JP2019044180A - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
JP2019044180A
JP2019044180A JP2018161660A JP2018161660A JP2019044180A JP 2019044180 A JP2019044180 A JP 2019044180A JP 2018161660 A JP2018161660 A JP 2018161660A JP 2018161660 A JP2018161660 A JP 2018161660A JP 2019044180 A JP2019044180 A JP 2019044180A
Authority
JP
Japan
Prior art keywords
resin composition
resin
mass
conductor layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018161660A
Other languages
English (en)
Other versions
JP7279319B2 (ja
Inventor
嘉生 西村
Yoshio Nishimura
嘉生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Publication of JP2019044180A publication Critical patent/JP2019044180A/ja
Priority to JP2023013813A priority Critical patent/JP2023052814A/ja
Application granted granted Critical
Publication of JP7279319B2 publication Critical patent/JP7279319B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】平均粒径が小さい無機充填材を用いても、薄膜絶縁性に優れ、且つ高温高湿環境下での環境試験後、導体層との間の密着性を維持できる、バランスのとれた硬化物を得ることができる樹脂組成物等の提供。【解決手段】(A)エポキシ樹脂、(B)ベンゾオキサジン化合物、(C)平均粒径が100nm以下である無機充填剤を含む樹脂組成物であって、(C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上である、樹脂組成物。【選択図】なし

