JP2019036947A - 色画像を生成するカメラおよび方法 - Google Patents

色画像を生成するカメラおよび方法 Download PDF

Info

Publication number
JP2019036947A
JP2019036947A JP2018115150A JP2018115150A JP2019036947A JP 2019036947 A JP2019036947 A JP 2019036947A JP 2018115150 A JP2018115150 A JP 2018115150A JP 2018115150 A JP2018115150 A JP 2018115150A JP 2019036947 A JP2019036947 A JP 2019036947A
Authority
JP
Japan
Prior art keywords
pixel
pixels
radiation
filter
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018115150A
Other languages
English (en)
Other versions
JP6606231B2 (ja
JP2019036947A5 (ja
Inventor
ステファン ルンドベリ,
Lundberg Stefan
ステファン ルンドベリ,
ヨナス ヒェルムストレム,
Hjelmstrom Jonas
ヨナス ヒェルムストレム,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axis AB
Original Assignee
Axis AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP17209246.2A external-priority patent/EP3343897B1/en
Application filed by Axis AB filed Critical Axis AB
Publication of JP2019036947A publication Critical patent/JP2019036947A/ja
Publication of JP2019036947A5 publication Critical patent/JP2019036947A5/ja
Application granted granted Critical
Publication of JP6606231B2 publication Critical patent/JP6606231B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/743Bracketing, i.e. taking a series of images with varying exposure conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • H04N25/575Control of the dynamic range involving a non-linear response with a response composed of multiple slopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Blocking Light For Cameras (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)
  • Diaphragms For Cameras (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】弱光状態においてさえ、色分解された画像を得る手段を提供する。【解決手段】カメラ100は、ピクセルの複数のペア中において、第1のピクセルが、アパーチャから第1の放射経路を介して伝わった放射を検出するように構成され、第2のピクセルが、第2の放射経路を介して伝わった放射を検出するように構成された、複数のピクセルのペアを備える画像センサー102と、アパーチャ110の近傍に配置された、赤外線または可視光線を阻止するように構成された第1の部分と、第1の部分によって阻止された波長に対して透過的であるように構成された第2の部分とを備え、第1の部分を通過した放射が第1のピクセルに伝わるように及び第2の部分を通過した放射が第2のピクセルに伝わるように配置された、フィルタ112とを備える。【選択図】図1

