The “crushed shell with a particle size of 5 mm or less” in the formula (1) is a sieve having a nominal nominal size of 5 mm by conducting a screening test using the ground shell as a sample in accordance with JIS A 1102 “Aggregate screening test method”. It means the crushed shell that passes through.

Figure 0004979365
Figure 0004979365

本発明のコンクリートを製造する方法としては、特に限定されないが、例えば、重力式ミキサ、傾胴式ミキサ、2軸強制練ミキサ又は強制パン型ミキサ等の強制練りミキサ、連続ミキサ等のミキサを用いて、上記の材料を混練して製造することができる。好ましくは、バッチングプラントで、上記のコンクリート混和材、セメント、骨材及び水、並びに必要により混和する混和材料を、計量設備で計量した後にミキサ内に投入して練り混ぜる。なお、上記のコンクリート混和材及び必要により混和する混和材料を、計量した状態で袋やコンテナ等の容器に入れておき、他のコンクリートの材料を練り混ぜるとき、練り混ぜ前、或いは練り混ぜ後に、必要数量をミキサ内に投入してさらに練り混ぜることも好ましい。   The method for producing the concrete of the present invention is not particularly limited. For example, a forced kneading mixer such as a gravitational mixer, a tilting barrel mixer, a two-axis forced kneading mixer or a forced pan type mixer, or a mixer such as a continuous mixer is used. The above materials can be kneaded and manufactured. Preferably, in the batching plant, the above-mentioned concrete admixture, cement, aggregate and water and, if necessary, the admixture to be mixed are weighed in a measuring facility and then put into a mixer and mixed. In addition, when the above concrete admixture and the admixture to be mixed if necessary are put in a container such as a bag or a container in a measured state, when mixing other concrete materials, before kneading or after kneading, It is also preferable to add the necessary quantity into the mixer and further knead.

混練後の本発明のコンクリートは、好ましくはスランプが8cm以上、より好ましくは10〜26cm、さらに好ましくは10〜21cmである。よって、本発明のコンクリートは、トラックアジテータ、ダンプトラック、ホッパ、ベルトコンベア等による運搬、又はコンクリートポンプやコンクリートプレーサによる圧送も可能である。また、本発明のコンクリートは、流動性が高いので、加圧締固めを行わずとも、木槌で叩くことによる振動、内部振動機又は型枠振動機等により、容易に且つ充分締固めることができる。材料の配合によっては、振動を与えずとも充分締固めることができる場合もある。さらに、本発明のコンクリートは、含有する貝殻粉砕物が所定の粗粒率及び粒度分布を有することから、貝殻粉砕物の含有量が増大しても、コンクリート表面を仕上げることができる。このように、本発明のコンクリートは、貝殻粉砕物を含有しない通常の生コンクリートと同様の強度や流動性等の性能を有しているので、運搬、打込み、締固め、打継ぎ、表面仕上げ、養生等、通常の生コンクリートと同様に施工することができる。 The concrete of the present invention after kneading preferably has a slump of 8 cm or more, more preferably 10 to 26 cm, and still more preferably 10 to 21 cm. Therefore, the concrete of the present invention can be transported by a truck agitator, a dump truck, a hopper, a belt conveyor or the like, or can be pumped by a concrete pump or a concrete placer. Further, since the concrete of the present invention has high fluidity, it can be easily and sufficiently compacted by vibration caused by striking with a wooden mallet, an internal vibrator or a formwork vibrator without performing pressure compaction. it can. Depending on the composition of the material, there is a case where it can be sufficiently compacted without giving vibration. Furthermore, the concrete of the present invention can finish the concrete surface even if the content of the crushed shell is increased because the crushed shell is contained in a predetermined coarse particle ratio and particle size distribution . Thus, the concrete of the present invention has the same strength and fluidity performance as ordinary raw concrete containing no shell pulverized material, so it is transported, driven, compacted, jointed, surface finished, It can be constructed in the same way as normal ready-mixed concrete such as curing.