Description

本発明は、樹脂組成物に関する。さらには、当該樹脂組成物を用いて得られる、樹脂シート、プリント配線板、及び半導体装置に関する。
プリント配線板の製造技術として、絶縁層と導体層を交互に積み重ねるビルドアップ方式による製造方法が知られている。ビルドアップ方式による製造方法において、一般に、絶縁層は樹脂組成物を硬化させて形成される。例えば、特許文献1には、エポキシ樹脂、活性エステル化合物、カルボジイミド化合物、熱可塑性樹脂及び無機充填材を含み、無機充填材の含有量が、樹脂組成物中の不揮発成分を100質量%としたとき、40質量%以上である樹脂組成物が開示されている。
特開2016−27097号公報
一般に、絶縁層の厚みが薄くなってくると、絶縁信頼性を確保するという観点から平均粒径が小さい又は比表面積が大きい無機充填材を使用することが考えられる。しかしながら、本発明者らは、樹脂組成物中に平均粒径が小さい又は比表面積が大きい無機充填材を含有させた場合には、高温高湿環境下での環境試験後、導体層と絶縁層との間の密着性を維持することが困難であることを見出した。特に、導体層と絶縁層との熱膨張率のミスマッチの解消のために、無機充填材をより多く配合することが求められる場合もあり、無機充填材を多く使用すると、密着性の維持はより難しくなってしまう。今後の微細配線の要求に応えるためには、平均粒径が小さい又は比表面積が大きい無機充填材を用いても、環境試験後の密着性を維持することが求められる。
ところが、平均粒径が小さい又は比表面積が大きい無機充填材を使用するという制約の中で、環境試験後の密着性を高める技術は開発されていない。
本発明の課題は、平均粒径が小さい又は比表面積が大きい無機充填材を用いても、薄膜絶縁性に優れ、且つ高温高湿環境下での環境試験後、導体層との間の密着性を維持できる、バランスのとれた硬化物を得ることができる樹脂組成物;当該樹脂組成物を含有する樹脂シート;当該樹脂組成物を用いて形成された絶縁層を備えるプリント配線板、及び半導体装置を提供することにある。
本発明の課題を達成すべく、本発明者らは鋭意検討した結果、平均粒径が小さい又は比表面積が大きい無機充填材を用いても、樹脂組成物中にベンゾオキサジン化合物を含有させることで、環境試験後であっても導体層と絶縁層との間の密着性を維持できることを見出し、本発明を完成させるに至った。
すなわち、本発明は以下の内容を含む。
[1] (A)エポキシ樹脂、(B)ベンゾオキサジン化合物、(C)平均粒径が100nm以下である無機充填剤を含む樹脂組成物であって、
(C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上である、樹脂組成物。
[2] (A)エポキシ樹脂、(B)ベンゾオキサジン化合物、(C)比表面積が15m/g以上である無機充填剤を含む樹脂組成物であって、
(C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上である、樹脂組成物。
[3] さらに、(D)硬化剤を含む、[1]又は[2]に記載の樹脂組成物。
[4] (D)成分が、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、シアネートエステル系硬化剤、及びカルボジイミド系硬化剤のいずれか1種以上を含む、[3]に記載の樹脂組成物。
[5] (B)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、0.1質量%以上30質量%以下である、[1]〜[4]のいずれかに記載の樹脂組成物。
[6] (B)成分が、下記一般式(B−1)で表される、[1]〜[5]のいずれかに記載の樹脂組成物。
Figure 2019044180
式(B−1)中、Rはn価の基を表し、Rはそれぞれ独立にハロゲン原子、アルキル基、又はアリール基を表す。nは2〜4の整数を表し、mは0〜4の整数を表す。
[7] 一般式(1)中、Rはアリーレン基、アルキレン基、酸素原子、又はこれらの2以上の組み合わせからなるn価の基である、[6]に記載の樹脂組成物。
[8] 一般式(1)中、mは0を表す、[6]又は[7]に記載の樹脂組成物。
[9] プリント配線板の絶縁層形成用である、[1]〜[8]のいずれかに記載の樹脂組成物。
[10] プリント配線板の層間絶縁層形成用である、[1]〜[9]のいずれかに記載の樹脂組成物。
[11] 支持体と、該支持体上に設けられた[1]〜[10]のいずれかに記載の樹脂組成物で形成された樹脂組成物層とを含む、樹脂シート。
[12] 樹脂組成物層の厚みが15μm以下である、[11]に記載の樹脂シート。
[13] 第1の導体層と、第2の導体層と、第1の導体層と第2の導体層との間に形成された絶縁層と、を含み、第1の導体層と第2の導体層との間隔が、6μm以下であるプリント配線板の、該絶縁層形成用である、[11]又は[12]に記載の樹脂シート。
[14] 第1の導体層、第2の導体層、及び、第1の導体層と第2の導体層との間に形成された絶縁層を含むプリント配線板であって、
該絶縁層は、[1]〜[10]のいずれかに記載の樹脂組成物の硬化物である、プリント配線板。
[15] 第1導体層と第2の導体層との間隔が、6μm以下である、[14]に記載のプリント配線板。
[16] [14]又は[15]に記載のプリント配線板を含む、半導体装置。
本発明によれば、平均粒径が小さい又は比表面積が大きい無機充填材を用いても、薄膜絶縁性に優れ、且つ高温高湿環境下での環境試験後、導体層との間の密着性を維持できる、バランスのとれた硬化物を得ることができる樹脂組成物;当該樹脂組成物を含有する樹脂シート;当該樹脂組成物を用いて形成された絶縁層を備えるプリント配線板、及び半導体装置を提供することができる。
図1は、プリント配線板の一例を模式的に示した一部断面図である。
以下、本発明の樹脂組成物、樹脂シート、プリント配線板、及び半導体装置について詳細に説明する。
[樹脂組成物]
本発明の第1の樹脂組成物は、(A)エポキシ樹脂、(B)ベンゾオキサジン化合物、及び(C)平均粒径が100nm以下である無機充填材を含む樹脂組成物であって、(C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上である。また、本発明の第2の樹脂組成物は、(A)エポキシ樹脂、(B)ベンゾオキサジン化合物、(C)比表面積が15m/g以上である無機充填剤を含む樹脂組成物であって、(C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上である。第1及び第2の実施形態の樹脂組成物は、(B)ベンゾオキサジン化合物を含有することで、平均粒径が小さい又は比表面積が大きい無機充填材を用いても、薄膜絶縁性に優れ、且つ高温高湿環境下での環境試験後であっても導体層との間の密着性を維持できる硬化物を得ることができるようになる。そして、通常、このように高温高湿環境下での環境試験後であっても高い密着性を維持できる硬化物は、長期間にわたって高い密着性を発揮できる。
従来より、(B)ベンゾオキサジン化合物は、エポキシ樹脂の硬化剤として機能することが知られている。しかし、本発明者らは、平均粒径が100nm以下である無機充填剤又は比表面積が15m/g以上である無機充填材と、ベンゾオキサジン化合物とを組み合わせて含有させると、高温高湿環境下での環境試験後であっても導体層と絶縁層との間の密着性を維持できることを見出した。ベンゾオキサジン化合物を含有させることで、高温高湿環境下での環境試験後であっても高い密着性を維持させるという技術的思想については、本発明者らが知る限り、従来なんら提案されていなかったといえる。
樹脂組成物は、(A)〜(C)成分の他に必要に応じて、(D)硬化剤、(E)硬化促進剤、(F)熱可塑性樹脂、(G)難燃剤、及び(H)任意の添加剤を含んでいてもよい。以下、本発明の第1及び第2の実施形態の樹脂組成物に含まれる各成分について詳細に説明する。ここで、第1実施形態の樹脂組成物及び第2実施形態の樹脂組成物をまとめて、「樹脂組成物」ということがある。
<(A)エポキシ樹脂>
樹脂組成物は、(A)エポキシ樹脂を含む。(A)エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert−ブチル−カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A)エポキシ樹脂は、高温高湿環境下での環境試験後であっても高い密着性を維持できる硬化物を得る観点から、芳香族系のエポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、及びビフェニル型エポキシ樹脂の何れかを用いることが好ましい。
(A)エポキシ樹脂は、1分子中に2個以上のエポキシ基を有することが好ましい。エポキシ樹脂の不揮発成分を100質量%とした場合に、少なくとも50質量%以上は1分子中に2個以上のエポキシ基を有するエポキシ樹脂であるのが好ましい。中でも、樹脂組成物は、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ともいう。)と、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ともいう。)とを組み合わせて含むことが好ましい。液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましく、1分子中に2個以上のエポキシ基を有する芳香族系液状エポキシ樹脂がより好ましい。固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系固体状エポキシ樹脂がより好ましい。本発明において、芳香族系のエポキシ樹脂とは、その分子内に芳香環を有するエポキシ樹脂を意味する。
液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂がより好ましい。液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂)、三菱ケミカル社製の「828US」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂)、「jER807」、「1750」(ビスフェノールF型エポキシ樹脂)、「jER152」(フェノールノボラック型エポキシ樹脂)、「630」、「630LSD」(グリシジルアミン型エポキシ樹脂)、新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)、ナガセケムテックス社製の「EX−721」(グリシジルエステル型エポキシ樹脂)、ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂)、「PB−3600」(ブタジエン構造を有するエポキシ樹脂)、新日鉄住金化学社製の「ZX1658」、「ZX1658GS」(液状1,4−グリシジルシクロヘキサン型エポキシ樹脂)、三菱ケミカル社製の「630LSD」(グリシジルアミン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましく、ビキシレノール型エポキシ樹脂、及びビスフェノールAF型エポキシ樹脂がより好ましい。固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂)、「HP−4700」、「HP−4710」(ナフタレン型4官能エポキシ樹脂)、「N−690」(クレゾールノボラック型エポキシ樹脂)、「N−695」(クレゾールノボラック型エポキシ樹脂)、「HP−7200」(ジシクロペンタジエン型エポキシ樹脂)、「HP−7200HH」、「HP−7200H」、「EXA−7311」、「EXA−7311−G3」、「EXA−7311−G4」、「EXA−7311−G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂)、日本化薬社製の「EPPN−502H」(トリスフェノール型エポキシ樹脂)、「NC7000L」(ナフトールノボラック型エポキシ樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂)、新日鉄住金化学社製の「ESN475V」(ナフタレン型エポキシ樹脂)、「ESN485」(ナフトールノボラック型エポキシ樹脂)、三菱ケミカル社製の「YX4000H」、「YX4000」、「YL6121」(ビフェニル型エポキシ樹脂)、「YX4000HK」(ビキシレノール型エポキシ樹脂)、「YX8800」(アントラセン型エポキシ樹脂)、大阪ガスケミカル社製の「PG−100」、「CG−500」、三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂)、「YL7800」(フルオレン型エポキシ樹脂)、三菱ケミカル社製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂)、「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A)成分として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用する場合、それらの量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、1:1〜1:20の範囲が好ましい。液状エポキシ樹脂と固体状エポキシ樹脂との量比を斯かる範囲とすることにより、i)樹脂シートの形態で使用する場合に適度な粘着性がもたらされる、ii)樹脂シートの形態で使用する場合に十分な可撓性が得られ、取り扱い性が向上する、並びにiii)十分な破断強度を有する硬化物を得ることができる等の効果が得られる。上記i)〜iii)の効果の観点から、液状エポキシ樹脂と固体状エポキシ樹脂の量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、1:1〜1:5の範囲がより好ましく、1:1〜1:3の範囲がさらに好ましい。
樹脂組成物中の(A)成分の含有量は、良好な機械強度、絶縁信頼性を示す絶縁層を得る観点から、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上である。エポキシ樹脂の含有量の上限は、本発明の効果が奏される限りにおいて特に限定されないが、好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下である。
なお、本発明において、樹脂組成物中の各成分の含有量は、別途明示のない限り、樹脂組成物中の不揮発成分を100質量%としたときの値である。
(A)成分のエポキシ当量は、好ましくは50〜5000、より好ましくは50〜3000、さらに好ましくは80〜2000、さらにより好ましくは110〜1000である。この範囲となることで、硬化物の架橋密度が十分となり表面粗さの小さい絶縁層をもたらすことができる。なお、エポキシ当量は、JIS K7236に従って測定することができ、1当量のエポキシ基を含む樹脂の質量である。
(A)成分の重量平均分子量は、好ましくは100〜5000、より好ましくは250〜3000、さらに好ましくは400〜1500である。ここで、エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。
<(B)ベンゾオキサジン化合物>
樹脂組成物は、(B)ベンゾオキサジン化合物を含有する。(B)ベンゾオキサジン化合物は、下記式(B−2)で表されるベンゾオキサジン環を分子中に有する化合物である。
Figure 2019044180
(B)ベンゾオキサジン化合物の1分子あたりのベンゾオキサジン環の数は、高温高湿環境下での環境試験後であっても高い密着性を向上させる観点から、好ましくは1個以上、より好ましくは2個以上であり、好ましくは10個以下、より好ましくは5個以下である。
(B)ベンゾオキサジン化合物は、ベンゾオキサジン環に加えて芳香環を有することが好ましい。ベンゾオキサジン環に加えて芳香環を有することにより、より高温高湿環境下での環境試験後であっても高い密着性を維持できることができる。芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、ビフェニル環などが挙げられ、ベンゼン環が好ましい。また、芳香環の数は、上記の密着性を向上させる観点から、好ましくは1個以上、より好ましくは2個以上であり、好ましくは10個以下、より好ましくは5個以下である。
(B)ベンゾオキサジン化合物としては、下記一般式(B−1)で表されるベンゾオキサジン化合物が好ましい。
Figure 2019044180
式(B−1)中、Rはn価の基を表し、Rはそれぞれ独立にハロゲン原子、アルキル基、又はアリール基を表す。nは2〜4の整数を表し、mは0〜4の整数を表す。