Description

本発明は、色画像を生成することに関し、特に、弱光状態下で色画像を生成することを可能にするカメラ設計に関する。
デジタルカメラにおいて使用される画像センサーは、赤外線(IR)における無視できない成分をもつスペクトル応答を有する。これは、機会ならびに課題を生じる。
機会は、夜間に、または弱光状態において、IR成分が、撮像されたシーンに関する有用な情報を提供し得ることにある。一般に、弱光状態は、夕暮れまたは夜明けの間に起こる。他の弱光状態シーンは、薄暗い部屋である。弱光状態は、可視光線の量と赤外線の量とが同等である状態としても定義され、それゆえに、弱光状態は、混合光状態と呼ばれることもある。
夜間に、または弱光状態において、スペクトルのIR部分からの入来する放射が利用され得る。赤外線は、色情報を含んでおらず、色分解を実施する代わりに、唯一のパラメータは、白黒強度画像として(または任意の望ましい色スケールを用いて)提示され得る、入来する放射の強度である。
課題は、昼間の撮像の間に見つかり、IR成分の追加が、デジタルカメラを使用してキャプチャされた画像中の色バランスをひずませ得る。いくつかの状況では、画像センサーの一部または全部のピクセルが、赤外線成分によって完全に飽和されることさえある。
あまり有益でない効果を抑制しながら有益な効果を維持するやり方は、画像センサーの前でビーム経路中に可動IRカットフィルタを追加することである。このようにして、IRカットフィルタは昼光状態の間に使用され得、色画像の収集を有効にする。画像センサーのピクセルが、次いで、第1の様式で動作することになり、入射光が、各色に分けられ、個々の光検出器上の電荷として検出され、したがって色分解を有効にする。IRカットフィルタは、夜間に、または弱光状態において取り外され、赤外線が画像センサーに到達することを可能にする。画像センサーのピクセルは、次いで、第2の様式で動作することになり、ピクセルによって測定される唯一のパラメータが、入来する放射の強度である。それゆえに、強度ベースの画像がキャプチャされ、黒および白で提示され得る。
しかしながら、弱光状態においてさえ、色分解された画像をキャプチャすることが可能であることが望ましい事例があり得る。
欧州特許出願第16207126.0号
上記に鑑みて、本発明の目的は、弱光状態においてさえ、色分解された画像をキャプチャするための手段を提供することである。
第1の態様によれば、カメラが提供される。本カメラは、アパーチャと、ピクセルの複数のペアを備える画像センサーであって、上記ペア中において、第1のピクセルが、アパーチャを通ってカメラに入射し、アパーチャから第1の放射経路を介して画像センサーに伝わった放射を検出するように構成され、第2のピクセルが、アパーチャを通ってカメラに入射し、アパーチャから第2の放射経路を介して画像センサーに伝わった放射を検出するように構成され、第2の放射経路が第1の放射経路とは異なる、画像センサーと、アパーチャにおいて、またはアパーチャの近傍に配置されたフィルタであって、フィルタが、赤外線または可視光線を阻止するように構成された第1の部分と、第1の部分によって阻止された波長に対して透過的であるように構成された第2の部分とを備え、フィルタが、第1の部分を通過した放射がピクセルの複数のペアの第1のピクセルに伝わるように、および第2の部分を通過した放射がピクセルの複数のペアの第2のピクセルに伝わるように配置された、フィルタとを備える。
それゆえに、改善された撮像が有効にされる。これは、赤外線の成分が、第1のピクセルおよび第2のピクセルの各ペア中の、第1のピクセルおよび第2のピクセルによって検出された放射を比較することと、そのIR部分を補償することとによって決定され得ることによるものである。たとえば、色画像は、画像センサーによって検出された放射のIR部分を決定することによって生成され得る。このようにして、撮像されたシーンは、画像センサーによってキャプチャされた赤外線を含んでいるが、トゥルーカラー表現が取得され得る。
「放射」という用語は、赤外スペクトル範囲と可視光スペクトル範囲の両方におけるスペクトル成分を備える放射と解釈されるべきである。
フィルタの第1の部分は、赤外線を阻止するように構成され得る。
フィルタの第1の部分は、可視光線を阻止するように構成され得る。
フィルタの第2の部分は、赤外線と可視光線の両方に対して透過的であるように構成され得る。
フィルタの第1の部分は、赤外線を阻止するように構成され得、フィルタの第2の部分は、可視光線を阻止するように構成され得る。
フィルタは、アパーチャにおいて、またはアパーチャの近傍に固定的に位置決めされ得る。したがって、極めて少数の可動部分をもつ単純なカメラが提供され得る。フィルタは、厳密にアパーチャ面にある必要がない(しばしば、あることができない)が、フィルタが十分に近接している限り、フィルタがアパーチャのどちら側であるかは問わない。
フィルタは、アパーチャに近接していなければならない。フィルタは、厳密にアパーチャ面にある必要がない(しばしば、あることができない)が、フィルタが十分に近接している限り、フィルタがアパーチャのどちら側であるかは問わない。
フィルタは、第1の放射経路および第2の放射経路内及び経路外に位置決めできるように可動であり得る。したがって、カメラを、第1の部分および第2の部分をもつフィルタが、ピクセルの複数のペアの第1のピクセルおよび第2のピクセルの各々によって検出された放射の量に基づいて、シーンにおける赤外線の比率を計算するために使用される、日中モード、ならびに、フィルタが取り外され、白黒画像を生成するために画像センサーの全スペクトル応答が使用される、夜間モードなど、異なるモードに入れることが可能であろう。
フィルタは、シーンが可視光線と赤外線の両方を含むとき、有用である。これらの状況では、赤外線を補償し、良好な色忠実度を得ることが可能である。これは、とりわけ混合光(夕暮れおよび夜明けなどにおける、弱光)において有用であり、今日の実装では、単に、放射の量を登録し、IRカットフィルタを取り外すことへの切替えが使用される。これは、可視光レベルがあまりに低くなるときに必要とされる。昼光または良好な光においては、多量の可視光線があるので、赤外線は必要とされない。しかしながら、本発明に従って設定されたカメラは、赤外線を補償することを可能にする。旧来の監視カメラでは、これは、IRカットフィルタが挿入されるときである。
夜に、または他の実に弱い光において、基本的に可視光線はなく、少なくとも、視覚光よりもずっと多い赤外線があるので、色画像を生成することは極めて厳しい。したがって、フィルタは、夜に取り外され得る。これは、(赤外線を阻止しないことによって)できるだけ多くの放射が画像センサーに到達しているようにするためである。夜間モードへのこの切替えは、本発明を使用して、より弱い光レベルに繰り下げられ得る。
フィルタの分割は、赤外線が、ピクセルのペア中の第1のピクセルに到達せず、赤外線が、ピクセルのペア中の第2のピクセルに到達するように、第1のピクセルおよび第2のピクセルと整合され得る。
画像センサーの各ピクセルは、ピクセルのそれぞれのペアに属し得る。
画像センサーは、カメラが、可視光線と赤外線の両方を含む放射に露出されると、ピクセルの複数のペアの各々に到達する放射の量を示す値を登録するように構成され得る。本カメラは、ピクセルの複数のペアの第1のピクセルの各々について、それぞれの第1のピクセルによって検出された放射の第1の量を示す値を決定することと、ピクセルの複数のペアの第2のピクセルの各々について、それぞれの第2のピクセルによって検出された放射の第2の量を示す値を決定することと、ピクセルの複数のペアの第1のピクセルおよび第2のピクセルの各々について決定された放射の第1の量および第2の量に基づくシーンにおける赤外線の比率を計算することと、赤外線の計算された比率に基づいて、カメラによってキャプチャされた画像中のIR寄与を補償することによって、シーンの色画像を生成することとを行うように構成された処理ユニットをさらに備え得る。
第2の態様によれば、可視光線と赤外線の両方を含む放射に露出されたカメラによってキャプチャされたシーンの色画像を生成する方法が提供される。本方法は、ピクセルの複数のペアの各々中の放射の量を示す値を検出することであって、各ペアが第1のピクセルと第2のピクセルとを備える、検出することと、ピクセルの複数のペアの第1のピクセルの各々について、それぞれの第1のピクセルによって検出された放射の第1の量を示す値を決定することと、ピクセルの複数のペアの第2のピクセルの各々について、それぞれの第2のピクセルによって検出された放射の第2の量を示す値を決定することと、ピクセルの複数のペアの第1のピクセルおよび第2のピクセルの各々について決定された放射の第1の量および第2の量に基づくシーンにおける赤外線の比率を計算することと、赤外線の計算された比率に基づいて、カメラによってキャプチャされた画像中のIR寄与を補償することによって、シーンの色画像を生成することとを含む。
