JP5001732B2 - Concrete for building foundation ground - Google Patents

Concrete for building foundation ground Download PDF

Info

Publication number
JP5001732B2
JP5001732B2 JP2007181881A JP2007181881A JP5001732B2 JP 5001732 B2 JP5001732 B2 JP 5001732B2 JP 2007181881 A JP2007181881 A JP 2007181881A JP 2007181881 A JP2007181881 A JP 2007181881A JP 5001732 B2 JP5001732 B2 JP 5001732B2
Authority
JP
Japan
Prior art keywords
concrete
cement
fine powder
aggregate
recycled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007181881A
Other languages
Japanese (ja)
Other versions
JP2009018956A (en
Inventor
和久 依田
彰 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2007181881A priority Critical patent/JP5001732B2/en
Publication of JP2009018956A publication Critical patent/JP2009018956A/en
Application granted granted Critical
Publication of JP5001732B2 publication Critical patent/JP5001732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mortar and a concrete which enables a large volume consumption of recycled fine powder as an area of application of liquified soil, brings about an increased recycle ratio of demolished concrete blocks and secures a sufficient strength level for a building foundation ground material. <P>SOLUTION: The concrete for the building foundation ground material is a mixture of (B) recycled fine powder by-produced in producing recycled aggregate from demolished concrete blocks as a raw material, (W) water and (C) cement and, in the case of the cement, (G) coarse aggregate which is obtained by crushing demolished concrete blocks and has a particle size of &le;40 mm. The amount of the cement compounded is such that the concrete has a uniaxial compressive strength exceeding 1 N/mm<SP>2</SP>at the age of 28 days within the ranges of C/W&le;0.5 and C/B&le;0.5 on a mass basis. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、建築物の基礎地盤材として、従来の流動化処理土に代わって使用することができる、解体コンクリート塊のリサイクル材料を用いたコンクリートに関する。 The present invention, as the foundation ground materials of a building, can be used in place of the conventional fluidizing treated soil, to concrete using recycled materials of demolition concrete mass.

環境負荷低減技術として、解体コンクリート塊を原料とする再生骨材を製造し、建築物の構造用コンクリートに再利用する取り組みが行われている。しかし、解体コンクリート塊を原料とする再生骨材の製造時に大量に副産される微粉末(本明細書では「再生微粉末」と呼んでいる)については、使用可能な用途が少なく、大量消費が望めないのが現状である。そのため、再生骨材を利用したコンクリートのリサイクルにはコストを含め課題が多く、それを乗り越えるには、再生微粉末の用途開発が不可欠である。   As an environmental load reduction technology, efforts are being made to produce recycled aggregate made from dismantled concrete blocks and reuse them as structural concrete for buildings. However, the fine powder (called “recycled fine powder” in this specification) that is produced as a by-product in large quantities during the production of recycled aggregate made from demolition concrete mass has few usable applications and is consumed in large quantities. It is the present condition that cannot be expected. Therefore, recycling concrete using recycled aggregate has many problems including cost, and in order to overcome it, development of application of recycled fine powder is indispensable.

近年、再生微粉末の有効な利用方法として建築物のコンクリートや流動化処理土への適用が検討されている。このうち、建築物のコンクリートへの適用については、再生微粉末を再生骨材とともに使用すれば、構成材料に占める解体コンクリート塊を原料とする材料の割合(以下「解体コンクリート塊のリサイクル率」という)は高くなるものの、製造したコンクリートの乾燥収縮が大きくなる傾向があり、耐久性の観点から未だ問題が多い。   In recent years, application of recycled fine powder to concrete and fluidized soil for buildings has been studied as an effective method of using the recycled fine powder. Of these, regarding the application of concrete to building concrete, if recycled fine powder is used together with recycled aggregate, the proportion of material made from demolition concrete lumps in the constituent materials (hereinafter referred to as “recycle rate of demolition concrete lumps”) ) Tends to increase, but the shrinkage of the produced concrete tends to increase, and there are still many problems from the viewpoint of durability.

一方、流動化処理土では新規材料として残土(発生土)を使用することから、再生微粉末を混合して使用したとしても解体コンクリート塊のリサイクル率が大幅に向上することにはならず、残土(発生土)の運搬に伴う化石燃料の消費を含め、コストおよび環境負荷の低減には更なる工夫が望まれるところである。   On the other hand, in the fluidized soil, residual soil (generated soil) is used as a new material, so even if recycled fine powder is mixed and used, the recycling rate of demolition concrete blocks will not be greatly improved. Further measures are desired to reduce costs and environmental burdens, including the consumption of fossil fuels accompanying the transport of (generated soil).