はn価の基を表す。このような基としては、アリーレン基、アルキレン基、酸素原子、又はこれらの2以上の組み合わせからなるn価の基であることが好ましく、アリーレン基又は2以上の組み合わせからなるn価の基であることがより好ましく、2以上の組み合わせからなるn価の基であることがさらに好ましい。
アリーレン基としては、炭素原子数6〜20のアリーレン基が好ましく、炭素原子数6〜15のアリーレン基がより好ましく、炭素原子数6〜12のアリーレン基がさらに好ましい。アリーレン基の具体例としては、フェニレン基、ナフチレン基、アントラセニレン基、ビフェニレン基等が挙げられ、フェニレン基が好ましい。
アルキレン基としては、炭素原子数1〜10のアルキレン基が好ましく、炭素原子数1〜6のアルキレン基がより好ましく、炭素原子数1〜3のアルキレン基がさらに好ましい。アルキレン基の具体例としては、例えば、メチレン基、エチレン基、プロピレン基などが挙げられ、メチレン基が好ましい。
2以上の組み合わせからなる基としては、例えば、1以上のアリーレン基と1以上の酸素原子とが結合した基、1以上のアリーレン基と1以上のアルキレン基とが結合した基、1以上のアルキレン基と1以上の酸素原子とが結合した基、1以上のアリーレン基と1以上のアルキレン基と1以上の酸素原子とが結合した基等が挙げられ、1以上のアリーレン基と1以上の酸素原子とが結合した基、1以上のアリーレン基と1以上のアルキレン基とが結合した基が好ましい。2以上の組み合わせからなる基の具体例としては、以下の基を挙げることができる。式中、「*」は結合手を表す。
Figure 2019044180
アリーレン基及びアルキレン基は置換基を有していてもよい。置換基としては、特に制限はなく、例えば、ハロゲン原子、−OH、−O−C1−6アルキル基、−N(C1−6アルキル基)、C1−6アルキル基、C6−10アリール基、−NH、−CN、−C(O)O−C1−6アルキル基、−COOH、−C(O)H、−NO等が挙げられる。ここで、「Cp−q」(p及びqは正の整数であり、p<qを満たす。)という用語は、この用語の直後に記載された有機基の炭素原子数がp〜qであることを表す。例えば、「C1−6アルキル基」という表現は、炭素原子数1〜6のアルキル基を示す。
上述の置換基は、さらに置換基(以下、「二次置換基」という場合がある。)を有していてもよい。二次置換基としては、特に記載のない限り、上述の置換基と同じものを用いてよい。
はそれぞれ独立にハロゲン原子、アルキル基、又はアリール基を表す。アルキル基は、炭素原子数1〜10のアルキル基が好ましく、炭素原子数1〜6のアルキル基がより好ましく、炭素原子数1〜3のアルキル基がさらに好ましい。アリール基は、炭素原子数6〜20のアリール基が好ましく、炭素原子数6〜15のアリール基がより好ましく、炭素原子数6〜10のアリール基がさらに好ましい。ハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子を表す。アルキル基及びアリール基は置換基を有していてもよい。置換基としては、上記アリーレン基が有していてもよい置換基と同様である。
nは2〜4の整数を表し、2〜3の整数が好ましく、2がより好ましい。mは0〜4の整数を表し、0〜3の整数が好ましく、0がより好ましい。
一般式(B−1)で表されるベンゾオキサジン化合物は、本発明の所望の効果を得る観点から、下記一般式(B−3)及び一般式(B−4)で表されるベンゾオキサジン化合物の少なくともいずれかであることが好ましい。
Figure 2019044180
一般式(B−3)で表されるベンゾオキサジン化合物は、一般式(B−5)及び一般式(B−6)で表されるベンゾオキサジン化合物の少なくともいずれかであることが好ましく、一般式(B−4)で表されるベンゾオキサジン化合物は、一般式(B−7)で表されるベンゾオキサジン化合物であることが好ましい。
Figure 2019044180
一般式(B−1)で表されるベンゾオキサジン化合物は1種類を単独で用いてもよく、2種類以上を組み合わせた混合物として用いてもよい。例えば、一般式(B−5)で表されるベンゾオキサジン化合物と、一般式(B−6)で表されるベンゾオキサジン化合物とを混合物として用いる場合、質量混合比(一般式(B−5):一般式(B−6))は1:10〜10:1が好ましく、1:5〜5:1がより好ましく、1:3〜3:1がより好ましい。質量混合比を斯かる範囲内にすることにより、環境試験後の導体層との密着性を向上させることができる。
(B)ベンゾオキサジン化合物の具体例としては、JFEケミカル社製の「JBZ−OP100D」、「ODA−BOZ」;四国化成工業社製の「P−d」、「F−a」;昭和高分子社製の「HFB2006M」等が挙げられる。
(B)ベンゾオキサジン化合物の分子量としては、密着性を向上させる観点から、好ましくは200以上、より好ましくは300以上、さらに好ましくは400以上であり、好ましくは1000以下、より好ましくは800以下、さらに好ましくは500以下である。
(B)ベンゾオキサジン化合物の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上、より好ましくは1質量%以上である。上限は、好ましくは30質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下又は3質量%以下である。(B)成分の含有量を斯かる範囲内にすることにより、環境試験後の導体層との密着性を向上させることができる。
<(C)無機充填材>
第1の樹脂組成物は、(C)平均粒径が100nm以下である無機充填材を含有する。また、第2の実施形態の樹脂組成物は、(C)比表面積が15m/g以上の無機充填材を含有する。これら無機充填材をまとめて、単に「(C)無機充填材」ということがある。
(C)無機充填材の材料は無機化合物であれば特に限定されないが、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。これらの中でもシリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。またシリカとしては球状シリカが好ましい。無機充填材は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
第1の実施形態における(C)無機充填材の平均粒径は、薄膜絶縁性の観点から、100nm以下であり、好ましくは90nm以下、より好ましくは80nm以下である。平均粒径の下限は、特に限定されないが、好ましくは1nm以上、より好ましくは5nm以上、さらに好ましくは10nm以上等とし得る。
また、第2の実施形態における無機充填材の平均粒径は、薄膜絶縁性の観点から、好ましくは100nm以下、より好ましくは90nm以下、さらに好ましくは80nm以下である。平均粒径の下限は、特に限定されないが、好ましくは1nm以上、より好ましくは5nm以上、さらに好ましくは10nm以上等とし得る。
このような平均粒径を有する(C)無機充填材の市販品としては、例えば、電気化学工業社製「UFP−30」等が挙げられる。
(C)無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒径分布測定装置により、(C)無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、(C)無機充填材を超音波によりメチルエチルケトン中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒径分布測定装置としては、堀場製作所社製「LA−500」、島津製作所社製「SALD−2200」等を使用することができる。
第2実施形態における無機充填材の比表面積は、薄膜絶縁性の観点から、好ましくは15m/g以上、より好ましくは20m/g以上、さらに好ましくは30m/g以上である。上限に特段の制限は無いが、好ましくは60m/g以下、より好ましくは50m/g以下、さらに好ましくは40m/g以下である。
また、第1実施形態における無機充填材の比表面積は、薄膜絶縁性の観点から、好ましくは15m/g以上、より好ましくは20m/g以上、さらに好ましくは30m/g以上である。上限に特段の制限は無いが、好ましくは60m/g以下、より好ましくは50m/g以下、さらに好ましくは40m/g以下である。
比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM−1210)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することで得られる。
(C)無機充填材は、耐湿性及び分散性を高める観点から、表面処理剤で表面処理されていてもよい。表面処理剤としては、例えば、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、アルコキシシラン、オルガノシラザン化合物、チタネート系カップリング剤等が挙げられる。表面処理剤の市販品としては、例えば、信越化学工業社製「KBM403」(3−グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3−メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3−アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N−フェニル−3−アミノプロピルトリメトキシシラン)、信越化学工業社製「SZ−31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM−4803」(長鎖エポキシ型シランカップリング剤)、信越化学工業社製「KBM−7103」(3,3,3−トリフルオロプロピルトリメトキシシラン)等が挙げられる。表面処理剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
表面処理剤による表面処理の程度は、(C)無機充填材の単位表面積当たりのカーボン量によって評価することができる。(C)無機充填材の単位表面積当たりのカーボン量は、(C)無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上が更に好ましい。一方、樹脂ワニスの溶融粘度及びシート形態での溶融粘度の上昇を抑制する観点から、1mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下が更に好ましい。
(C)無機充填材の単位表面積当たりのカーボン量は、表面処理後の(C)無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された(C)無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて(C)無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA−320V」等を使用することができる。
(C)無機充填材の含有量は、薄膜絶縁性を向上させる観点から、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上であり、好ましくは45質量%以上、より好ましくは50質量%以上である。上限は、好ましくは80質量%以下、より好ましくは70質量%以下、さらに好ましくは65質量%以下である。本発明では、(B)ベンゾオキサジン化合物を含有させることから、(C)無機充填材を40質量%以上含有させても、HAST試験後の密着性を維持することが可能となる。
<(D)硬化剤>
一実施形態において、樹脂組成物は、(D)硬化剤を含有し得る。(D)硬化剤としては、(A)成分を硬化する機能を有するものであれば、特に限定されず、例えば、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、シアネートエステル系硬化剤、及びカルボジイミド系硬化剤などが挙げられる。中でも、絶縁信頼性を向上させる観点から、(D)硬化剤は、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、シアネートエステル系硬化剤、及びカルボジイミド系硬化剤のいずれか1種以上であることが好ましく、フェノール系硬化剤を含むことがより好ましい。硬化剤は1種単独で用いてもよく、又は2種以上を併用してもよい。
フェノール系硬化剤及びナフトール系硬化剤としては、耐熱性及び耐水性の観点から、ノボラック構造を有するフェノール系硬化剤、又はノボラック構造を有するナフトール系硬化剤が好ましい。また、導体層との密着性の観点から、含窒素フェノール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤がより好ましい。
フェノール系硬化剤及びナフトール系硬化剤の具体例としては、例えば、明和化成社製の「MEH−7700」、「MEH−7810」、「MEH−7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495」、「SN−495V」、「SN375」、「SN395」、DIC社製の「TD−2090」、「LA−7052」、「LA−7054」、「LA−1356」、「LA−3018−50P」、「EXB−9500」等が挙げられる。
活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
具体的には、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン−ジシクロペンチレン−フェニレンからなる2価の構造単位を表す。
活性エステル系硬化剤の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC−8000−65T」、「HPC−8000H−65TM」、「EXB8000L−65TM」、「EXB8150−65T」(DIC社製)、ナフタレン構造を含む活性エステル化合物として「EXB9416−70BK」(DIC社製)、フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル社製)、フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル社製)、フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱ケミカル社製)、フェノールノボラックのベンゾイル化物である活性エステル系硬化剤として「YLH1026」(三菱ケミカル社製)、「YLH1030」(三菱ケミカル社製)、「YLH1048」(三菱ケミカル社製)等が挙げられる。
シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート、オリゴ(3−メチレン−1,5−フェニレンシアネート)、4,4’−メチレンビス(2,6−ジメチルフェニルシアネート)、4,4’−エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2−ビス(4−シアネート)フェニルプロパン、1,1−ビス(4−シアネートフェニルメタン)、ビス(4−シアネート−3,5−ジメチルフェニル)メタン、1,3−ビス(4−シアネートフェニル−1−(メチルエチリデン))ベンゼン、ビス(4−シアネートフェニル)チオエーテル、及びビス(4−シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(フェノールノボラック型多官能シアネートエステル樹脂)、「ULL−950S」(多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。
カルボジイミド系硬化剤の具体例としては、日清紡ケミカル社製の「V−03」、「V−07」等が挙げられる。
エポキシ樹脂と硬化剤との量比は、[エポキシ樹脂のエポキシ基の合計数]:[硬化剤の反応基の合計数]の比率で、1:0.01〜1:2の範囲が好ましく、1:0.05〜1:3がより好ましく、1:0.1〜1:1.5がさらに好ましい。ここで、硬化剤の反応基とは、活性水酸基、活性エステル基等であり、硬化剤の種類によって異なる。また、エポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の固形分質量を反応基当量で除した値をすべての硬化剤について合計した値である。エポキシ樹脂と硬化剤との量比を斯かる範囲とすることにより、樹脂組成物の硬化物の耐熱性がより向上する。
