JP4847056B2 - Concrete containing crushed shell - Google Patents

Concrete containing crushed shell Download PDF

Info

Publication number
JP4847056B2
JP4847056B2 JP2005200219A JP2005200219A JP4847056B2 JP 4847056 B2 JP4847056 B2 JP 4847056B2 JP 2005200219 A JP2005200219 A JP 2005200219A JP 2005200219 A JP2005200219 A JP 2005200219A JP 4847056 B2 JP4847056 B2 JP 4847056B2
Authority
JP
Japan
Prior art keywords
concrete
shell
crushed
particle size
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005200219A
Other languages
Japanese (ja)
Other versions
JP2007015894A (en
Inventor
晴也 佐原
匡 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JDC Corp
Original Assignee
JDC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDC Corp filed Critical JDC Corp
Priority to JP2005200219A priority Critical patent/JP4847056B2/en
Publication of JP2007015894A publication Critical patent/JP2007015894A/en
Application granted granted Critical
Publication of JP4847056B2 publication Critical patent/JP4847056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、細骨材として貝殻粉砕物を含むコンクリート、より詳しくは、特定の粒度分布を有する貝殻粉砕物および高炉セメントを含むコンクリートに関するものである。   The present invention relates to concrete containing crushed shells as fine aggregates, and more particularly to concrete containing crushed shells having a specific particle size distribution and blast furnace cement.

漁業によって捕獲または採取される牡蠣や帆立貝等の貝類からは大量の貝殻が水産廃棄物として発生し、その多くはリサイクル、すなわち再資源化することができずに、動植物の残滓として埋め立て処分されたり、あるいはその適当な処分が見当たらないために野積みの状態で海岸に放置されてきた。   A large amount of seashells are generated as marine waste from shells such as oysters and scallops that are captured or collected by the fishery, and many of them are recycled, that is, cannot be recycled, and are landfilled as animal and plant residue. Or they have been left unattended on the beach because of no appropriate disposal.

しかし、近年では、埋め立て処分場として使える用地が年々少なくなっていく傾向にあることや貝殻が野積みのまま放置される場合に発生する悪臭等の環境問題のために、廃棄される貝殻の再資源化が益々注目されるようになってきた。   However, in recent years, land that can be used as landfill sites tends to decrease year by year, and due to environmental problems such as bad odors that occur when shells are left unattended, recycling of discarded shells is difficult. Recycling has gained more and more attention.

一方、コンクリート用の骨材としては、細骨材として川砂、山砂または海砂等の砂や砕砂が、そして粗骨材として川砂利または山砂利等の砂利や砕石が従来一般に使用されてきたが、近年では、これらの天然骨材の枯渇の問題と地球環境保全の観点から、種々の産業副産物や産業廃棄物を骨材の代替品として活用することが検討されている。   On the other hand, as aggregates for concrete, sand and crushed sand such as river sand, mountain sand or sea sand as fine aggregate, and gravel and crushed stone such as river gravel or mountain gravel have been generally used as coarse aggregate. However, in recent years, in view of the problem of depletion of these natural aggregates and the preservation of the global environment, the use of various industrial byproducts and industrial wastes as substitutes for aggregates has been studied.

以上のような貝殻廃棄物に対する再資源化の要求と、産業副産物や産業廃棄物に対するコンクリート用骨材としての活用との流れから、この貝殻廃棄物をコンクリート用骨材として利用するための研究開発も進められるようになってきた。   R & D to use this shell waste as a concrete aggregate based on the flow of the above-mentioned demand for recycling shell waste and the utilization of industrial by-products and industrial waste as concrete aggregate Has come to be advanced.

このような研究としては、例えば、貝殻を数十mmの大きさに粗粉砕し、これを粗骨材の代わりに使用してポーラスコンクリートを製造する研究や、砂状の微細な粒子になるまで微粉砕した貝殻をコンクリートの細骨材の一部として用いる研究等がある。   Such research includes, for example, research on coarsely pulverizing shells to a size of several tens of millimeters, and using this in place of coarse aggregates to produce porous concrete, or until sandy fine particles are obtained. There are studies that use finely crushed shells as part of concrete fine aggregates.

