JP2019055005A - 粒子線治療システム - Google Patents

粒子線治療システム Download PDF

Info

Publication number
JP2019055005A
JP2019055005A JP2017180903A JP2017180903A JP2019055005A JP 2019055005 A JP2019055005 A JP 2019055005A JP 2017180903 A JP2017180903 A JP 2017180903A JP 2017180903 A JP2017180903 A JP 2017180903A JP 2019055005 A JP2019055005 A JP 2019055005A
Authority
JP
Japan
Prior art keywords
irradiation
dose
radiation
particle beam
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017180903A
Other languages
English (en)
Inventor
貴啓 山田
Takahiro Yamada
貴啓 山田
野村 拓也
Takuya Nomura
拓也 野村
田所 昌宏
Masahiro Tadokoro
昌宏 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017180903A priority Critical patent/JP2019055005A/ja
Publication of JP2019055005A publication Critical patent/JP2019055005A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

【課題】ビームの計測機能を損なうことなく、ビームが通過する厚みを低減することが可能なビームモニタを備えた粒子線治療システムを提供する。【解決手段】粒子線治療システムは、ビーム90の位置または形状を計測する位置・線量モニタ43と、位置・線量モニタ43によって計測されたビーム90の位置または形状の計測値に対して関数当てはめによって照射線量を演算し、演算された照射線量に基づいてビーム90の照射制御を行う位置・線量モニタ制御装置73,照射ノズル制御装置13と、を備える。【選択図】 図2