(D)硬化剤を含有する場合、(D)硬化剤の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは1質量%以上、さらに好ましくは3質量%以上、より好ましくは5質量%以上である。上限は、好ましくは30質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下である。(D)硬化剤の含有量を斯かる範囲内にすることにより、導体層との密着性を向上させることができる。
<(E)硬化促進剤>
一実施形態において、樹脂組成物は、(E)硬化促進剤を含有し得る。硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられ、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤が好ましく、アミン系硬化促進剤がより好ましい。硬化促進剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n−ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4−メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられ、トリフェニルホスフィン、テトラブチルホスホニウムデカン酸塩が好ましい。
アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4−ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)−ウンデセン等が挙げられ、4−ジメチルアミノピリジン、1,8−ジアザビシクロ(5,4,0)−ウンデセンが好ましい。
イミダゾール系硬化促進剤としては、例えば、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、2−メチルイミダゾリン、2−フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられ、2−エチル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾールが好ましい。
イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、三菱ケミカル社製の「P200−H50」等が挙げられる。
グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1−メチルグアニジン、1−エチルグアニジン、1−シクロヘキシルグアニジン、1−フェニルグアニジン、1−(o−トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、7−メチル−1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、1−メチルビグアニド、1−エチルビグアニド、1−n−ブチルビグアニド、1−n−オクタデシルビグアニド、1,1−ジメチルビグアニド、1,1−ジエチルビグアニド、1−シクロヘキシルビグアニド、1−アリルビグアニド、1−フェニルビグアニド、1−(o−トリル)ビグアニド等が挙げられ、ジシアンジアミド、1,5,7−トリアザビシクロ[4.4.0]デカ−5−エンが好ましい。
金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。
樹脂組成物が硬化促進剤を含有する場合、硬化促進剤の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.01質量%以上、より好ましくは0.03質量%以上、さらに好ましくは0.05質量%以上である。上限は、好ましくは3質量%以下、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。硬化促進剤の含有量を斯かる範囲内とすることにより、平均粒径が小さい又は比表面積が大きい無機充填材を用いても、高温高湿環境下での環境試験後の密着力に優れる硬化物を得ることができる。
<(F)熱可塑性樹脂>
一実施形態において、樹脂組成物は、(F)熱可塑性樹脂を含有し得る。(F)熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリブタジエン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂等が挙げられ、フェノキシ樹脂が好ましい。熱可塑性樹脂は、1種単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。
(F)熱可塑性樹脂のポリスチレン換算の重量平均分子量は、好ましくは38000以上、より好ましくは40000以上、さらに好ましくは42000以上である。上限は、好ましくは100000以下、より好ましくは70000以下、さらに好ましくは60000以下である。(F)熱可塑性樹脂のポリスチレン換算の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される。具体的には、(F)熱可塑性樹脂のポリスチレン換算の重量平均分子量は、測定装置として島津製作所社製LC−9A/RID−6Aを、カラムとして昭和電工社製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルム等を用いて、カラム温度を40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
フェノキシ樹脂としては、例えば、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、及びトリメチルシクロヘキサン骨格からなる群から選択される1種以上の骨格を有するフェノキシ樹脂が挙げられる。フェノキシ樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基でもよい。フェノキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。フェノキシ樹脂の具体例としては、三菱ケミカル社製の「1256」及び「4250」(いずれもビスフェノールA骨格含有フェノキシ樹脂)、「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂)、及び「YX6954」(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)が挙げられ、その他にも、新日鉄住金化学社製の「FX280」及び「FX293」、三菱ケミカル社製の「YL7500BH30」、「YX6954BH30」、「YX7553」、「YX7553BH30」、「YL7769BH30」、「YL6794」、「YL7213」、「YL7290」及び「YL7482」等が挙げられる。
ポリビニルアセタール樹脂としては、例えば、ポリビニルホルマール樹脂、ポリビニルブチラール樹脂が挙げられ、ポリビニルブチラール樹脂が好ましい。ポリビニルアセタール樹脂の具体例としては、例えば、電気化学工業社製の「電化ブチラール4000−2」、「電化ブチラール5000−A」、「電化ブチラール6000−C」、「電化ブチラール6000−EP」、積水化学工業社製のエスレックBHシリーズ、BXシリーズ(例えばBX−5Z)、KSシリーズ(例えばKS−1)、BLシリーズ、BMシリーズ等が挙げられる。
ポリイミド樹脂の具体例としては、新日本理化社製の「リカコートSN20」及び「リカコートPN20」が挙げられる。ポリイミド樹脂の具体例としてはまた、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(特開2006−37083号公報記載のポリイミド)、ポリシロキサン骨格含有ポリイミド(特開2002−12667号公報及び特開2000−319386号公報等に記載のポリイミド)等の変性ポリイミドが挙げられる。
ポリアミドイミド樹脂の具体例としては、東洋紡社製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。ポリアミドイミド樹脂の具体例としてはまた、日立化成工業社製の「KS9100」、「KS9300」(ポリシロキサン骨格含有ポリアミドイミド)等の変性ポリアミドイミドが挙げられる。
ポリエーテルスルホン樹脂の具体例としては、住友化学社製の「PES5003P」等が挙げられる。ポリフェニレンエーテル樹脂の具体例としては、三菱ガス化学社製のオリゴフェニレンエーテル・スチレン樹脂「OPE−2St 1200」等が挙げられる。
ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ社製のポリスルホン「P1700」、「P3500」等が挙げられる。
中でも、(F)熱可塑性樹脂としては、フェノキシ樹脂、ポリビニルアセタール樹脂が好ましい。したがって好適な一実施形態において、熱可塑性樹脂は、フェノキシ樹脂及びポリビニルアセタール樹脂からなる群から選択される1種以上を含む。中でも、熱可塑性樹脂としては、フェノキシ樹脂が好ましく、重量平均分子量が40,000以上のフェノキシ樹脂が特に好ましい。
樹脂組成物が(F)熱可塑性樹脂を含有する場合、(F)熱可塑性樹脂の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上である。上限は、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。(F)熱可塑性樹脂の含有量を斯かる範囲内とすることにより、平均粒径が小さい又は比表面積が大きい無機充填材を用いても、高温高湿環境下での環境試験後の密着力に優れる硬化物を得ることができる。
<(G)難燃剤>
一実施形態において、樹脂組成物は、(G)難燃剤を含有し得る。(G)難燃剤としては、例えば、ホスファゼン化合物、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられ、ホスファゼン化合物が好ましい。難燃剤は1種単独で用いてもよく、又は2種以上を併用してもよい。
ホスファゼン化合物は、窒素とリンを構成元素とする環状化合物であれば特に限定されないが、ホスファゼン化合物は、フェノール性水酸基を有するホスファゼン化合物であることが好ましい。
ホスファゼン化合物の具体例としては、例えば、大塚化学社製の「SPH−100」、「SPS−100」、「SPB−100」「SPE−100」、伏見製薬所社製の「FP−100」、「FP−110」、「FP−300」、「FP−400」等が挙げられ、大塚化学社製の「SPH−100」が好ましい。
ホスファゼン化合物以外の難燃剤としては、市販品を用いてもよく、例えば、三光社製の「HCA−HQ」、大八化学工業社製の「PX−200」等が挙げられる。難燃剤としては加水分解しにくいものが好ましく、例えば、10−(2,5−ジヒドロキシフェニル)−10−ヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド等が好ましい。
樹脂組成物が(G)難燃剤を含有する場合、(G)難燃剤の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.3質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.7質量%以上である。上限は、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。
<(H)任意の添加剤>
一実施形態において、樹脂組成物は、さらに必要に応じて、他の添加剤を含んでいてもよく、斯かる他の添加剤としては、例えば、有機充填材、有機銅化合物、有機亜鉛化合物及び有機コバルト化合物等の有機金属化合物、並びに増粘剤、消泡剤、レベリング剤、密着性付与剤、及び着色剤等の樹脂添加剤等が挙げられる。
有機充填材としては、プリント配線板の絶縁層を形成するに際し使用し得る任意の有機充填材を使用してよく、例えば、ゴム粒子、ポリアミド微粒子、シリコーン粒子等が挙げられる。ゴム粒子としては、市販品を用いてもよく、例えば、ダウ・ケミカル日本社製の「EXL2655」、アイカ工業社製の「AC3401N」、「AC3816N」等が挙げられる。
<樹脂組成物の物性、用途>
樹脂組成物を、100℃で30分間、次いで180℃で30分間熱硬化させた硬化物は、通常、例えば厚みが5.0±0.5μmであっても絶縁性に優れる、即ち硬化物が薄膜であっても優れた絶縁抵抗値を示す(薄膜絶縁性)。厚みが5±0.5μmの硬化物における絶縁抵抗値としては、好ましくは1×10Ω以上、より好ましくは1×10Ω以上、さらに好ましくは1×10Ω以上である。上限は特に限定されないが、100×1012Ω以下等とし得る。絶縁抵抗値の測定は、後述する実施例に記載の方法で測定できる。(B)成分が(A)成分と反応する際に(B)成分からフェノール性水酸基が発生し、このフェノール性水酸基が環境試験時に銅等の金属の酸化を抑制する。その結果、本発明の樹脂組成物の硬化物は、環境試験後の密着性が向上すると考えられる。
樹脂組成物を190℃で90分間熱硬化させた硬化物は、通常、環境試験前の銅箔引き剥がし強度(密着性)に優れるという特性を示す。即ち、環境試験前の密着性に優れる絶縁層をもたらす。環境試験前の銅箔引き剥がし強度としては、好ましくは0.45kgf/cm以上、より好ましくは0.50kgf/cm以上、さらに好ましくは0.55kgf/cm以上である。上限は特に限定されないが、10kgf/cm以下等とし得る。環境試験前の銅箔引き剥がし強度は、後述する実施例に記載の方法で測定できる。
樹脂組成物を190℃で90分間熱硬化させた硬化物は、通常、環境試験後の銅箔引き剥がし強度(密着性)に優れるという特性を示す。即ち、環境試験後の密着性に優れ、長期間にわたって高い密着性を発揮できる絶縁層をもたらす。環境試験後の銅箔引き剥がし強度としては、好ましくは0.20kgf/cm以上、より好ましくは0.21kgf/cm以上、さらに好ましくは0.25kgf/cm以上である。上限は特に限定されないが、10kgf/cm以下等とし得る。環境試験後の銅箔引き剥がし強度は、後述する実施例に記載の方法で測定できる。
本発明の樹脂組成物は、薄膜絶縁性に優れ、且つ高温高湿環境下での環境試験後、導体層との間の密着性を維持できる絶縁層をもたらすことができる。したがって、本発明の樹脂組成物は、絶縁用途の樹脂組成物として好適に使用することができる。具体的には、絶縁層上に形成される導体層(再配線層を含む)を形成するための当該絶縁層を形成するための樹脂組成物(導体層を形成するための絶縁層形成用樹脂組成物)、プリント配線板の絶縁層を形成するための樹脂組成物(プリント配線板の絶縁層用樹脂組成物)として好適に使用することができ、プリント配線板の層間絶縁層を形成するための樹脂組成物(プリント配線板の層間絶縁層用樹脂組成物)としてより好適に使用することができる。また、本発明の樹脂組成物は、部品埋め込み性に良好な絶縁層をもたらすことから、プリント配線板が部品内蔵回路板である場合にも好適に使用することができる。
また、例えば、以下の(1)〜(6)工程を経て半導体チップパッケージが製造される場合、本発明の樹脂組成物は、再配線層を形成するための絶縁層としての再配線形成層用の樹脂組成物(再配線形成層形成用の樹脂組成物)、及び半導体チップを封止するための樹脂組成物(半導体チップ封止用の樹脂組成物)としても好適に使用することができる。半導体チップパッケージが製造される際、封止層上に更に再配線層を形成してもよい。
(1)基材に仮固定フィルムを積層する工程、
(2)半導体チップを、仮固定フィルム上に仮固定する工程、
(3)半導体チップ上に封止層を形成する工程、
(4)基材及び仮固定フィルムを半導体チップから剥離する工程、
(5)半導体チップの基材及び仮固定フィルムを剥離した面に、絶縁層としての再配線形成層を形成する工程、及び
(6)再配線形成層上に、導体層としての再配線層を形成する工程
[樹脂シート]
本発明の樹脂シートは、支持体と、該支持体上に設けられた、本発明の樹脂組成物で形成された樹脂組成物層を含む。
樹脂組成物層の厚さは、プリント配線板の薄型化、及び薄膜であっても絶縁性に優れた硬化物を提供できるという観点から、好ましくは15μm以下、より好ましくは13μm以下、さらに好ましくは10μm以下、又は8μm以下である。樹脂組成物層の厚さの下限は、特に限定されないが、通常、1μm以上、1.5μm以上、2μm以上等とし得る。
支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。
支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。
支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。