本発明のコンクリートは、一般的な土木構造物や建築構造物のコンクリート部材に用いることができるが、材料の一部に貝殻粉砕物を用いているので、魚礁、防波堤、消波ブロック等の海洋構造物に用いることが好ましい。また、本発明のコンクリートは、使用材料や配合を調整することで、舗装コンクリート、水中コンクリート、水中不分離性コンクリート、流動化コンクリート、高流動コンクリート等の各種コンクリートとして使用することができる。   The concrete of the present invention can be used for a concrete member of a general civil engineering structure or a building structure. However, since a shell pulverized product is used as a part of the material, the ocean such as a fish reef, a breakwater, a wave-dissipating block, etc. It is preferable to use it for a structure. Moreover, the concrete of this invention can be used as various concretes, such as pavement concrete, underwater concrete, underwater non-separable concrete, fluidized concrete, high fluidity concrete, by adjusting a use material and a mixing | blending.

以下、本発明の実施例を比較例と共に示す。
[コンクリート混和材の製造]
北海道二海郡八雲町から発生した帆立貝の貝殻(密度2.63g/cm3)を、粉砕あるいは粉砕後ふるい分けにより粒度調整することで、貝殻粉砕物であるコンクリート混和材A〜Fを作製した。JIS A 1102「骨材のふるい分け試験方法」に準じてこれらの貝殻粉砕物のふるい分け試験を行い、各ふるいの通過率及び粗粒率を求めた。コンクリート混和材A〜Gの粒度分布及び粗粒率を表1に、粒度分布及び粗粒率を図1に示す。
Examples of the present invention are shown below together with comparative examples.
[Manufacture of concrete admixtures]
Concrete admixtures A to F, which are crushed shells, were prepared by adjusting the particle size of scallop shells (density 2.63 g / cm 3 ) generated from Yakumo-cho, Nikai-gun, Hokkaido, by pulverization or sieving and sieving. According to JIS A 1102 “Aggregate Screening Test Method”, a screening test of these crushed shells was conducted , and the passing rate and coarse particle rate of each sieve were determined. The particle size distribution of the concrete admixture A-G, and the fineness modulus in Table 1 shows the particle size distribution and fineness modulus in FIG.

Figure 0004979365
Figure 0004979365

[コンクリートの製造]
これらのコンクリート混和材A〜Gにセメント、細骨材、粗骨材、セメント分散剤及び水を、公称55リットルの強制練りコンクリートミキサを用いて、20℃の恒温室内で練り混ぜ、コンクリート試料1〜29を作製した。使用材料は、以下に示すものを用いた。またコンクリート試料1〜29の各材料の配合比は、コンクリート1m3当たりの各材料の使用量(単位量)を示す表2の配合1〜14のいずれかとした。
[Manufacture of concrete]
Cement, fine aggregate, coarse aggregate, cement dispersant and water are mixed with these concrete admixtures A to G in a constant temperature room at 20 ° C. using a concrete 55 liter forced mixing concrete mixer, and concrete sample 1 -29 were made. The following materials were used. Moreover, the compounding ratio of each material of the concrete samples 1 to 29 was any one of the compounds 1 to 14 in Table 2 showing the amount of use (unit amount) of each material per 1 m 3 of concrete.

<使用材料>
・セメント分散剤:ポリカルボン酸系高性能減水剤(商品名「コアフローNF−100」、太平洋セメント社製)。
・セメント:普通ポルトランドセメント(太平洋セメント社製)。
・粗骨材:茨城県桜川市産砕石(20〜5mm)(表乾密度2.65g/cm3)。
・細骨材:静岡県御前崎市産陸砂(表乾密度2.60g/cm3)。
・水:水道水。
<Materials used>
Cement dispersant: polycarboxylic acid-based high-performance water reducing agent (trade name “Core Flow NF-100”, manufactured by Taiheiyo Cement).
Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement).
-Coarse aggregate: Crushed stone from Sakuragawa City, Ibaraki Prefecture (20-5 mm) (surface dry density 2.65 g / cm 3 ).
-Fine aggregate: land sand from Omaezaki City, Shizuoka Prefecture (surface dry density 2.60 g / cm 3 ).
・ Water: Tap water.