貝殻をコンクリートの骨材として用いる場合には、上記の例のように、細骨材の代替および粗骨材の代替の二通りの利用が考えられるが、貝殻の活用を一般のコンクリートを対象として考えた場合、次の理由により、細骨材として活用することが多い。   When shells are used as concrete aggregates, there are two ways to use fine aggregates and coarse aggregates as in the above example, but shells are used for general concrete. When considered, it is often used as a fine aggregate for the following reasons.

(1) 貝殻は砂利や砕石に比べて強度が小さいため、これを粗骨材の代わりに使用すると、砂利や砕石を使用した通常のコンクリートに比べて著しく強度が低下したコンクリートを生ずる。 (1) Since shells are less strong than gravel and crushed stone, using this instead of coarse aggregate will result in concrete with significantly reduced strength compared to ordinary concrete using gravel and crushed stone.

(2) 一般の建設工事で使用されるコンクリートには、型枠内に容易に充填できるワーカビリティーが要求されるが、このコンクリートに配合される粗骨材に適した大きさの粒径に貝殻を粉砕した場合には、この貝殻が、例えば帆立貝の貝殻であれば、極めて薄くて偏平な粗骨材を生じ、また、例えば牡蠣殻であれば、薄くて偏平な上に起伏の激しい表面の粗骨材を生じるため、流動性の良い、すなわちワーカビリティーが良好なコンクリートを得ることが非常に困難になる。 (2) Concrete used in general construction work must have workability that allows it to be easily filled into the formwork, but shells should be sized to a size suitable for the coarse aggregate blended in the concrete. When crushed, if this shell is a scallop shell, for example, it will produce a very thin and flat coarse aggregate, and if it is a oyster shell, for example, it will be thin, flat and rough on rough surfaces. Since aggregate is produced, it becomes very difficult to obtain concrete having good fluidity, that is, good workability.

このように、一般のコンクリートで貝殻を骨材として活用する場合には、そのコンクリートに十分な強度およびワーカビリティーを確保しなければならないという面から見て、この貝殻を細骨材とする方がより利用価値が高いと言えるが、貝殻を細骨材とする場合には次のような問題がある。   In this way, when shells are used as aggregates in general concrete, it is better to use these shells as fine aggregates in view of ensuring sufficient strength and workability for the concrete. It can be said that the utility value is high, but there are the following problems when the shell is made of fine aggregate.

(1) 通常の細骨材を貝殻で置換する場合にもコンクリートで大きな強度低下を生じなくするためには、その置換率は20〜30容量%程度が限度とされているので、貝殻廃棄物をできるだけ多量に有効利用したいという観点に立てば、この置換率の一層の向上が望まれる。
(2) 貝殻を細骨材としたコンクリートで良好なワーカビリティーを確保するためには、この貝殻を細骨材として適している5mm以下の粒径になるまで微粉砕し、かつ、この微粉砕されたものを分級して粒度調整する必要があるが、この作業には多大の手間と費用を要するので、実用的でない。
(1) Even when replacing ordinary fine aggregates with shells, the replacement rate is limited to about 20-30% by volume so as not to cause a significant decrease in strength with concrete. From the viewpoint of effectively using as much as possible, further improvement of the substitution rate is desired.
(2) In order to ensure good workability with concrete made from shells of fine aggregate, this shell is finely pulverized to a particle size of 5 mm or less, which is suitable for fine aggregates. However, this work is not practical because it requires a lot of labor and cost.

本発明者は、上述の課題を解決するために種々研究を重ねた結果、
下記の表−1、

Figure 0004847056
に示される粒度分布を有する貝殻粉砕物を細骨材として用い、かつ、高炉セメントをセメントとして用いると、細骨材における貝殻粉砕物の置換率が30容量%を超えても、良好なワーカビリティーが確保されるとともに、通常の細骨材のみを用いたコンクリートと同等またはそれ以上の強度を有するコンクリートが得られること、
を見出した。 The inventor has conducted various studies to solve the above-described problems,
Table-1 below,
Figure 0004847056
When the shell pulverized product having the particle size distribution shown in FIG. 5 is used as the fine aggregate and the blast furnace cement is used as the cement, even if the replacement rate of the shell pulverized product in the fine aggregate exceeds 30% by volume, good workability is obtained. To obtain a concrete having a strength equal to or higher than that of ordinary concrete using only fine aggregates,
I found.