支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理、帯電防止処理を施してあってもよい。
また、支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK−1」、「AL−5」、「AL−7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。
支持体の厚みとしては、特に限定されないが、5μm〜75μmの範囲が好ましく、10μm〜60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。
一実施形態において、樹脂シートは、さらに必要に応じて、その他の層を含んでいてもよい。斯かるその他の層としては、例えば、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)に設けられた、支持体に準じた保護フィルム等が挙げられる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm〜40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを抑制することができる。
樹脂シートは、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーター等を用いて支持体上に塗布し、更に乾燥させて樹脂組成物層を形成させることにより製造することができる。
有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)及びシクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート及びカルビトールアセテート等の酢酸エステル類;セロソルブ及びブチルカルビトール等のカルビトール類;トルエン及びキシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド(DMAc)及びN−メチルピロリドン等のアミド系溶剤等を挙げることができる。有機溶剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂ワニス中の有機溶剤の沸点によっても異なるが、例えば30質量%〜60質量%の有機溶剤を含む樹脂ワニスを用いる場合、50℃〜150℃で3分間〜10分間乾燥させることにより、樹脂組成物層を形成することができる。
樹脂シートは、ロール状に巻きとって保存することが可能である。樹脂シートが保護フィルムを有する場合、保護フィルムを剥がすことによって使用可能となる。
本発明の樹脂シートは、薄くても、薄膜絶縁性及び高温高湿環境下での環境試験後、導体層との間の密着性を維持できる絶縁層(樹脂組成物層の硬化物)をもたらす。したがって本発明の樹脂シートは、プリント配線板の絶縁層を形成するための(プリント配線板の絶縁層形成用の)樹脂シートとして好適に使用することができ、プリント配線板の層間絶縁層を形成するための樹脂シート(プリント配線板の層間絶縁層用樹脂シート)としてより好適に使用することができる。また、例えば、第1の導体層と、第2の導体層と、第1の導体層及び第2の導体層との間に形成された絶縁層と、を含むプリント配線板において、本発明の樹脂シートにより絶縁層を形成することで、第1及び第2の導体層との間隔(第1及び第2の導体層間の絶縁層の厚み)を6μm以下(好ましくは5.5μm以下、より好ましくは5μm以下)としつつ薄膜絶縁性に優れたものとすることができる。
[プリント配線板]
本発明のプリント配線板は、本発明の樹脂組成物の硬化物により形成された絶縁層、第1の導体層、及び第2の導体層を含む。絶縁層は、第1の導体層と第2の導体層との間に設けられていて、第1の導体層と第2の導体層とを絶縁している(導体層は配線層ということがある)。
絶縁層は、本発明の樹脂組成物の硬化物により形成されることから、薄膜絶縁性に優れる。このため、第1及び第2の導体層間の絶縁層の厚みは、好ましくは6μm以下、より好ましくは5.5μm以下、さらに好ましくは5μm以下である。下限については特に限定されないが0.1μm以上等とし得る。第1導体層と第2の導体層との間隔(第1及び第2の導体層間の絶縁層の厚み)とは、図1に一例を示したように、第1の導体層1の主面11と第2の導体層2の主面21間の絶縁層3の厚みt1のことをいう。第1及び第2の導体層は絶縁層を介して隣り合う導体層であり、主面11及び主面21は互いに向き合っている。
なお、絶縁層全体の厚みt2は、好ましくは15μm以下、より好ましくは13μm以下、さらに好ましくは10μm以下である。下限については特に限定されないが、通常、1μm以上、1.5μm以上、2μm以上等とし得る。
プリント配線板は、上述の樹脂シートを用いて、下記(I)及び(II)の工程を含む方法により製造することができる。
(I)内層基板上に、樹脂シートの樹脂組成物層が内層基板と接合するように積層する工程
(II)樹脂組成物層を熱硬化して絶縁層を形成する工程
工程(I)で用いる「内層基板」とは、プリント配線板の基板となる部材であって、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。また、該基板は、その片面又は両面に導体層を有していてもよく、この導体層はパターン加工されていてもよい。基板の片面または両面に導体層(回路)が形成された内層基板は「内層回路基板」ということがある。またプリント配線板を製造する際に、さらに絶縁層及び/又は導体層が形成されるべき中間製造物も本発明でいう「内層基板」に含まれる。プリント配線板が部品内蔵回路板である場合、部品を内蔵した内層基板を使用し得る。
内層基板と樹脂シートの積層は、例えば、支持体側から樹脂シートを内層基板に加熱圧着することにより行うことができる。樹脂シートを内層基板に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスするのではなく、内層基板の表面凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。
内層基板と樹脂シートの積層は、真空ラミネート法により実施してよい。真空ラミネート法において、加熱圧着温度は、好ましくは60℃〜160℃、より好ましくは80℃〜140℃の範囲であり、加熱圧着圧力は、好ましくは0.098MPa〜1.77MPa、より好ましくは0.29MPa〜1.47MPaの範囲であり、加熱圧着時間は、好ましくは20秒間〜400秒間、より好ましくは30秒間〜300秒間の範囲である。積層は、好ましくは圧力26.7hPa以下の減圧条件下で実施する。
積層は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアップリケーター、バッチ式真空加圧ラミネーター等が挙げられる。
積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された樹脂シートの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理は、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。
支持体は、工程(I)と工程(II)の間に除去してもよく、工程(II)の後に除去してもよい。
工程(II)において、樹脂組成物層を熱硬化して絶縁層を形成する。
樹脂組成物層の熱硬化条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常採用される条件を使用してよい。
例えば、樹脂組成物層の熱硬化条件は、樹脂組成物の種類等によっても異なるが、硬化温度は好ましくは120℃〜240℃、より好ましくは150℃〜220℃、さらに好ましくは170℃〜200℃である。硬化時間は好ましくは5分間〜120分間、より好ましくは10分間〜100分間、さらに好ましくは15分間〜90分間とすることができる。
樹脂組成物層を熱硬化させる前に、樹脂組成物層を硬化温度よりも低い温度にて予備加熱してもよい。例えば、樹脂組成物層を熱硬化させるのに先立ち、50℃以上120℃未満(好ましくは60℃以上115℃以下、より好ましくは70℃以上110℃以下)の温度にて、樹脂組成物層を5分間以上(好ましくは5分間〜150分間、より好ましくは15分間〜120分間、さらに好ましくは15分間〜100分間)予備加熱してもよい。
プリント配線板を製造するに際しては、(III)絶縁層に穴あけする工程、(IV)絶縁層を粗化処理する工程、(V)導体層を形成する工程をさらに実施してもよい。これらの工程(III)乃至工程(V)は、プリント配線板の製造に用いられる、当業者に公知の各種方法に従って実施してよい。なお、支持体を工程(II)の後に除去する場合、該支持体の除去は、工程(II)と工程(III)との間、工程(III)と工程(IV)の間、又は工程(IV)と工程(V)との間に実施してよい。また、必要に応じて、工程(II)〜工程(V)の絶縁層及び導体層の形成を繰り返して実施し、多層配線板を形成してもよい。この場合、それぞれの導体層間の絶縁層の厚み(図1のt1)は上記範囲内であることが好ましい。
工程(III)は、絶縁層に穴あけする工程であり、これにより絶縁層にビアホール、スルーホール等のホールを形成することができる。工程(III)は、絶縁層の形成に使用した樹脂組成物の組成等に応じて、例えば、ドリル、レーザー、プラズマ等を使用して実施してよい。ホールの寸法や形状は、プリント配線板のデザインに応じて適宜決定してよい。
工程(IV)は、絶縁層を粗化処理する工程である。粗化処理の手順、条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常使用される公知の手順、条件を採用することができる。例えば、膨潤液による膨潤処理、酸化剤による粗化処理、中和液による中和処理をこの順に実施して絶縁層を粗化処理することができる。粗化処理に用いる膨潤液としては特に限定されないが、アルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液であり、該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液がより好ましい。市販されている膨潤液としては、例えば、アトテックジャパン社製の「スウェリング・ディップ・セキュリガンスP」、「スウェリング・ディップ・セキュリガンスSBU」等が挙げられる。膨潤液による膨潤処理は、特に限定されないが、例えば、30℃〜90℃の膨潤液に絶縁層を1分間〜20分間浸漬することにより行うことができる。絶縁層の樹脂の膨潤を適度なレベルに抑える観点から、40℃〜80℃の膨潤液に絶縁層を5分間〜15分間浸漬させることが好ましい。粗化処理に用いる酸化剤としては、特に限定されないが、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液が挙げられる。アルカリ性過マンガン酸溶液等の酸化剤による粗化処理は、60℃〜80℃に加熱した酸化剤溶液に絶縁層を10分間〜30分間浸漬させて行うことが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5質量%〜10質量%が好ましい。市販されている酸化剤としては、例えば、アトテックジャパン社製の「コンセントレート・コンパクトCP」、「ドージングソリューション・セキュリガンスP」等のアルカリ性過マンガン酸溶液が挙げられる。また、粗化処理に用いる中和液としては、酸性の水溶液が好ましく、市販品としては、例えば、アトテックジャパン社製の「リダクションソリューション・セキュリガントP」が挙げられる。中和液による処理は、酸化剤による粗化処理がなされた処理面を30℃〜80℃の中和液に5分間〜30分間浸漬させることにより行うことができる。作業性等の点から、酸化剤による粗化処理がなされた対象物を、40℃〜70℃の中和液に5分間〜20分間浸漬する方法が好ましい。
一実施形態において、粗化処理後の絶縁層表面の算術平均粗さ(Ra)は、好ましくは400nm以下、より好ましくは350nm以下、さらに好ましくは300nm以下である。下限については特に限定されないが、好ましくは0.5nm以上、より好ましくは1nm以上等とし得る。また、粗化処理後の絶縁層表面の二乗平均平方根粗さ(Rq)は、好ましくは400nm以下、より好ましくは350nm以下、さらに好ましくは300nm以下である。下限については特に限定されないが、好ましくは0.5nm以上、より好ましくは1nm以上等とし得る。絶縁層表面の算術平均粗さ(Ra)及び二乗平均平方根粗さ(Rq)は、非接触型表面粗さ計を用いて測定することができる。
工程(V)は、導体層を形成する工程である。内層基板に導体層が形成されていない場合、工程(V)は第1の導体層を形成する工程であり、内層基板に導体層が形成されている場合、該導体層が第1の導体層であり、工程(V)は第2の導体層を形成する工程である。
導体層に使用する導体材料は特に限定されない。好適な実施形態では、導体層は、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群から選択される1種以上の金属を含む。導体層は、単金属層であっても合金層であってもよく、合金層としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル・クロム合金、銅・ニッケル合金及び銅・チタン合金)から形成された層が挙げられる。中でも、導体層形成の汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金、銅・ニッケル合金、銅・チタン合金の合金層が好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金の合金層がより好ましく、銅の単金属層が更に好ましい。
導体層は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。導体層が複層構造である場合、絶縁層と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケル・クロム合金の合金層であることが好ましい。
導体層の厚さは、所望のプリント配線板のデザインによるが、一般に3μm〜35μm、好ましくは5μm〜30μmである。
一実施形態において、導体層は、めっきにより形成してよい。例えば、セミアディティブ法、フルアディティブ法等の従来公知の技術により絶縁層の表面にめっきして、所望の配線パターンを有する導体層を形成することができ、製造の簡便性の観点から、セミアディティブ法により形成することが好ましい。以下、導体層をセミアディティブ法により形成する例を示す。
まず、絶縁層の表面に、無電解めっきによりめっきシード層を形成する。次いで、形成されためっきシード層上に、所望の配線パターンに対応してめっきシード層の一部を露出させるマスクパターンを形成する。露出しためっきシード層上に、電解めっきにより金属層を形成した後、マスクパターンを除去する。その後、不要なめっきシード層をエッチング等により除去して、所望の配線パターンを有する導体層を形成することができる。
本発明の樹脂シートは、部品埋め込み性にも良好な絶縁層をもたらすことから、プリント配線板が部品内蔵回路板である場合にも好適に使用することができる。部品内蔵回路板は公知の製造方法により作製することができる。
本発明の樹脂シートを用いて製造されるプリント配線板は、樹脂シートの樹脂組成物層の硬化物である絶縁層と、絶縁層に埋め込まれた埋め込み型配線層と、を備える態様であってもよい。
[半導体装置]
本発明の半導体装置は、本発明のプリント配線板を含む。本発明の半導体装置は、本発明のプリント配線板を用いて製造することができる。
半導体装置としては、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。
本発明の半導体装置は、プリント配線板の導通箇所に、部品(半導体チップ)を実装することにより製造することができる。「導通箇所」とは、「プリント配線板における電気信号を伝える箇所」であって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能しさえすれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、非導電性フィルム(NCF)による実装方法、等が挙げられる。ここで、「バンプなしビルドアップ層(BBUL)による実装方法」とは、「半導体チップをプリント配線板の凹部に直接埋め込み、半導体チップとプリント配線板上の配線とを接続させる実装方法」のことである。