これまで、建築物の基礎地盤材料などとして使用される流動化処理土に関して、構成材料(セメント、水、残土、コンクリートガラ)やその配合をパラメータに設定し、利用することが検討されてきた(特許文献1〜3、非特許文献1)。この中で、「再生微粉末」の有効利用を図った事例が特許文献3、非特許文献1に示されている。   So far, regarding the fluidized soil used as the foundation ground material of buildings, etc., it has been studied to set and use constituent materials (cement, water, residual soil, concrete glass) and their composition as parameters ( Patent Documents 1 to 3, Non-Patent Document 1). Among these, Patent Document 3 and Non-Patent Document 1 show examples of effective utilization of “recycled fine powder”.

特開2006−193895号公報JP 2006-193895 A 特開2004−292285号公報JP 2004-292285 A 特開2003−261962号公報JP 2003-26162 A 依田和久、外3名、「全量リサイクルを目的とした再生微粉末の有効利用技術の開発(その1 中流動コンクリートの基礎的性状)」、社団法人日本建築学会2003年度大会(東海)学術講演梗概集A−1分冊、2003年7月30日発行Kazuhisa Yoda and three others, "Development of effective utilization technology of recycled fine powder for the purpose of total recycling (No. 1 Basic properties of medium-fluidity concrete)" Collection A-1 volume, issued July 30, 2003

しかし、特許文献3には具体例としてカオリン粘度を配合したモルタルが示されているにすぎず、水、セメント以外の材料を基本的に全て解体コンクリート塊を原料とする材料で構成した「解体コンクリート塊のリサイクル率」が高いものは示されていない。また、そのモルタルは材齢28日の一軸圧縮強度が500〜1000kN/m2(0.5〜1N/mm2)程度であるが、建築物の基礎地盤材料としてはさらに強度の高いものが必要とされることがある。その場合に、土成分を配合しないような組成のもので対応できるかどうか、特許文献3には教示されるところがない。さらに、特許文献3にはコンクリートガラを骨材に使用したコンクリートは示されておらず、再生微粉末とコンクリートガラを混合して「解体コンクリート塊のリサイクル率」を一層高めた場合に、建築物の基礎地盤材料に適したものが得られるのかどうか、類推することはできない。ここで、コンクリートガラとは、解体コンクリート塊を解体現場や中間処理施設で破砕機により粒径40mm以下程度に簡易に破砕したものである。なお、再生骨材は、コンクリートガラに処理を加えて得られるものであり、本明細書では、コンクリートガラと再生骨材を異別のものとして扱っている。 However, Patent Document 3 only shows a mortar containing kaolin viscosity as a specific example, and “demolition concrete” is basically composed of a material that uses all the material other than water and cement as a raw material. No high lump recycling rate is shown. The mortar has a uniaxial compressive strength of about 500 to 1000 kN / m 2 (0.5 to 1 N / mm 2 ) at the age of 28 days. However, the foundation ground material of the building should have higher strength. Sometimes it is said. In that case, Patent Document 3 does not teach whether it can be handled with a composition that does not contain a soil component. Furthermore, Patent Document 3 does not show concrete using concrete glass as an aggregate. When the recycled fine powder and concrete glass are mixed to further increase the “recycle rate of demolition concrete lump”, It cannot be inferred whether a material suitable for the foundation ground material is obtained. Here, concrete gravel is obtained by simply crushing a demolished concrete lump to a particle size of about 40 mm or less with a crusher at a dismantling site or an intermediate treatment facility. Recycled aggregate is obtained by applying treatment to concrete glass. In this specification, concrete glass and recycled aggregate are treated as different things.

非特許文献1には再生微粉末と再生骨材を使用し、土成分を使用していないコンクリートが示されている。しかし、これは水セメント比50%程度、圧縮強度40N/mm2クラスの中流動コンクリートであり、セメントの配合量がこれより大幅に少ない流動化処理土の分野で、土の代わりに解体コンクリート塊に由来する材料を全量使用したものが実現できるかどうか、不明である。また、再生骨材ではなくコンクリートガラを骨材に使用することについても、その可能性は定かではない。 Non-Patent Document 1 shows concrete that uses recycled fine powder and recycled aggregate and does not use soil components. However, this is a medium-fluidity concrete with a water cement ratio of about 50% and a compressive strength of 40 N / mm 2 class, and in the field of fluidized soil where the amount of cement is much less than this, demolition concrete blocks instead of soil It is unclear whether or not a material using all the materials derived from can be realized. Also, the possibility of using concrete glass instead of recycled aggregate for the aggregate is not clear.

