JP2019033143A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2019033143A
JP2019033143A JP2017152200A JP2017152200A JP2019033143A JP 2019033143 A JP2019033143 A JP 2019033143A JP 2017152200 A JP2017152200 A JP 2017152200A JP 2017152200 A JP2017152200 A JP 2017152200A JP 2019033143 A JP2019033143 A JP 2019033143A
Authority
JP
Japan
Prior art keywords
oxide
oxide layer
layer
addition ratio
oxygen addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017152200A
Other languages
Japanese (ja)
Other versions
JP6841184B2 (en
Inventor
内山 博幸
Hiroyuki Uchiyama
博幸 内山
翼 森塚
Tsubasa MORITSUKA
翼 森塚
藤崎 寿美子
Sumiko Fujisaki
寿美子 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2017152200A priority Critical patent/JP6841184B2/en
Priority to KR1020180053172A priority patent/KR102095811B1/en
Priority to CN201810725388.XA priority patent/CN109390236B/en
Publication of JP2019033143A publication Critical patent/JP2019033143A/en
Application granted granted Critical
Publication of JP6841184B2 publication Critical patent/JP6841184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

To improve mobility of a semiconductor device employing a thin film transistor using an oxide semiconductor material, to increase an ON current, and to manufacture the semiconductor device at low cost and with high yield so as to facilitate potential control, and to provide stable characteristics.SOLUTION: A manufacturing method of a semiconductor device is disclosed. The semiconductor device comprises a gate electrode, a source electrode and a drain electrode. A gate insulation film and an oxide semiconductor channel layer are included between the gate electrode and the source electrode and between the gate electrode and the drain electrode, and the gate insulation film is present between the gate electrode and the oxide semiconductor channel layer. The oxide semiconductor channel layer includes: a first oxide layer which contains at least zinc and does not contain indium; and a second oxide layer which contains at least indium. The manufacturing method is implemented on conditions that, when an oxygen addition ratio in depositing the first oxide layer is defined as (a) and an oxygen addition ratio in depositing the second oxide layer is defined as (b), (a) is greater than 1.1b and smaller than 1.6b.SELECTED DRAWING: Figure 4A

Description

本発明は、半導体装置にかかわり、特に、酸化物半導体デバイスおよび酸化物半導体薄膜トランジスタに関する。   The present invention relates to a semiconductor device, and particularly relates to an oxide semiconductor device and an oxide semiconductor thin film transistor.

薄膜トランジスタを画素スイッチに用いる液晶ディスプレイにおいては、薄膜トランジスタ(TFT)のチャネル層に非晶質シリコン(アモルファスシリコン)を採用した液晶ディスプレイが主流である。しかし、4K、8Kとディスプレイが高精細化されると画素サイズは微細化せざるを得ず、当然ながら薄膜トランジスタも微細化されることになる。これは単位面積当たりの電流値を増大させることを意味し、アモルファスシリコンを採用したチャネル層では、オン特性(移動度やオン電流)が不足し、対応が困難となっている。   In a liquid crystal display using a thin film transistor as a pixel switch, a liquid crystal display using amorphous silicon (amorphous silicon) as a channel layer of the thin film transistor (TFT) is mainly used. However, if the display becomes high definition such as 4K and 8K, the pixel size is inevitably reduced, and naturally, the thin film transistor is also reduced. This means that the current value per unit area is increased. In the channel layer employing amorphous silicon, the on-characteristics (mobility and on-current) are insufficient and it is difficult to cope with it.

一方、オン特性に優れた低温ポリシリコン(LTPS)では、十分に高精細化に対応するが、レーザアニールなどの高コストプロセスを用いるため、大画面製造は困難であり、高精細に対応する高オン特性と大面積製造を実現する半導体材料が求められている。そこで近年、この領域をカバーする薄膜半導体材料として酸化物半導体材料が注目されている。近年では、自発光デバイスであり大電流駆動が必要な有機EL(エレクトロルミネッセンス)のバックプレーン用薄膜トランジスタとしても、実用化検討が行われている。   On the other hand, low-temperature polysilicon (LTPS) with excellent on-state characteristics can cope with sufficiently high definition, but since a high-cost process such as laser annealing is used, it is difficult to produce a large screen, and high-resolution that supports high definition. There is a need for semiconductor materials that achieve on-state characteristics and large area manufacturing. Therefore, in recent years, an oxide semiconductor material has attracted attention as a thin film semiconductor material covering this region. In recent years, practical application studies have also been conducted as thin film transistors for organic EL (electroluminescence) backplanes that are self-luminous devices and require large current drive.

酸化物半導体は、化学蒸着法(CVD)で成膜されるアモルファスシリコンとは異なり、スパッタリング法で成膜することができるため、膜の均一性に優れ、ディスプレイの大型化、高精細化の要求に対応し得る。また、酸化物半導体は、アモルファスシリコンよりもオン特性に優れ、高輝度・高コントラスト化、高速駆動に有利である上、オフ時のリーク電流が低く、消費電力低減(省電力化)も期待できる。さらに、スパッタリング法は、大面積への高均一成膜が可能な上、化学蒸着法に比べて低温での成膜が可能であるため、薄膜トランジスタを構成する材料として耐熱性の低い材料を選択することができるという利点もある。   Unlike amorphous silicon, which is deposited by chemical vapor deposition (CVD), oxide semiconductors can be deposited by sputtering, so they have excellent film uniformity, and demands for larger displays and higher definition. It can correspond to. In addition, oxide semiconductors have better on-characteristics than amorphous silicon, are advantageous for high brightness, high contrast, and high-speed driving, and also have low leakage current when turned off, and can be expected to reduce power consumption (power saving). . Furthermore, since the sputtering method can form a film uniformly over a large area and can form a film at a lower temperature than the chemical vapor deposition method, a material having low heat resistance is selected as a material constituting the thin film transistor. There is also an advantage of being able to.

ディスプレイ用TFTのチャネル層に好適な酸化物半導体として、例えば、インジウムガリウム亜鉛複合酸化物(以下、「IGZO」という。)などが知られており、IGZOを用いた半導体デバイスも知られている(例えば、特許文献1参照)。   As an oxide semiconductor suitable for a channel layer of a display TFT, for example, indium gallium zinc composite oxide (hereinafter referred to as “IGZO”) is known, and a semiconductor device using IGZO is also known ( For example, see Patent Document 1).

IGZOは電極加工プロセスに対する耐性が乏しいことや保護膜形成プロセスに対する耐性が乏しいため、エッチストップ層の形成が必要であるなど、低コスト製造が困難であった。一方、インジウム錫亜鉛複合酸化物(以下、ITZOという)、亜鉛錫複合酸化物(以下、ZTOという)といった電極加工プロセスへの耐性の大きな酸化物半導体材料も提案されるようになっている(例えば、特許文献2,3参照)。特に、ZTOは希少金属や産業利用率の高い元素をあまり使用していないことから、コスト面、持続性の観点から有望な酸化物半導体材料である。   Since IGZO has poor resistance to an electrode processing process and poor resistance to a protective film formation process, it is difficult to manufacture at low cost because an etch stop layer needs to be formed. On the other hand, oxide semiconductor materials having high resistance to electrode processing processes such as indium tin zinc composite oxide (hereinafter referred to as ITZO) and zinc tin composite oxide (hereinafter referred to as ZTO) have been proposed (for example, Patent Documents 2 and 3). In particular, ZTO is a promising oxide semiconductor material from the viewpoint of cost and sustainability because it does not use rare metals or elements with high industrial utilization.

一方、これらの酸化物半導体材料も、実用的には移動度として6〜10cm/Vs程度が一般的で、今後のディスプレイ高精細化には不十分である。対応するためには、20cm/Vs以上、好ましくは25cm/Vs程度が望まれているが、酸化物半導体材料のキャリア密度を増加させるだけでは、しきい電位がディプリートを起こしやすくなったり、保護膜プロセスに対する耐性が更に敏感になったりしやすく、材料的な技術のみではその対応が困難になりつつある。 On the other hand, these oxide semiconductor materials also generally have a mobility of about 6 to 10 cm 2 / Vs practically, which is insufficient for the future high-definition display. In order to respond, 20 cm 2 / Vs or more, preferably about 25 cm 2 / Vs is desired. However, the threshold potential is likely to cause depletion only by increasing the carrier density of the oxide semiconductor material. The resistance to the protective film process is likely to become more sensitive, and it is becoming difficult to cope with it only with material technology.