以下、本発明を実施例により具体的に説明する。本発明はこれらの実施例に限定されるものではない。なお、以下において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。
[樹脂組成物の作製]
<実施例1:樹脂組成物1の作製>
ビスフェノールA型エポキシ樹脂(三菱ケミカル社製「828US」、エポキシ当量約180)10部、ビフェニル型エポキシ樹脂(三菱ケミカル社製「YX4000H」、エポキシ当量約190)20部、及びビスフェノールAF型エポキシ樹脂(三菱ケミカル社製「YL7760」、エポキシ当量約238)10部、ホスファゼン樹脂(大塚化学社製「SPH−100」)3部、フェノキシ樹脂(三菱ケミカル社製「YL7553BH30」、固形分30質量%のMEKとシクロヘキサノンの1:1溶液)10部をMEK60部に撹拌しながら加熱溶解させた。
室温にまで冷却した後、活性エステル系硬化剤(DIC社製「HPC−8000−65T」、活性基当量約223、固形分65質量%のトルエン溶液)30部、フェノール系硬化剤(DIC社製「LA−3018−50P」、活性基当量約151、固形分50%の2−メトキシプロパノール溶液)16部、ベンゾオキサジン化合物(JFEケミカル社製「ODA−BOZ」)3部、硬化促進剤(4−ジメチルアミノピリジン(DMAP)、固形分5質量%のMEK溶液)4部、アミン系シランカップリング剤(信越化学工業社製「KBM573」)で表面処理された球状シリカ(電気化学工業社製「UFP−30」、平均粒径0.078μm、比表面積30.7m/g)110部を混合し、高速回転ミキサーで均一に分散した後に、カートリッジフィルター(ROKITECHNO社製「SHP020」)で濾過して、樹脂組成物1を作製した。
<実施例2:樹脂組成物2の作製>
実施例1において、ベンゾオキサジン化合物(JFEケミカル社製「ODA−BOZ」)の量を3部から15部に変更した。以上の事項以外は実施例1と同様にして、樹脂組成物2を作製した。
<実施例3:樹脂組成物3の作製>
実施例1において、ベンゾオキサジン化合物(JFEケミカル社製「ODA−BOZ」)3部を、ベンゾオキサジン化合物(四国化成社製「P−d」)3部に変更した。以上の事項以外は実施例1と同様にして、樹脂組成物3を作製した。
<実施例4:樹脂組成物4の作製>
実施例1において、活性エステル系硬化剤(DIC社製「HPC−8000−65T」、活性基当量約223、固形分65質量%のトルエン溶液)30部を、活性エステル系硬化剤(DIC社製「EXB9416−70BK」、活性基当量約274、固形分70質量%のMIBK(メチルイソブチルケトン)溶液)28部に変更した。以上の事項以外は実施例1と同様にして、樹脂組成物4を作製した。
<実施例5:樹脂組成物5の作製>
実施例1において、さらにカルボジイミド系硬化剤(日清紡ケミカル社製「V−03」、活性基当量約216、固形分50質量%のトルエン溶液)10部を加えた。以上の事項以外は実施例1と同様にして、樹脂組成物5を作製した。
<実施例6:樹脂組成物6の作製>
実施例1において、活性エステル系硬化剤(DIC社製「HPC−8000−65T」、活性基当量約223、固形分65質量%のトルエン溶液)30部を、ナフトール系硬化剤(新日鉄住金化学社製「SN485」、活性基当量約215)7.2部に変え、フェノール系硬化剤(DIC社製「LA−3018−50P」、活性基当量約151、固形分50%の2−メトキシプロパノール溶液)16部を、フェノール系硬化剤(DIC社製「LA−7054」、活性基当量性約124、固形分60%のMEK溶液)12部に変え、アミン系シランカップリング剤(信越化学工業社製「KBM573」)で表面処理された球状シリカ(電気化学工業社製「UFP−30」、平均粒径0.078μm、比表面積30.7m/g)110部を100部に変更した。以上の事項以外は実施例1と同様にして、樹脂組成物6を作製した。
<実施例7:樹脂組成物7の作製>
実施例6において、ベンゾオキサジン化合物(JFEケミカル社製「ODA−BOZ」)の量を3部から15部に変更した。以上の事項以外は実施例6と同様にして、樹脂組成物7を作製した。
<実施例8:樹脂組成物8の作製>
実施例6において、ベンゾオキサジン化合物(JFEケミカル社製「ODA−BOZ」)3部を、ベンゾオキサジン化合物(四国化成社製「P−d」)3部に変更した。以上の事項以外は実施例6と同様にして、樹脂組成物8を作製した。
<比較例1:樹脂組成物9の作製>
実施例1において、アミン系シランカップリング剤(信越化学工業社製「KBM573」)で表面処理された球状シリカ(電気化学工業社製「UFP−30」、平均粒径0.078μm、比表面積30.7m/g)110部を、アミン系シランカップリング剤(信越化学工業社製「KBM573」)で表面処理された球形シリカ(平均粒径0.77μm、比表面積5.9m/g、アドマテックス社製「SO−C2」)110部に変更した。以上の事項以外は実施例1と同様にして、樹脂組成物9を作製した。
<比較例2:樹脂組成物10の作製>
実施例6において、アミン系シランカップリング剤(信越化学工業社製「KBM573」)で表面処理された球状シリカ(電気化学工業社製「UFP−30」、平均粒径0.078μm、比表面積30.7m/g)100部を、アミン系シランカップリング剤(信越化学工業社製「KBM573」)で表面処理された球形シリカ(平均粒径0.77μm、比表面積5.9m/g、アドマテックス社製「SO−C2」)100部に変更した。以上の事項以外は実施例6と同様にして、樹脂組成物10を作製した。
<比較例3:樹脂組成物11の作製>
実施例1において、ベンゾオキサジン化合物(JFEケミカル社製「ODA−BOZ」)3部を加えなかった。以上の事項以外は実施例1と同様にして、樹脂組成物11を作製した。
<比較例4:樹脂組成物12の作製>
実施例6において、ベンゾオキサジン化合物(JFEケミカル社製「ODA−BOZ」)3部を加えなかった。以上の事項以外は実施例6と同様にして、樹脂組成物12を作製した。
<無機充填材の平均粒径の測定>
無機充填材100mg、分散剤(サンノプコ社製「SN9228」)0.1g、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて20分間分散した。レーザー回折式粒径分布測定装置(島津製作所社製「SALD−2200」)を使用して、回分セル方式で粒径分布を測定し、メディアン径として平均粒径を算出した。
[樹脂シートの作製]
支持体として、アルキド樹脂系離型剤(リンテック社製「AL−5」)で離型処理したPETフィルム(東レ社製「ルミラーR80」、厚み38μm、軟化点130℃、以下「離型PET」ということがある。)を用意した。
<樹脂シートAの作製>
各樹脂組成物を、乾燥後の樹脂組成物層の厚みが15μmとなるよう、離型PET上にダイコーターにて均一に塗布し、80℃で3分間乾燥することにより、離型PET上に樹脂組成物層を得た。次いで、樹脂組成物層の離型PETと接合していない面に、保護フィルムとしてポリプロピレンフィルム(王子エフテックス社製「アルファンMA−411」、厚み15μm)の粗面を、樹脂組成物層と接合するように積層した。これにより、離型PET(支持体)、樹脂組成物層、及び保護フィルムの順からなる樹脂シートAを得た。
<樹脂シートBの作製>
各樹脂組成物を、乾燥後の樹脂組成物層の厚みが6μmとなるよう、離型PET上にダイコーターにて均一に塗布し、80℃で1分間乾燥することにより、離型PET上に樹脂組成物層を得た。次いで、樹脂組成物層の支持体と接合していない面に、保護フィルムとしてポリプロピレンフィルム(王子エフテックス社製「アルファンMA−411」、厚み15μm)の粗面を、樹脂組成物層と接合するように積層した。これにより、離型PET(支持体)、樹脂組成物層、及び保護フィルムの順からなる樹脂シートBを得た。
[銅箔引き剥がし強度の測定]
<サンプルの作製>
(1)銅箔の下地処理
三井金属鉱山社製「3EC−III」(電界銅箔、35μm)の光沢面をメック社製メックエッチボンド「CZ−8101」に浸漬して銅表面に粗化処理(Ra値=1μm)を行い、防錆処理(CL8300)を施した。この銅箔をCZ銅箔という。さらに、130℃のオーブンで30分間加熱処理した。
(2)銅箔のラミネートと絶縁層形成
予め作製した各樹脂シートAから保護フィルムを剥がし、バッチ式真空加圧ラミネーター(名機社製「MVLP-500」)を用いて、樹脂組成物層が内層回路を形成したガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板の厚さ0.4mm、パナソニック社製「R1515A」)と接合するように、前記の積層板の両面にラミネート処理した。ラミネート処理は、30秒間減圧して気圧を13hPa以下とした後、100℃、圧力0.74MPaで30秒間圧着することにより行った。ラミネート処理された樹脂シートから支持体である離型PETを剥離した。その樹脂組成物層上に、CZ銅箔の処理面を、上記と同様の条件で、ラミネートした。そして、190℃、90分の硬化条件で樹脂組成物層を硬化して絶縁層を形成することで、サンプルを作製した。
<銅箔引き剥がし強度(密着性1)の測定>
作製したサンプルを150×30mmの小片に切断した。小片の銅箔部分に、カッターを用いて幅10mm、長さ100mmの部分の切込みをいれて、銅箔の一端を剥がしてつかみ具(ティー・エス・イー社製、オートコム型試験機、「AC−50C−SL」)で掴み、インストロン万能試験機を用いて、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重をJIS C6481に準拠して測定した。
<環境試験(HAST)後の銅箔引き剥がし強度(密着性2)の測定>
作製したサンプルを、高度加速寿命試験装置(楠本化成社製「PM422」)を用いて、130℃、85%RHの条件で100時間の加速環境試験(環境試験)を実施した。その後、密着性1の測定と同様に、銅箔の一端を剥がしてつかみ具(ティー・エス・イー社製、オートコム型試験機、「AC−50C−SL」)で掴み、インストロン万能試験機を用いて、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重をJIS C6481に準拠して測定した。
また、密着性2における測定結果が0.20kgf/cm未満の場合を「×」とし、0.20kgf/cm以上の場合を「○」として評価した。
[導体層間の絶縁層の厚み及び絶縁層の絶縁信頼性の測定]
(評価用基板の調製)
(1)内層回路基板の下地処理
内層回路基板として、L/S(ライン/スペース)=2μm/2μmの配線パターンにて形成された回路導体(銅)を両面に有するガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ3μm、基板厚み0.15mm、三菱ガス化学社製「HL832NSF LCA」、255×340mmサイズ)を用意した。該積層板の両面を、メック社製「FlatBOND−FT」にて銅表面の有機被膜処理を行った。
(2)樹脂シートのラミネート
予め作製した各樹脂シートBから保護フィルムを剥がし、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製、2ステージビルドアップラミネーター、CVP700)を用いて、樹脂組成物層が積層板と接するように、積層板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、130℃、圧力0.74MPaにて45秒間圧着させることにより実施した。次いで、120℃、圧力0.5MPaにて75秒間熱プレスを行った。
(3)樹脂組成物層の熱硬化
樹脂シートがラミネートされた積層板を、100℃のオーブンに投入後30分間、次いで180℃のオーブンに移し替えた後30分間、熱硬化して厚みが5μmの絶縁層を形成し、離形PETを剥離した。これを基板Aとする。
(4)粗化処理を行う工程
基板Aの絶縁層に粗化処理としてのデスミア処理を行った。なお、デスミア処理としては、下記の湿式デスミア処理を実施した。
湿式デスミア処理:
膨潤液(アトテックジャパン社製「スウェリングディップ・セキュリガントP」、ジエチレングリコールモノブチルエーテル及び水酸化ナトリウムの水溶液)に60℃で5分間、次いで酸化剤溶液(アトテックジャパン社製「コンセントレート・コンパクトCP」、過マンガン酸カリウム濃度約6%、水酸化ナトリウム濃度約4%の水溶液)に80℃で10分間、最後に中和液(アトテックジャパン社製「リダクションソリューション・セキュリガントP」、硫酸水溶液)に40℃で5分間、浸漬した後、80℃で15分間乾燥した。これを粗化基板Aとする。
(5)導体層を形成する工程
(5−1)無電解めっき工程
上記粗化基板Aの絶縁層の表面に導体層を形成するため、下記1〜6の工程を含むめっき工程(アトテックジャパン社製の薬液を使用した銅めっき工程)を行って導体層を形成した。
1.アルカリクリーニング(ビアホールが設けられた絶縁層の表面の洗浄と電荷調整)
粗化基板Aの表面を、Cleaning Cleaner Securiganth 902(商品名)を用いて60℃で5分間洗浄した。
2.ソフトエッチング(ビアホール内の洗浄)
粗化基板Aの表面を、硫酸酸性ペルオキソ二硫酸ナトリウム水溶液を用いて、30℃で1分間処理した。
3.プレディップ(Pd付与のための絶縁層の表面の電荷の調整)
粗化基板Aの表面を、Pre. Dip Neoganth B(商品名)を用い、室温で1分間処理した。
4.アクティヴェーター付与(絶縁層の表面へのPdの付与)
粗化基板Aの表面を、Activator Neoganth 834(商品名)を用い、35℃で5分間処理した。
5.還元(絶縁層に付与されたPdを還元)
粗化基板Aの表面を、Reducer Neoganth WA(商品名)とReducer Acceralator 810 mod.(商品名)との混合液を用い、30℃で5分間処理した。
6.無電解銅めっき工程(Cuを絶縁層の表面(Pd表面)に析出)
粗化基板Aの表面を、Basic Solution Printganth MSK−DK(商品名)と、Copper solution Printganth MSK(商品名)と、Stabilizer Printganth MSK−DK(商品名)と、Reducer Cu(商品名)との混合液を用いて、35℃で20分間処理した。形成された無電解銅めっき層の厚さは0.8μmであった。
(5−2)電解めっき工程
次いで、アトテックジャパン社製の薬液を使用して、ビアホール内に銅が充填される条件で電解銅めっき工程を行った。その後に、エッチングによるパターニングのためのレジストパターンとして、ビアホールに導通された直径1mmのランドパターン、及び下層導体とは接続されていない直径10mmの円形導体パターンを用いて絶縁層の表面に10μmの厚さでランド及び導体パターンを有する導体層を形成した。次に、アニール処理を200℃にて90分間行った。この基板を「評価用基板B」とした。
<導体層間の絶縁層の厚みの測定>
評価用基板BをFIB−SEM複合装置(SIIナノテクノロジー社製「SMI3050SE」)を用いて、断面観察を行った。詳細には、導体層の表面に垂直な方向における断面をFIB(集束イオンビーム)により削り出し、断面SEM画像から、導体層間の絶縁層厚を測定した。各サンプルにつき、無作為に選んだ5箇所の断面SEM画像を観察し、その平均値を導体層間の絶縁層の厚み(μm)とし、下記表に示した。
<絶縁層の絶縁信頼性の評価>
上記において得られた評価用基板Bの直径10mmの円形導体側を+電極とし、直径1mmのランドと接続された積層板の格子導体(銅)側を−電極として、高度加速寿命試験装置(ETAC社製「PM422」)を使用し、130℃、85%相対湿度、3.3V直流電圧印加の条件で200時間経過させた際の絶縁抵抗値を、エレクトロケミカルマイグレーションテスター(J−RAS社製「ECM−100」)にて測定した。この測定を6回行い、6点の試験ピース全てにおいてその抵抗値が10Ω以上の場合を「○」とし、1つでも10Ω未満の場合は「×」とし、評価結果と絶縁抵抗値とともに下記表に示した。下記表に記載の絶縁抵抗値は、6点の試験ピースの絶縁抵抗値の最低値である。
樹脂組成物1〜12の調製に用いた成分とその配合量(不揮発分換算)を下記表に示した。
Figure 2019044180
Figure 2019044180
実施例1〜8において、(D)〜(G)成分を含有しない場合であっても、程度に差はあるものの上記実施例と同様の結果に帰着することを確認している。
1 第1の導体層
11 第1の導体層の主面
2 第2の導体層
21 第2の導体層の主面
3 絶縁層
t1 第1導体層と第2の導体層との間隔(第1及び第2の導体層間の絶縁層の厚み)
t2 絶縁層全体の厚み