本方法は、赤外線または可視光線が、ピクセルの複数のペアの第1のピクセルに到達することを阻止することと、ピクセルの複数のペアの第1のピクセルに到達することを阻止された波長が、ピクセルの複数のペアの第2のピクセルに到達することを可能にすることとをさらに備え得る。
カメラの上述の特徴は、適用可能なとき、この第2の態様にも適用される。過度の繰返しを回避するために、上記への参照が行われる。
第3の態様によれば、非一過性コンピュータ可読記憶媒体が提供される。処理能力を有するデバイス上で実行されたとき、コンピュータ可読プログラムコードを記憶した、非一過性コンピュータ可読記憶媒体は、第2の態様による方法を実施するように構成される。
本発明の適用可能性のさらなる範囲は、以下の発明を実施するための形態から明らかになろう。しかしながら、本発明の範囲内の様々な変更および改変が、発明を実施するための形態から当業者に明らかになるので、発明を実施するための形態および具体的な例は、本発明の好ましい実施形態を示すが、例示として与えられるものにすぎないことを理解されたい。
それゆえに、そのようなデバイスおよび方法は変わり得るので、本発明は、説明されるデバイスの具体的な構成要素部分、または説明される方法のステップに限定されないことを理解されたい。本明細書で使用される用語は、具体的な実施形態を説明するためのものにすぎず、限定するものではないことも理解されたい。本明細書および添付の特許請求の範囲において使用される、冠詞「a」、「an」、「the」、および「said」は、コンテキストが別段に明白に規定しない限り、要素のうちの1つまたは複数があることを意味するものとすることに留意されなければならない。したがって、たとえば、「a unit」または「the unit」への言及は、数個のデバイスなどを含み得る。その上、「comprising(備える、含む)」、「including(含む)」、「containing(含んでいる)」という単語および同様の表現は、他の要素またはステップを除外しない。
次に、本発明の実施形態を示す添付の図面を参照しながら、本発明の上記の態様および他の態様についてより詳細に説明する。図は、本発明を特定の実施形態に制限すると見なされるべきではなく、代わりに、本発明を解説および理解するために使用される。
図に例示されているように、層および領域のサイズは、例示の目的で誇張され得、したがって、本発明の実施形態の概略構造を例示するために提供される。同じような参照番号は、全体を通して同じような要素を指す。
カメラを例示する図である。 a〜cは、ピクセルのペアを備える画像センサーの異なる実施形態を例示する図である。 a〜cは、フィルタの異なる実施形態を例示する図である。 a〜cは、フィルタの異なる構成と、フィルタがどのように赤外線および/または可視光線を阻止するかとを例示する図である。 画像センサーの赤ピクセル、緑ピクセルおよび青ピクセルのための応答曲線を例示する図である。 色画像を生成する方法の流れ図である。
次に、本発明の現在好ましい実施形態が示された付随する図面を参照しながら、本発明について以下でより十分に説明する。しかしながら、本発明は、多くの異なる形態で具現化されてよく、本明細書で述べる実施形態に限定されるものとして解釈されるべきではない。むしろ、これらの実施形態は、完全さおよび完全性のために提供され、本発明の範囲を当業者に十分に伝えるために提供される。
図1は、画像センサー102とカメラレンズハウジング104とを有するカメラ100を例示する。カメラはビデオカメラであり得る。カメラ100は監視カメラであり得る。
カメラレンズハウジング104および画像センサー102は、カメラレンズハウジング104を介してカメラ100に入射する放射が、画像センサー102と相互作用するように配置される。それゆえに、カメラは、カメラレンズハウジング104のレンズシステム108が見たシーンの画像をキャプチャするように構成される。カメラ100に入射する放射は、一般に、可視光線と赤外線の両方を含む。
シーンの画像をキャプチャするために、画像センサー102は、画像センサー102の面上に分配された複数のピクセルを備える。画像センサーのピクセルは、一般に、可視光線と、赤外線、またはより詳しくは近赤外放射(NIR)との両方に反応する。送信された放射が、十分にスペクトル的に解像された場合、可視光線および赤外線の異なる色の比率を監視および評価することは容易に可能であるが、概して、画像センサー102(および、たとえば画像プロセッサ120を備える、関連する構成要素)は、色画像を再生成することが可能であるように、せいぜい、入来する放射を、図5に示される、色成分の各々がIR成分を含む、赤成分、緑成分および青成分に分類することに留意されたい。図5では、画像センサーの赤ピクセル、緑ピクセルおよび青ピクセルのための応答曲線が例証される。概して、まったくIR成分を分離することは可能でない。いくつかの実装形態では、放射が画像センサーに達する前に、放射のIR成分を阻止するために、IRカットフィルタが使用される。その理由は、図5を参照すると、赤外線はすべてのピクセルに影響を及ぼすので、画像センサーへの赤外線の導入が、カメラコントローラによって実施される色補正をひずませることになり、IRカットフィルタが、トゥルーカラー表現を提供することが可能であるために必要であるからである。
カメラレンズハウジング104は、レンズシステム108とアパーチャ110とを備える。
アパーチャ110はダイヤフラムと呼ばれることもある。アパーチャ110の役割は、アパーチャ110を通過する光を除いて、光の通過を停止することである。アパーチャ110は、固定サイズの開口を有する固定アパーチャであり得る。固定サイズの開口を有する固定アパーチャを有することによって、より少ない可動部分をもつカメラが提供される。代替的に、アパーチャ110は、アパーチャ開口のサイズが変わり得る、アイリスアパーチャであり得る。アパーチャ110の開口のサイズを制御することによって、画像センサー102に到達する放射の量を制御することが可能であり、これは、もちろん、カメラにおいて使用される通常のアイリスアパーチャからよく知られている。
アパーチャ110は、レンズシステム108のいわゆるアパーチャストップ面に置かれるか、またはそうではなく、アパーチャストップ面に物理的にできるだけ近接して置かれる。本開示の残部では、アパーチャストップ面は、単に、アパーチャストップと呼ばれる。通常構成では、アパーチャストップの面は、画像センサー102の面との空間相関がない位置を表す。理想的な単一レンズシステムの場合、アパーチャストップは、光軸に対して直角に、レンズの中央に位置決めされる。アパーチャストップは、対象の各点からどのくらいの光が共役画像点(我々のケースでは、画像センサー)に到達するかを制限する。したがって、アパーチャストップはビーム経路中の面を定義し、時々、「アパーチャ面」という用語が同じ特徴のために使用される。この面の特徴は、この面が、アパーチャのサイズの変更が、少なくとも、理想的状況において、画像面全体に等しく影響を及ぼすことになる位置であることである。すでに論じられたことに加えて、アパーチャストップの特徴は、アパーチャのサイズが、実際の画像ではなく、画像センサー102に到達する光の量にのみ影響を及ぼすことになることを暗示する。より具体的には、アパーチャストップは、画像面において、すなわち画像センサー102の面において、シャドーイングあるいは同様の効果またはアーテファクトを発生させない。この理由で、アパーチャ110(ダイヤフラム)をアパーチャストップに位置決めすることは、標準手法である。本明細書のコンテキスト内で、「アパーチャ」は、アパーチャストップにおいて、またはアパーチャストップの近傍に配置された、アイリスアパーチャまたは固定サイズのアパーチャに対応する。フィルタは、好ましくは、フィルタを通過したすべての光が画像センサーに等しく影響を及ぼすほどアパーチャに十分に近接しているものとする。
画像センサー102に戻ると、画像センサー102の少なくともいくつかのピクセルは、ピクセルの複数のペアに属する。それゆえに、画像センサー102は、ピクセルの複数のペアを備える。この文献では、ピクセルの複数のペアは、しばしば、位相ピクセル、位相検出ピクセル、またはデュアルピクセルと称される。本発明のために使用される、ピクセルの複数のペアをもつ画像センサーは、今日すでに、位相検出オートフォーカスを実施するために使用されている。そのような知られているセンサーは、センサーにわたって拡散した比較的少数の位相ピクセルを有するものもあるが、すべてのピクセルが位相ピクセルであるものもある。