Description

本発明は、シンクロトロンやサイクロトロンなどの加速器により加速された荷電粒子ビームをがん患部に照射してがん治療を行う粒子線治療システムに関する。
非特許文献1には、照射ノズル内に正線量モニタ、副線量モニタおよびスポット位置モニタを備える陽子線治療システムが開示されている。
また、特許文献1には、照射ノズル内のスポット位置モニタで計測された信号に基づき、照射線量を評価する制御装置を備えた陽子線治療システムが開示されている。
特開2013−158525号公報
粒子線治療において患部に荷電粒子ビームを照射させる方法として、荷電粒子を直接走査しながら照射対象に照射するスキャニング照射法が知られている。
このスキャニング照射法では、3次元的な患部形状を深さ方向の複数の層に分割し、更に、各層を2次元的なスポットに分割する。深さ方向には荷電粒子ビームのエネルギーを変更して各層を選択的に照射し、各層内では照射する荷電粒子ビームを電磁石により2次元的に走査することで各スポット位置に所定の線量を与える。
照射の際、スポットの位置・サイズおよび線量は照射ノズル内に設置されたモニタによって逐次計測され、照射制御に使用される。スポットの位置およびサイズはプロファイルモニタによって計測される。また、スポットの線量は線量モニタによって計測される。線量モニタは冗長性を確保する為に、正線量モニタと副線量モニタの2種類が使用されている。
各スポットの照射量は、患部に所定の線量が照射されるように計画されている。スポット毎の線量分布には空間的広がりがあるため、患部の周辺に在る組織にも線量が付与される。この線量分布の空間的広がりをスポットサイズと呼ぶ。患部以外への照射量を低減する為にスポットサイズの低減が求められている。
上述した非特許文献1には、照射ノズル内に正線量モニタ、副線量モニタおよびスポット位置モニタを備える陽子線治療システムが開示されている。しかしながら、照射ノズル内でビームがモニタなどを通過すると散乱によりスポットサイズが大きくなる。そのため、スポットサイズを低減する為には、照射ノズル内でビームが通過する厚みを低減することが求められる。
このような要求に対し、特許文献1に示されたように、スポット位置モニタを用いて照射線量をある程度の水準で計測することは可能である。しかしながら、線量モニタを省略するためには更なる精度の改善が必要であると考えられる。
本発明は、ビームの計測機能を損なうことなく、ビームが通過する厚みを低減することが可能なビームモニタを備えた粒子線治療システムを提供する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、患者の患部に対して放射線を照射する粒子線治療システムであって、前記放射線の位置または形状を計測する放射線計測器と、前記放射線計測器によって計測された前記放射線の位置または形状の計測値に対して関数当てはめによって照射線量を演算し、前記照射線量に基づいて前記放射線の照射制御を行う制御装置と、を備えたことを特徴とする。
本発明によれば、ビームの計測機能を損なうことなく、ビームが通過する厚みを低減することができる。
本発明の実施形態1の粒子線治療システムの全体構成を示す図である。 実施形態1の粒子線治療システムの粒子線スキャニング照射ノズルの概略を示す図である。 患部をスキャニング照射していく時の、同じエネルギーで照射する層と荷電粒子ビームと照射スポットを示す図である。 患部をスキャニング照射していく時の深さ方向の線量分布を示す図である。 実施形態1の粒子線治療システムにおける位置・線量モニタのビーム進行方向の構造を示す図である。 実施形態1の粒子線治療システムにおける位置・線量モニタ、位置・線量モニタ制御装置および照射ノズル制御装置の出力信号の経路を示す図である。 実施形態1の粒子線治療システムにおける収集電極からの出力信号を示す図である。 実施形態1の粒子線治療システムでのスキャニング照射の制御のタイムチャートを示す図である。 実施形態2の粒子線治療システムの粒子線スキャニング照射ノズルの概略を示す図である。 実施形態3の粒子線治療システムにおける照射量の補正係数のテーブルを示す図である。
以下に本発明の粒子線治療システムの実施形態を、図面を用いて説明する。
<実施形態1>
本発明の粒子線治療システムの実施形態1について図1乃至図8を用いて説明する。
最初に、粒子線治療システムの全体構成について図1を用いて説明する。図1は本実施形態の粒子線治療システムの全体構成を示す図である。
図1において、粒子線治療システムは、患者5の患部51に対して放射線を照射するシステムであり、荷電粒子ビーム90(以下、ビーム90)を加速する加速器20と、加速されたビーム90を照射ノズルまで輸送するビーム輸送系30と、患部にビームを照射する照射ノズル40と、治療台50と、全体制御装置11と、加速器・ビーム輸送系制御装置12と、照射ノズル制御装置13と、を備える。
加速器20は、入射器21とシンクロトロン加速器22を備える。加速器20で光速の6〜7割まで加速されたビーム90は、ビーム輸送系30に配置された偏向電磁石31により真空中を磁場で曲げられながら照射ノズル40まで輸送される。照射ノズル40でビーム90は照射領域の形状に合致するように整形され、照射対象に照射される。照射対象は、例えば治療台50に横になった患者5の患部51などである。
次に、粒子線スキャニング照射ノズルの詳細について図2乃至図4を用いて説明する。図2は粒子線スキャニング用の照射ノズル40の概略を示す図である。図3は患部をスキャニング照射していく時の、同じエネルギーで照射する層と荷電粒子ビームと照射スポットを示す図である。図4は患部をスキャニング照射していく時の深さ方向の線量分布を示す図である。
照射ノズル40では、ビーム90の通過方向に対して垂直な平面にビーム90を走査するため走査電磁石41A,41Bにより二次元平面内にビーム90を走査する。走査電磁石41A,41Bにより走査されたビーム90は、患部51に照射される。