本発明は、流動化処理土の用途分野において、再生微粉末の大量消費が可能で、解体コンクリート塊のリサイクル率が高く、かつ建築物の基礎地盤材料として十分な強度レベルが確保できるコンクリートを提供すること、特にそのコンクリートにおいては付加価値の低いコンクリートガラを骨材に使用して解体コンクリート塊のリサイクル率を高めたものを提供することを目的とする。 The present invention, in the application field of the fluidizing treated soil, enables mass consumption of powder playback fine, high recycling rate of demolition concrete mass, and sufficient strength level as the foundation ground materials of a building can be secured Turkey Nkurito It is an object of the present invention to provide a concrete having a high recycling rate of demolition concrete blocks by using low-value added concrete glass as an aggregate.

また、解体コンクリート塊を原料として再生骨材を製造する際に副産される再生微粉末(B)、水(W)、セメント(C)、解体コンクリート塊を破砕することにより得られる粒径40mm以下のガラ骨材(G)の混練物からなり、質量基準で、C/W≦0.5、およびC/B≦0.5を満たす範囲で、材齢28日の一軸圧縮強度が1N/mm2を超える量のセメントを配合してなる建築物の基礎地盤材用コンクリートが提供される。 Moreover, the particle size of 40 mm obtained by crushing the recycled fine powder (B), water (W), cement (C), and the demolished concrete lump produced as a by-product when producing recycled aggregate using the demolition concrete lump as a raw material The uniaxial compressive strength of the material at 28 days of age is 1 N / in the range satisfying C / W ≦ 0.5 and C / B ≦ 0.5 on the mass basis. There is provided a concrete for a foundation ground material for a building comprising a cement of an amount exceeding mm 2 .

本発明によれば、以下のメリットが得られる。
(1)再生微粉末を使用することにより、残土を配合することなく、建築物の基礎地盤用材料として十分な強度を発現するコンクリートが実現可能となり、解体コンクリート塊のリサイクル過程で副産される再生微粉末の大量消費を通じて当該リサイクルの促進に寄与できる。
(2)再生微粉末により、残土だけでなく、セメントの一部も置換可能であることが確認され、地盤材料におけるセメントの節約も可能になる。
(3)コンクリートにおいては、骨材の全部をコンクリートガラで賄うことが可能であり、低付加価値材料の使用によるコスト低減と解体コンクリート塊のリサイクル率を一層向上させることができる。
According to the present invention, the following advantages can be obtained.
(1) by using a reproduction fine powder, without compounding the surplus soil, Turkey Nkurito to develop sufficient strength as foundation ground material for buildings becomes feasible, byproduct recycling process of demolition concrete mass This can contribute to the promotion of recycling through mass consumption of recycled fine powder.
(2) The recycled fine powder confirms that not only the remaining soil but also a part of the cement can be replaced, and the cement can be saved in the ground material.
(3) In concrete, it is possible to cover all of the aggregate with concrete glass, and it is possible to further reduce the cost by using low-value-added materials and improve the recycling rate of demolition concrete blocks.

発明者らは、土を構成材料として使用せずに、解体コンクリート塊に由来する材料と、水およびセメントのみによって、建築物の基礎地盤材料として十分な特性を有するモルタルあるいはコンクリートが得られるかどうか、詳細な研究を進めてきた。その結果、セメント水比(C/W)、およびセメントと再生微粉末の配合比(C/B)を適正化した場合に、それが可能になることを知見した。特にそのコンクリートでは、解体コンクリート塊由来材料として「再生微粉末」と「コンクリートガラ」を組み合わせて使用することが有効である。すなわち粗骨材として、いわゆる「再生骨材」ではなく、破砕・分級した段階の「コンクリートガラ」からなる付加価値の低い「ガラ骨材」を使用することにより、良好な結果が得られることを見出した。本発明はこのような知見に基づいて完成したものである。   Whether the mortar or concrete having sufficient characteristics as the foundation ground material of the building can be obtained by using only the material derived from the demolished concrete block, water and cement without using soil as a constituent material. , Have been conducting detailed research. As a result, it has been found that this is possible when the cement water ratio (C / W) and the blending ratio of cement and recycled fine powder (C / B) are optimized. Particularly in the concrete, it is effective to use “recycled fine powder” and “concrete glass” in combination as a material derived from demolition concrete lump. In other words, it is possible to obtain good results by using low-value-added “glass aggregate” consisting of “concrete glass” at the stage of crushing and classifying, not so-called “recycled aggregate”. I found it. The present invention has been completed based on such findings.