画像センサー102のすべてのピクセルは、位相ピクセルであり得る。それゆえに、図2aに例示されているように、画像センサー102の各ピクセルは、ピクセルのそれぞれのペアに属し得る。ピクセルの各ペアは、第1のピクセル200と第2のピクセル202とを備える。代替的に、画像センサー102は、センサーエリアにわたって広がるより少数の位相ピクセルを有し得る。それゆえに、図2bおよび図2cに例示されているように、画像センサー102のピクセルのサブセットが、ピクセルのそれぞれのペアに属し得る。
ピクセルの各ペア中においては、第1のピクセル200は、アパーチャ110を通ってカメラ100に入射し、アパーチャ110から第1の放射経路を介して画像センサー102に伝わった放射を検出するように構成され、第2のピクセル202は、アパーチャ110を通ってカメラ100に入射し、アパーチャ110から第2の放射経路を介して画像センサー102に伝わった放射を検出するように構成される。第2の放射経路は、第1の放射経路とは異なる。第2の放射経路は、第1の放射経路とは別個であり得る。それゆえに、第1の放射経路と第2の放射経路とは、重複しないことがある。
ピクセルの各ペア中においては、アパーチャ110を通ってカメラ100に入射し、アパーチャ110から第1の放射経路を介して画像センサー102に伝わった放射を第1のピクセル200が検出するように、第1のピクセル200の第1の半分がマスキングされ得、アパーチャ110を通ってカメラ100に入射し、アパーチャ110から第2の放射経路を介して画像センサー102に伝わった放射を第2のピクセル202が検出するように、第2のピクセル202の第2の半分がマスキングされ得る。第2の半分は、第1の半分と相補関係にあり得る。
ピクセルの各ペア中においては、第1のピクセル200は、アパーチャ110を通ってカメラ100に入射し、アパーチャ110から第1の放射経路を介して画像センサー102に伝わった放射を検出するように整形され得、第2のピクセル202は、アパーチャ110を通ってカメラ100に入射し、アパーチャ110から第2の放射経路を介して画像センサー102に伝わった放射を検出するように整形され得る。第2のピクセル202は、第1のピクセル200に対して相補的形状であり得る。
カメラレンズハウジング104は、フィルタ112をさらに備える。フィルタ112は、アパーチャ110において、またはアパーチャ110の近傍に配置される。フィルタ112は、好ましくは、光の量のみが影響を受け、空間画像が影響を受けないように、アパーチャ面に十分に近接している。フィルタ112を、アパーチャ110において、またはアパーチャ110の近傍に有し、それにより、アパーチャストップの面に近接させることにおいて、付加的利益がある。これは、通常構成では、アパーチャストップの面は、画像センサー102の面との空間相関がない位置を表すからである。
フィルタ112がアパーチャ110の近傍に配置された場合、フィルタ112は、アパーチャ110と画像センサー102との中間に、またはアパーチャの外に配置され得る。
図3a、図3bおよび図3cに例示されているように、フィルタ112は、赤外線または可視光線を阻止するように構成された第1の部分300と、第1の部分によって阻止された波長に対して透過的であるように構成された第2の部分302とを備える。
フィルタ112は、可視光線および赤外線に対して透過的な材料で作られ得る。そのような材料の例は、ガラスおよびプラスチックである。フィルタは固体シートを備え得る。シートは、1つまたは複数のコーティングによって部分的にカバーされ得る。1つまたは複数のコーティングをもつフィルタ112の部分は、フィルタ112の第1の部分300であり得る。また、フィルタ112の第2の部分302が、1つまたは複数のコーティングによってカバーされ得る。しかしながら、フィルタの第2の部分302は、波長阻止コーティングによってカバーされないこともある。1つまたは複数のコーティングの特定の組成が、波長のある特定の範囲における波長をもつ放射を阻止し得、波長の別の特定の範囲における波長をもつ放射が通過することを可能にし得る。これは、図4a、図4bおよび図4cに関して、さらに論じられる。
フィルタ112の分割は、ちょうど図3aに例示されているように、第1の部分300がフィルタ112の第1の半分を表し、第2の部分302がフィルタ112の第2の半分を表し、第2の半分が第1の半分と相補関係にあるように、行われ得る。しかしながら、分割は別様に行われ得、これは、次に、図3bおよび図3cに関して、さらに論じられる。
図3bおよび図3cは、第1の部分300が第2の部分302よりも大きい、フィルタ112の2つの異なる例証する実施形態を例示する。これらの例証する実施形態に従って、第1の部分300は、赤外線を阻止するように構成される。図3bおよび図3cに例証されたフィルタ設計は、第1の部分300が第2の部分302よりも大きい、多くの可能な設計のうち2つの例にすぎない。フィルタ112のIR阻止部分をフィルタ112の非IR阻止部分よりも大きくすることによって、赤外線を検出することになっていないピクセルのペアからのピクセルへの赤外線の漏れのリスクが低減される。なお、これは、第2の経路中のピクセルが、フィルタ処理された放射とフィルタ処理されていない放射との混合物を得るので、シーンにおける赤外線の推定値が正確でないことがあることを犠牲にして成り立ち得る。図3cに例示されているフィルタ設計によれば、フィルタ112は、デュアル機能を有し得る。赤外線を部分的に阻止することの他に、本開示のコンテキスト内で論じられているように、弱光状態に有用であるので、フィルタ112は、昼光状態の間にIRカットフィルタとしても使用され得る。これは、昼光状態の間に、アイリスアパーチャの形態のアパーチャ110が、一般に、サイズが低減され、その結果、それが、フィルタ112の第1の部分300内に位置するエリア306内で動作されるからである。フィルタのそのような設計を用いると、第2の経路中の、フィルタ処理された放射とフィルタ処理されていない放射とを混合することに関する上述の問題は、ピクセルペア中のピクセルが、異なる量の光を受信するように、異なるサイズで形成される場合、緩和され得る。
フィルタ112は、第1の放射経路および第2の放射経路内及び経路外に位置決めできるように可動であり得る。代替的に、フィルタ112は、アパーチャ110において、またはアパーチャ110の近傍に固定的に位置決めされ得る。
フィルタ112および画像センサー102は、フィルタ112の分割が、ピクセルの複数のペアの第1のピクセル200および第2のピクセル202の向きと整合されるか、またはそれに対して平行であるように配置される。整合は、第1のピクセル200が、フィルタ112の第1の部分300を通過した放射を受信し、第2のピクセル202が、フィルタ112の第2の部分302を通過した放射を受信することをもたらす。したがって、フィルタ112および画像センサー102は、フィルタ112の第1の部分300を通過した放射が、ピクセルの複数のペアの第1のピクセル200に伝わるように、およびフィルタ112の第2の部分302を通過した放射がピクセルの複数のペアの第2のピクセル202に伝わるように、互いに対して配置される。フィルタ112と画像センサー102との整合は、フィルタ112の分割が、画像センサー102の第1のピクセル200および第2のピクセル202の向きに対して平行であるように行われ得る。
図示の実施形態では、ピクセルペアならびにフィルタは、左部分と右部分とに分けられる。上側部分および下側部分、または任意の他の向きなど、他の区分も可能であることに留意されたい。
上記で定義されたように、赤外線または可視光線を阻止するように構成された第1の部分300と、第1の部分によって阻止された波長に対して透過的であるように構成された第2の部分302とを有するフィルタ112と、ピクセルの複数のペアを備える画像センサー102とをもつ本設定は、カメラ100に入射する放射中に備えられた赤外線の量の推定を有効にする。これは、それ自体で可視光線と赤外線とを区別しない、画像センサーを使用する。赤外線の量の推定は、たとえば、弱光状態の間にさえ色画像を生成するために使用され得る。これは、この説明においてさらに下でより詳細に論じられる。
本発明に関して使用され得るフィルタ112の若干の可能な構成がある。
