JP6571989B2 - Formulation of high standard fluidity improved soil - Google Patents

Formulation of high standard fluidity improved soil Download PDF

Info

Publication number
JP6571989B2
JP6571989B2 JP2015111400A JP2015111400A JP6571989B2 JP 6571989 B2 JP6571989 B2 JP 6571989B2 JP 2015111400 A JP2015111400 A JP 2015111400A JP 2015111400 A JP2015111400 A JP 2015111400A JP 6571989 B2 JP6571989 B2 JP 6571989B2
Authority
JP
Japan
Prior art keywords
iwa
aggregate
concrete
ratio
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015111400A
Other languages
Japanese (ja)
Other versions
JP2016222500A (en
Inventor
昭浩 石井
昭浩 石井
翼 杉沢
翼 杉沢
良治 桜田
良治 桜田
憲昭 佐々木
憲昭 佐々木
利治 伊藤
利治 伊藤
Original Assignee
大森建設株式会社
能代中央生コン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大森建設株式会社, 能代中央生コン株式会社 filed Critical 大森建設株式会社
Priority to JP2015111400A priority Critical patent/JP6571989B2/en
Publication of JP2016222500A publication Critical patent/JP2016222500A/en
Application granted granted Critical
Publication of JP6571989B2 publication Critical patent/JP6571989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、フレッシュ状態にある戻りコンクリートに無機系ポリマーを添加してモルタルを骨材に付着させて骨材を造粒した高規格流動性改良土の配合設計法に関する。   The present invention relates to a blending design method for high-standard fluidity improved soil in which an inorganic polymer is added to fresh concrete in a fresh state and mortar is adhered to the aggregate to granulate the aggregate.

従来、コンクリート打設現場で余剰となった戻りコンクリートの処理、ならびに製造プラントや運搬車の洗浄に伴い発生する残渣(スラッジ)の処理が課題となっている。
特に、産業廃棄物処分場の狭隘化や処分費用の高騰、さらに東日本震災以降の骨材の安定供給の確保という観点から、産業廃棄物である戻りコンクリートの新たな付加価値の高い再資源化技術が求められている。
生コンクリートの製造には、残渣(スラッジ)は混入していないので、製造するための方法が確立されていないし、また、地盤改良材としての製造方法では、セメント系の固化材を対象土に混合し、対象土の量に対する混合比率を規定しているが、室内試験と現場でのバラツキが大きいことが課題である。地盤改良では、単に土のボリュームに対するセメントや石灰の添加率で表わされる。
コンクリートの配合でいうと、単に単位セメント量を示しているだけで、単位水量は確定していない。このため、土の含水比や土に含まれる有機不純物(フミン酸、タンニン酸など)、泥分や貝殻などの不純物によって硬化が阻害される。これらの要因により、最適な配合の決定も試行錯誤的となり、改良後の安定した強度管理は難しいことになる。
Conventionally, the processing of the return concrete which became surplus in the concrete placement site, and the processing of the residue (sludge) generated with the cleaning of the manufacturing plant and the transport vehicle have been problems.
In particular, from the viewpoints of narrowing industrial waste disposal sites, rising disposal costs, and ensuring a stable supply of aggregates after the Great East Japan Earthquake, new high-value-added recycling of recycled concrete, which is industrial waste Technology is required.
Since there is no residue (sludge) mixed in the production of ready-mixed concrete, a method for production has not been established, and in the production method as a ground improvement material, cement-based solidified material is mixed with the target soil. However, although the mixing ratio with respect to the amount of the target soil is specified, there is a problem that the variation in the laboratory test and the field is large. In ground improvement, it is simply expressed by the addition rate of cement and lime to the soil volume.
In terms of the mix of concrete, it simply indicates the unit cement amount, but the unit water amount is not fixed. For this reason, hardening is inhibited by impurities such as moisture content of the soil, organic impurities (humic acid, tannic acid, etc.), mud and shells contained in the soil. Due to these factors, the determination of the optimum blend becomes trial and error, and stable strength management after improvement becomes difficult.