再生微粉末は、解体コンクリート塊を原料として再生骨材を製造する際に副産される微粉末である。再生骨材の製造方法として、近年、鋼球を用いた機械式すりもみ装置(図1)によって原料のコンクリートガラをすりつぶしながら加工する方法が実用化されている。このような機械式すりもみ装置から副産される再生微粉末は、レーザー回折式粒度分布測定装置により求まる50%平均粒径が50μm以下(例えば5〜50μm)と小さいものであり、本発明では土の代替として、このような再生微粉末を使用する。この再生微粉末によって、土だけでなく、セメントの一部を置換させることができる。   The recycled fine powder is a fine powder produced as a by-product when a recycled aggregate is produced using a demolition concrete lump as a raw material. As a method for producing recycled aggregate, in recent years, a method has been put to practical use in which a concrete gravel as a raw material is processed while being ground by a mechanical grinding machine (FIG. 1) using steel balls. The regenerated fine powder by-produced from such a mechanical grinding machine has a 50% average particle size as small as 50 μm or less (for example, 5 to 50 μm) determined by a laser diffraction particle size distribution measuring device. Such regenerated fine powder is used as an alternative to soil. This recycled fine powder can replace not only the soil but also a part of the cement.

セメントは、流動化処理土に使用されている従来一般的なものを使用することができる。ただし、セメントの配合量については管理が必要である。発明者らの検討によれば、建築物の基礎地盤材料として十分な強度が得られるモルタルやコンクリートとしては、材齢28日の一軸圧縮強度が1N/mm2を超えるレベルのものが望ましい。用途によっては例えば1.2N/mm2以上を満たすことがより好ましい。種々検討の結果、土の代替として再生微粉末を使用したモルタルやコンクリートにおいて、硬化後の強度(例えば材齢28日の一軸圧縮応力)は、セメント水比(C/W)と直線的な相関関係を有することが確認された。また、セメントと再生微粉末の配合比(C/B)が低すぎる場合も十分な強度が得られなくなる。したがって、本発明では、必要な強度レベルが確保できるようにセメント配合量を設定することが重要である。C/WおよびC/Bの下限は、少なくとも材齢28日の一軸圧縮強度が1N/mm2を超えること、用途によっては例えば1.2N/mm2以上となることをもって制限される。このため、本発明においてC/WおよびC/Bの下限値を直接規定することは必ずしも必要ではない。ただし、管理上、例えばC/W≧0.2、かつC/B≧0.08となるように規定しても構わない。 As the cement, conventional ones used for fluidized soil can be used. However, it is necessary to manage the blending amount of cement. According to the study by the inventors, it is desirable that the mortar and concrete that can provide sufficient strength as a foundation ground material for buildings have a uniaxial compressive strength of 28 days of age exceeding 1 N / mm 2 . For example, it is more preferable to satisfy 1.2 N / mm 2 or more. As a result of various studies, in mortar and concrete using recycled fine powder as a substitute for soil, the strength after hardening (eg, uniaxial compressive stress at age 28 days) has a linear correlation with the cement water ratio (C / W). It was confirmed to have a relationship. Further, when the blending ratio (C / B) of cement and recycled fine powder is too low, sufficient strength cannot be obtained. Therefore, in the present invention, it is important to set the cement blending amount so that a necessary strength level can be secured. The lower limit of C / W and C / B is limited by at least the uniaxial compressive strength of 28 days of age exceeding 1 N / mm 2 and depending on the application, for example, being 1.2 N / mm 2 or more. For this reason, it is not always necessary to directly define the lower limits of C / W and C / B in the present invention. However, for management, for example, it may be specified that C / W ≧ 0.2 and C / B ≧ 0.08.

一方、セメント水比(C/W)、あるいはセメントと再生微粉末の比(C/B)が高くなりすぎると、硬化後の強度が過剰に大きくなるだけでなく、セメントの節約や解体コンクリート塊のリサイクル率向上についても効果が低減する。種々検討の結果、質量基準でC/W≦0.5、かつC/B≦0.5を満たす範囲でセメントを配合させた場合に、材齢28日の一軸圧縮強度を概ね5N/mm2以下の範囲で調整することが可能であり、建築物の基礎地盤材料としては十分な強度レベルを有するものが実現できる。すなわち、C/W≦0.5、かつC/B≦0.5を満たす範囲において、従来の流動化処理土と比較して、強度レベルが高い割にはセメントの節約効果が大きく、解体コンクリート塊のリサイクル率も高いものが提供できる。なお、用途によってはC/W≦0.5、C/B≦0.5の規定に加え、さらに材齢28日の一軸圧縮強度の上限を例えば5N/mm2以下、あるいは3N/mm2以下に規定しても構わない。 On the other hand, if the cement water ratio (C / W) or the ratio of cement to recycled fine powder (C / B) becomes too high, not only will the strength after curing become excessive, but also cement saving and demolition concrete mass This also reduces the effect of improving the recycling rate. As a result of various investigations, when cement is blended in a range satisfying C / W ≦ 0.5 and C / B ≦ 0.5 on the mass basis, the uniaxial compressive strength at the age of 28 days is approximately 5 N / mm 2. Adjustment is possible within the following range, and a material having a sufficient strength level can be realized as a foundation ground material of a building. That is, in the range where C / W ≦ 0.5 and C / B ≦ 0.5, compared with the conventional fluidized soil, the cement saving effect is large for the higher strength level, and the demolished concrete A high lump recycling rate can be provided. Depending on the application, in addition to the provisions of C / W ≦ 0.5 and C / B ≦ 0.5, the upper limit of the uniaxial compressive strength at the age of 28 days is, for example, 5 N / mm 2 or less, or 3 N / mm 2 or less. You may prescribe to.