第1の構成によれば、第1の部分300は、赤外線を阻止するように構成され、第2の部分302は、赤外線に対して透過的であるように構成される。この第1の構成の場合、フィルタ112の第1の部分300と第2の部分302の両方は、可視光線が通過することを可能にするように構成される。それに応じて、フィルタ112の第1の部分300は赤外線を阻止し、可視光線が通過することを可能にするように構成され、フィルタ112の第2の部分302は、可視光線と赤外線の両方が通過することを可能にするように構成される。これは図4aに例示されている。可視スペクトル範囲における強度(Ivis)とIRスペクトル範囲における強度(IIR)の両方を有する放射が、フィルタ112に入射している。フィルタ112の第1の部分300は赤外線を阻止し、可視光線が通過することを可能にし、それゆえに、フィルタ112の第1の部分300を通過した放射は、可視スペクトル範囲における強度(Ivis)のみを有することになる。フィルタ112の第2の部分302は赤外線と可視光線の両方が通過することを可能にし、それゆえに、フィルタ112の第2の部分302を通過した放射は、IRスペクトル範囲における強度(IIR)と可視スペクトル範囲における強度(Ivis)の両方を有することになる。複数のピクセルの第1のピクセル200が、次いで、Ivisに比例する信号(S)を生成することになり、複数のピクセルの第2のピクセル202が、次いで、Ivis+IIRに比例する信号(S)を生成することになる。このことから、赤外線の量は、S−Sとして推定され得る。さらに、赤外線と可視光線の両方を検出する画像センサー102のピクセルからの信号(Stot)における可視光線からの寄与は、次いで、Stot−(S−S)であると推定され得る。
第2の構成によれば、第1の部分300は、可視光線を阻止するように構成され、第2の部分302は、可視光線に対して透過的であるように構成される。この第2の構成の場合、フィルタ112の第1の部分300と第2の部分302の両方は、赤外線が通過することを可能にするように構成される。それに応じて、フィルタ112の第1の部分300は可視光線を阻止し、赤外線が通過することを可能にするように構成され、フィルタ112の第2の部分302は、可視光線と赤外線の両方が通過することを可能にするように構成される。これは図4bに例示されている。可視スペクトル範囲における強度(Ivis)とIRスペクトル範囲における強度(IIR)の両方を有する放射が、フィルタ112に入射している。フィルタ112の第1の部分300は可視光線を阻止し、赤外線が通過することを可能にし、それゆえに、フィルタ112の第1の部分300を通過した放射は、IRスペクトル範囲における強度(IIR)のみを有することになる。フィルタ112の第2の部分302は赤外線と可視光線の両方が通過することを可能にし、それゆえに、フィルタ112の第2の部分302を通過した放射は、IRスペクトル範囲における強度(IIR)と可視スペクトル範囲における強度(Ivis)の両方を有することになる。複数のピクセルの第1のピクセル200が、次いで、IIRに比例する信号(S)を生成することになり、複数のピクセルの第2のピクセル202が、次いで、Ivis+IIRに比例する信号(S)を生成することになる。このことから、赤外線の量は、Sとして推定され得る。さらに、赤外線と可視光線の両方を検出する画像センサー102のピクセルからの信号(Stot)における可視光線からの寄与は、次いで、Stot−Sであると推定され得る。
第3の構成によれば、第1の部分300は、赤外線を阻止するように構成され、第2の部分302は、赤外線に対して透過的であるように構成される。さらに、第1の部分300は、可視光線に対して透過的であるように構成され、第2の部分302は、可視光線を阻止するように構成される。それに応じて、フィルタ112の第1の部分300は赤外線を阻止し、可視光線が通過することを可能にするように構成され、フィルタ112の第2の部分302は、赤外線が通過することを可能にし、可視光線を阻止するように構成される。これは図4cに例示されている。可視スペクトル範囲における強度(Ivis)とIRスペクトル範囲における強度(IIR)の両方を有する放射が、フィルタ112に入射している。フィルタ112の第1の部分300は赤外線を阻止し、可視光線が通過することを可能にし、それゆえに、フィルタ112の第1の部分300を通過した放射は、可視スペクトル範囲における強度(Ivis)のみを有することになる。フィルタ112の第2の部分302は赤外線が通過することを可能にするが、可視光線を阻止することになり、それゆえに、フィルタ112の第2の部分302を通過した放射は、IRスペクトル範囲における強度(IIR)を有することになる。複数のピクセルの第1のピクセル200が、次いで、Ivisに比例する信号(S)を生成することになり、複数のピクセルの第2のピクセル202が、次いで、IIRに比例する信号(S)を生成することになる。このことから、赤外線の量は、Sとして推定され得る。さらに、赤外線と可視光線の両方を検出する画像センサー102のピクセルからの信号(Stot)における可視光線からの寄与は、次いで、Stot−Sであると推定され得る。
それゆえに、フィルタ112の構成にかかわらず、シーンにおける赤外線の比率が計算され得る。
カメラ100はプロセッサ124を備え得る。プロセッサ124は、シングルコアプロセッサまたはマルチコアプロセッサであり得る。プロセッサ124は、デジタルデータ処理を実施するための任意の好適なプロセッサであり得る。プロセッサ124は、ピクセルの複数のペアの第1のピクセル200からの信号と、ピクセルの複数のペアの第2のピクセル202からの信号とを処理するように構成され得る。代替的に、画像プロセッサ120が、ピクセルの複数のペアの第1のピクセル200からの信号と、ピクセルの複数のペアの第2のピクセル202からの信号とを処理するように構成され得る。また代替的に、第1のピクセル200からの信号と第2のピクセル202からの信号とは、部分的にプロセッサ124によって処理され、部分的に画像プロセッサ120によって処理され得る。
カメラ100はメモリ122をさらに備え得る。メモリ122は、任意の種類の揮発性メモリまたは不揮発性メモリであり得る。さらに、メモリ122は複数のメモリユニットを備え得る。メモリ122は、プロセッサ124および/または画像プロセッサ120による処理を実施しながら、データをバッファするためのバッファメモリとして使用され得る。メモリは、たとえば、画像センサー102のピクセルのためのピクセル値信号に関係する情報をバッファするように構成され得る。
画像プロセッサ120とメモリ122とプロセッサ124とは、データバス126上で通信し得る。
カメラ100の、プロセッサ124、画像プロセッサ120またはそれらの組合せのいずれかである、処理ユニットが、ピクセルの複数のペアの第1のピクセル200の各々について、それぞれの第1のピクセル200によって検出された放射の第1の量を示す値を決定するように構成され得る。カメラ100の処理ユニットは、ピクセルの複数のペアの第2のピクセル202の各々について、それぞれの第2のピクセル202によって検出された放射の第2の量を示す値を決定するようにさらに構成され得る。ピクセルの複数のペアの第1のピクセル200および第2のピクセル202の各々について決定された放射の第1の量および第2の量を示す値に基づいて、処理ユニットは、シーンにおける赤外線の比率を計算するように構成され得る。赤外線の比率は、シーンの異なるエリアについて異なり得る。画像センサー102がピクセルの複数のペアを備えるので、シーンの異なるエリアにおける赤外線の比率は決定され得る。これは、特に、ピクセルのペアが画像センサー102のエリアにわたって一様に分散される場合である。
赤外線の比率を決定することによって、視覚光の寄与を評価することが可能であろう。この評価は、画像について、個々のピクセルまたはピクセルのグループから、画像フレームのより大きい部分、あるいは画像フレーム全体の範囲に及ぶ、任意のレベルの解像度に対して実施され得る。また、この評価は、単一フレームに基づき得るが、より良い統計値のために、評価が実施される前に、平均値を形成するために、いくつかの画像フレームが組み合わせられ得る。
評価に続いて、視覚波長からの寄与と赤外波長からの寄与とを分離し、それに応じて、得られた画像を補償することが可能であろう。それゆえに、シーンにおける赤外線の計算された比率に基づいて、処理ユニットは、カメラ100によってキャプチャされた画像中のIR寄与を補償することによって、シーンの色画像を生成するように構成され得る。
要約すれば、弱光状態下でさえ色画像を生成するために、以下が良好な結果を与えることが了解される。
・できるだけ多くの放射を、すなわち可視光線と赤外線の両方を、画像センサー102に到達させる。これは、画像センサー上で必要とされるゲインを低減し、それゆえに、画像センサーからの信号中のノイズのレベルを低減するためである。
・可視光線と赤外線の両方を検出する画像センサー102のピクセルに到達する放射中の赤外線の比率を決定する。これは、ピクセルのペアの第1のピクセル200に到達する放射と第2のピクセル202に到達する放射とを別様にフィルタ処理することによるものである。
・カメラによってキャプチャされた画像中のIR寄与を補償することによって、色画像を生成する。