本発明は、このような知見に基づいて発明されたもので、
細骨材の一部または全部として前記の表−1に示される粒度分布を有する貝殻粉砕物が用いられ、かつ、セメントとして高炉セメントが用いられていることを特徴とする、コンクリート、
に係わるものである。
The present invention was invented based on such knowledge,
Concrete, characterized in that a shell pulverized product having the particle size distribution shown in Table 1 is used as a part or all of the fine aggregate, and blast furnace cement is used as cement.
It is related to.

本発明によれば、貝殻粉砕物をコンクリートの細骨材として用い、そしてまたセメントとして高炉セメントを用いることによって、その貝殻粉砕物の細骨材における置換率を従来よりも大きくしても、通常の細骨材のみが用いられたコンクリートと同等またはそれ以上の強度を有するとともに、良好なワーカビリティーが確保されたコンクリートが得られるので、従来処分に悩まされていた大量の貝殻廃棄物の有効な再資源化を図ることができ、その結果、この大量の貝殻廃棄物を廃棄処分することによる弊害や負担を軽減できるばかりでなく、自然環境から採取される骨材用の砂、砂利および砕石等の量を減少させることによって地球の環境保全にも貢献することができる。   According to the present invention, the crushed shell material is used as a fine aggregate of concrete, and a blast furnace cement is also used as the cement. As a result, it is possible to obtain a concrete that has the same or better strength as concrete that uses only fine aggregates and that has good workability. As a result, it is possible not only to reduce the harmful effects and burdens caused by the disposal of this large amount of shellfish waste, but also to remove aggregate sand, gravel and crushed stones from the natural environment. By reducing the amount, it can also contribute to environmental conservation of the earth.

本発明で用いられる高炉セメントとしては、例えば、「JIS R 5211 高炉セメント」のA種、B種およびC種の他、「JIS R 5210 ポルトランドセメント」に高炉スラグ微粉末を混合したものを使用することができ、この後者の場合、一般に95〜30対5〜70の容量比でJIS R 5210 ポルトランドセメントと高炉スラグ微粉末とが混合される。   As the blast furnace cement used in the present invention, for example, in addition to “JIS R 5211 blast furnace cement” types A, B and C, “JIS R 5210 Portland cement” mixed with blast furnace slag fine powder is used. In this latter case, JIS R 5210 Portland cement and ground granulated blast furnace slag are generally mixed in a volume ratio of 95-30 to 5-70.

貝殻としては一般にどのような種類の貝の貝殻でも利用することができるが、そのうち帆立貝または牡蠣の貝殻が適しており、そして主成分が殆ど炭酸カルシウムからなる帆立貝の貝殻が特に好ましく使用される。   In general, any type of shell can be used as the shell, but scallops or oyster shells are suitable, and scallop shells mainly composed of calcium carbonate are particularly preferably used.

前記の表−1に示される粒度分布を有する貝殻粉砕物を細骨材として、これを普通ポルトランドセメントと組み合わせたコンクリートでは、貝殻粉砕物の配合量が増大するに従って、その強度は低下する傾向がある。この傾向は、従来の研究で得られている「硬化したコンクリートで大きな強度低下を来さないためには、通常の細骨材との置換率が20〜30%程度が限度である。」という結果に符合している。   In the concrete in which the crushed shell material having the particle size distribution shown in Table 1 is used as a fine aggregate and combined with ordinary Portland cement, the strength tends to decrease as the blending amount of the crushed shell material increases. is there. This tendency has been obtained by conventional research, “in order to prevent a large decrease in strength with hardened concrete, the replacement rate with ordinary fine aggregate is limited to about 20 to 30%”. It matches the result.