本発明のコンクリートは、基本的に再生微粉末(B)、水(W)、セメント(C)、ガラ骨材(G)からなる。この場合も、上記モルタルの場合と同様に、不可避的に混入する不純物として、土成分が少量(例えば再生微粉末100質量部に対し土成分3質量%以下)含まれていて構わないし、セメント系材料に含有させる一般的な添加材料(混和剤、混和材等)が通常許容される範囲(例えばセメント100質量部に対して、化学混和剤[高性能AE減水剤]であれば総量3質量部以下、混和材[高炉スラグ、フライアッシュ等]であれば総量70質量部以下)で含有されても構わない。再生微粉末(B)、水(W)、セメント(C)、ガラ骨材(G)および不可避的不純物からなる極めてシンプルな構成にすることもできる。   The concrete of the present invention is basically composed of recycled fine powder (B), water (W), cement (C), and glass aggregate (G). In this case as well, as in the case of the mortar, a small amount of soil component (for example, 3% by mass or less of the soil component with respect to 100 parts by mass of the regenerated fine powder) may be contained as an inevitably mixed impurity. A general additive material (admixture, admixture, etc.) to be included in the material is generally acceptable (for example, 100 parts by mass of cement, if it is a chemical admixture [high performance AE water reducing agent], the total amount is 3 parts by mass. Hereinafter, if it is an admixture [a blast furnace slag, fly ash, etc.], it may be contained in a total amount of 70 parts by mass or less. A very simple configuration comprising the regenerated fine powder (B), water (W), cement (C), glass aggregate (G) and inevitable impurities can also be used.

本発明のコンクリートにおいては、粗骨材としてコンクリートガラからなる「ガラ骨材」を使用することに特徴がある。ガラ骨材を使用したコンクリートでは乾燥収縮が大きくなるので、一般的なコンクリート用途にガラ骨材を使用することには問題が多い。流動化処理土の用途ではガラ骨材を使用しても乾燥収縮の影響は生じにくいが、材料分離の問題が発生しやすくなる。ところが、発明者らは詳細な研究により、流動化処理土の用途で「再生微粉末」と「ガラ骨材」を同時に使用することによって、材料分離の問題も顕在化せず、実用に供しうるコンクリートが実現できることを見出した。そのメカニズムについては現時点で未解明な部分が多いが、土成分あるいはさらにセメントの一部を代替する再生微粉末は、その平均粒径が50μm以下程度(例えば5〜50μm)と微細であるために、保水性を発揮するとともにガラ骨材表面付近あるいはガラ骨材周囲の空隙を目詰めする機能(フィラー効果)を発揮し、組織の緻密化や粗骨材界面の補強がもたらされることが考えられる。つまりコンクリートガラは、再生微粉末との相乗作用により、粗骨材としての使用が可能になるものと考えられる。   The concrete of the present invention is characterized in that “glass aggregate” made of concrete glass is used as the coarse aggregate. In concrete using glass aggregate, drying shrinkage becomes large, so there are many problems in using glass aggregate for general concrete applications. In the use of fluidized soil, the effect of drying shrinkage hardly occurs even when glass aggregate is used, but the problem of material separation is likely to occur. However, the inventors have conducted detailed research, and by using “recycled fine powder” and “gara aggregate” at the same time for the use of fluidized soil, the problem of material separation does not become obvious and can be put to practical use. We found that concrete can be realized. There are many unexplained parts about the mechanism at present, but the regenerated fine powder that replaces the soil component or part of the cement has a fine average particle size of about 50 μm or less (for example, 5 to 50 μm). It is considered that it exhibits water retention and functions to clog voids around the surface of the glass aggregate or around the glass aggregate (filler effect), leading to densification of the tissue and reinforcement of the coarse aggregate interface. . That is, it is considered that the concrete glass can be used as a coarse aggregate by synergistic action with the recycled fine powder.