この様な状況を打開するため、酸化物半導体チャネル層を異なる材料系で多層化した構造、例えば、ソース・ドレイン(SD)電極に接触する側に酸化インジウムを含まず酸化亜鉛を含んだ酸化物半導体層(ZTOなど)、ゲート絶縁膜側に酸化インジウムを含む酸化物半導体層(インジウム錫複合酸化物(以下「ITO」という)など)を備えた積層酸化物TFT構造も提案され、50cm/Vs程度の高移動度化を実現している(特許文献4参照)。 In order to overcome this situation, a structure in which an oxide semiconductor channel layer is multilayered with different material systems, for example, an oxide containing zinc oxide without containing indium oxide on the side in contact with the source / drain (SD) electrode. the semiconductor layer (such as ZTO), laminated oxide TFT structure having an oxide semiconductor layer containing indium oxide as the gate insulating film side (indium tin composite oxide (hereinafter referred to as "ITO"), etc.) is also proposed, 50 cm 2 / High mobility of about Vs is realized (see Patent Document 4).

特開2006−165532号公報JP 2006-165532 A 特開2008−243928号公報Japanese Patent Application Laid-Open No. 2008-243928 特開2012−033699号公報JP2012-033699A 特許第5503667号公報Japanese Patent No. 5503667

上記の従来技術において、ソース・ドレイン電極に接する側の第一の酸化物層として酸化インジウムを含まず、酸化亜鉛を含む酸化物半導体層(ZTOなど)、ゲート絶縁膜側の第二の酸化物層として酸化インジウムを含む酸化物半導体層(ITOなど)をチャネル層に採用した積層型薄膜トランジスタを用いて、液晶ディスプレイを製造しようとすると、以下の様な課題が存在する。   In the above prior art, as the first oxide layer on the side in contact with the source / drain electrodes, an oxide semiconductor layer (such as ZTO) that does not contain indium oxide and contains zinc oxide, and the second oxide on the gate insulating film side When a liquid crystal display is manufactured using a stacked thin film transistor that employs an oxide semiconductor layer (ITO or the like) containing indium oxide as a channel layer, the following problems exist.

上記酸化物半導体層を薄膜トランジスタとして有効に動作させるため、アニール処理などの活性化処理が必要となる。その際に、酸化インジウムを含まず、酸化亜鉛を含む第一の酸化物半導体層(ZTOなど)と酸化インジウムを含む第二の酸化物半導体層(インジウム亜鉛複合酸化物(以下、「IZO」という),ITOなど)の成膜時の添加酸素条件により、電流-電圧特性がHump形状を示したり、大きくディプリートしたりし、薄膜トランジスタとして実用化に不適な特性となることがある。   In order to effectively operate the oxide semiconductor layer as a thin film transistor, an activation process such as an annealing process is required. At that time, a first oxide semiconductor layer (such as ZTO) that does not contain indium oxide but contains zinc oxide and a second oxide semiconductor layer that contains indium oxide (hereinafter referred to as indium zinc composite oxide (hereinafter referred to as “IZO”). ), ITO, etc.), depending on the added oxygen conditions during film formation, the current-voltage characteristics may show a Hump shape, or may be greatly depleted, resulting in characteristics unsuitable for practical use as thin film transistors.

図1は、薄膜トランジスタの特性の一例を示す図であり、横軸はゲート電圧(V)、縦軸はドレイン電流(A)として、ドレイン電圧を0.1V,1V,10Vの三種類でグラフ化したものである。図1(a)は、ZTO/IZO積層TFTのZTO/IZO成膜時酸素添加割合が、それぞれ40%/20%の場合であり、薄膜トランジスタは導電化してしまい機能しない。また、図1(b)は、ZTO/IZO積層TFTのZTO/IZO成膜時酸素添加割合が、それぞれ40%/40%の場合であり、Humpが形成されている。   FIG. 1 is a diagram illustrating an example of the characteristics of a thin film transistor. The horizontal axis represents a gate voltage (V), the vertical axis represents a drain current (A), and the drain voltage is graphed in three types of 0.1 V, 1 V, and 10 V. It is a thing. FIG. 1 (a) shows the case where the ratio of oxygen addition during ZTO / IZO film formation of the ZTO / IZO multilayer TFT is 40% / 20%, respectively, and the thin film transistor becomes conductive and does not function. FIG. 1B shows the case where the oxygen addition ratios of the ZTO / IZO multilayer TFTs during ZTO / IZO film formation are 40% / 40%, respectively, and a Hump is formed.

この原因は明確に理解されている訳ではないが、第一の酸化物半導体層中の酸素組成と第二の酸化物半導体層中の酸素組成の不均衡により、層間を酸素原子が移動することにより、界面近傍のいずれか一方の酸化物半導体層側に酸素欠損に因る導電層が形成されるためと考えられる。そのため、しきい電位(Vth)が二段となる様なHump形状や負バイアス下でも導通が始まってしまうディプリートとして観察される。この様な特性では、高精細ディスプレイの画素スイッチやOLEDディスプレイのドライバとしては不適である。そのため、しきい電位を>0Vに適正に制御し、安定的に動作が可能な高移動度薄膜トランジスタのデバイス構造や製造方法が望まれる。   The cause of this is not clearly understood, but oxygen atoms move between layers due to an imbalance between the oxygen composition in the first oxide semiconductor layer and the oxygen composition in the second oxide semiconductor layer. This is considered to be because a conductive layer due to oxygen deficiency is formed on one of the oxide semiconductor layers near the interface. Therefore, it is observed as a depletion in which conduction starts even under a Hump shape or a negative bias where the threshold potential (Vth) is two steps. Such characteristics are not suitable as pixel switches for high-definition displays or drivers for OLED displays. Therefore, a device structure and manufacturing method of a high mobility thin film transistor that can be stably operated by appropriately controlling the threshold potential to> 0V is desired.

なお、本課題は第一の酸化物層がZTOなど酸化インジウムを含まず酸化亜鉛を含む酸化物半導体層、第二の酸化物層がIZO、ITO、IGZOなどインジウム酸化物を含む比較的高導電性酸化物半導体層など、積層チャネルを有する薄膜トランジスタに特有の課題である。   Note that this problem is that the first oxide layer includes an oxide semiconductor layer that does not include indium oxide such as ZTO but includes zinc oxide, and the second oxide layer includes relatively high conductivity that includes indium oxide such as IZO, ITO, and IGZO. This is a problem peculiar to a thin film transistor having a stacked channel such as a conductive oxide semiconductor layer.

本発明は、発明者らによって見出された上記のような課題に鑑みなされたものであり、酸化物TFTの高移動度化と低コストプロセスを両立する酸化物半導体デバイスを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems found by the inventors, and an object thereof is to provide an oxide semiconductor device that achieves both high mobility and low-cost process of an oxide TFT. And

本発明の一側面は、ゲート電極とソース電極とドレイン電極とを備え、ゲート電極とソース電極との間、および、ゲート電極とドレイン電極との間には、ゲート絶縁膜と酸化物半導体チャネル層とを有し、ゲート絶縁膜はゲート電極と酸化物半導体チャネル層との間に存在する半導体装置であって、酸化物半導体チャネル層が、少なくとも亜鉛を含み、インジウムを含有しない第一の酸化物層と、少なくともインジウムを含有する第二の酸化物層とを備える半導体装置の製造方法である。この製造方法では、第一の酸化物層を成膜するときの酸素添加割合をa、第二の酸化物層を成膜するときの酸素添加割合をbとしたとき、aが1.1bより大きく、1.6bより小さいことを条件とする。   One aspect of the present invention includes a gate electrode, a source electrode, and a drain electrode, and a gate insulating film and an oxide semiconductor channel layer are provided between the gate electrode and the source electrode and between the gate electrode and the drain electrode. A gate insulating film between the gate electrode and the oxide semiconductor channel layer, wherein the oxide semiconductor channel layer contains at least zinc and does not contain indium A method for manufacturing a semiconductor device comprising a layer and a second oxide layer containing at least indium. In this manufacturing method, when the oxygen addition ratio when forming the first oxide layer is a and the oxygen addition ratio when forming the second oxide layer is b, a is from 1.1b It must be large and smaller than 1.6b.