戻りコンクリートの有効利用性を向上させる処理方法が公知となっている(特許文献1を参照)。
この公知技術は、戻りコンクリートにその凝結を少なくとも36時間にわたって防止する超遅延剤を添加混合し、必要に応じてその流動性を高める流動化剤を添加混合した後、目開きが5〜10mmのふるいを用いてふるい処理し、得られた細骨材含有モルタルをコンクリートポンプ工法における先送りモルタルとして使用する戻りコンクリートの処理方法である。
A processing method for improving the effective utilization of returned concrete is known (see Patent Document 1).
In this known technique, after adding a super retarder that prevents the setting of the returned concrete for at least 36 hours and, if necessary, a fluidizing agent that enhances the fluidity is added and mixed, the opening is 5 to 10 mm. This is a return concrete processing method in which a fine aggregate-containing mortar obtained by sieving using a sieve is used as a pre-feed mortar in a concrete pump method.

しかし、この公知技術も、コンクリート打設現場で余剰となった戻りコンクリートの処理、ならびに製造プラントや運搬車の洗浄に伴い発生する残渣(スラッジ)の処理を根本的に解決したものとなっていない。
そこで、本発明は、フレッシュ状態にある戻りコンクリートに無機系ポリマーを添加してモルタルを骨材に付着させて骨材を造粒する方法を用いて、生コンクリート由来の残渣(スラッジ)を混入した生コンクリートの代用品となる「高規格流動性改良土」を製造し、戻りコンクリートや残渣(スラッジ)が収益を生み出す「高規格流動性改良土」を原材料へと転換を図るものである。
However, this well-known technique also does not fundamentally solve the processing of the return concrete surplus at the concrete placing site and the processing of residue (sludge) generated by the cleaning of the manufacturing plant and the transport vehicle. .
Therefore, in the present invention, a residue (sludge) derived from ready-mixed concrete is mixed using a method of granulating the aggregate by adding an inorganic polymer to the return concrete in a fresh state and attaching the mortar to the aggregate. “High-standard fluidity-improved soil”, which is a substitute for ready-mixed concrete, is manufactured, and “high-standard fluidity-improved soil” in which return concrete and residue (sludge) generate profits is converted to raw materials.

特許第4344043号公報Japanese Patent No. 4344403

本発明は、フレッシュ状態にある戻りコンクリートに無機系ポリマーを添加してモルタルを骨材に付着させて骨材を造粒した高規格流動性改良土の配合設計法を提供することを目的とする。
An object of the present invention is to provide a blended design method for high-standard fluidity improved soil in which an inorganic polymer is added to return concrete in a fresh state and mortar is adhered to the aggregate to granulate the aggregate. .

本発明の高規格流動性改良土の配合設計法は、戻りコンクリートの体積の最大25%相当の残渣を添加し、無機系ポリマー添加剤を、その基準数量を投入し混練して造粒されたIWA骨材を製造する工程と、前記IWA骨材に占めるIWA細骨材とIWA粗骨材の品質特性と、その混合割合を算出する工程と、基本となる配合を、一般的なコンクリートの配合設計で使用されているI.Lyseの提唱したセメント水比説の「コンクリートの強度〜セメント水比」関係を利用した目標とする設計基準強度より水セメント比を決定する工程と、当該工場で使用している水セメント比毎の基準配合を基準としてIWA骨材のIWA細骨材とIWA粗骨材の混合割合より、基準配合を満たす各配合材料の単位量を算出する工程と、水セメント比の異なる配合で試験練りを行い、圧縮強度とセメント水比の一次関係式を利用して、水セメント比を決定する工程と、この水セメント比を基に各配合材料の配合割合を決定する工程と、からなる。   The blending design method of the high standard fluidity improved soil of the present invention was granulated by adding a residue corresponding to a maximum of 25% of the volume of the return concrete, adding an inorganic polymer additive, and kneading the reference quantity. A process for producing IWA aggregate, a process for calculating quality characteristics of IWA fine aggregate and IWA coarse aggregate in the IWA aggregate, and a mixing ratio thereof, and a basic blending, a general concrete blending I. used in design The process of determining the water cement ratio from the target design standard strength using the “concrete strength to cement water ratio” relationship of the cement water theory proposed by Lyse, and for each water cement ratio used in the factory Based on the standard composition, the process of calculating the unit amount of each compounding material that satisfies the standard composition from the mixing ratio of IWA fine aggregate and IWA coarse aggregate of IWA aggregate, and the test kneading with the composition with different water cement ratio The method includes a step of determining a water cement ratio using a linear relational expression of a compressive strength and a cement water ratio, and a step of determining a blending ratio of each compounding material based on the water cement ratio.