そのガラ骨材の配合量は、基本的に混練物が流動化処理土の用途に適用できる特性を有し、かつ前述の強度レベルが得られる限り、特に制限はないが、質量基準でセメント(C)とガラ骨材(G)の比が例えばC/G≦0.2の範囲、好ましくは0.01≦C/G≦0.2の範囲において最適な配合量を見つけることができる。ガラ骨材は2種以上のものを混合して用いても構わない。その場合、2種以上のガラ骨材の合計量を上式のGの箇所に適用すればよい。   The compounding amount of the glass aggregate is not particularly limited as long as the kneaded material has characteristics that can be applied to the use of fluidized soil, and the above-mentioned strength level is obtained, but cement ( An optimum blending amount can be found when the ratio of C) to the aggregate (G) is, for example, in the range of C / G ≦ 0.2, preferably in the range of 0.01 ≦ C / G ≦ 0.2. Two or more kinds of glass aggregate may be mixed and used. In that case, what is necessary is just to apply the total amount of 2 or more types of glass aggregates to the location of G of said Formula.

再生微粉末として、解体コンクリート塊由来のコンクリートガラを図1に示すタイプの機械式すりもみ装置で処理して再生骨材を製造する際に、集塵機により回収されたものを用意した。再生微粉末の性質・組成を表1に示す。   As the regenerated fine powder, a material collected by a dust collector was prepared when a reclaimed aggregate was produced by processing a concrete grab derived from a demolition concrete lump with a mechanical grinder of the type shown in FIG. Table 1 shows the properties and composition of the regenerated fine powder.

ガラ骨材として、解体コンクリート塊を破砕して得たコンクリートガラ(再生クラッシャーランRC−40;分級して最大粒径40mm以下としたもの)を2種類用意した。これらは別々のコンクリート構造物(建築系建物)に由来するものである。セメントは、環境負荷低減を考慮し、再生材である高炉スラグ微粉末を含む高炉セメントB種を用意した。また、従来例(比較用)のモルタルおよびコンクリートを作るために、従来、流動化処理土に使用されている残土を用意した。残土、ガラ骨材、セメントの性質を表2に示す。   Two types of concrete glass (recycled crusher run RC-40; classified to a maximum particle size of 40 mm or less) obtained by crushing a demolished concrete lump were prepared as glass aggregates. These originate from separate concrete structures (architectural buildings). As the cement, considering the reduction of environmental load, a blast furnace cement type B containing fine blast furnace slag powder as a recycled material was prepared. Moreover, in order to make the mortar and concrete of the conventional example (for comparison), the residual soil conventionally used for the fluidized soil was prepared. Table 2 shows the properties of the remaining soil, glass aggregate, and cement.

これらの材料と、水を用いて、表3に示すA〜EおよびMAの6種類の調合にてモルタルおよびコンクリートを作成した。表3中、「CのB置換率」は、調合Aを基本調合として、調合Aに含まれるセメントを、どの程度、再生微粉末で置換したかを示したものである。コンクリートは、各調合のモルタル(残土または再生微粉末、水、セメントの混練物)に、さらに表3中に示す量のガラ骨材を混合したものである。   Using these materials and water, mortar and concrete were prepared by six types of compositions A to E and MA shown in Table 3. In Table 3, “B substitution rate of C” indicates how much the cement contained in Formulation A was replaced with recycled fine powder with Formulation A as the basic formulation. Concrete is a mixture of mortar (remaining soil or recycled fine powder, water, cement kneaded material) with the amount of glass aggregate shown in Table 3.

練り混ぜは以下の手順で行った。
〔泥水の作製〕
50Lの容器に再生微粉末を入れ、水(水道水)を投入したのち、ハンドミキサを用いて練り玉がなくなるまで練り混ぜることにより泥水を得た。従来例(比較用)の調合MAでは再生微粉末の代わりの残土を用いた。
〔モルタルの作製〕
上記泥水とセメントを50Lのポリ容器中で混合し、ハンドミキサを用いて30秒間練り混ぜた。その後、練り玉が確認された場合は、練り玉がなくなるまで練り混ぜた。このようにしてモルタルを得た。
〔コンクリートの作製〕
上記モルタルを50Lパン型ミキサに入れたのち、ガラ骨材を投入し、練り混ぜ30秒→休止・掻き落とし→練り混ぜ60秒の工程でコンクリートを得た。
泥水、モルタル、コンクリートについて、表4〜表6に示す試験を実施した。
The kneading was performed according to the following procedure.
[Muddy water production]
The regenerated fine powder was put in a 50 L container, water (tap water) was added, and then kneaded with a hand mixer until kneaded balls were removed to obtain muddy water. In the preparation MA of the conventional example (for comparison), the remaining soil instead of the regenerated fine powder was used.
[Production of mortar]
The muddy water and cement were mixed in a 50 L plastic container and kneaded for 30 seconds using a hand mixer. After that, when kneaded balls were confirmed, kneading was continued until the kneaded balls disappeared. In this way, a mortar was obtained.
[Production of concrete]
After the mortar was put in a 50 L pan mixer, glass aggregate was added, and concrete was obtained by mixing 30 seconds → pause / scraping → mixing 60 seconds.
The tests shown in Tables 4 to 6 were performed on muddy water, mortar, and concrete.