本発明によれば、酸化物半導体材料を用いた薄膜トランジスタを用いた半導体装置の高移動度化、高オン電流化が実現し、かつ、しきい電位制御が容易な低コスト、高歩留まりな製造、安定した特性が提供される。   According to the present invention, high mobility and high on-state current of a semiconductor device using a thin film transistor using an oxide semiconductor material can be realized, and low-cost, high-yield manufacturing with easy threshold potential control. Stable characteristics are provided.

ZTO/IZO積層TFTにおいて、ZTO/IZO成膜時酸素添加割合がTFTの特性に与える影響を説明するグラフ図。FIG. 5 is a graph illustrating the influence of the oxygen addition ratio during ZTO / IZO film formation on TFT characteristics in a ZTO / IZO multilayer TFT. 実施例で期待されるZTO/IZO積層TFTの特性を示すグラフ図。The graph which shows the characteristic of ZTO / IZO laminated TFT anticipated in the Example. 本発明の実施例による、ボトムゲートトップコンタクト型薄膜トランジスタの製造工程を説明する工程断面図。Process sectional drawing explaining the manufacturing process of the bottom gate top contact type thin-film transistor by the Example of this invention. 本発明の実施例による、ボトムゲートトップコンタクト型薄膜トランジスタの製造工程を説明する工程断面図。Process sectional drawing explaining the manufacturing process of the bottom gate top contact type thin-film transistor by the Example of this invention. 本発明の実施例による、ディスプレイ画素電極周辺の構造とTFTの構造を示す上面模式図。The top surface schematic diagram which shows the structure of a display pixel electrode periphery, and the structure of TFT by the Example of this invention. 実施例1が示すZTO/IZO積層構造TFTを試作した場合のTFT特性(電流-電圧特性、移動度)とIZO成膜時酸素添加割合との関係を説明するグラフ図。FIG. 3 is a graph illustrating the relationship between TFT characteristics (current-voltage characteristics, mobility) and oxygen addition ratio during IZO film formation when a ZTO / IZO multilayer structure TFT shown in Example 1 is prototyped. 本発明の実施例1によるZTO成膜時の酸素添加割合を40%とした場合のIZO成膜時酸素添加割合を20〜40%の範囲で調査したTFT特性についてまとめた表図。The table | surface which put together about the TFT characteristic which investigated the oxygen addition ratio at the time of IZO film-forming in the range of 20-40% when the oxygen addition ratio at the time of ZTO film-forming by Example 1 of this invention was 40%. 実施例2が示すZTO/IZO積層構造TFTを試作した場合のTFT特性(電流-電圧特性、移動度)とZTO成膜時酸素添加割合との関係を説明するグラフ図。FIG. 6 is a graph for explaining the relationship between TFT characteristics (current-voltage characteristics, mobility) and oxygen addition ratio during ZTO film formation when a ZTO / IZO multilayer structure TFT shown in Example 2 is prototyped. 本発明の実施例2によるIZO成膜時の酸素添加割合を30%とした場合のZTO成膜時酸素添加割合を8〜50%の範囲で調査したTFT特性についてまとめた表図。The table which put together about the TFT characteristic which investigated the oxygen addition ratio at the time of ZTO film-forming in the range of 8-50% when the oxygen addition ratio at the time of IZO film-forming by Example 2 of this invention was set to 30%. 実施例3が示すZTO/ITO積層構造TFTを試作した場合のTFT特性とZTO成膜時酸素添加割合との関係を説明するグラフ図。FIG. 6 is a graph for explaining the relationship between TFT characteristics and the oxygen addition rate during ZTO film formation when a ZTO / ITO laminated structure TFT shown in Example 3 is prototyped. 本発明の実施例3によるZTO/ITO積層TFT製造について、ITO成膜時の酸素添加割合を33%とした場合のZTO成膜時酸素添加割合を25〜53%の範囲で調査したTFT特性についてまとめた表図。Regarding TFT manufacturing of ZTO / ITO laminated TFT according to Example 3 of the present invention, TFT characteristics obtained by investigating the oxygen addition ratio during ZTO film formation in the range of 25 to 53% when the oxygen addition ratio during ITO film formation is 33% Summary table. 実施例3が示すZTO/IGZO積層構造TFTを試作した場合のTFT特性とIGZO成膜時酸素添加割合との関係を説明するグラフ図。FIG. 9 is a graph illustrating the relationship between TFT characteristics and the oxygen addition ratio during IGZO film formation when a ZTO / IGZO multilayer structure TFT shown in Example 3 is manufactured as a prototype. 本発明の実施例3によるZTO/IGZO積層TFT製造について、IGZO成膜時の酸素添加割合を25%とした場合のZTO成膜時酸素添加割合を25〜40%の範囲で調査したTFT特性についてまとめた表図。Regarding the ZTO / IGZO multilayer TFT manufacturing according to Example 3 of the present invention, TFT characteristics obtained by investigating the oxygen addition ratio during ZTO film formation in the range of 25 to 40% when the oxygen addition ratio during IGZO film formation is 25% Summary table.

実施の形態について、図を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容や数値に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。   Embodiments will be described in detail with reference to the drawings. However, the present invention is not construed as being limited to the description and numerical values of the embodiments described below. Those skilled in the art will readily understand that the specific configuration can be changed without departing from the spirit or the spirit of the present invention.

本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも数または順序を限定するものではない。   In the present specification and the like, notations such as “first”, “second”, “third”, and the like are attached to identify the components, and do not necessarily limit the number or order.

図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。   The position, size, range, and the like of each component illustrated in the drawings and the like may not represent the actual position, size, range, or the like for easy understanding. For this reason, the present invention is not necessarily limited to the position, size, range, and the like disclosed in the drawings and the like.

以下の実施例で説明される構成の一例は、チャネル層が少なくとも酸化亜鉛を含み、酸化インジウムを含まない第一の酸化物層と、少なくとも酸化インジウムを含む第二の酸化物層の積層構造を形成する酸化物半導体成膜工程において、第一の酸化物層および第二の酸化物層の成膜に適切な酸素添加割合およびその組み合わせを提供する。それによりその後のチャネル層活性化処理工程時に層間の酸素移動により発生する薄膜トランジスタの特性劣化を防止し、しきい電位を適切な状態に制御した高移動度トランジスタを実現することができる。   An example of a configuration described in the following example is a stacked structure of a first oxide layer in which a channel layer includes at least zinc oxide and does not include indium oxide, and a second oxide layer that includes at least indium oxide. In the oxide semiconductor film forming step to be formed, an oxygen addition ratio and a combination thereof suitable for forming the first oxide layer and the second oxide layer are provided. Accordingly, deterioration of characteristics of the thin film transistor caused by oxygen transfer between layers during the subsequent channel layer activation treatment step can be prevented, and a high mobility transistor in which the threshold potential is controlled to an appropriate state can be realized.

図2は上記構成によって期待される理想的な薄膜トランジスタの特性の一例を示す図であり、横軸はゲート電圧(V)、縦軸はドレイン電流(A)とし、ドレイン電圧を0.1V,1V,10Vの三種類でグラフ化したものである。   FIG. 2 is a diagram showing an example of characteristics of an ideal thin film transistor expected by the above configuration, where the horizontal axis is the gate voltage (V), the vertical axis is the drain current (A), and the drain voltages are 0.1V and 1V. , 10V, graphed.

具体例としては、第一の亜鉛を含みInを含まない酸化物半導体層成膜時の酸素添加割合をa、第二のInを含む酸化物半導体層成膜時の酸素添加割合をbとするとき、a>b、かつ、aが1.1bより大きく、かつ、1.6bより小さく、a<50%、b>20%を満たす条件で形成された酸化物半導体積層構造とする。上記の成膜条件とすることで、形成後アニール処理による酸化物半導体積層チャネル層間の酸素移動を防止し、高移動度と良好なスイッチング特性を両立する薄膜トランジスタを実現可能である。   As a specific example, the oxygen addition ratio at the time of forming the oxide semiconductor layer containing the first zinc and not containing a is a, and the oxygen addition ratio at the time of forming the oxide semiconductor layer containing the second In is b. In some cases, an oxide semiconductor stacked structure is formed in which a> b, a is larger than 1.1b, smaller than 1.6b, and satisfies a <50% and b> 20%. With the above film formation conditions, it is possible to realize a thin film transistor that prevents oxygen migration between oxide semiconductor stacked channel layers due to post-annealing annealing treatment and achieves both high mobility and good switching characteristics.