正線量モニタ42(第1計測器)は各スポットに照射されるビーム90の線量を演算するために、ビーム90の通過によって生じた電子を収集するためのモニタである。正線量モニタ42の検出信号(電子を収集して得られたパルス信号)は正線量モニタ制御装置72に入力される。
正線量モニタ制御装置72は、正線量モニタ42から入力された検出信号に基づいて各照射スポットに照射される照射量を演算し、演算した照射量を照射ノズル制御装置13に出力する。
位置・線量モニタ43(第2計測器)は各照射スポットの位置(例えば重心の位置)および照射量を演算するために、ビーム90の通過によって生じた電子を収集するためのモニタである。位置・線量モニタ43の検出信号(電子を収集して得られたパルス信号)は位置・線量モニタ制御装置73に入力される。
位置・線量モニタ制御装置73は、位置・線量モニタ43から入力された検出信号に基づいて各照射スポットにおける線量をカウントし、演算したカウント値を位置・線量モニタ43から入力された検出信号とともに照射ノズル制御装置13に出力する。
照射ノズル制御装置13は、位置・線量モニタ43で計測された検出信号よりビーム90の通過位置を求め、求めた通過位置のデータから照射スポットの位置および幅の演算を行い、ビーム90の照射位置を確認する。
また、本実施形態の照射ノズル制御装置13では、位置・線量モニタ43で計測したビーム位置のデータを基に照射量を演算し、確認することを特徴とする。この照射量の演算では、位置・線量モニタ43で計測したビーム位置のデータに対して関数当てはめによって照射線量を求める。その詳細は後述する。
更には、本実施形態の照射ノズル制御装置13は、正線量モニタ42により計測された照射線量に応じてビーム90の照射の制御を進行するとともに、位置・線量モニタ43によって計測された照射線量に応じてビーム90の照射を停止する制御を実施する。その詳細についても後述する。
リッジフィルタ44は、ブラッグピークを太らせるために必要な場合に使用する。また、レンジシフタ45は、ビーム90の到達位置を調整する際に挿入することができる。
本実施形態のようなスキャニング照射では、あらかじめ治療計画装置(図示省略)で患部を一様な線量で照射するための照射スポットの位置と各照射スポットに対する目標照射量を計算する。粒子線スキャニング照射の模式図を図3に示す。
図3に示すように、スキャニング照射では、患部51を層52に分割し、各層52内は同じエネルギーのビーム90で照射していく。一つの層52内にはスポット53が1つ以上配置される。
治療計画装置で計算された患者毎のデータは、治療計画装置から図1に示す粒子線治療システムの全体制御装置11に送られる。全体制御装置11は、加速器・ビーム輸送系制御装置12にエネルギー変更、ビームの出射信号又は出射停止信号などを出力する。また、全体制御装置11は、各スポットの座標値、照射量のデータを照射ノズル制御装置13に送る。照射スポットの座標値は、走査電磁石41A,41Bの励磁電流値に変換されて、図2に示す走査電磁石電源制御装置71に送られる。
治療計画装置で配置されたある照射スポット53に対して、定められた照射量のビーム90を照射すると、次の照射スポット53を照射する。ある層52の照射が完了すると、次の層52の照射を行う。
ビーム進行方向、すなわち患部深さ方向の照射位置変更には、ビームのエネルギーを変更する。ビームのエネルギーが変化すると、ビームの体内到達位置が変わる。エネルギーの高い荷電粒子ビームは、体内の深い位置まで到達し、エネルギーの低い荷電粒子ビームは体内の浅い位置までしか到達しない。
スキャニング照射では、深さ方向の一様な線量分布形成にビームのエネルギーを変更して、照射量を適切に配分することにより深さ方向のSOBP(Spread Out Bragg Peak)を形成する。各エネルギーの照射量を適切に配分することで各エネルギーのブラッグカーブ81を重ね合わせて、図4に示すように深さ方向に一様な線量分布SOBP82を形成する。
次に、本発明の特徴である位置・線量モニタ43の詳細について図5乃至図7を用いて説明する。図5は位置・線量モニタ43のビーム進行方向の構造を示す図である。図6は位置・線量モニタ43、位置・線量モニタ制御装置73および照射ノズル制御装置13の出力信号の経路を示す図である。図7は位置・線量モニタ43からの出力信号の一例を示す図である。
位置・線量モニタ43はマルチワイヤ型電離箱であり、走査電磁石41A,41Bで走査される2方向のスポット位置および照射量を計測する。
図5に示すように、位置・線量モニタ43は、接地電極91A,91B、高電圧電極92A,92B,92C、および収集電極93A,93Bで構成される。収集電極93A,93Bは複数の金属ワイヤがほぼ等間隔で配置された構造を持つ。収集電極93Aと収集電極93Bとでは、スポット位置を計測する位置に応じて収集電極の配置方向が異なっている。
位置・線量モニタ43の内部には空気などの気体が充填されている。ビーム90が通過すると、ビーム90が通過した位置の気体がビーム90により電離される。収集電極93A,93Bはこの電離によって生じた電子を収集することにより、照射されたスポットの位置および線量を計測する。
図6に示すように、それぞれ収集電極93A,93Bの出力信号は位置・線量モニタ制御装置73に入力される。収集電極93A,93Bからの出力信号は図7に示すように、照射されたスポットに応じて収集電極93A,93Bの位置ごとに異なる信号強度を持つ。位置・線量モニタ制御装置73は、収集電極93A,93Bからの出力信号を計測し、照射ノズル制御装置13に送信する。
照射ノズル制御装置13は、スポット位置・幅演算機能によりスポットの位置およびスポットサイズを計算する。また、照射ノズル制御装置13は、入力された信号をスポット線量演算機能により合算してスポットの照射量を計算する。
スポットの照射量の計算では、照射ノズル制御装置13は、ガウス分布やローレンツ分布などの関数でフィッティングした結果に基づき計算する。