泥水、モルタル、コンクリートのフレッシュ性状を表7に示す。   Table 7 shows the fresh properties of muddy water, mortar, and concrete.

泥水は、再生微粉末を使用することによる性状の悪化は特に生じなかった。モルタルの性状も良好であった。再生微粉末を使用したコンクリートはやや軟らかい状態であり、材料分離の傾向は見られたものの、実用上、問題のない範囲であった。これに対し、再生微粉末を使用せずにガラ骨材を配合した従来例(比較用)のMAでは、実用上好ましくない材料分離が生じた。   The muddy water was not particularly deteriorated in properties due to the use of the regenerated fine powder. The properties of the mortar were also good. The concrete using the recycled fine powder was in a slightly soft state, and although there was a tendency of material separation, it was in a practically acceptable range. On the other hand, in the MA of the conventional example (for comparison) in which the glass aggregate was blended without using the regenerated fine powder, material separation which was not preferable in practice occurred.

図2に、材齢28日の一軸圧縮強度を示す。横軸は基本調合Aのセメントに対する再生微粉末置換率(表3中の「CのB置換率」)である。調合A、B、Cのモルタルおよびコンクリートで一軸圧縮強度1N/mm2以上の強度レベルが得られた。地盤強度目標値は建築物によって異なるが、例えば、地上11階RC構造の共同住宅を建設する事例を想定すると、長期許容支持力を0.4N/mm2として安全率3を掛けると、地盤強度目標値は1.2N/mm2に設定される。図2中の目標値はこの値を仮に記入したものである。本発明のコンクリートにおいて、この事例に必要な強度レベルの基礎地盤を構築することが十分可能であることがわかる。また、調合AとMAはセメント水比が同一であるが、再生微粉末を使用した本発明例の調合Aの方が、再生微粉末を使用せずに土を使用した従来例の調合MAよりも、高い強度レベルを示した。このことから、再生微粉末は強度に寄与する可能性を有している。 FIG. 2 shows the uniaxial compressive strength at the age of 28 days. The horizontal axis represents the recycled fine powder substitution rate (“B substitution rate of C” in Table 3) with respect to the cement of the basic blend A. A strength level of uniaxial compressive strength of 1 N / mm 2 or more was obtained with the mortars and concretes of Formulations A, B, and C. The target value of ground strength differs depending on the building. For example, assuming a case of building an apartment house with 11 floors RC structure, if the long-term allowable bearing capacity is 0.4 N / mm 2 and multiplied by a safety factor of 3, The target value is set to 1.2 N / mm 2 . The target value in FIG. 2 is a temporary entry of this value. In concrete of the present invention, to construct the intensity level of the foundation ground required for this case it is understood to be sufficiently possible. Although Formulation A and MA is the same cement water ratio, towards the Formulation A of the present invention example using playback fine powder, formulated in the conventional example using the soil without a reproduction powder MA Higher intensity level. From this, the regenerated fine powder has a possibility of contributing to the strength.

図3に、セメント水比C/Wと材齢28日の一軸圧縮強度の関係を示す。●がモルタル、■がコンクリートであり、左から調合D、C、B、Aである。発現する強度レベルはセメント水比によって概ね直線的に変化することがわかる。したがって、予備実験により、使用する材料に応じてセメント水比C/Wと材齢28日の一軸圧縮強度の関係を求めておけば、必要な強度レベルに対応しうる配合を容易に設定することができ、セメント使用量を必要最小限に抑えることが可能になる。   FIG. 3 shows the relationship between the cement water ratio C / W and the uniaxial compressive strength at the age of 28 days. ● is mortar, ■ is concrete, and is D, C, B, A from the left. It can be seen that the developed strength level changes almost linearly with the cement water ratio. Therefore, if the relationship between the cement water ratio C / W and the uniaxial compressive strength at the age of 28 days is determined according to the material to be used in a preliminary experiment, it is easy to set a blend that can meet the required strength level. This makes it possible to minimize the amount of cement used.