以下、本実施例の酸化物薄膜トランジスタの一例について説明する。本実施例のチャネル層は、第一の酸化物半導体層がZTO(膜厚30nm)であり、第二の酸化物層がIZO(膜厚5nm)である。   Hereinafter, an example of the oxide thin film transistor of this embodiment will be described. In the channel layer of this example, the first oxide semiconductor layer is ZTO (film thickness 30 nm), and the second oxide layer is IZO (film thickness 5 nm).

図3Aおよび図3Bは本実施例の酸化物薄膜トランジスタを製造する工程の一例を示す断面図である。   3A and 3B are cross-sectional views showing an example of a process for manufacturing the oxide thin film transistor of this example.

基板10の上にゲート電極となる電極層1、例えばMo層やMoW層(膜厚100nm)をDCマグネトロンスパッタ法などにより成膜する。その後、ホトレジストパターンを形成し、これをマスクとしてゲート電極加工を行う(図3A(a))。   An electrode layer 1 serving as a gate electrode, for example, a Mo layer or a MoW layer (film thickness: 100 nm) is formed on the substrate 10 by a DC magnetron sputtering method or the like. Thereafter, a photoresist pattern is formed, and gate electrode processing is performed using this as a mask (FIG. 3A (a)).

形成されたゲート電極のパターンに加工された電極層1を被覆する形で、PE−CVD法などによりゲート絶縁膜層2を形成する。ここでは、SiO(膜厚100nm)を形成する(図3A(b))。その後、チャネル層となる酸化物層3と4をDCマグネトロンスパッタ法により連続的に成膜する(図3A(c))。 The gate insulating film layer 2 is formed by PE-CVD or the like so as to cover the electrode layer 1 processed into the formed gate electrode pattern. Here, SiO x (film thickness 100 nm) is formed (FIG. 3A (b)). Thereafter, oxide layers 3 and 4 to be channel layers are continuously formed by a DC magnetron sputtering method (FIG. 3A (c)).

まず、第二の酸化物層3であるIZO層(膜厚5nm)は、亜鉛組成10at%のターゲット材を用い、成膜条件、常温、成膜圧力0.5Pa、スパッタガスAr/O混合ガス(酸素添加割合10〜50%)、DCパワー50Wにて成膜した。ここで、酸素添加割合はAr/Oの流量割合で定義している。実用的には、ガス流量の比率と考えてよい。すなわち酸素添加割合10〜50%とは、ArとO全体の流量を100%としたときの酸素の流量の割合を示している(以下同様)。 First, the IZO layer (film thickness 5 nm) which is the second oxide layer 3 uses a target material having a zinc composition of 10 at%, film formation conditions, room temperature, film formation pressure 0.5 Pa, sputtering gas Ar / O 2 mixture The film was formed with a gas (oxygen addition ratio of 10 to 50%) and a DC power of 50W. Here, the oxygen addition ratio is defined by the flow rate ratio of Ar / O 2 . Practically, it can be considered as a ratio of gas flow rate. In other words, the oxygen addition ratio of 10 to 50% indicates the ratio of the flow rate of oxygen when the flow rates of Ar and O 2 are 100% (the same applies hereinafter).

また、第一の酸化物層4であるZTO層(膜厚50nm)は、錫組成30at%のターゲット材(Al 350ppm添加)を用い、成膜条件、常温、成膜圧力0.5Pa、スパッタガスAr/O混合ガス(酸素添加割合40%)を用いて成膜した。なお、ZTO層は亜鉛錫複合酸化物で形成する場合のほか、亜鉛錫複合酸化物を主要な成分とした酸化物として形成する場合もあり得る。すなわち、亜鉛錫複合酸化物の特性を改善もしくは調整するために、種々の他の元素を添加する場合があり得る。 Further, the ZTO layer (film thickness 50 nm) which is the first oxide layer 4 uses a target material (addition of 350 ppm Al) with a tin composition of 30 at%, film formation conditions, room temperature, film formation pressure 0.5 Pa, sputtering gas. A film was formed using an Ar / O 2 mixed gas (oxygen addition ratio: 40%). In addition, the ZTO layer may be formed as an oxide containing a zinc-tin composite oxide as a main component in addition to the case where it is formed from a zinc-tin composite oxide. That is, various other elements may be added in order to improve or adjust the characteristics of the zinc-tin composite oxide.

その後、ホトレジスト層5によりチャネルパターンを形成し(図3A(c))、これをマスクとして酸化物チャネル領域の加工を行う。加工には、例えば、シュウ酸系エッチング液などITO加工に一般的に用いられるエッチング液を用いる。上記酸化物膜厚であれば、3分程度の処理時間で面内分布等を考慮しても酸化物層3および4を十分に除去できる(図3A(d))。   Thereafter, a channel pattern is formed by the photoresist layer 5 (FIG. 3A (c)), and the oxide channel region is processed using this as a mask. For the processing, for example, an etching solution generally used for ITO processing such as an oxalic acid-based etching solution is used. With the oxide film thickness, the oxide layers 3 and 4 can be sufficiently removed even if the in-plane distribution is taken into account in a processing time of about 3 minutes (FIG. 3A (d)).

加工後の酸化物層は、中心波長254nmの水銀ランプによる約25mW/cmのUV光照射下、温度200℃の条件で1時間活性化アニール処理を施す。その後、ソース・ドレイン電極層6となる例えば、Mo/Al/Mo層やMo、Mo合金層を、マグネトロンDCスパッタリングや蒸着法により形成する(図3B(e))。ソース・ドレイン電極層6は更に、ホトレジスト層7によるソース・ドレイン電極パターンをマスクとしてPAN系エッチング液などによりSD電極パターンに加工を行い(図3B(f))、その後、表面保護のため、SiN/SiOなどの保護膜8をPE−CVD法などにより形成し、本実施例の薄膜トランジスタが完成する(図3B(g))。 The processed oxide layer is subjected to an activation annealing treatment for 1 hour under the condition of a temperature of 200 ° C. under irradiation of UV light of about 25 mW / cm 2 by a mercury lamp having a central wavelength of 254 nm. Thereafter, for example, a Mo / Al / Mo layer, Mo, or Mo alloy layer to be the source / drain electrode layer 6 is formed by magnetron DC sputtering or vapor deposition (FIG. 3B (e)). The source / drain electrode layer 6 is further processed into an SD electrode pattern with a PAN-based etching solution using the source / drain electrode pattern formed by the photoresist layer 7 as a mask (FIG. 3B (f)), and then SiN for surface protection. A protective film 8 such as x 2 / SiO x is formed by a PE-CVD method or the like to complete the thin film transistor of this example (FIG. 3B (g)).

発明者らの考察によれば、前記プロセスにおいて、酸化物積層チャネル内で活性化アニールに因り酸素欠損が発生しTFT特性が劣化する可能性があるが、本実施例で開示する酸化物層3および4の成膜条件を採用することにより、この問題は解決できる。   According to the inventor's consideration, in the above process, there is a possibility that oxygen deficiency occurs in the oxide stacked channel due to the activation annealing and the TFT characteristics are deteriorated. This problem can be solved by adopting the film forming conditions (1) and (4).

図3Cは、完成したTFTを上面から見た模式図である。画素電極(透明電極)23に対して、TFT20を介して、ゲート線21とデータ線22が配置される。このTFTは、ディスプレイなどの画素電極制御用に用いられることが多い。図3Cは、その場合のゲート線21、データ線22、画素電極23との位置関係概略を示したものであり、ディスプレイの場合にはこれがアレイ状に連続して形成されることになる。また、図3B(g)の断面に対応した、TFT20の部分拡大平面概略をあわせて示す。   FIG. 3C is a schematic view of the completed TFT as viewed from above. A gate line 21 and a data line 22 are arranged on the pixel electrode (transparent electrode) 23 via the TFT 20. This TFT is often used for pixel electrode control of a display or the like. FIG. 3C shows an outline of the positional relationship between the gate line 21, the data line 22, and the pixel electrode 23 in that case. In the case of a display, this is continuously formed in an array. In addition, a partially enlarged plan view of the TFT 20 corresponding to the cross section of FIG. 3B (g) is also shown.