Claims (16)

  1. (A)エポキシ樹脂、(B)ベンゾオキサジン化合物、(C)平均粒径が100nm以下である無機充填剤を含む樹脂組成物であって、
    (C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上である、樹脂組成物。
  2. (A)エポキシ樹脂、(B)ベンゾオキサジン化合物、(C)比表面積が15m/g以上である無機充填剤を含む樹脂組成物であって、
    (C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上である、樹脂組成物。
  3. さらに、(D)硬化剤を含む、請求項1又は2に記載の樹脂組成物。
  4. (D)成分が、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、シアネートエステル系硬化剤、及びカルボジイミド系硬化剤のいずれか1種以上を含む、請求項3に記載の樹脂組成物。
  5. (B)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、0.1質量%以上30質量%以下である、請求項1〜4のいずれか1項に記載の樹脂組成物。
  6. (B)成分が、下記一般式(B−1)で表される、請求項1〜5のいずれか1項に記載の樹脂組成物。
    Figure 2019044180
    式(B−1)中、Rはn価の基を表し、Rはそれぞれ独立にハロゲン原子、アルキル基、又はアリール基を表す。nは2〜4の整数を表し、mは0〜4の整数を表す。
  7. 一般式(B−1)中、Rはアリーレン基、アルキレン基、酸素原子、又はこれらの2以上の組み合わせからなるn価の基である、請求項6に記載の樹脂組成物。
  8. 一般式(B−1)中、mは0を表す、請求項6又は7に記載の樹脂組成物。
  9. プリント配線板の絶縁層形成用である、請求項1〜8のいずれか1項に記載の樹脂組成物。
  10. プリント配線板の層間絶縁層形成用である、請求項1〜9のいずれか1項に記載の樹脂組成物。
  11. 支持体と、該支持体上に設けられた請求項1〜10のいずれか1項に記載の樹脂組成物で形成された樹脂組成物層とを含む、樹脂シート。
  12. 樹脂組成物層の厚みが15μm以下である、請求項11に記載の樹脂シート。
  13. 第1の導体層と、第2の導体層と、第1の導体層と第2の導体層との間に形成された絶縁層と、を含み、第1の導体層と第2の導体層との間隔が、6μm以下であるプリント配線板の、該絶縁層形成用である、請求項11又は12に記載の樹脂シート。
  14. 第1の導体層、第2の導体層、及び、第1の導体層と第2の導体層との間に形成された絶縁層を含むプリント配線板であって、
    該絶縁層は、請求項1〜10のいずれか1項に記載の樹脂組成物の硬化物である、プリント配線板。
  15. 第1導体層と第2の導体層との間隔が、6μm以下である、請求項14に記載のプリント配線板。
  16. 請求項14又は15に記載のプリント配線板を含む、半導体装置。
JP2018161660A 2017-09-04 2018-08-30 樹脂組成物 Active JP7279319B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023013813A JP2023052814A (ja) 2017-09-04 2023-02-01 樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017169816 2017-09-04
JP2017169816 2017-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023013813A Division JP2023052814A (ja) 2017-09-04 2023-02-01 樹脂組成物