図6に関して、可視光線と赤外線の両方を含む放射に露出されたカメラによってキャプチャされたシーンの色画像を生成する方法が論じられる。方法は、以下を含む。S602において、ピクセルの複数のペアの各々中の放射の量を示す値を検出することであって、各ペアが第1のピクセルと第2のピクセルとを備える、検出すること。それゆえに、カメラは、上記で論じられたように、ピクセルの複数のペアを備える画像センサーを備える。S604において、ピクセルの複数のペアの第1のピクセルの各々について、それぞれの第1のピクセルによって検出された放射の第1の量を示す値を決定すること。S606において、ピクセルの複数のペアの第2のピクセルの各々について、それぞれの第2のピクセルによって検出された放射の第2の量を示す値を決定すること。S608において、ピクセルの複数のペアの第1のピクセルおよび第2のピクセルの各々について決定された放射の第1の量および第2の量に基づくシーンにおける赤外線の比率を計算すること。S610において、赤外線の計算された比率に基づいて、カメラによってキャプチャされた画像中のIR寄与を補償することによって、シーンの色画像を生成すること。
方法は、赤外線または可視光線が、ピクセルの複数のペアの第1のピクセルに到達することを阻止することと、ピクセルの複数のペアの第1のピクセルに到達することを阻止された波長が、ピクセルの複数のペアの第2のピクセルに到達することを可能にすることとをさらに備え得る。
本発明が、決して、上記で説明された好ましい実施形態に限定されないことを、当業者は了解されよう。見方を変えれば、多くの改変および変形が、添付の特許請求の範囲内で可能である。
たとえば、その通常動作に加えて、アパーチャ110は、制御および設計の点でいくつかの追加の特徴を有し得る。設計特徴は、フィルタ112の組込みを伴い得る。
さらに、フィルタ112は、第1の放射経路中の赤外線と、第2の放射経路中の赤外線とを別様にフィルタ処理するように構成され得る。たとえば、フィルタ112の第1の部分300は、すべての赤外線を阻止するように構成され得、フィルタ112の第2の部分302は、IRスペクトル中の波長の所定のサブ部分を除くすべての赤外線を阻止するように構成され得る。これは、たとえば、カメラ100が見たシーンを照明するためにIR照明器が使用され、IR照明器が、IRスペクトル中の波長の所定のサブ部分内の波長でシーンを照明するように構成された、実装形態において有用であり得る。次いで、フィルタの第2の部分は、IRスペクトル中の波長の所定のサブ部分中の赤外線が、画像センサーに到達することを可能にするように構成される。次いで、IRスペクトル中の波長の所定のサブ部分中の赤外線は、補償され得る。IR照明器は、カメラ中にまたはカメラ上に、あるいはシーン中の他の場所に配置され得る。
また、ピクセルのペアの第1のピクセルに到達する放射と、第2のピクセルに到達する放射とを別様にフィルタ処理するために、他のタイプのフィルタが使用され得る。たとえば、可視スペクトルの異なる部分が、別様にフィルタ処理され得る。ほんの1つの可能な実装形態を挙げると、植物を研究するために、緑色光が別様にフィルタ処理され得る。環境における1つまたは複数の妨害する光源に関するスペクトル情報を知ると、そのような光源の寄与は、ピクセルの複数のペアを備える画像センサーとともに、1つまたは複数の妨害する光源の波長を阻止する第1の部分と、同じ波長が通過することを可能にする第2の部分とを有するフィルタを使用することによって、補償され得る。放射スペクトルの他の部分に反応するセンサーを用いると、たとえば、UV放射を選択的に阻止または送信することによって、入来する放射中の紫外線放射成分を研究するために、同じ原理が使用され得る。
その上、ピクセルの複数のペアの各々中の放射の量を示す値を検出することと、ピクセルの複数のペアの第1のピクセルの各々について、それぞれの第1のピクセルによって検出された放射の第1の量を示す値を決定することと、ピクセルの複数のペアの第2のピクセルの各々について、それぞれの第2のピクセルによって検出された放射の第2の量を示す値を決定することと、ピクセルの複数のペアの第1のピクセルおよび第2のピクセルの各々について決定された放射の第1の量および第2の量に基づくシーンにおける赤外線の比率を計算することと、赤外線の計算された比率に基づいて、カメラによってキャプチャされた画像中のIR寄与を補償することによって、シーンの色画像を生成することとのうちの1つまたは複数が、カメラ100とは別個のデバイスにおいて行われ得る。それゆえに、カメラ100は、カメラとは別個のデバイスと通信するように構成され得る。そのようなデバイスは、たとえば、サーバであり得る。サーバは、たとえば、色画像の生成を複数のカメラにサービスするように構成され得る。サーバは、上記で論じられたカメラ100としての1つまたは複数のカメラを、日中モードまたは夜間モードにセットするために、1つまたは複数のカメラを制御するように構成され得る。日中モードでは、フィルタ112は、好ましくは、使用されないが、代わりに、すべての赤外線が画像センサーに到達することを阻止するIRカットフィルタが使用される。それゆえに、フィルタ112は、それぞれのカメラ100のビーム経路から退避され得、IRカットフィルタは、それぞれのカメラ100のビーム経路に挿入され得る。夜間モードでは、フィルタ112は、それぞれのカメラ100のビーム経路に挿入され、IRカットフィルタは、それぞれのカメラ100のビーム経路から退避される。
上記で論じられたように、フィルタ112の第1の部分300は、すべての赤外線を阻止するように構成され得、フィルタ112の第2の部分302は、カメラ中に、または、シーン中の他の場所に配置されたIR照明器によって放出された波長に対応する、IRスペクトル中の波長の所定のサブ部分を除くすべての赤外線を阻止するように構成され得る。この構成の変形態では、フィルタの第1の部分は、可視光線と赤外線のIR照明器サブ部分とに対して透過的であり得るが、フィルタの第2の部分は、すべての赤外線を阻止し、可視光線のみが通るのを可能にする。混合光シーン、すなわち赤外線と低レベルの可視光線とをもつシーンでは、そのような構成は、IR照明器が、そのシーンにおいてすべてまたはほとんどすべての赤外線を提供し、照明器サブスペクトル外に赤外線がほとんどまたはまったくない場合、有用であり得る。照明器によって付加された赤外線が、シーンにおける放射の総量を増加させ、それゆえに、画像センサー上のゲインの必要を低減する。ピクセルペアとスプリットフィルタとにより、IR成分を決定し、それを補償することが可能になり、その結果、良好な色忠実度をもつ色画像が、夕暮れおよび夜明けなどにおける、弱光においても生成され得る。なお、昼光では、太陽が、IR照明器のスペクトル範囲外でかなりの量の赤外線を寄与し得、ゆえに、入来する放射における赤外線の総量を決定することが可能でない。ゆえに、すべての赤外線を阻止するか、または少なくともIR照明器のスペクトル範囲を阻止するが、可視光線に対して透過的である、追加の可動フィルタをもつフィルタ配置が提供され得る。固定フィルタと可動フィルタとの組合せを使用するフィルタ配置は、出願人の欧州特許出願第16207126.0号で説明される。高い光レベルがシーンにあるとき、追加のフィルタが挿入され得る。そのような照明状態では、ノイズを十分に低く保つために、IR成分が必要でない。混合光では、可視光レベルが、許容できる信号対ノイズ比を与えるにはあまりに低いとき、可動IRカットフィルタが取り外され、IR照明器がオンに切り替えられ、それにより、照明器からの赤外線が各ピクセルペアの1つのピクセルに到達することを可能にし得る。夜間などにおける、暗闇では、可動IRカットフィルタは、取り外されたままでなければならず、白黒画像が、照明器および他のソースからの赤外線に基づいて生成され得るが、可視光線寄与はわずかである。
図2a〜図2cに示されている実施形態では、第1のピクセルおよび第2のピクセルは、ピクセルのペアの各部分である。しかしながら、第1のピクセルおよび第2のピクセルは、ピクセルのトリプレットまたはクアドルプレットなど、ピクセルのより大きいグループの部分であり得ることに留意されたい。ピクセルのトリプレットでは、たとえば、1つの第1のピクセルと2つの第2のピクセルとがあり得、またはその逆も同様である。ピクセルのクアドルプレットでは、2つの第1のピクセルと2つの第2のピクセルとがあり得るが、同様に、1つの第1のピクセルと3つの第2のピクセルとがあり得、またはその逆も同様である。
追加として、開示される実施形態の変形が、図面、本開示、および添付の特許請求の範囲の研究から、請求される本発明を行う際に、当業者によって理解および実現され得る。
100 カメラ
102 画像センサー
104 カメラレンズハウジング
108 レンズシステム
110 アパーチャ
112 フィルタ
120 画像プロセッサ
122 メモリ
124 プロセッサ
126 データバス
200 第1のピクセル
202 第2のピクセル
300 第1の部分
302 第2の部分
306 エリア