本実施例では、第一の酸化物層4にZTOを用い、その成膜時酸素添加割合を40%とした場合に、第二の酸化物層3であるIZOの成膜時酸素添加割合を20%〜40%の範囲で変化させた場合の、この積層構造TFTの電流−電圧特性を調査した。   In this example, when ZTO is used for the first oxide layer 4 and the oxygen addition ratio during film formation is 40%, the oxygen addition ratio during film formation of IZO as the second oxide layer 3 is The current-voltage characteristics of this multilayer TFT were investigated when changing in the range of 20% to 40%.

図4Aおよび図4Bにその結果を示す。図4Aは、代表的な成膜条件での電流-電圧特性と移動度の結果を示したものである。ZTO成膜時の酸素添加割合は40%とし、IZO成膜時の酸素添加割合を、上から(a)20%、(b)25%、(c)30%、(d)40%と変化させた。横軸はゲート電圧(V)、縦軸はドレイン電流(A)と移動度(cm/Vs)として、ドレイン電圧を0.1V,1V,10Vの三種類でグラフ化したものである(以下のその他の電流-電圧特性のグラフでも同様)。 The results are shown in FIGS. 4A and 4B. FIG. 4A shows the results of current-voltage characteristics and mobility under typical film formation conditions. The oxygen addition rate at the time of ZTO film formation is 40%, and the oxygen addition rate at the time of IZO film formation is changed from (a) 20%, (b) 25%, (c) 30%, (d) 40% from the top. I let you. The horizontal axis represents the gate voltage (V), the vertical axis represents the drain current (A) and the mobility (cm 2 / Vs), and the drain voltage is graphed in three types of 0.1 V, 1 V, and 10 V (hereinafter referred to as “V”). The same applies to other current-voltage characteristics graphs.

IZO成膜時の酸素添加割合20%では、電流-電圧特性はOFFせずTFTとしては不適であることが分かる。IZO成膜時の酸素添加割合を25%まで増加させると、OFF動作はするが、電流-電圧特性にHumpが見られ、チャネル層以外のリークパスが形成されていることが分かる。更にIZO成膜時の酸素添加割合を増加させ、30%とするとHumpは見られず、良好な電流-電圧特性を示し、しきい電位Vthが1V以上に制御され、移動度μFEも32以上の良好な値となっている。しかしながら、IZO成膜時の酸素添加量を40%以上とすると、逆にHumpが見られる電流-電圧特性を示す。以上の様に、IZO成膜時の酸素添加割合には適正値が存在することが理解できる。 It can be understood that the current-voltage characteristics are not turned off at the oxygen addition ratio of 20% during the IZO film formation, which is not suitable as a TFT. When the oxygen addition ratio during the IZO film formation is increased to 25%, the OFF operation is performed, but a Hump is observed in the current-voltage characteristics, and it can be seen that a leak path other than the channel layer is formed. Further, when the ratio of oxygen addition during IZO film formation is increased to 30%, no Hump is observed, good current-voltage characteristics are exhibited, the threshold potential V th is controlled to 1 V or more, and the mobility μ FE is also 32. The above values are good. However, when the amount of oxygen added during the IZO film formation is 40% or more, the current-voltage characteristic in which Hump is seen is shown. As described above, it can be understood that there is an appropriate value for the oxygen addition ratio during the IZO film formation.

図4Bには、更に、詳細なIZO成膜時酸素添加割合とTFT特性の関係を調査した結果を示す。この結果から、IZO成膜時の酸素添加割合が26〜36%のときにしきい値電圧が正となり、Humpが見られない。よって、このデータからは、第一の酸化物層(ZTO)成膜時の酸素添加割合をa、第二の酸化物層(IZO)成膜時酸素添加割合をbとした場合、少なくともa=1.11〜1.54bの範囲では適切な条件を満たすことが理解できる。   FIG. 4B further shows the results of investigating the relationship between the oxygen addition rate during TFT formation and TFT characteristics in detail. From this result, when the oxygen addition ratio during the IZO film formation is 26 to 36%, the threshold voltage becomes positive and no hump is observed. Therefore, from this data, when the oxygen addition ratio during film formation of the first oxide layer (ZTO) is a and the oxygen addition ratio during film formation of the second oxide layer (IZO) is b, at least a = It can be understood that an appropriate condition is satisfied in the range of 1.11 to 1.54b.

本実施例では、チャネル層の第一、第二の酸化物層成膜時のそれぞれの酸素添加割合を適切に制御することにより、層間の酸素移動を防止し、高移動度化と>0Vの良好なしきい電位制御を可能にすることが可能である。また、プロセス上マスク数の増大などは招かず、実現できるため、低コストプロセスと高移動度の両立も可能である。   In this example, by appropriately controlling the respective oxygen addition ratios when forming the first and second oxide layers of the channel layer, oxygen transfer between layers is prevented, and high mobility and> 0V are achieved. It is possible to enable good threshold potential control. In addition, since it can be realized without increasing the number of masks in the process, it is possible to achieve both low cost processes and high mobility.

なお、本実施例中で示した、チャネル層および電極層の膜厚、成膜方法、加工(エッチング)方法等については、当然ながら製造するデバイスに求められる特性に応じ、種々変更が可能である。また、本実施例では典型的な成膜方法としてDCマグネトロンスパッタ法を用いたが、従来のRF、DCスパッタ、RFマグネトロンスパッタ、ECRスパッタ、イオンプレーティング、反応性蒸着法など種々の成膜方法で同じ効果が期待できる。   It should be noted that the channel layer and electrode layer thicknesses, film formation methods, processing (etching) methods, and the like shown in this embodiment can be variously changed according to the characteristics required for the device to be manufactured. . In this embodiment, the DC magnetron sputtering method is used as a typical film forming method. However, various film forming methods such as conventional RF, DC sputtering, RF magnetron sputtering, ECR sputtering, ion plating, and reactive vapor deposition are used. The same effect can be expected.

次に、実施例1の酸化物積層構造と同一で、製造工程もほぼ同一の酸化物TFT構造であり、第一の酸化層であるZTOの成膜時酸素添加割合を8%〜50%とし、第二の酸化物層であるIZO成膜時酸素添加割合を30%とした場合のTFT特性について記述する。   Next, the oxide TFT structure is the same as that of Example 1 and the manufacturing process is almost the same, and the oxygen addition ratio of ZTO as the first oxide layer is set to 8% to 50%. The TFT characteristics when the oxygen addition ratio during film formation of IZO as the second oxide layer is 30% will be described.

図5Aが代表的な成膜条件における電流-電圧特性と移動度である。IZO成膜時の酸素添加割合は30%とし、ZTO成膜時の酸素添加割合を、上から(a)8%、(b)33%、(c)40%、(d)45%と変化させた。   FIG. 5A shows current-voltage characteristics and mobility under typical film forming conditions. The oxygen addition rate during IZO film formation is 30%, and the oxygen addition rate during ZTO film formation varies from (a) 8%, (b) 33%, (c) 40%, and (d) 45% from the top. I let you.

ZTO成膜時酸素添加割合が8%の時、TFTの特性はOFFしない、導通状態となり、TFTとして不適であることが分かる。次に、ZTO成膜時酸素添加割合が33%の時、OFF状態は確保でき、良好な電流-電圧特性であることが分かるが、しきい電位については、−5.4Vとディプリートが観測され、ディスプレイに適用するには不十分な特性である。更に、ZTO成膜時酸素添加割合が40%の時、しきい電位も>0Vに制御され、移動度も>30cm/Vsを確保しており、Humpも見られず良好な特性といえる。 It can be seen that when the oxygen addition ratio during the ZTO film formation is 8%, the TFT characteristics are not turned off and are in a conductive state, which is not suitable as a TFT. Next, when the oxygen addition ratio during ZTO film formation is 33%, the OFF state can be secured, and it can be seen that the current-voltage characteristics are good, but the threshold potential is -5.4V and depletion is observed. The characteristics are insufficient to be applied to a display. Furthermore, when the oxygen addition ratio during ZTO film formation is 40%, the threshold potential is also controlled to> 0 V, the mobility is secured> 30 cm 2 / Vs, and no hump is observed, which is a good characteristic.