本発明の高規格流動性改良土の配合設計法は、生コンクリート業界の長年の課題であった戻りコンクリートや残渣(スラッジ)が収益を生み出す原材料へと転換を図ることができ、かつ抑制された処理場の延命化に寄与でき、これは経営面では負債を資産に転じる効果がある。
また、この高規格流動性改良土は、通常より安価で提供できるため、建設費用の低減も期待できる効果がある。
The blending design method of the high standard fluidity improved soil of the present invention can be converted to a raw material from which return concrete and residue (sludge), which has been a long-standing problem in the ready-mixed concrete industry, generate profits, and have been suppressed. This can contribute to extending the life of the treatment plant, which has the effect of turning debt into assets in terms of management.
In addition, since this high standard fluidity improved soil can be provided at a lower cost than usual, it can be expected to reduce construction costs.

本発明の高規格流動性改良土の配合設計方法について、以下に説明する。
コンクリート打設現場で余剰となった戻りコンクリートへ、その戻りコンクリートの体積の最大25%相当の残渣(スラッジ)を添加し、無機系ポリマー添加剤(例えば、Re−Con Zero(MAPEI社製;商品名))を、その基準数量を投入し混錬する。その時間はポリマー添加剤における基準時間とする。これによって得られた造粒骨材(以下、IWA骨材という。)を使用して、生コンクリートの代替品となる「高規格流動性改良土」を製造する。
The blending design method of the high standard fluidity improving soil of the present invention will be described below.
Residue (sludge) equivalent to a maximum of 25% of the volume of the return concrete is added to the return concrete surplus at the concrete placement site, and an inorganic polymer additive ( for example, Re-Con Zero (manufactured by MAPEI); Name)) ), and then knead the standard quantity. The time is the reference time for the polymer additive. Using the granulated aggregate obtained in this way (hereinafter referred to as IWA aggregate), “high-standard fluidity improved soil” that is an alternative to ready-mixed concrete is manufactured.

次に、IWA骨材に占めるIWA細骨材とIWA粗骨材の品質特性と、その混合割合を算出する(表1を参照)。   Next, the quality characteristics of the IWA fine aggregate and the IWA coarse aggregate in the IWA aggregate and the mixing ratio thereof are calculated (see Table 1).

Figure 0006571989
Figure 0006571989

基本となる配合を、一般的なコンクリートの配合設計で使用されているI. Lyseの提唱したセメント水比説の「コンクリートの強度〜セメント水比」関係を利用した目標とする設計基準強度より水セメント比を決定する方法に基づいて行うものである。
この方法によれば、W(水)、C(セメント)、SIWA(IWA細骨材)、GIWA(IWA粗骨材)、Ad(混和剤)の各配合材料を、コンクリートの配合設計法と同様の手法で各配合材料の容積までも含めて配合計算を行うため、厳密な配合設計が可能となる(表2を参照)。

The basic mix is more water than the target design standard strength using the “concrete strength to cement water ratio” relationship in the cement water theory proposed by I. Lyse, which is used in general concrete mix design. This is based on a method for determining the cement ratio.
According to this method, W (water), C (cement), S IWA (IWA fine aggregates), G IWA (IWA coarse aggregate) Each formulation material A d (admixture), mix design of the concrete Since the blending calculation is performed including the volume of each blending material in the same manner as the method, strict blending design is possible (see Table 2).