細骨材の貝殻粉砕物と組み合わせるセメントとして高炉セメントを採用することによって、通常の骨材が配合された従来のコンクリートと同様またはそれ以上の強度を得ることができる。その理由は、貝殻粉砕物の主成分である炭酸カルシウムと、高炉セメント中に生成し易い各種のカルシウムアルミネートとの反応の結果によるものと考えられ、また、このような反応が十分起こるのは、貝殻粉砕物において前記の表−1に示される粒度分布が確立されていることも寄与しているものと考えられる。   By adopting a blast furnace cement as a cement to be combined with a fine aggregate shell crushed material, it is possible to obtain a strength equal to or higher than that of conventional concrete containing a normal aggregate. The reason for this is thought to be the result of the reaction between calcium carbonate, the main component of the shell pulverized product, and various calcium aluminates that are easily formed in blast furnace cement. In addition, it is considered that the establishment of the particle size distribution shown in Table 1 in the crushed shell is also contributing.

表−1に示される貝殻粉砕物の粒度分布を図で示すと、添付図面の図1のようになる。貝殻粉砕物の粒度が表−1の範囲よりも粗くなると、換言すれば、貝殻粉砕物の粒度範囲が図1の範囲から右側にずれると、高炉セメントとの反応性が低下して硬化コンクリートで十分な強度が得られなくなるばかりでなく、フレッシュコンクリートで良好なワーカビリティーが得られなくなり、一方、貝殻粉砕物の粒度が表−1の範囲よりも細かくなると、換言すれば、貝殻粉砕物の粒度範囲が図1の範囲から左側にずれると、高炉セメントとの反応性は高められるものの、前記の回転式破砕混合機で容易に製造することができなくなってコスト的にも実用的でなくなるばかりでなく、細粒成分の割合が多くなってコンクリートの粘性が高まる結果大量使用に支障を来すようになるので、貝殻粉砕物の粒度範囲が表−1に示される範囲にあることが本発明にとって必須の要件となっている。   The particle size distribution of the crushed shell material shown in Table 1 is shown in FIG. 1 of the accompanying drawings. When the particle size of the crushed shell becomes coarser than the range shown in Table 1, in other words, when the particle size range of the crushed shell is shifted to the right from the range shown in FIG. Not only can sufficient strength not be obtained, but good workability cannot be obtained with fresh concrete, while the particle size of the shell pulverized product becomes finer than the range shown in Table 1, in other words, the particle size range of the shell pulverized product. 1 shifts to the left from the range of FIG. 1, the reactivity with the blast furnace cement is enhanced, but it cannot be easily manufactured with the rotary crushing and mixing machine and is not practical in terms of cost. As the proportion of fine-grained components increases and the viscosity of concrete increases, it becomes difficult to use in large quantities. Therefore, the particle size range of shell crushed material is within the range shown in Table-1. It has become an essential requirement for the present invention.

貝殻を前記の表−1に示される粒度分布の粉砕物とするには、一般にどのような種類の破砕機または粉砕機等でも使用できるが、
本出願人の特許に係わる特許第3554829号に示されるような回転式破砕混合機を用いて、それの破砕時における回転数を調節すると、前記の表−1に示される粒度分布を有する貝殻破砕物を容易に製造することができ、その結果、この回転式破砕混合機を貝殻破砕物の製造に利用することはコスト的に見ても十分な実用性を具えていること、
も本発明者は見出した。
In order to make the shell into a pulverized product having the particle size distribution shown in Table 1, generally any kind of crusher or crusher can be used.
By using a rotary crushing mixer as shown in Japanese Patent No. 3554829 relating to the applicant's patent, and adjusting the number of revolutions during crushing, the shell crush having the particle size distribution shown in Table 1 above Products can be manufactured easily, and as a result, the use of this rotary crushing mixer for the production of crushed shells has sufficient practicality in terms of cost,
The inventor has also found out.