図5Bに、詳細なZTO成膜時酸素添加割合とTFT特性の評価結果をまとめた。この結果から、ZTO成膜時の酸素添加割合が34〜45%のときにしきい値電圧が正となり、Humpが見られない。よって、このデータからは、第一の酸化物層(ZTO)成膜時の酸素添加割合をa、第二の酸化物層(IZO)成膜時酸素添加割合をbとした場合、少なくともa=1.13〜1.50bの範囲で適切な条件を満たすことが理解できる。   FIG. 5B summarizes the results of detailed evaluation of oxygen addition ratio and TFT characteristics during ZTO film formation. From this result, the threshold voltage becomes positive when the oxygen addition ratio during the ZTO film formation is 34 to 45%, and no Hump is observed. Therefore, from this data, when the oxygen addition ratio during film formation of the first oxide layer (ZTO) is a and the oxygen addition ratio during film formation of the second oxide layer (IZO) is b, at least a = It can be understood that an appropriate condition is satisfied in the range of 1.13 to 1.50b.

以上の結果を見ても、実施例1記載の高移動度化としきい電位制御を両立する成膜時酸素添加条件と整合することが確かめられた。図4Bおよび図5Bのデータからは、aが1.1bより大きく、1.6bより小さい範囲内にはトランジスタとして不適切な条件が含まれていないことが理解できる。   From the above results, it was confirmed that the film formation was consistent with the oxygen addition conditions during film formation that achieved both high mobility and threshold potential control as described in Example 1. From the data of FIGS. 4B and 5B, it can be understood that an inappropriate condition as a transistor is not included in a range where a is larger than 1.1b and smaller than 1.6b.

また、実施例1、2の結果から本実施例に好適な酸素添加割合の臨界値は、IZO成膜時の酸素添加割合bについて20%以上(それ以下ではOFF出来ずTFTとして不適)、ZTO成膜時の酸素添加割合aについて50%以下(それ以上では実効的なスパッタ速度が低下し、製造技術として不適)と考えられる。   Further, from the results of Examples 1 and 2, the critical value of the oxygen addition ratio suitable for this example is 20% or more with respect to the oxygen addition ratio b during IZO film formation (below it cannot be turned off and is not suitable as a TFT), ZTO It is considered that the oxygen addition ratio a during film formation is 50% or less (above that the effective sputtering rate is lowered and is not suitable as a manufacturing technique).

なお、実施例1同様本実施例において示された、チャネル層および電極層の膜厚、成膜方法、加工(エッチング)方法等については、求められるデバイスの特性等に応じ、種々変更が可能である。   As in Example 1, the channel layer and electrode layer thickness, film formation method, processing (etching) method, etc. shown in this example can be variously changed according to the required device characteristics. is there.

次に、第一の酸化物層には実施例1および2と同様に、ZTO(錫組成33at%、Al 250ppm、Si 100ppm添加)を、第二の酸化物半導体層をITO、IGZO(4:1:1)で構成したTFTの特性について記述する。第二の酸化物層であるITO、IGZOの成膜については、それぞれ錫組成10at%、インジウム組成67at%のターゲット材料を用い、成膜条件、常温、成膜圧力0.5Pa、スパッタガスAr/O混合ガス(成膜時酸素添加割合20%〜40%)、DCパワー50Wにて成膜した。その他の工程については、実施例1とほぼ同様である。 Next, as in Examples 1 and 2, ZTO (tin composition 33 at%, Al 250 ppm, Si 100 ppm added) was used for the first oxide layer, ITO, IGZO (4: The characteristics of the TFT configured in 1: 1) will be described. For the film formation of the second oxide layer, ITO and IGZO, using target materials having a tin composition of 10 at% and an indium composition of 67 at%, respectively, film formation conditions, room temperature, film formation pressure 0.5 Pa, sputtering gas Ar / The film was formed with an O 2 mixed gas (oxygen addition ratio of 20% to 40% during film formation) and a DC power of 50W. Other steps are almost the same as those in the first embodiment.

上記工程により形成された薄膜トランジスタの代表的な電流―電圧特性を図6A、図7Aに示す。それぞれ移動度62.1cm/Vs、28.1cm/Vs、かつ、しきい電位が>0Vに制御された良好なトランジスタ特性が得られた。その他の成膜条件の詳細なデータは図6B、図7Bに纏めた。 Typical current-voltage characteristics of the thin film transistor formed by the above process are shown in FIGS. 6A and 7A. Each mobility 62.1cm 2 /Vs,28.1cm 2 / Vs and, the threshold potential> good transistor characteristics are controlled to 0V is obtained. Detailed data on other film forming conditions are summarized in FIGS. 6B and 7B.

図6Aは、上記条件でZTO/ITO積層構造TFTを試作した場合のTFT特性(電流-電圧特性、移動度)とZTO成膜時酸素添加割合との関係を説明するグラフ図である。   FIG. 6A is a graph for explaining the relationship between TFT characteristics (current-voltage characteristics, mobility) and the oxygen addition ratio during ZTO film formation when a prototype of a ZTO / ITO multilayer TFT is fabricated under the above conditions.

図6Bは、ZTO/ITO積層TFT製造について、ITO成膜時の酸素添加割合を33%とした場合の、ZTO成膜時酸素添加割合を25〜53%の範囲で調査したTFT特性についてまとめた表図である。   FIG. 6B summarizes TFT characteristics for the ZTO / ITO laminated TFT manufacturing, in which the oxygen addition ratio during the ITO film formation was 33%, and the oxygen addition ratio during the ZTO film formation was investigated in the range of 25 to 53%. FIG.

この結果から、ZTO成膜時の酸素添加割合が40〜45%のときにしきい値電圧が正となり、Humpが見られない。よって、このデータからは、第一の酸化物層(ZTO)成膜時の酸素添加割合をa、第二の酸化物層(ITO)成膜時酸素添加割合をbとした場合、少なくともa=1.21〜1.36bの範囲は適切であることが理解できる。   From this result, the threshold voltage becomes positive when the oxygen addition ratio during the ZTO film formation is 40 to 45%, and no Hump is observed. Therefore, from this data, when the oxygen addition ratio during film formation of the first oxide layer (ZTO) is a and the oxygen addition ratio during film formation of the second oxide layer (ITO) is b, at least a = It can be seen that the range of 1.21-1.36b is appropriate.

図7Aは、上記条件でZTO/IGZO積層構造TFTを試作した場合のTFT特性(電流-電圧特性、移動度)とIGZO成膜時酸素添加割合との関係を説明するグラフ図である。   FIG. 7A is a graph illustrating the relationship between TFT characteristics (current-voltage characteristics, mobility) and oxygen addition ratio during IGZO film formation when a ZTO / IGZO multilayer structure TFT is fabricated under the above conditions.

図7Bは、ZTO/IGZO積層TFT製造について、IGZO成膜時の酸素添加割合を25%とした場合のZTO成膜時酸素添加割合を25〜40%の範囲で調査したTFT特性についてまとめた表図である。   FIG. 7B is a table summarizing TFT characteristics obtained by investigating the oxygen addition ratio during ZTO film formation in the range of 25 to 40% when the oxygen addition ratio during IGZO film formation is 25% for ZTO / IGZO multilayer TFT manufacturing. FIG.

この結果から、ZTO成膜時の酸素添加割合が30〜35%のときにしきい値電圧が正となり、Humpが見られない。よって、このデータからは、第一の酸化物層(ZTO)成膜時の酸素添加割合をa、第二の酸化物層(IGZO)成膜時酸素添加割合をbとした場合、少なくともa=1.20〜1.40bの範囲は適切であることが理解できる。   From this result, when the oxygen addition ratio during ZTO film formation is 30 to 35%, the threshold voltage becomes positive, and Hump is not seen. Therefore, from this data, when the oxygen addition ratio during film formation of the first oxide layer (ZTO) is a and the oxygen addition ratio during film formation of the second oxide layer (IGZO) is b, at least a = It can be seen that a range of 1.20 to 1.40b is appropriate.