Figure 0006571989
Figure 0006571989

生コン製造工場(能代中央生コン株式会社)における通常使用材料の指定値を求める(表3を参照)。 The designated value of the normally used material in the ready- mix manufacturing factory (Noshiro Chuo-seikon Co., Ltd.) is obtained (see Table 3).

Figure 0006571989
Figure 0006571989

生コン製造工場における骨材品質特性(表1)、基本配合(表2)に基づくIWA骨材を使用した数量計算を行う。 Quantity calculation using IWA aggregate based on aggregate quality characteristics (Table 1) and basic composition (Table 2) in the ready-mixed concrete manufacturing factory.

Figure 0006571989
Figure 0006571989

Figure 0006571989
Figure 0006571989

Figure 0006571989
Figure 0006571989

Figure 0006571989
Figure 0006571989

Figure 0006571989
Figure 0006571989

Figure 0006571989
Figure 0006571989

Figure 0006571989
Figure 0006571989

上記数量計算に基づき、IWA骨材使用配合表を作成する(表4を参照)。   Based on the above quantity calculation, an IWA aggregate usage recipe is created (see Table 4).

Figure 0006571989
Figure 0006571989

具体的な手順としては、生コン製造工場で使用している水セメント比(W/C)毎の基準配合(表2)を基準としてIWA骨材のIWA細骨材とIWA粗骨材の混合割合より、基準配合を満たす各配合材料の単位量を算出する。
基準配合がない場合は、コンクリート標準示方書(土木学会)の基準配合表を使用し、IWA骨材のIWA細骨材とIWA粗骨材の混合割合より、基準配合を満たす各配合材料の単位量を算出する。
As a specific procedure, IWA aggregate IWA fine aggregate and IWA coarse aggregate mixing ratio based on the standard mix (Table 2) for each water cement ratio (W / C) used in the ready-mixed concrete manufacturing plant From the above, the unit amount of each compounding material that satisfies the standard compounding is calculated.
If there is no standard blending, use the standard blending table of the concrete standard specification (Japan Society of Civil Engineers), and the unit of each blending material that satisfies the standard blending from the mixing ratio of IWA fine aggregate and IWA coarse aggregate of IWA aggregate Calculate the amount.

IWA骨材に占める粗骨材と細骨材の割合で、基準配合を満たす粗骨材量か細骨材量を算出し、どちらか一方が基準配合に満たない場合は、不足部分を補充する。
この方式で、水セメント比の異なる配合で試験練りを行い、セメント水比(水セメント比の逆数)と圧縮強度の一次関係式を利用して水セメント比を決定し、工場に基準配合がある場合はその水セメント比における配合からIWA量を決定する。基準配合がない場合はコンクリート標準示方書(土木学会)コンクリートの単位粗骨材容積、細骨材率および単位水量の概略値と補正表により試験練りを実施し所定の配合を決定する。
Calculate the amount of coarse aggregate or fine aggregate that satisfies the standard composition by the ratio of coarse aggregate and fine aggregate in the IWA aggregate, and if one of them does not meet the standard composition, fill the shortage .
In this method, test kneading is conducted with different water cement ratios, the water cement ratio is determined using the primary relational expression of cement water ratio (reciprocal of water cement ratio) and compressive strength, and the factory has a standard blend In this case, the amount of IWA is determined from the formulation at the water cement ratio. When there is no standard blending, the concrete standard specification (JST) conducts test milling based on the rough values of unit coarse aggregate volume, fine aggregate ratio and unit water volume of concrete and a correction table to determine a predetermined blend.