Claims (12)

  1. カメラであって、
    アパーチャ(110)と、
    ピクセルの複数のペアを備える画像センサー(102)であって、前記ペア中において、
    第1のピクセル(200)が、前記アパーチャ(110)を通って前記カメラに入射し、前記アパーチャ(110)から第1の放射経路を介して前記画像センサー(102)に伝わった放射を検出するように構成され、
    第2のピクセル(202)が、前記アパーチャ(110)を通って前記カメラに入射し、前記アパーチャ(110)から第2の放射経路を介して前記画像センサー(102)に伝わった放射を検出するように構成され、前記第2の放射経路が前記第1の放射経路とは異なる、
    画像センサー(102)と、
    前記アパーチャ(110)において、または前記アパーチャ(110)の近傍に配置されたフィルタ(112)であって、前記フィルタ(112)が、赤外線または可視光線を阻止するように構成された第1の部分(300)と、前記第1の部分(300)によって阻止された波長に対して透過的であるように構成された第2の部分(302)とを備え、前記フィルタ(112)は、前記第1の部分(300)を通過した放射がピクセルの前記複数のペアの前記第1のピクセル(200)に伝わるように、および前記第2の部分(302)を通過した放射がピクセルの前記複数のペアの前記第2のピクセル(202)に伝わるように配置された、フィルタ(112)と
    を備えるカメラ。
  2. 前記フィルタ(112)の前記第1の部分(300)が、赤外線を阻止するように構成され、前記フィルタ(112)の前記第2の部分(302)が、赤外線と可視光線の両方に対して透過的であるように構成された、請求項1に記載のカメラ。
  3. 前記フィルタ(112)の前記第1の部分(300)が、可視光線を阻止するように構成され、前記フィルタ(112)の前記第2の部分(302)が、赤外線と可視光線の両方に対して透過的であるように構成された、請求項1に記載のカメラ。
  4. 前記フィルタ(112)の前記第1の部分(300)が、赤外線を阻止するように構成され、前記フィルタ(112)の前記第2の部分(302)が、可視光線を阻止するように構成された、請求項1に記載のカメラ。
  5. 前記フィルタ(112)が、前記アパーチャ(110)において、または前記アパーチャ(110)の近傍に固定的に位置決めされた、請求項1から4のいずれか一項に記載のカメラ。
  6. 前記フィルタ(112)が、前記第1の放射経路および前記第2の放射経路内および経路外に位置決めできるように可動である、請求項1から4のいずれか一項に記載のカメラ。
  7. 前記フィルタの分割は、
    赤外線が、ピクセルの前記ペア中の前記第1のピクセルに到達せず、
    赤外線が、ピクセルの前記ペア中の前記第2のピクセルに到達する
    ように、前記第1のピクセルおよび前記第2のピクセルと整合される、請求項2、4から6のいずれか一項に記載のカメラ。
  8. 前記画像センサー(102)の各ピクセルが、ピクセルのそれぞれのペアに属する、請求項1から7のいずれか一項に記載のカメラ。
  9. 前記画像センサー(102)は、前記カメラが、可視光線と赤外線の両方を含む放射に露出されると、ピクセルの前記複数のペアの各々に到達する放射の量を示す値を登録するように構成され、前記カメラが、
    ピクセルの前記複数のペアの前記第1のピクセル(200)の各々について、前記それぞれの第1のピクセル(200)によって検出された放射の第1の量を示す値を決定することと、
    ピクセルの前記複数のペアの前記第2のピクセル(202)の各々について、前記それぞれの第2のピクセル(202)によって検出された放射の第2の量を示す値を決定することと、
    ピクセルの前記複数のペアの前記第1のピクセルおよび前記第2のピクセル(200、202)の各々について決定された放射の前記第1の量および前記第2の量に基づくシーンにおける赤外線の比率を計算することと、
    前記計算された赤外線の比率に基づいて、前記カメラによってキャプチャされた画像中の赤外寄与分を補償することによって、前記シーンの色画像を生成することと
    を行うように構成された処理ユニット(120、124)をさらに備える、請求項1から8のいずれか一項に記載のカメラ。
  10. 可視光線と赤外線の両方を含む放射に露出されたカメラによってキャプチャされたシーンの色画像を生成する方法であって、
    ピクセルの複数のペアの各々中の放射の量を示す値を検出することであって、各ペアが第1のピクセルと第2のピクセルとを備える、検出することと、
    ピクセルの前記複数のペアの前記第1のピクセルの各々について、前記それぞれの第1のピクセルによって検出された放射の第1の量を示す値を決定することと、
    ピクセルの前記複数のペアの前記第2のピクセルの各々について、前記それぞれの第2のピクセルによって検出された放射の第2の量を示す値を決定することと、
    ピクセルの前記複数のペアの前記第1のピクセルおよび前記第2のピクセルの各々について決定された放射の前記第1の量および前記第2の量に基づく前記シーンにおける赤外線の比率を計算することと、
    前記計算された赤外線の比率に基づいて、前記カメラによってキャプチャされた画像中の赤外寄与分を補償することによって、前記シーンの前記色画像を生成することと
    を含む、方法。
  11. 赤外線または可視光線が、ピクセルの前記複数のペアの前記第1のピクセルに到達することを阻止することと、
    ピクセルの前記複数のペアの前記第1のピクセルに到達することを阻止された波長が、ピクセルの前記複数のペアの前記第2のピクセルに到達することを可能にすることと
    をさらに含む、請求項10に記載の方法。
  12. 処理能力を有するデバイス上で実行されたとき、請求項10または11に記載の前記方法を実施するように構成された、コンピュータ可読プログラムコードを記憶した、非一過性コンピュータ可読記憶媒体。
JP2018115150A 2017-06-29 2018-06-18 色画像を生成するカメラおよび方法 Active JP6606231B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP17178716.1A EP3422700B1 (en) 2017-06-29 2017-06-29 A method for enhancing color images, and an assembly performing such method
EP17178716.1 2017-06-29
EP17209246.2 2017-12-21
EP17209246.2A EP3343897B1 (en) 2016-12-28 2017-12-21 Camera and method of producing color images