図6Bおよび図7Bのデータからは、aが1.1bより大きく、1.6bより小さい範囲内にはトランジスタとして不適切な条件が含まれていないことが理解できる。   From the data of FIGS. 6B and 7B, it can be understood that an inappropriate condition as a transistor is not included in a range where a is larger than 1.1b and smaller than 1.6b.

以上実施例1〜実施例3の結果を総合すると、第一の酸化物層(ZTO)成膜時の酸素添加割合をa、第二の酸化物層(IZO、ITO、IGZO)成膜時酸素添加割合をbとした場合、おおよそaが1.1bより大きく、1.6bより小さい範囲内では、デバイスの製造条件として不適切な条件が含まれないことが理解できる。上記のデータからより範囲を限定すれば、第二の酸化物層がIZOの場合には、おおよそa=1.11〜1.54bの範囲内に適正な条件が含まれ、第二の酸化物層がITOまたはIGZOの場合には、おおよそa=1.20〜1.40bの範囲内に適正な条件が含まれるということが示される。   When the results of Examples 1 to 3 are combined, the oxygen addition ratio during film formation of the first oxide layer (ZTO) is a, and oxygen during film formation of the second oxide layer (IZO, ITO, IGZO). When the addition ratio is b, it can be understood that an inappropriate condition is not included as a device manufacturing condition within a range where a is larger than 1.1b and smaller than 1.6b. If the range is further limited from the above data, when the second oxide layer is IZO, appropriate conditions are included in the range of approximately a = 1.11 to 1.54b. In the case where the layer is ITO or IGZO, it is indicated that appropriate conditions are included in the range of approximately a = 1.20 to 1.40b.

なお、実施例1、2同様実施例3において示された、チャネル層および電極層の膜厚、成膜方法、加工(エッチング)方法等については、求められるデバイスの特性等に応じ、種々変更が可能である。   As with Examples 1 and 2, the channel layer and electrode layer thicknesses, film forming methods, processing (etching) methods, etc. shown in Example 3 can be variously changed according to the required device characteristics. Is possible.

この成膜プロセスの結果、同一パラメータで比較したときに、第一の酸化物層(ZTO)には、第二の酸化物層(IZO、ITO、IGZO)より所定量多くの酸素が取り込まれており、その結果第一の酸化物半導体層中の酸素組成と第二の酸化物半導体層中の酸素組成がデバイスの動作上均衡することにより、上記のTFT特性が得られていることが推測される。すなわち、第一の酸化物半導体層中の酸素組成と第二の酸化物半導体層中の酸素組成の均衡により、層間を酸素原子が移動することが抑制され、界面近傍のいずれか一方の酸化物半導体層側に酸素欠損に因る導電層が形成されることが抑制されているためと考えられる。そのため、しきい電位(Vth)が二段となる様なHump形状や負バイアス下でも導通が始まってしまうディプリートが見られないと推定される。   As a result of this film formation process, when compared with the same parameters, the first oxide layer (ZTO) has a predetermined amount of oxygen taken in more than the second oxide layer (IZO, ITO, IGZO). As a result, it is speculated that the above TFT characteristics are obtained by balancing the oxygen composition in the first oxide semiconductor layer and the oxygen composition in the second oxide semiconductor layer in the operation of the device. The That is, due to the balance between the oxygen composition in the first oxide semiconductor layer and the oxygen composition in the second oxide semiconductor layer, the movement of oxygen atoms between layers is suppressed, and one of the oxides in the vicinity of the interface is suppressed. This is probably because the formation of a conductive layer due to oxygen deficiency on the semiconductor layer side is suppressed. For this reason, it is presumed that there is no depletion in which conduction begins even under a Hump shape or a negative bias where the threshold potential (Vth) is two-stage.

本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、発明の趣旨を逸脱しない範囲で、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることが可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The present invention is not limited to the embodiments described above, and includes various modifications. For example, part of the configuration of one embodiment can be replaced with the configuration of another embodiment without departing from the spirit of the invention, and the configuration of another embodiment can be added to the configuration of one embodiment. It is possible. Moreover, it is possible to add / delete / replace other configurations for a part of the configurations of the embodiments.

本願発明は、半導体装置の製造分野に適用することができる。   The present invention can be applied to the field of manufacturing semiconductor devices.

1・・・ゲート電極
2・・・ゲート絶縁膜
3・・・第二の酸化物半導体層(酸化インジウムを含む)
4・・・第一の酸化物半導体層(酸化亜鉛含み、酸化インジウム含まず)
5・・・ホトレジスト層(チャネルパターン)
6・・・ソース・ドレイン電極層
7・・・ホトレジスト層(ソース・ドレイン電極パターン)
8・・・保護膜
10・・・基板
20・・・TFT
21・・・ゲート線
22・・・データ線
23・・・画素電極(透明電極)
DESCRIPTION OF SYMBOLS 1 ... Gate electrode 2 ... Gate insulating film 3 ... 2nd oxide semiconductor layer (Indium oxide is included)
4 ... 1st oxide semiconductor layer (zinc oxide is included, indium oxide is not included)
5 ... Photoresist layer (channel pattern)
6 ... Source / drain electrode layer 7 ... Photoresist layer (source / drain electrode pattern)
8 ... Protective film 10 ... Substrate 20 ... TFT
21 ... Gate line 22 ... Data line 23 ... Pixel electrode (transparent electrode)

Claims (9)

ゲート電極とソース電極とドレイン電極とを備える半導体装置であって、
前記ゲート電極と前記ソース電極との間、および、前記ゲート電極と前記ドレイン電極との間には、ゲート絶縁膜と酸化物半導体チャネル層とを有し、
前記ゲート絶縁膜は前記ゲート電極と前記酸化物半導体チャネル層との間に存在し、
前記酸化物半導体チャネル層は、少なくとも亜鉛を含み、インジウムを含有しない第一の酸化物層と、少なくともインジウムを含有する第二の酸化物層とを備える半導体装置の製造方法において、
前記第一の酸化物層を成膜するときの酸素添加割合をa、前記第二の酸化物層を成膜するときの酸素添加割合をbとしたとき、aが1.1bより大きく、1.6bより小さいことを条件とする半導体装置の製造方法。
A semiconductor device comprising a gate electrode, a source electrode, and a drain electrode,
Between the gate electrode and the source electrode, and between the gate electrode and the drain electrode, a gate insulating film and an oxide semiconductor channel layer,
The gate insulating film is present between the gate electrode and the oxide semiconductor channel layer;
In the method of manufacturing a semiconductor device, the oxide semiconductor channel layer includes a first oxide layer containing at least zinc and not containing indium, and a second oxide layer containing at least indium.
When the oxygen addition ratio when forming the first oxide layer is a and the oxygen addition ratio when forming the second oxide layer is b, a is larger than 1.1b, 1 A method of manufacturing a semiconductor device on condition that it is smaller than 6b.
上記第一の酸化物層の成膜時の酸素添加割合がa<0.5である、
請求項1に記載の半導体装置の製造方法。
The oxygen addition ratio at the time of forming the first oxide layer is a <0.5.
A method for manufacturing a semiconductor device according to claim 1.
上記第二の酸化物層の成膜時の酸素添加割合がb>0.2である、
請求項1に記載の半導体装置の製造方法。
The oxygen addition ratio during film formation of the second oxide layer is b> 0.2.
A method for manufacturing a semiconductor device according to claim 1.
上記第一の酸化物層が、亜鉛錫複合酸化物(ZTO)、あるいは、亜鉛錫複合酸化物を主要な成分とした酸化物である、
請求項1記載の半導体装置の製造方法。
The first oxide layer is a zinc-tin composite oxide (ZTO) or an oxide containing a zinc-tin composite oxide as a main component.
A method for manufacturing a semiconductor device according to claim 1.
前記第二の酸化物層が、インジウム亜鉛複合酸化物(IZO)である、
請求項1記載の半導体装置の製造方法。
The second oxide layer is indium zinc composite oxide (IZO).
A method for manufacturing a semiconductor device according to claim 1.
前記第一の酸化物層を成膜するときの酸素添加割合をa、前記第二の酸化物層を成膜するときの酸素添加割合をbとしたとき、a=1.11b〜1.54bである、
請求項5記載の半導体装置の製造方法。
When the oxygen addition ratio when forming the first oxide layer is a and the oxygen addition ratio when forming the second oxide layer is b, a = 1.11b to 1.54b. Is,
A method for manufacturing a semiconductor device according to claim 5.
前記第二の酸化物層が、インジウム錫複合酸化物(ITO)およびインジウムガリウム亜鉛複合酸化物(IGZO)から選択される少なくとも一つである、
請求項1記載の半導体装置の製造方法。
The second oxide layer is at least one selected from indium tin composite oxide (ITO) and indium gallium zinc composite oxide (IGZO).
A method for manufacturing a semiconductor device according to claim 1.
前記第一の酸化物層を成膜するときの酸素添加割合をa、前記第二の酸化物層を成膜するときの酸素添加割合をbとしたとき、a=1.20b〜1.40bである、
請求項7記載の半導体装置の製造方法。
When the oxygen addition ratio when forming the first oxide layer is a and the oxygen addition ratio when forming the second oxide layer is b, a = 1.20b to 1.40b. Is,
A method for manufacturing a semiconductor device according to claim 7.
前記第一の酸化物層は、前記第二の酸化物層よりも相対的に前記ソース電極および前記ドレイン電極に近い側に配置され、
前記第二の酸化物層は、前記第一の酸化物層よりも相対的に前記ゲート絶縁膜に近い側に配置される、
請求項1に記載の半導体装置の製造方法。
The first oxide layer is disposed closer to the source electrode and the drain electrode than the second oxide layer,
The second oxide layer is disposed closer to the gate insulating film than the first oxide layer.
A method for manufacturing a semiconductor device according to claim 1.
JP2017152200A 2017-08-07 2017-08-07 Manufacturing method of semiconductor devices Active JP6841184B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017152200A JP6841184B2 (en) 2017-08-07 2017-08-07 Manufacturing method of semiconductor devices
KR1020180053172A KR102095811B1 (en) 2017-08-07 2018-05-09 Method of manufacturing semiconductor device
CN201810725388.XA CN109390236B (en) 2017-08-07 2018-07-04 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152200A JP6841184B2 (en) 2017-08-07 2017-08-07 Manufacturing method of semiconductor devices