[試験練り]
生コン製造工場(能代中央生コン株式会社)における、IWA細骨材回収時にフライアッシュを添加しない場合と添加した場合のコンクリートの強度〜セメント水比関係は以下に示すとおりである。各工場における環境下で試験練りにより、同様のコンクリートの強度〜セメント水比の関係式を構築できる。
(1)フライアッシュを添加しない場合のコンクリートの強度〜セメント水比
[Examination]
The relationship between the strength of the concrete and the cement water ratio when adding fly ash at the time of IWA fine aggregate recovery and when adding it at the ready-mix manufacturing factory (Noshiro Chuo-seikon Co., Ltd.) is as follows. A similar relational expression between the strength of concrete and the cement water ratio can be established by test-kneading under the environment in each factory.
(1) Strength of concrete without adding fly ash to cement water ratio

Figure 0006571989
(2)フライアッシュを添加した場合のコンクリートの強度〜セメント水比
Figure 0006571989
(2) Strength of concrete when adding fly ash to cement water ratio

Figure 0006571989
(3)IWA骨材造粒時に残渣(スラッジ)を添加する場合のコンクリートの強度〜セメント水比
Figure 0006571989
(3) Concrete strength to cement water ratio when residue (sludge) is added during IWA aggregate granulation

Figure 0006571989
Figure 0006571989

一般的なコンクリートの配合設計で使用されているI.Lyseの提唱したセメント水比説の「コンクリートの強度〜セメント水比」の関係式を利用して目標とする設計基準強度より水セメント比を決定する。これに基づいて定めた配合で試験練りを行い、コンクリートの強度やワーカビィリティを事前に確認するプロセスを持つ「高規格流動性改良土」の配合設計法である。   I. used in general concrete mix design. The water cement ratio is determined from the target design standard strength by using the relational expression of “concrete strength to cement water ratio” in the cement water theory proposed by Lyse. This is a blending design method for “high-standard fluidity-improving soil” that has a process of confirming the strength and workability of concrete in advance by conducting test mixing with a composition determined based on this.

追記として、能代中央生コン株式会社でのIWA骨材試験練り配合記録及びIWA骨材試験練り結果記録を表示する(表5、表6を参照)。   As an additional note, the IWA aggregate test kneading record and the IWA aggregate test kneading result record at Noshiro Chuseikon Co., Ltd. are displayed (see Tables 5 and 6).

Figure 0006571989
Figure 0006571989

Figure 0006571989
Figure 0006571989

Claims (1)

戻りコンクリートの体積の最大25%相当の残渣を添加し、無機系ポリマー添加剤を、その基準数量を投入し混錬して造粒されたIWA骨材を製造する工程と、前記IWA骨材に占めるIWA細骨材とIWA粗骨材の品質特性と、その混合割合を算出する工程と、配合設計の基本となる水セメント比を、一般的なコンクリートの配合設計で使用されているI.Lyseの提唱したセメント水比説の「コンクリートの強度〜セメント水比」関係を利用した目標とする設計基準強度より水セメント比を決定する工程と、生コン製造工場で使用している水セメント比毎の基準配合を基準としてIWA骨材のIWA細骨材とIWA粗骨材の混合割合より、基準配合を満たす各配合材料の単位量を算出する工程と、水セメント比の異なる配合で試験練りを行い、コンクリートの強度とセメント水比の一次関係式を利用して、水セメント比を決定する工程と、この水セメント比を基に各配合材料の単位量を決定する工程と、からなることを特徴とする高規格流動性改良土のコンクリート配合方法。 Adding a residue corresponding to a maximum of 25% of the volume of the return concrete, adding a reference quantity of inorganic polymer additive, kneading and granulating the IWA aggregate, and adding to the IWA aggregate The quality characteristics of IWA fine aggregate and IWA coarse aggregate occupying, the process of calculating the mixing ratio, and the water cement ratio which is the basis of the blend design are used in the general concrete blend design. The process of determining the water cement ratio from the target design standard strength using the “concrete strength to cement water ratio” relationship of the cement water theory proposed by Lyse, and each water cement ratio used in the ready-mixed concrete manufacturing plant From the mixing ratio of IWA fine aggregate and IWA coarse aggregate of IWA aggregate based on the standard blending of IWA aggregate, the process of calculating the unit amount of each blending material that satisfies the standard blending, and the test kneading with a blend of different water cement ratio And determining a water cement ratio using a linear relational expression of concrete strength and cement water ratio, and determining a unit amount of each compounding material based on this water cement ratio. A concrete blending method for high standard fluidity improved soil.
JP2015111400A 2015-06-01 2015-06-01 Formulation of high standard fluidity improved soil Active JP6571989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111400A JP6571989B2 (en) 2015-06-01 2015-06-01 Formulation of high standard fluidity improved soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111400A JP6571989B2 (en) 2015-06-01 2015-06-01 Formulation of high standard fluidity improved soil