また、照射ノズル制御装置13は、特定の信号強度以上の信号のみに基づき計算することで、ノイズによる線量計測精度の低下を防ぐことが可能である。
また、収集電極93Aおよび収集電極93Bの出力信号の両方に基づき照射量を計算してもよいし、どちらか一方のみの出力信号の両方に基づき照射量を計算してもよい。
次に、ビーム90の照射の際の正線量モニタ42、正線量モニタ制御装置72、位置・線量モニタ43、位置・線量モニタ制御装置73および照射ノズル制御装置13のタイムチャートについて図8を用いて説明する。図8では例としてスポット1からスポット3までの3スポットの照射を示す。
図8では、縦軸は、上から順に、スポット進行、ビーム90の強度、正線量モニタ42のカウント、位置・線量モニタ43の線量カウント、走査電磁石41A,41Bの電流値、位置・線量モニタ43による位置・幅演算値を示す。横軸は全て時刻である。
図1に示す加速器・ビーム輸送系制御装置12から加速器20に対して所定のビーム強度で照射するように指令を出す。
指令を受けてビームの照射が開始されると、照射ノズル40内の正線量モニタ42の電離出力が正線量モニタ制御装置72でパルス変換されパルスカウント値が増加し始める。正線量モニタ制御装置72は、パルスカウント値が規定値を超えたタイミングで所定の照射量が照射されたと判定し、満了信号を照射ノズル制御装置13に送り、スポットの照射は終了する。
満了信号を受けた照射ノズル制御装置13は、位置・線量モニタ制御装置73から位置・線量モニタ43の出力信号を得て、スポットの位置、幅を演算し、所定の位置にビーム90が正しく照射されたかどうかを判定する。照射ノズル制御装置13は、スポット位置、幅ののうちいずれか一方のずれが所定値より大きいと判定されたときはビーム90の照射を停止し、正しく照射されたと判定されたときはビーム90の照射を継続する。
また、位置・線量モニタ43の線量カウントには、スポット毎に、所定の照射量よりも大きい値に監視レベルが設定されており、照射ノズル制御装置13は、正線量モニタ42の線量カウントが満了する前に、この監視レベルを超過するとビームを停止する。
位置・線量モニタ制御装置73の満了信号により、照射ノズル制御装置13は走査電磁石電源制御装置71に次のスポット移動の信号を送り、次のスポットへの移動が開始される。走査電磁石41A,41Bの電流値が次のスポットの電流値に到達すると、走査電磁石電源制御装置71は移動完了信号を照射ノズル制御装置13に送り、次のスポットの照射を開始する。
以上がスキャニング照射の制御の流れである。
次に、本実施形態の効果について説明する。
上述した本実施形態の粒子線治療システムは、放射線の位置または形状を計測する位置・線量モニタ43と、位置・線量モニタ43によって計測された放射線の位置または形状の計測値に対して関数当てはめによって照射線量を演算し、演算された照射線量に基づいて放射線の照射制御を行う位置・線量モニタ制御装置73,照射ノズル制御装置13と、を備える。
これによって、位置・線量モニタ43によってスポットの位置および照射量を計測し、また計測値に対して関数当てはめによって照射線量を演算することによって、従来のように正線量モニタ・副線量モニタを用いる場合と同等の照射線量の計測精度を確保するとともに、副線量モニタを省略することが可能となる。それにより、従来の照射ノズルを用いる場合に比べてビーム90の計測精度を損なうことなく照射ノズル内でビームが通過する厚みを従来に比べて低減することができ、従来に比べてスポットサイズを低減することができる。
また、放射線は、加速器20によって加速された荷電粒子ビームであって、走査電磁石41A,41Bを用いて荷電粒子ビームを進行方向に垂直な平面内で走査することによって患部51に対する照射野を形成するため、患部51に対するビーム90の照射精度をより高めることができる。
更に、ビーム90の照射線量を計測する正線量モニタ42と、ビーム90の位置および照射線量を計測する位置・線量モニタ43を有しており、照射ノズル制御装置13は、正線量モニタ42により計測された照射線量に応じてビーム90の照射の制御を進行し、かつ位置・線量モニタ43によって計測されたビーム90の位置、または照射線量に応じてビーム90の照射を停止することで、従来に比べて照射線量の計測精度を確保するとともに、副線量モニタを省略することができる。
また、照射ノズル制御装置13は、位置・線量モニタ43によって計測された計測値のうち、所定値以上の値の計測値のみを用いて照射線量を演算することによって、ノイズによる線量計測精度が低下することを防ぐことができ、より精度の高い照射線量の演算が可能となる。
<実施形態2>
本発明の実施形態2の粒子線治療システムについて図9を用いて説明する。実施形態1と同じ構成には同一の符号を示し、説明は省略する。以下の実施形態においても同様とする。図9は、本実施形態の粒子線治療システムにおける粒子線スキャニング用の照射ノズルを示す図である。
本実施形態の粒子線治療システムは、実施形態1の粒子線治療システムと比較して、照射ノズル内のモニタの構成が異なる。粒子線治療システムの構成・動作は照射ノズル制御装置を除いて実施形態1と同様である。
図9に示すように、本実施形態の粒子線治療システムの照射ノズル40Aは、実施形態1の照射ノズル40とは異なり、走査電磁石41A,41Bの上流に位置・線量モニタ43A(第1計測器)が配置されており、正線量モニタ42が配置されていない。
また、位置・線量モニタ43B(第2計測器)は、実施形態1の照射ノズル40の位置・線量モニタ43と同様に、走査電磁石41A,41Bの下流側、かつリッジフィルタ44の上流側に配置されている。
本実施形態の照射ノズル制御装置13Aは、実施形態1の照射ノズル制御装置13と同様に、位置・線量モニタ43A,43Bで計測したビーム位置のデータをもとに照射スポットの位置および幅、照射量を演算する。