Publications (2)

Publication Number Publication Date
JP2019033143A true JP2019033143A (en) 2019-02-28
JP6841184B2 JP6841184B2 (en) 2021-03-10

Family

ID=65367323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152200A Active JP6841184B2 (en) 2017-08-07 2017-08-07 Manufacturing method of semiconductor devices

Country Status (3)

Country Link
JP (1) JP6841184B2 (en)
KR (1) KR102095811B1 (en)
CN (1) CN109390236B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065329A1 (en) * 2009-11-27 2011-06-03 株式会社日立製作所 Oxide semiconductor device and method for manufacturing same
US20130256653A1 (en) * 2012-04-02 2013-10-03 Samsung Display Co., Ltd. Thin film transistor having plural semiconductive oxides, thin film transistor array panel and display device including the same, and manufacturing method of thin film transistor
CN103579360A (en) * 2012-08-07 2014-02-12 日立金属株式会社 Oxide semiconductor target and oxide semiconductor material and semiconductor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238383A (en) 1975-09-19 1977-03-24 Q P Corp Method and apparatus for detedting eggs invaded by bacteria
JP5053537B2 (en) 2004-11-10 2012-10-17 キヤノン株式会社 Semiconductor device using amorphous oxide
JP5244331B2 (en) 2007-03-26 2013-07-24 出光興産株式会社 Amorphous oxide semiconductor thin film, manufacturing method thereof, thin film transistor manufacturing method, field effect transistor, light emitting device, display device, and sputtering target
GB2471093A (en) * 2009-06-17 2010-12-22 Cilian Ag Viral protein expression in ciliates
KR101652790B1 (en) * 2009-11-09 2016-08-31 삼성전자주식회사 Transistor, method of manufacturing the same and electronic device comprising transistor
KR20110125105A (en) * 2010-05-12 2011-11-18 엘지디스플레이 주식회사 Oxide thin film transistor and method of fabricating the same
JP5540972B2 (en) 2010-07-30 2014-07-02 日立金属株式会社 Oxide semiconductor target and oxide semiconductor film manufacturing method
JP2012235104A (en) * 2011-04-22 2012-11-29 Kobe Steel Ltd Thin film transistor structure, and thin film transistor and display device including the structure
KR20140089594A (en) * 2012-01-20 2014-07-15 파나소닉 주식회사 Thin film transistor
WO2013183255A1 (en) * 2012-06-08 2013-12-12 パナソニック株式会社 Thin-film transistor and method for manufacturing thin-film transistor
KR101417932B1 (en) * 2012-12-13 2014-07-10 성균관대학교산학협력단 Thin film transistor having double layered semiconductor channel and method of manufacturing the thin film transistor
WO2016092427A1 (en) * 2014-12-10 2016-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065329A1 (en) * 2009-11-27 2011-06-03 株式会社日立製作所 Oxide semiconductor device and method for manufacturing same
US20120280227A1 (en) * 2009-11-27 2012-11-08 Hironori Wakana Oxide semiconductor device and method of manufacturing the same
US20130256653A1 (en) * 2012-04-02 2013-10-03 Samsung Display Co., Ltd. Thin film transistor having plural semiconductive oxides, thin film transistor array panel and display device including the same, and manufacturing method of thin film transistor
JP2013214701A (en) * 2012-04-02 2013-10-17 Samsung Display Co Ltd Semiconductor device, thin film transistor array panel and display device including the same, and thin film transistor manufacturing method
CN103367455A (en) * 2012-04-02 2013-10-23 三星显示有限公司 Semiconductive device and thin film transistor
CN103579360A (en) * 2012-08-07 2014-02-12 日立金属株式会社 Oxide semiconductor target and oxide semiconductor material and semiconductor device
US20140042431A1 (en) * 2012-08-07 2014-02-13 Hitachi Metals, Ltd. Oxide semiconductor target and oxide semiconductor material, as well as semiconductor device using the same
JP2014036031A (en) * 2012-08-07 2014-02-24 Hitachi Metals Ltd Oxide semiconductor target and oxide semiconductor material, and semiconductor device using them

Also Published As

Publication number Publication date
CN109390236B (en) 2021-12-14
CN109390236A (en) 2019-02-26
KR102095811B1 (en) 2020-04-02
KR20190015985A (en) 2019-02-15
JP6841184B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP5264197B2 (en) Thin film transistor
KR101345378B1 (en) Fabrication method of ZnO family Thin film transistor
KR101638978B1 (en) Thin film transistor and manufacturing method of the same
JP5538797B2 (en) Field effect transistor and display device
JP5546733B2 (en) Thin film transistor and manufacturing method thereof
JP5704790B2 (en) Thin film transistor and display device
US7994510B2 (en) Thin film transistor, method of manufacturing the same and flat panel display device having the same
US10204973B2 (en) Display device and thin-film transistors substrate
KR20080079906A (en) Thin film transistor and method of manufacturing the same
JP2009224479A (en) Thin film field-effect transistor and method of manufacturing the same
CN102097487A (en) Oxide semiconductor thin film transistor and method of manufacturing the same
JP2011091110A (en) Circuit using oxide semiconductor element and method of manufacturing the same, and display device
JP2014225624A (en) Thin film transistor and display
JP2013041949A (en) Thin film device
US9153651B2 (en) Thin film transistor and method for manufacturing the same
TW201431083A (en) Thin film semiconductor device
JP6841184B2 (en) Manufacturing method of semiconductor devices
JP2018137424A (en) Thin-film transistor, thin-film device, and method for manufacturing thin-film transistor
CN113348562B (en) Oxide semiconductor thin film, thin film transistor, and sputtering target
JP2021068866A (en) Oxide semiconductor device and manufacturing method thereof
Fukui et al. 18.4 L: Late‐News Paper: Full Color Flexible Top‐emission AMOLED Display on Polyethylene Naphthalate (PEN) Foil with Metal Oxide TFTs Backplane
JP6327548B2 (en) Thin film transistor and manufacturing method thereof
WO2015068319A1 (en) Thin-film transistor and method for manufacturing same
JP2020161700A (en) Oxide semiconductor device and oxide semiconductor target
US9722089B2 (en) Thin film transistor array panel and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6841184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350