Figure 0004979365
Figure 0004979365

上記により作製したコンクリート試料1〜29について、以下の試験を行った。試験の結果を表3〜表7に示す。なお、各表中の「細粒率」は、上記式(1)で求まる細粒率である。
<スランプ試験>
JIS A 1101「コンクリートのスランプ試験方法」に従いコンクリートのスランプを測定した。
The following tests were performed on the concrete samples 1 to 29 produced as described above. Tables 3 to 7 show the results of the test. The “fine grain ratio” in each table is the fine grain ratio determined by the above formula (1).
<Slump test>
Concrete slump was measured according to JIS A 1101 “Concrete slump test method”.

<圧縮強度試験>
JIS A 1108「コンクリートの圧縮強度試験方法」に従い、直径10cm、高さ20cmの供試体を作製し、材齢7日及び材齢28日におけるコンクリートの圧縮強度を測定した。このとき、供試体の養生温度は20℃とした。また、供試体作製時の金鏝でコンクリート表面を仕上げるときに、貝殻粉砕物が鏝に引きずられた跡が残り、表面を平らに仕上げることが困難であるか否か、即ち鏝仕上げ性も合わせて確認した。
<Compressive strength test>
According to JIS A 1108 “Concrete compressive strength test method”, specimens having a diameter of 10 cm and a height of 20 cm were prepared, and the compressive strength of the concrete at a material age of 7 days and a material age of 28 days was measured. At this time, the curing temperature of the specimen was 20 ° C. In addition, when finishing the concrete surface with a metal hammer when preparing the specimen, the traces of the crushed shells are dragged by the fence, and it is difficult to finish the surface flatly, that is, the finishing ability is also adjusted. Confirmed.

Figure 0004979365
*1:鏝仕上げでの貝殻の引きずり跡の有無。
*2:各材齢での貝殻粉砕物を含有しないコンクリート(試料4)の圧縮強度に対する圧縮強度の比。
Figure 0004979365
* 1: The presence or absence of seashell drag traces in the sea bream finish.
* 2: Ratio of compressive strength to compressive strength of concrete (sample 4) that does not contain shell crushed material at each age.

Figure 0004979365
*3:各材齢での貝殻粉砕物を含有しないコンクリート(試料13)の圧縮強度に対する圧縮強度の比。
Figure 0004979365
* 3: Ratio of compressive strength to compressive strength of concrete (sample 13) that does not contain shell pulverized material at each age.

Figure 0004979365
Figure 0004979365

Figure 0004979365
Figure 0004979365

Figure 0004979365
*4:各材齢での貝殻粉砕物を含有しないコンクリート(試料28)の圧縮強度に対する圧縮強度の比。
Figure 0004979365
* 4: Ratio of compressive strength to compressive strength of concrete (sample 28) that does not contain shell crushed material at each age.