上記の回転式破砕混合機を用いて帆立貝の貝殻を粉砕した場合に得られる粉砕物の粒度分布と回転式破砕混合機の回転数との関係が図2に示されている。この回転数が速くなるにつれて粒度分布曲線が左側にシフトして、粉砕物の粒度が全般的に細かくなっていくことが分かる。このように、回転式破砕混合機によれば、それの回転数を調整することで、表−1に示される粒度分布の範囲内で種々の粒度の貝殻粉砕物を容易に得ることができる。   FIG. 2 shows the relationship between the particle size distribution of the pulverized material obtained when the scallop shells are pulverized using the above rotary crushing mixer and the rotational speed of the rotary crushing mixer. It can be seen that as the rotational speed increases, the particle size distribution curve shifts to the left, and the particle size of the pulverized product becomes generally finer. Thus, according to the rotary crushing and mixing machine, shell pulverized products having various particle sizes can be easily obtained within the range of the particle size distribution shown in Table 1 by adjusting the rotation speed thereof.

以下の実施例は、本発明を実施する場合の好ましい例を具体的に示すことを意図するものであって、本発明がこれらの実施例によって限定されることは意図されていない。   The following examples are intended to specifically illustrate preferred examples for practicing the present invention, and are not intended to limit the invention to these examples.

実施例1
下記の表−2に示される使用材料を用い、かつ、下記の表−3に示されるコンクリートの配合に従って、すなわち、セメントとして高炉セメントB種を用い、そして細骨材の川砂の0容量%、25容量%、50容量%、75容量%および100容量%を貝殻粉砕物で置き換え、また、セメントとして普通ポルトランドセメントを用い、川砂の0容量%、25容量%および50容量%を貝殻粉砕物で置き換え、そしてこれらのいずれの場合にも、先ずセメント、細骨材および粗骨材をミキサに投入してこれらを空練りした後、水、AE減水剤を加えて90秒間練り混ぜることによって、それぞれ比較試料1、本発明試料1、2、3、4および比較試料2、3、4を製造した。上記の貝殻粉砕物は前記の回転式破砕混合機を用いて回転数900rpmの下で粉砕されることによって、前記の図2の粒度分布曲線−●−で示されるような粒度分布を有するものであった。
Example 1
Using the materials shown in Table-2 below, and according to the concrete composition shown in Table-3 below, that is, using blast furnace cement type B as cement, and 0% by volume of fine aggregate river sand, 25% volume, 50% volume, 75% volume and 100% volume were replaced with ground shell material. Ordinary Portland cement was used as cement, and 0%, 25% and 50% volume of river sand was ground with shell material. In each of these cases, the cement, fine aggregate, and coarse aggregate were first put into a mixer and kneaded, and then mixed with water and AE water reducing agent for 90 seconds. Comparative sample 1, inventive samples 1, 2, 3, 4 and comparative samples 2, 3, 4 were produced. The above shell pulverized product has a particle size distribution as shown by the particle size distribution curve-●-in Fig. 2 by being pulverized under the rotation speed of 900 rpm using the rotary crushing and mixing machine. there were.

Figure 0004847056
Figure 0004847056

Figure 0004847056
Figure 0004847056

以上のようにして製造されたフレッシュコンクリートについてスランプ試験および空気量試験を実施し、また、硬化後のコンクリートについては材齢7日および28日における圧縮強度を測定して、これらの試験結果を下記の表−4に示し、また、貝殻粉砕物の置換率0%のコンクリートの圧縮強度に対する、貝殻粉砕物の置換率0%、25%、50%、75%および100%の各場合のコンクリートの圧縮強度の比、すなわち表−4に示された圧縮強度比を図3に示した。   The fresh concrete produced as described above is subjected to a slump test and an air amount test, and the concrete after curing is measured for compressive strength at the age of 7 and 28 days. Table 4 of Table 1 also shows that the concrete ratio in each case of 0%, 25%, 50%, 75% and 100% of the crushed shell relative to the compressive strength of the concrete in which the crushed shell is replaced by 0% The compression strength ratio, that is, the compression strength ratio shown in Table 4 is shown in FIG.