Publications (3)

Publication Number Publication Date
JP2019036947A true JP2019036947A (ja) 2019-03-07
JP2019036947A5 JP2019036947A5 (ja) 2019-05-09
JP6606231B2 JP6606231B2 (ja) 2019-11-13

Family

ID=59298216

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018115150A Active JP6606231B2 (ja) 2017-06-29 2018-06-18 色画像を生成するカメラおよび方法
JP2018124299A Active JP6803355B2 (ja) 2017-06-29 2018-06-29 カラー画像の拡張方法並びにその方法の実行機構

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018124299A Active JP6803355B2 (ja) 2017-06-29 2018-06-29 カラー画像の拡張方法並びにその方法の実行機構

Country Status (6)

Country Link
US (1) US10531058B2 (ja)
EP (1) EP3422700B1 (ja)
JP (2) JP6606231B2 (ja)
KR (2) KR102100031B1 (ja)
CN (2) CN109218691A (ja)
TW (2) TWI708510B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3840362B1 (en) * 2019-12-19 2022-05-04 Axis AB A video camera system with a light sensor and a method for operating said video camera
US11595625B2 (en) * 2020-01-02 2023-02-28 Qualcomm Incorporated Mechanical infrared light filter
CN113365034B (zh) * 2020-03-04 2022-09-06 合肥君正科技有限公司 一种基于rgb-ir图像传感器的色彩校准方法
EP3930307B1 (en) * 2020-06-25 2022-06-01 Axis AB A method for enhancing the performance of a video camera
TWI806226B (zh) * 2021-11-08 2023-06-21 宏碁股份有限公司 影像感測方法與影像感測裝置
US12015835B2 (en) * 2022-01-25 2024-06-18 Qualcomm Incorporated Multi-sensor imaging color correction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200640A (ja) * 2014-03-31 2015-11-12 パナソニックIpマネジメント株式会社 撮像装置、およびそれを用いた分析装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386673U (ja) * 1989-12-20 1991-09-02
JP2001036807A (ja) * 1999-07-19 2001-02-09 Hitachi Ltd 撮像装置
JP2003264842A (ja) * 2002-03-08 2003-09-19 Hitachi Kokusai Electric Inc フィルタ及び調光板及び固体撮像素子
JP3861241B2 (ja) * 2002-03-15 2006-12-20 三菱電機株式会社 フィルタ移動型カメラ装置
JP2004361590A (ja) 2003-06-03 2004-12-24 Sony Corp 光学装置及び撮像装置
TWI257486B (en) * 2004-05-13 2006-07-01 Prodisc Technology Inc Camera lens
JP2006078666A (ja) 2004-09-08 2006-03-23 Fujinon Corp レンズ装置
US7435962B2 (en) * 2005-05-18 2008-10-14 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Imaging device and method for producing an infrared filtered digital image
TWI362562B (en) * 2005-12-09 2012-04-21 Hon Hai Prec Ind Co Ltd Aperture and method
KR101276757B1 (ko) * 2006-05-26 2013-06-20 삼성전자주식회사 이미지 촬상 장치, 및 그 동작 방법
JP5098908B2 (ja) * 2008-09-08 2012-12-12 コニカミノルタアドバンストレイヤー株式会社 画像入力装置
US7915652B2 (en) * 2008-10-24 2011-03-29 Sharp Laboratories Of America, Inc. Integrated infrared and color CMOS imager sensor
JP5230388B2 (ja) * 2008-12-10 2013-07-10 キヤノン株式会社 焦点検出装置及びその制御方法
CN101482686B (zh) * 2009-02-09 2013-05-15 Tcl数码科技(深圳)有限责任公司 一种可用于数码摄影机的红外滤光片自动切换装置
JP2011029810A (ja) * 2009-07-23 2011-02-10 Sony Ericsson Mobile Communications Ab 撮像装置、撮像方法、撮像制御プログラム、及び携帯端末装置
JP5670481B2 (ja) * 2010-02-19 2015-02-18 デュアル・アパーチャー・インコーポレーテッド 多開口画像データの処理
US9091903B2 (en) 2010-07-29 2015-07-28 Logitech Europe S.A. Optimized movable IR filter in cameras
US8408821B2 (en) * 2010-10-12 2013-04-02 Omnivision Technologies, Inc. Visible and infrared dual mode imaging system
TWI475246B (zh) * 2011-04-15 2015-03-01 Largan Precision Co 具濾光元件之光學取像鏡頭
JP2013152369A (ja) 2012-01-25 2013-08-08 Nippon Seimitsu Sokki Kk 絞り装置およびカメラ
JP6230265B2 (ja) 2013-05-17 2017-11-15 キヤノン株式会社 撮像装置
US10051211B2 (en) * 2013-12-05 2018-08-14 Omnivision Technologies, Inc. Image sensors for capturing both visible light images and infrared light images, and associated systems and methods
US20160161332A1 (en) * 2014-12-09 2016-06-09 Stmicroelectronics (Research & Development) Limited Image sensor using pixels with combined rgb and ir sensing
CN104536074A (zh) * 2014-12-24 2015-04-22 电子科技大学 一种可调近红外滤波片
CN107534759B (zh) * 2015-02-26 2020-06-16 索尼半导体解决方案公司 摄像装置、摄像方法和计算机可读介质
JP6530215B2 (ja) 2015-03-26 2019-06-12 マクセル株式会社 レンズユニットおよびカメラモジュール
CN107534727B (zh) * 2015-04-23 2020-06-26 富士胶片株式会社 图像处理装置、摄像装置、图像处理方法及记录有图像处理程序的计算机可读非暂时性有形记录介质
US20170034456A1 (en) * 2015-07-31 2017-02-02 Dual Aperture International Co., Ltd. Sensor assembly with selective infrared filter array
US9671537B2 (en) * 2015-10-22 2017-06-06 Omnivision Technologies, Inc. Multi-layer color filter for low color error and high SNR
JP2017092898A (ja) * 2015-11-17 2017-05-25 ソニー株式会社 撮像装置、撮像方法、およびプログラム
KR101672669B1 (ko) * 2015-11-23 2016-11-03 재단법인 다차원 스마트 아이티 융합시스템 연구단 시차를 이용하는 멀티 애퍼처 카메라 시스템
CN105430363B (zh) * 2015-12-18 2018-07-17 广东欧珀移动通信有限公司 成像方法、成像装置及电子装置
US9848118B2 (en) 2016-03-11 2017-12-19 Intel Corporation Phase detection autofocus using opposing filter masks
US10574872B2 (en) 2016-12-01 2020-02-25 Semiconductor Components Industries, Llc Methods and apparatus for single-chip multispectral object detection
EP3343287B1 (en) * 2016-12-28 2018-11-21 Axis AB A method for sequential control of ir-filter, and an assembly performing such method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200640A (ja) * 2014-03-31 2015-11-12 パナソニックIpマネジメント株式会社 撮像装置、およびそれを用いた分析装置

Also Published As

Publication number Publication date
JP2019012267A (ja) 2019-01-24
CN109218696A (zh) 2019-01-15
KR20190002289A (ko) 2019-01-08
JP6606231B2 (ja) 2019-11-13
KR102113488B1 (ko) 2020-05-22
TWI684365B (zh) 2020-02-01
US10531058B2 (en) 2020-01-07
CN109218691A (zh) 2019-01-15
KR102100031B1 (ko) 2020-04-10
CN109218696B (zh) 2021-01-22
EP3422700B1 (en) 2021-03-10
EP3422700A1 (en) 2019-01-02
TW201911860A (zh) 2019-03-16
TW201906400A (zh) 2019-02-01
TWI708510B (zh) 2020-10-21
US20190007665A1 (en) 2019-01-03
JP6803355B2 (ja) 2020-12-23
KR20190002348A (ko) 2019-01-08

Similar Documents

Publication Publication Date Title
JP6606231B2 (ja) 色画像を生成するカメラおよび方法
US11962902B2 (en) Image sensor and electronic apparatus
JP6568719B2 (ja) 撮像方法及び撮像装置
US7460160B2 (en) Multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor
EP1975695B1 (en) Focus detection device, focusing state detection method and imaging apparatus
US11747533B2 (en) Spectral sensor system using optical filter subarrays
JP6547073B2 (ja) 改善されたオートフォーカス性能を有する撮像装置
US20190058837A1 (en) System for capturing scene and nir relighting effects in movie postproduction transmission
KR101504564B1 (ko) 디지털 이미지 상의 상대 조도 현상의 처리 방법 및 그에 관련된 처리 시스템
US11696043B2 (en) White balance compensation using a spectral sensor system
CN110312957A (zh) 焦点检测设备、焦点检测方法和焦点检测程序
US11457147B2 (en) Method for enhancing the performance of a video camera
US20140240515A1 (en) Motion picture camera and method for taking a sequence of moving images
US9906705B2 (en) Image pickup apparatus
WO2015008383A1 (ja) 撮像装置
JP2011029858A (ja) 撮像装置
EP3343897B1 (en) Camera and method of producing color images
JP4303922B2 (ja) 固体撮像素子および撮像装置
JP2019007826A (ja) 測距カメラおよび測距方法
Mizoguchi Evaluation of image sensors
JP2016200742A (ja) 撮像装置
JP2016004133A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190329

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R150 Certificate of patent or registration of utility model

Ref document number: 6606231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250