より具体的には、照射ノズル制御装置13Aは、位置・線量モニタ制御装置73A,73Bから位置・線量モニタ43A,43Bの出力信号を得て、スポットの位置、幅を演算し、所定の位置にビーム90が照射されたかどうかを判定する。判定した結果、スポット位置、幅のうち、いずれか一方でもずれが所定値より大きい(ずれが大きい)ときは、ビームを停止する。
位置・線量モニタ43Aで計測した照射量は、実施形態1の正線量モニタ42の線量カウントと同様に、照射ノズル制御装置13Aにおいて、スポット毎の照射量の制御に使用する。
また、位置・線量モニタ43Bで計測した照射量は、実施形態1の位置・線量モニタ43の線量カウントと同様に、照射ノズル制御装置13Aにおいて、照射量の監視に使用する。
本発明の実施形態2の粒子線治療システムのように、ビーム90の位置、および照射線量を計測する位置・線量モニタ43A,43Bを有し、照射ノズル制御装置13Aは、位置・線量モニタ43Aにより計測された照射線量に応じてビーム90の照射の制御を進行し、かつ位置・線量モニタ43Bによって計測された放射線の位置、または照射線量に応じてビーム90の照射を停止することにより、前述した実施形態1の粒子線治療システムとほぼ同様な効果が得られる。
<実施形態3>
本発明の実施形態3の粒子線治療システムについて図10を用いて説明する。図10は、本実施形態の粒子線治療システムにおける照射量の補正係数のテーブルを示す図である。
本実施形態の粒子線治療システムでは、照射ノズル制御装置における照射量の計算方法が実施例1,2の照射ノズル制御装置とは異なる。粒子線治療システムの構成・動作は照射ノズル制御装置を除いて実施形態1,2と同様である。
照射ノズル制御装置13Bは、位置・線量モニタ43,位置・線量モニタ43Aによって計測されたビーム90の位置に応じた補正係数を用いて照射線量を計測する。
具体的には、位置・線量モニタ43,43Bの収集電極93A,93Bでの照射量では、計測にスポット位置依存性が存在する場合がある。
このような場合、照射ノズル制御装置13Bは、スポット位置に応じて照射量を補正する処理を実行する。この照射量の補正には図10に示すような、スポット位置に応じた補正係数のテーブル13B1を用いる。
照射ノズル制御装置13Bには補正係数のテーブル13B1が保存されており、照射ノズル制御装置13Bによる照射量の計算の際に、位置・線量モニタ43で計測されたスポット位置に応じた補正係数が使用される。
例えば、ビーム90の通過位置がX座標:−15,Y座標:−20の場合は、求めた照射量に補正係数として1.020を乗じる。また、ビーム90の通過位置がX座標:14,Y座標:19の場合は、求めた照射量に補正係数として1.008を乗じる。このように、位置・線量モニタ43,43Bの中心から離れた位置では乗じる補正係数を大きくし、中心に近いほど乗じる補正係数を小さくすることが可能である。
その他の構成・動作は前述した実施形態1の粒子線治療システムと略同じ構成・動作であり、詳細は省略する。
本発明の実施形態3の粒子線治療システムにおいても、前述した実施形態1の粒子線治療システムとほぼ同様な効果が得られる。
また、照射ノズル制御装置13Bは、位置・線量モニタ43,位置・線量モニタ43Bによって計測されたビーム90の通過位置に応じた補正係数を用いて照射線量を計測することにより、位置・線量モニタ43,位置・線量モニタ43Bのスポット位置依存性を低減することができるため、より精度の高い照射線量の計測が可能となる。
なお、上記実施形態では補正係数が収集電極93Aと収集電極93Bとで同じ場合について説明したが、照射ノズル制御装置13Bは、照射量計測のスポット位置依存性が大きい場合に、スポット位置に応じて、収集電極93Aまたは収集電極93Bのうち、スポット位置依存性が小さいほうの収集電極93A,93Bの出力信号に基づき照射量を計算することが可能である。これにより、スポット位置依存性をより確実に低減することが可能となる。
<その他>
なお、本発明は、上記の実施形態に限定されるものではなく、様々な変形例が含まれる。上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることも可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
例えば、上述の実施形態では、位置・線量モニタ43,43A,43Bはビーム90の通過位置、および照射線量を計測するものとして説明したが、位置・線量モニタ43,43A,43Bはビーム90の通過位置におけるビーム90の形状、および照射線量を計測するものとすることができる。
また、スポット間でビーム電流を停止する離散スポット照射法を例に説明したが、スポット間でビーム電流を停止しない連続スポット照射法にも同様に適用することができる。また、この他として、ワブラー法や二重散乱体法など粒子線の分布を広げた後、コリメータやボーラスを用いて標的の形状に合わせた線量分布を形成する照射法にも本発明を適用することができる。
また、本実施形態では、マルチワイヤ型電離箱を用いて説明したが、本発明は他の種類の計測器でも適用可能である。例えば、マルチワイヤ型比例計数管、マルチワイヤ型二次電子モニタ、蛍光板や蛍光ガスおよび光学カメラを使用したモニタ、特許第5930628号に記載のモニタであっても本発明は有効である。
また、加速器は、実施形態1乃至3で説明したシンクロトロン加速器22の他に、サイクロトロン加速器やシンクロサイクロトロン加速器などの様々な公知の加速器を用いることができる。また、加速器で加速する荷電粒子は、例えば陽子や炭素等の重粒子等とすることができる。
13…照射ノズル制御装置
40,40A…照射ノズル
41A,41B…走査電磁石
42…正線量モニタ(第1計測器)
43,43B…位置・線量モニタ(第2計測器)
43A…位置・線量モニタ(第1計測器)
52…同じエネルギーで照射する患部の層
53…照射スポット
61A,61B…走査電磁石電源
71…走査電磁石電源制御装置
72…正線量モニタ制御装置
73…位置・線量モニタ制御装置
90…ビーム
91A,91B,91C…接地電極
92A,92B,92C…高電圧電極
93A,93B…収集電極