Figure 0004847056
Figure 0004847056

表−4および図3によれば、本発明試料1、2、3および4における貝殻粉砕物の使用量、すなわち通常の細骨材である川砂との置換率はそれぞれ25%、50%、75%および100%であったが、川砂との置換率が0%であった比較試料1と比べて圧縮強度の低下は見られず、これらの本発明試料の圧縮強度はむしろ比較試料1の圧縮強度を凌いでいることが分かる。このような結果は、明らかに本発明が、コンクリートにおける貝殻粉砕物の置換率が精々20〜30%程度が限度であると認識されていた従来技術と著しく異なる傾向を示している。   According to Table-4 and FIG. 3, the usage amount of the crushed shells in the inventive samples 1, 2, 3 and 4, that is, the replacement rate with river sand which is a normal fine aggregate is 25%, 50% and 75, respectively. However, the compression strength of these samples according to the present invention was not compared with that of Comparative Sample 1 as compared with Comparative Sample 1 in which the substitution rate with river sand was 0%. It can be seen that the strength is exceeded. Such a result clearly shows that the present invention tends to be significantly different from the prior art in which the replacement rate of the crushed shell in concrete is recognized to be limited to about 20 to 30%.

また、セメントとして普通ポルトランドセメントを用いて貝殻粉砕物の置換率を25%とした比較試料3では、この置換率が0%であった比較試料2に比べて圧縮強度の低下が見られ、そして置換率が50%であった比較試料4では、この強度低下が更に著しかったことが分かる。このような結果は、セメントとして普通ポルトランドセメントが用いられるコンクリートでは貝殻粉砕物の置換率が精々20〜30%程度が限度であるとされてきた従来技術と同様な傾向を示していて、上記の本発明試料とは著しく異なる傾向を明瞭に示している。   Further, in Comparative Sample 3 in which normal Portland cement was used as the cement and the replacement rate of the shell crushed material was 25%, the compression strength was reduced compared to Comparative Sample 2 in which the replacement rate was 0%, and It can be seen that in the comparative sample 4 in which the substitution rate was 50%, this strength reduction was further remarkable. Such a result shows a tendency similar to that of the conventional technique in which the substitution rate of the shell pulverized material is limited to about 20 to 30% at the maximum in the concrete in which ordinary Portland cement is used as the cement. The tendency which is remarkably different from the sample of the present invention is clearly shown.

以上に述べた説明から明らかなように、本発明は通常の細骨材の代わりに貝殻粉砕物を細骨材として用い、かつ、セメントとして高炉セメントを用いることによって、圧縮強度においても従来の普通コンクリートに比べて遜色のないコンクリートを提供できるので、本発明は、このような普通コンクリートが適用される広範囲の分野で利用することができる。   As is clear from the above description, the present invention uses conventional ground aggregates instead of ordinary fine aggregates as a fine aggregate, and blast furnace cement as a cement. Since concrete which is inferior to concrete can be provided, the present invention can be used in a wide range of fields to which such ordinary concrete is applied.

本発明で用いられる貝殻粉砕物の粒度範囲を示すグラフである。It is a graph which shows the particle size range of the shell crushed material used by this invention. 本発明で好ましく用いられる回転式破砕混合機の回転数と、この回転式破砕混合機によって得られる貝殻粉砕物の粒度分布との間の関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of the rotary crushing mixer preferably used by this invention, and the particle size distribution of the shell ground material obtained by this rotary crushing mixer. 貝殻粉砕物の置換率0%のコンクリートに対する、貝殻粉砕物の置換率0%、25%、50%、75%および100%のコンクリートの圧縮強度比を示すグラフである。It is a graph which shows the compressive-strength ratio of concrete with the substitution rate of 0%, 25%, 50%, 75%, and 100% of the shell ground material with respect to the concrete with the replacement rate of the shell ground material of 0%.