本発明のコンクリート混和材B〜E又はGの何れかを含有したコンクリートは、何れもコンクリート1m3当たりの貝殻粉砕物の使用量が300kgを超え500kgとなっても、貝殻粉砕物を全く含有しないコンクリートの圧縮強度に対する圧縮強度の比が0.8を超え、且つスランプが10cm以上と、コンクリートの流動性が充分得られ、硬化後のコンクリートの強度が貝殻粉砕物を全く含有しないコンクリートの強度に比べ著しく低下することはなかった。特に粗粒率が3.3〜4.0となるように粉砕した貝殻粉砕物を主成分とするコンクリート混和材B及びCは、コンクリート1m3当たりの貝殻粉砕物の使用量が500kgとなっても、貝殻粉砕物を全く含有しないコンクリートの圧縮強度に対する圧縮強度の比が0.9を超え、且つスランプが10cm以上であった。また、本発明のコンクリート混和材B〜E又はGの何れかを含有したコンクリートは、何れも鏝仕上げでの貝殻の引きずり跡がつかず、良好な鏝仕上げ性を示した。更に、本発明のコンクリート混和材B〜E又はGの何れかを含有し、水セメント比が50%以下で且つ上記式(1)で求まる細粒率が40%以上であったコンクリートは、材齢28日の圧縮強度が40N/mm2以上と、高い強度を示した。 The concrete containing any of the concrete admixtures B to E or G of the present invention does not contain any crushed shells even if the amount of crushed shells per 1 m 3 of concrete exceeds 300 kg to 500 kg. When the ratio of the compressive strength to the compressive strength of the concrete exceeds 0.8 and the slump is 10 cm or more, the fluidity of the concrete is sufficiently obtained, and the strength of the concrete after hardening is the strength of the concrete containing no shell crushed material at all. Compared with it, there was no significant decrease. In particular , the concrete admixtures B and C mainly composed of crushed shells pulverized so that the coarse particle ratio is 3.3 to 4.0 use 500 kg of crushed shells per 1 m 3 of concrete. However, the ratio of the compressive strength to the compressive strength of the concrete containing no crushed shell material was more than 0.9, and the slump was 10 cm or more. In addition, the concrete containing any of the concrete admixtures B to E or G of the present invention did not show any shell drag marks in the cocoon finish, and showed a good cocoon finish. Furthermore, the concrete containing any of the concrete admixtures B to E or G of the present invention, having a water-cement ratio of 50% or less and a fine particle ratio determined by the above formula (1) of 40% or more is a material. The compressive strength at the age of 28 days was 40 N / mm 2 or higher, indicating a high strength.

本発明のコンクリート混和材B〜E又はGの何れかを含有したコンクリートは、何れも圧縮強度が高く且つ優れた流動性が得られることから、貝殻粉砕物を含有しない一般的なコンクリートと同様な性状を有する。よって、特殊な使用方法を用いずとも、貝殻粉砕物を含有しない一般的なコンクリートと同様な使用個所に広く用いることができる。このため、貝殻粉砕物の使用量を大幅に増大させることができる。   Since the concrete containing any one of the concrete admixtures B to E or G of the present invention has high compressive strength and excellent fluidity, it is the same as general concrete not containing crushed shells. Has properties. Therefore, even if it does not use a special usage method, it can be widely used for the same use place as the general concrete which does not contain a crushed shell. For this reason, the usage-amount of a crushed shell can be increased significantly.

コンクリート混和材A〜Gの各ふるいにおける通過率(粒度分布)を示すグラフである。It is a graph which shows the passage rate (particle size distribution) in each sieve of concrete admixture AG.

Claims (2)

コンクリート1m当たり粗粒率が3.3〜5.0である貝殻粉砕物を主成分とするコンクリート混和材を200〜800kg、細骨材を300〜1100kg、粗骨材を300〜1000kg、普通ポルトランドセメントを200〜700kg、水を130〜230kg配合し、上記貝殻粉砕物は、そのふるいの公称呼び寸法10mmの通過率が80〜100質量%、5mmの通過率が50〜97質量%、2.5mmの通過率が30〜70質量%、1.2mmの通過率が19〜45質量%、0.6mmの通過率が10〜30質量%、0.3mmの通過率が5〜20質量%、0.15mmの通過率が5〜12質量%の粒度分布を有するコンクリート。 200 to 800 kg of a concrete admixture mainly composed of crushed shells having a coarse particle ratio of 3.3 to 5.0 per 1 m 3 of concrete, 300 to 1100 kg of fine aggregate, 300 to 1000 kg of coarse aggregate, 200 to 700 kg of ordinary Portland cement and 130 to 230 kg of water are blended, and the shell pulverized product has a nominal nominal size of 10 mm, a pass rate of 80 to 100% by mass, and a 5 mm pass rate of 50 to 97% by mass, The 2.5 mm passage rate is 30 to 70 mass%, the 1.2 mm passage rate is 19 to 45 mass%, the 0.6 mm passage rate is 10 to 30 mass%, and the 0.3 mm passage rate is 5 to 20 mass%. %, A concrete having a particle size distribution with a passage rate of 0.15 mm of 5 to 12% by mass . 水セメント比が50%以下であり、且つ次式(1)で求まる細粒率が40%以上である請求項に記載のコンクリート。
Figure 0004979365
The concrete according to claim 1 , wherein the water-cement ratio is 50% or less, and the fine particle ratio obtained by the following formula (1) is 40% or more.
Figure 0004979365
JP2006337961A 2005-12-16 2006-12-15 Concrete using concrete admixture Active JP4979365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337961A JP4979365B2 (en) 2005-12-16 2006-12-15 Concrete using concrete admixture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005362914 2005-12-16
JP2005362914 2005-12-16
JP2006337961A JP4979365B2 (en) 2005-12-16 2006-12-15 Concrete using concrete admixture