Publications (2)

Publication Number Publication Date
JP2016222500A JP2016222500A (en) 2016-12-28
JP6571989B2 true JP6571989B2 (en) 2019-09-04

Family

ID=57745395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111400A Active JP6571989B2 (en) 2015-06-01 2015-06-01 Formulation of high standard fluidity improved soil

Country Status (1)

Country Link
JP (1) JP6571989B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258250A1 (en) * 2019-06-28 2020-12-30 深圳信息职业技术学院 Test sample preparation method and test sample preparation system
CN112035930B (en) * 2020-09-01 2024-03-29 兰州理工大学 Middle fluidity concrete mix proportion design method based on mortar rheological property

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468695A1 (en) * 2010-12-21 2012-06-27 Mapei S.p.A. Method for recycling concrete
JP5894057B2 (en) * 2012-11-06 2016-03-23 株式会社依田儀一商店 Low strength concrete for pumping and manufacturing method of low strength concrete for pumping

Also Published As

Publication number Publication date
JP2016222500A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP2007131804A (en) Soil backfilling material
JP6571989B2 (en) Formulation of high standard fluidity improved soil
JP2016011353A (en) Composition for foundation improvement, foundation improved body, foundation improvement method and foundation recovery method
KR101299163B1 (en) Firming composition for hardening weak ground using early-strength cement and industrial by-product of minerals and the manufacturing method thereof
JP2011207952A (en) Method for producing cement-based solidifying material, method for solidifying soil, and method for reducing elusion amount of hexavalent chromium from solidified soil
JP5894057B2 (en) Low strength concrete for pumping and manufacturing method of low strength concrete for pumping
Serpell et al. Relative proportioning method for controlled low-strength material
JP6487133B1 (en) Ground improvement method
JP2007320314A (en) Solidifying method and solidifying agent used in the same
JP2016074763A (en) Method for producing cement-based solidifying material, method for solidifying soft soil, and method for reducing amount of hexavalent chromium to be eluted from solidified soil
JP5001732B2 (en) Concrete for building foundation ground
Fauzi et al. Sustainable controlled low-strength material: Plastic properties and strength optimization
JP2015224503A (en) Fluidization-treated soil and method of manufacturing the same
JP2016075080A (en) Cement slurry and soil improvement method
JP6885835B2 (en) Cement additive and cement composition
JP6990140B2 (en) Manufacturing method of solidified soil
JP5709046B2 (en) Cement composition
JP2004218337A (en) Soil-cement wall reclamation material
JP2006274765A (en) Plastic grout made by using ready-mixed concrete sludge and plastic grouting method
JP6497085B2 (en) Manufacturing method of high strength fresh concrete
JP2016074559A (en) Cement slurry and ground improvement method
JP2003002725A (en) Construction material using site generated rock material
JP6749559B1 (en) Ground improvement method
RU2278837C1 (en) Complex additive for concrete mix
JP3556155B2 (en) Granulated / hardened material of coal ash blended as supplementary material with roadbed material, method of manufacturing the same, roadbed material blended with granulated / hardened material of coal ash as supplementary material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6571989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250