Claims (2)

細骨材の一部または全部として下記の表−1に示される粒度分布を有する貝殻粉砕物が用いられ、かつ、セメントとして高炉セメントが用いられていることを特徴とする、コンクリート。
Figure 0004847056
A concrete characterized in that a shell pulverized product having a particle size distribution shown in the following Table-1 is used as part or all of the fine aggregate, and blast furnace cement is used as cement.
Figure 0004847056
前記貝殻粉砕物が回転式破砕混合機で処理されることによって得られる貝殻粉砕物である、請求項1記載のコンクリート。 The concrete according to claim 1, which is a crushed shell obtained by treating the crushed shell with a rotary crushing and mixing machine.
JP2005200219A 2005-07-08 2005-07-08 Concrete containing crushed shell Active JP4847056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200219A JP4847056B2 (en) 2005-07-08 2005-07-08 Concrete containing crushed shell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200219A JP4847056B2 (en) 2005-07-08 2005-07-08 Concrete containing crushed shell

Publications (2)

Publication Number Publication Date
JP2007015894A JP2007015894A (en) 2007-01-25
JP4847056B2 true JP4847056B2 (en) 2011-12-28

Family

ID=37753381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200219A Active JP4847056B2 (en) 2005-07-08 2005-07-08 Concrete containing crushed shell

Country Status (1)

Country Link
JP (1) JP4847056B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979365B2 (en) * 2005-12-16 2012-07-18 太平洋マテリアル株式会社 Concrete using concrete admixture
JP2009161385A (en) * 2007-12-28 2009-07-23 Taiheiyo Materials Corp Crushed shell material for concrete admixture and concrete containing the same
CN113321457B (en) * 2021-06-29 2023-08-04 福州大学 Method for preparing ultra-high performance concrete by doping oyster shell powder and metakaolin

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082407Y2 (en) * 1989-07-31 1996-01-29 株式会社共立 Work machine
JPH11228206A (en) * 1998-02-13 1999-08-24 Moa Green:Kk Production of concrete product and concrete product produced by the same
JP2004051407A (en) * 2002-07-18 2004-02-19 Sugawara Kaiyo Kaihatsu Kogyo:Kk Shell concrete and its producing process
JP3991336B2 (en) * 2003-04-07 2007-10-17 東洋建設株式会社 Manufacturing method of shell recycling block
JP4262122B2 (en) * 2004-03-15 2009-05-13 太平洋セメント株式会社 Method for producing shell-mixed concrete

Also Published As

Publication number Publication date
JP2007015894A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
Cheerarot et al. A study of disposed fly ash from landfill to replace Portland cement
CN104829178A (en) C30 grade steel-doped slag recycled aggregate self compacting concrete and preparation method thereof
JP5853399B2 (en) Manufacturing method of artificial stone
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
Ruslan et al. Effect of crushed cockle shell as partial fine aggregate replacement on workability and strength of lightweight concrete
JP2009079161A (en) Ground improving material
JP4847056B2 (en) Concrete containing crushed shell
JP7084111B2 (en) Solidifying material for highly organic soil or humus soil
KR100470676B1 (en) Concrete composition using of bottom ash as replacement of aggregate for concrete mixing
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
JP2015193537A (en) artificial stone
JP2008137842A (en) Method of manufacturing artificial aggregate using construction waste
CA3214015A1 (en) Binders for building materials, manufacturing process therefor and installation for carrying out this process
JP3086200B2 (en) Solidification and stabilization of molten fly ash
JP4979186B2 (en) Method for producing granulated material
JP2004299912A (en) Concrete for port and method for producing the same
JP5326996B2 (en) Mud-containing solidified body and method for producing the same
JP2021008596A (en) Soil solidification material, method for producing soil solidification material, and soil solidification method
JP5192140B2 (en) Concrete materials and concrete products using waste tile recycled aggregate
JP5001732B2 (en) Concrete for building foundation ground
JP2004067399A (en) Method of producing regenerated sand from construction sludge
JP4242734B2 (en) Coal ash solidified material crushed mixed concrete recycled roadbed material and its manufacturing method
JP5426070B2 (en) Method for producing aggregate composition for shotcrete and method for producing shotcrete
JP4979365B2 (en) Concrete using concrete admixture
JP4579063B2 (en) Method for producing conglomerate-like artificial rock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4847056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250