Publications (2)

Publication Number Publication Date
JP2019044180A true JP2019044180A (ja) 2019-03-22
JP7279319B2 JP7279319B2 (ja) 2023-05-23

Family

ID=65514791

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018161660A Active JP7279319B2 (ja) 2017-09-04 2018-08-30 樹脂組成物
JP2023013813A Pending JP2023052814A (ja) 2017-09-04 2023-02-01 樹脂組成物

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023013813A Pending JP2023052814A (ja) 2017-09-04 2023-02-01 樹脂組成物

Country Status (4)

Country Link
JP (2) JP7279319B2 (ja)
KR (1) KR102560184B1 (ja)
CN (1) CN109423014A (ja)
TW (1) TW201922908A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044097A (ja) * 2017-09-04 2019-03-22 味の素株式会社 樹脂組成物
WO2019189466A1 (ja) * 2018-03-28 2019-10-03 積水化学工業株式会社 樹脂材料及び多層プリント配線板
JP2019173009A (ja) * 2018-03-28 2019-10-10 積水化学工業株式会社 硬化体、樹脂材料及び多層プリント配線板
JP2020050829A (ja) * 2018-09-28 2020-04-02 積水化学工業株式会社 樹脂材料及び多層プリント配線板
WO2023149209A1 (ja) * 2022-02-03 2023-08-10 味の素株式会社 樹脂組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124770B2 (ja) * 2019-03-07 2022-08-24 味の素株式会社 樹脂組成物
JP7192674B2 (ja) * 2019-06-20 2022-12-20 味の素株式会社 樹脂シート
JP7222320B2 (ja) * 2019-06-25 2023-02-15 味の素株式会社 樹脂組成物
JP7354774B2 (ja) * 2019-11-01 2023-10-03 味の素株式会社 樹脂組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032424A1 (ja) * 2005-09-15 2007-03-22 Sekisui Chemical Co., Ltd. 樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板、および多層積層板
JP2016027097A (ja) * 2014-06-30 2016-02-18 味の素株式会社 樹脂組成物
JP2017101138A (ja) * 2015-12-01 2017-06-08 味の素株式会社 樹脂組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951816B2 (ja) * 2001-03-30 2012-06-13 日立化成工業株式会社 プリント配線板用絶縁樹脂組成物及びその用途
TWI378938B (en) * 2006-01-13 2012-12-11 Fushimi Pharmaceutical Co Ltd Cyclic cyanato group-containing phosphazene compound and method for making such compound
JP5088146B2 (ja) * 2008-01-11 2012-12-05 横浜ゴム株式会社 封止剤用液状エポキシ樹脂組成物
CN102822272A (zh) * 2011-03-31 2012-12-12 积水化学工业株式会社 预固化物、粗糙化预固化物及层叠体
WO2014004900A2 (en) * 2012-06-27 2014-01-03 Toray Composites (America), Inc. Benzoxazine resin composition, prepreg, and fiber-reinforced composite material
JP6269294B2 (ja) * 2014-04-24 2018-01-31 味の素株式会社 プリント配線板の絶縁層用樹脂組成物
JP6413831B2 (ja) * 2015-02-24 2018-10-31 味の素株式会社 回路基板及びその製造方法
KR20160118962A (ko) * 2015-04-03 2016-10-12 스미토모 베이클리트 컴퍼니 리미티드 프리프레그, 수지 기판, 금속 부착 적층판, 프린트 배선 기판, 및 반도체 장치
CN105504681B (zh) * 2015-12-17 2018-05-29 广东生益科技股份有限公司 一种热固性树脂组合物以及含有它的预浸料、层压板以及印制电路板
JP6489148B2 (ja) * 2017-04-05 2019-03-27 味の素株式会社 樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032424A1 (ja) * 2005-09-15 2007-03-22 Sekisui Chemical Co., Ltd. 樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板、および多層積層板
JP2016027097A (ja) * 2014-06-30 2016-02-18 味の素株式会社 樹脂組成物
JP2017101138A (ja) * 2015-12-01 2017-06-08 味の素株式会社 樹脂組成物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044097A (ja) * 2017-09-04 2019-03-22 味の素株式会社 樹脂組成物
JP2021113324A (ja) * 2017-09-04 2021-08-05 味の素株式会社 樹脂組成物
JP7156433B2 (ja) 2017-09-04 2022-10-19 味の素株式会社 樹脂組成物
WO2019189466A1 (ja) * 2018-03-28 2019-10-03 積水化学工業株式会社 樹脂材料及び多層プリント配線板
JP2019173009A (ja) * 2018-03-28 2019-10-10 積水化学工業株式会社 硬化体、樹脂材料及び多層プリント配線板
JP6660513B1 (ja) * 2018-03-28 2020-03-11 積水化学工業株式会社 樹脂材料及び多層プリント配線板
JP2020050829A (ja) * 2018-09-28 2020-04-02 積水化学工業株式会社 樹脂材料及び多層プリント配線板
JP7305326B2 (ja) 2018-09-28 2023-07-10 積水化学工業株式会社 樹脂材料及び多層プリント配線板
WO2023149209A1 (ja) * 2022-02-03 2023-08-10 味の素株式会社 樹脂組成物

Also Published As

Publication number Publication date
KR20230113507A (ko) 2023-07-31
CN109423014A (zh) 2019-03-05
KR20190026615A (ko) 2019-03-13
JP2023052814A (ja) 2023-04-12
TW201922908A (zh) 2019-06-16
KR102560184B1 (ko) 2023-07-28
JP7279319B2 (ja) 2023-05-23

Similar Documents

Publication Publication Date Title
TWI701289B (zh) 樹脂組成物
JP7279319B2 (ja) 樹脂組成物
JP6724474B2 (ja) 樹脂シート
JP2019044128A (ja) 樹脂組成物
JP6866858B2 (ja) 樹脂組成物層
JP6672953B2 (ja) 樹脂シート
JP7400883B2 (ja) 樹脂組成物
TWI721130B (zh) 樹脂薄片
KR102490658B1 (ko) 수지 조성물
TWI780250B (zh) 樹脂組成物
JP7156433B2 (ja) 樹脂組成物
JP2019119819A (ja) 樹脂組成物
JP2019073603A (ja) 樹脂組成物層
JP7283498B2 (ja) 樹脂シート、プリント配線板及び半導体装置
JP7247471B2 (ja) 樹脂組成物
JP6911311B2 (ja) 樹脂組成物
KR102671534B1 (ko) 수지 조성물

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230209

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7279319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150