Claims (6)

  1. 患者の患部に対して放射線を照射する粒子線治療システムであって、
    前記放射線の位置または形状を計測する放射線計測器と、
    前記放射線計測器によって計測された前記放射線の位置または形状の計測値に対して関数当てはめによって照射線量を演算し、前記照射線量に基づいて前記放射線の照射制御を行う制御装置と、を備えた
    ことを特徴とする粒子線治療システム。
  2. 請求項1に記載の粒子線治療システムにおいて、
    前記放射線は、加速器によって加速された荷電粒子ビームであって、
    走査電磁石を用いて前記荷電粒子ビームを進行方向に垂直な平面内で走査することによって前記患部に対する照射野を形成する
    ことを特徴とする粒子線治療システム。
  3. 請求項1に記載の粒子線治療システムにおいて、
    前記放射線計測器は、前記放射線の照射線量を計測する第1計測器と、前記放射線の位置もしくは形状、および前記照射線量を計測する第2計測器と、を有し、
    前記制御装置は、前記第1計測器により計測された照射線量に応じて放射線の照射の制御を進行し、かつ前記第2計測器によって計測された放射線の位置もしくは形状、または前記照射線量のうち一つ以上の値に応じて放射線の照射を停止する
    ことを特徴とする粒子線治療システム。
  4. 請求項1に記載の粒子線治療システムにおいて、
    前記放射線計測器は、前記放射線の位置もしくは形状、および前記照射線量を計測する第1計測器および第2計測器を有し、
    前記制御装置は、前記第1計測器により計測された照射線量に応じて放射線の照射の制御を進行し、かつ前記第2計測器によって計測された放射線の位置もしくは形状、または前記照射線量のうち一つ以上の値に応じて放射線の照射を停止する
    ことを特徴とする粒子線治療システム。
  5. 請求項1に記載の粒子線治療システムにおいて、
    前記制御装置は、前記放射線計測器によって計測された放射線の位置に応じた補正係数を用いて前記照射線量を演算する
    ことを特徴とする粒子線治療システム。
  6. 請求項1に記載の粒子線治療システムにおいて、
    前記制御装置は、前記放射線計測器によって計測された計測値のうち、所定値以上の値の計測値のみを用いて照射線量を演算する
    ことを特徴とする粒子線治療システム。
JP2017180903A 2017-09-21 2017-09-21 粒子線治療システム Pending JP2019055005A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180903A JP2019055005A (ja) 2017-09-21 2017-09-21 粒子線治療システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180903A JP2019055005A (ja) 2017-09-21 2017-09-21 粒子線治療システム