Publications (2)

Publication Number Publication Date
JP2007186409A JP2007186409A (en) 2007-07-26
JP4979365B2 true JP4979365B2 (en) 2012-07-18

Family

ID=38341839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337961A Active JP4979365B2 (en) 2005-12-16 2006-12-15 Concrete using concrete admixture

Country Status (1)

Country Link
JP (1) JP4979365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161385A (en) * 2007-12-28 2009-07-23 Taiheiyo Materials Corp Crushed shell material for concrete admixture and concrete containing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051407A (en) * 2002-07-18 2004-02-19 Sugawara Kaiyo Kaihatsu Kogyo:Kk Shell concrete and its producing process
JP4847056B2 (en) * 2005-07-08 2011-12-28 日本国土開発株式会社 Concrete containing crushed shell

Also Published As

Publication number Publication date
JP2007186409A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
Singh et al. Cementitious binder from fly ash and other industrial wastes
Belaidi et al. Effect of natural pozzolana and marble powder on the properties of self-compacting concrete
US20100006010A1 (en) Matrix for masonry elements and method of manufacture thereof
Al-Jabri et al. Use of copper slag and cement by-pass dust as cementitious materials
Vivek et al. Effect of nano-silica in high performance concrete
Sharma et al. Sulfate resistance of self compacting concrete incorporating copper slag as fine aggregates with mineral admixtures
Nascimento et al. Soil-cement brick with granite cutting residue reuse
Sharma et al. Fresh and mechanical properties of self compacting concrete containing copper slag as fine aggregates
Huseien et al. Effects of high volume ceramic binders on flexural strength of self-compacting geopolymer concrete
WO2009142029A1 (en) Heavy aggregates and heavy concrete
Xi et al. Fresh and hardened properties of cement mortars using marble sludge fines and cement sludge fines
Hansen Recycled concrete aggregate and fly ash produce concrete without portland cement
JPH0680456A (en) Fluid hydraulic composition
JP6133596B2 (en) Expanded material and expanded concrete
Kaya et al. Investigation of pozzolanic activity of recycled concrete powder: Effect of cement fineness, grain size distribution and water/cement ratio
Valdez et al. Use of waste from the marble industry as filler for the production of self-compacting concretes
JP4979365B2 (en) Concrete using concrete admixture
Abubakr et al. Evaluation of ordinary concrete having ceramic waste powder as partial replacement of cement
JP2009161385A (en) Crushed shell material for concrete admixture and concrete containing the same
Obilade Strength of ternary blended cement concrete containing rice husk ash and saw dust ash
Safi et al. Recycling of foundry sand wastes in self-compacting mortars: Use as fine aggregates
RU2631741C1 (en) Concrete mixture
Anisha et al. An experimental investigation on effect of fly ash on egg shell concrete
Belachia et al. Valorization of marble waste in the manufacture of concrete
JP2015163589A (en) high-strength mortar composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4979365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250