再生骨材を製造するための機械式すりもみ装置の構造を模式的に示した図。The figure which showed typically the structure of the mechanical grinding machine for manufacturing a reproduction | regeneration aggregate. 各モルタルおよびコンクリートの材齢28日における一軸圧縮強度を示したグラフ。The graph which showed the uniaxial compressive strength in the age of 28 days of each mortar and concrete. セメント水比C/Wと材齢28日における一軸圧縮強度の関係を示したグラフ。The graph which showed the relationship between cement water ratio C / W and the uniaxial compressive strength in the age of 28 days.

Claims (1)

解体コンクリート塊を原料として再生骨材を製造する際に副産される再生微粉末(B)、水(W)、セメント(C)、解体コンクリート塊を破砕することにより得られる粒径40mm以下のガラ骨材(G)の混練物からなり、質量基準で、C/W≦0.5、およびC/B≦0.5を満たす範囲で、材齢28日の一軸圧縮強度が1N/mm2を超える量のセメントを配合してなる建築物の基礎地盤材用コンクリート。 Recycled fine powder (B), water (W), cement (C), and a particle size of 40 mm or less obtained by crushing demolition concrete lump by-produced when producing reclaimed aggregate using demolition concrete lump as raw material A uniaxial compressive strength of 28 days of age is 1 N / mm 2 within a range satisfying C / W ≦ 0.5 and C / B ≦ 0.5 on a mass basis. Concrete for foundation soil of buildings that contains more than the amount of cement.
JP2007181881A 2007-07-11 2007-07-11 Concrete for building foundation ground Active JP5001732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181881A JP5001732B2 (en) 2007-07-11 2007-07-11 Concrete for building foundation ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181881A JP5001732B2 (en) 2007-07-11 2007-07-11 Concrete for building foundation ground

Publications (2)

Publication Number Publication Date
JP2009018956A JP2009018956A (en) 2009-01-29
JP5001732B2 true JP5001732B2 (en) 2012-08-15

Family

ID=40358927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181881A Active JP5001732B2 (en) 2007-07-11 2007-07-11 Concrete for building foundation ground

Country Status (1)

Country Link
JP (1) JP5001732B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002914A (en) * 2016-07-04 2018-01-11 カニエJapan株式会社 Ground improving additive, ground improving composition and ground improving method
CN114409224B (en) * 2022-02-23 2024-05-17 上海市政工程设计研究总院(集团)有限公司 Tempering modifier for water supply plant sludge, sludge material, preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678834B2 (en) * 1996-02-14 2005-08-03 株式会社トーメック Usage of hard dehydrated cake fine particles
JP3896544B2 (en) * 2003-01-16 2007-03-22 清水建設株式会社 Solidification slurry manufacturing method and ground improvement body
JP2005256379A (en) * 2004-03-11 2005-09-22 Shimizu Corp Artificial ground material and its construction method
JP2005320442A (en) * 2004-05-10 2005-11-17 Shimizu Corp Ground amending and solidifying material using waste concrete fine powder and method for producing the same
JP2007131804A (en) * 2005-11-14 2007-05-31 Shimizu Corp Soil backfilling material

Also Published As

Publication number Publication date
JP2009018956A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
KR101402572B1 (en) Method of brake fluid disposal and grinding aid for cement material
JP4906374B2 (en) Secondary concrete product and method for determining its composition
KR100930658B1 (en) Heavy-weight aggregate and heavy-weight concrete
JP2012012287A (en) Artificial stone and method for producing the same
KR100836598B1 (en) A composition of concrete mortar which used waste concrete
Khana et al. Strength and durability of mortar and concrete containing rice husk ash: a review
Kachwala et al. Effect of rice husk ash as a partial replacement of ordinary Portland cement in concrete
JP5001732B2 (en) Concrete for building foundation ground
JP3555987B2 (en) Recyclable concrete, mortar and recycling method
CN107365117B (en) Self-compacting micro-expansion C60 high-performance concrete
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
JP2015193537A (en) artificial stone
JP6571989B2 (en) Formulation of high standard fluidity improved soil
JP3806420B2 (en) Low strength mortar filler using shirasu
JP4847056B2 (en) Concrete containing crushed shell
JP6885835B2 (en) Cement additive and cement composition
KR20120066145A (en) Concrete composition containing large amounts of admixture
JP5851264B2 (en) Hydraulic composition
KR100526037B1 (en) Concret compositions having high compression intensity by using bottom-ash
JP2011168977A (en) Dam body construction method
KR101664170B1 (en) Cement mortar composite using coarsely cruched bottom ash
JP2016075080A (en) Cement slurry and soil improvement method
KR100886801B1 (en) Cement composition including fly ash manufactured from reject ash
JP2008239403A (en) Hydraulic composition
US20240190767A1 (en) Method for recycling cement-containing materials to produce reclaimed fines for use in cement-based materials and structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

R150 Certificate of patent or registration of utility model

Ref document number: 5001732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250