Publications (1)

Publication Number Publication Date
JP2019055005A true JP2019055005A (ja) 2019-04-11

Family

ID=66105902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180903A Pending JP2019055005A (ja) 2017-09-21 2017-09-21 粒子線治療システム

Country Status (1)

Country Link
JP (1) JP2019055005A (ja)

Similar Documents

Publication Publication Date Title
EP2579265B1 (en) Particle beam irradiation system
JP5143606B2 (ja) 荷電粒子線照射装置
JP5002612B2 (ja) 荷電粒子ビーム照射装置
JP5886155B2 (ja) 荷電粒子線治療計画装置
JP5395912B2 (ja) 粒子線照射システム
JP6220713B2 (ja) 荷電粒子ビーム照射システム
JP2009066106A (ja) 粒子線ビーム照射装置および粒子線ビーム照射方法
KR102285307B1 (ko) 하전 입자 빔 조사 장치
JP5777749B2 (ja) 粒子線治療装置、および照射線量設定方法
US10485994B2 (en) Charged particle beam treatment apparatus
JP2019055005A (ja) 粒子線治療システム
JP5350307B2 (ja) 粒子線治療システム
JP2014028310A (ja) 粒子線照射システム
JP6968761B2 (ja) 放射線治療システムおよび治療計画データの検証方法
JP2019180738A (ja) 粒子線治療システム、及び粒子線治療システムの照射位置制御方法
JP6484683B2 (ja) 荷電粒子ビーム照射システム
JP6839987B2 (ja) 治療計画装置および粒子線治療システム
TWI658847B (zh) Charged particle beam therapy device
JP2018094147A (ja) 荷電粒子線治療装置
JP6815231B2 (ja) 荷電粒子線治療装置
JPWO2017141301A1 (ja) 粒子線治療装置および粒子線治療装置の走査回数決定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210601