JP2019030067A - 平面モータ - Google Patents

平面モータ Download PDF

Info

Publication number
JP2019030067A
JP2019030067A JP2017144732A JP2017144732A JP2019030067A JP 2019030067 A JP2019030067 A JP 2019030067A JP 2017144732 A JP2017144732 A JP 2017144732A JP 2017144732 A JP2017144732 A JP 2017144732A JP 2019030067 A JP2019030067 A JP 2019030067A
Authority
JP
Japan
Prior art keywords
mover
pattern
stator
planar motor
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017144732A
Other languages
English (en)
Inventor
沙季 青木
Saki Aoki
沙季 青木
稔博 秋山
Toshihiro Akiyama
稔博 秋山
哲夫 石田
Tetsuo Ishida
哲夫 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017144732A priority Critical patent/JP2019030067A/ja
Publication of JP2019030067A publication Critical patent/JP2019030067A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Linear Motors (AREA)

Abstract

【課題】小型化が容易な平面モータを提供する。
【解決手段】平面モータ10は、永久磁石21を有する可動子20と、可動子20と対向する主面31a、及び、主面31aに沿ってマトリクス状に配置される薄膜状の複数のパターンコイル33を有する固定子30と、複数のパターンコイル33の駆動を制御する制御回路40とを備える。前記固定子は、前記複数のパターンコイル及び前記主面の間に磁性体を有し、前記複数のパターンコイルの各中心部に磁性体を有する。
【選択図】図2

Description

本発明は、可動子を平面に沿って二次元的に移動させる平面モータに関する。
可動子を平面に沿って二次元的に移動させる平面モータが知られている。このような平面モータとして、特許文献1には、1台で360度全方向に推力を得ることができる直流サーフェイスモータが開示されている。
特開平5−336730号公報
平面モータにおいては、装置の小型化が課題となる。
本発明は、小型化が容易な平面モータを提供する。
本発明の一態様に係る平面モータは、永久磁石または電磁石を有する可動子と、前記可動子と対向する主面、及び、前記主面に沿って配置される薄膜状の複数のパターンコイルを有する固定子と、前記複数のパターンコイルの駆動を制御する制御回路とを備える。
本発明によれば、小型化が容易な平面モータが実現される。
図1は、実施の形態1に係る平面モータの概略構成を示す平面図である。 図2は、実施の形態1に係る平面モータの模式断面図である。 図3は、可動子が有する永久磁石のS極及びN極の並び方向が、固定子の主面に沿う配置例を示す模式断面図である。 図4は、可動子が2つの永久磁石を有する場合の永久磁石の配置の一例を示す平面図である。 図5は、回路基板の表面を示す平面図である。 図6は、回路基板の裏面を示す平面図である。 図7は、回路基板の表面の別の例を示す平面図である。 図8は、回路基板の裏面の別の例を示す平面図である。 図9は、可動子を吸引力によって移動させる例を示す図である。 図10は、可動子を反発力によって移動させる例を示す図である。 図11は、可動子を吸引力及び反発力によって移動させる例を示す図である。 図12は、磁性体を含む基板の平面図である。 図13は、磁性体を含む基板の模式断面図である。 図14は、中心部に磁性体が配置されたパターンコイルを有する回路基板の平面図である。 図15は、中心部に磁性体が配置されたパターンコイルの模式断面図である。 図16は、パターンコイルが形成された回路基板が複数積層された固定子の構造を示す図である。 図17は、3つの基板層の積層体の上方にさらに磁性体が配置された固定子の模式断面図である。 図18は、磁性体及び導電ビア構造の間、並びに、磁性体及び基板層の間に、絶縁膜が配置された固定子の模式断面図である。 図19は、実施の形態2に係る平面モータの構成を示す斜視図である。 図20は、実施の形態2の変形例に係る平面モータの構成を示す斜視図である。
以下、実施の形態にについて、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。
また、以下の実施の形態で説明に用いられる図面においては座標軸が示される場合がある。座標軸におけるZ軸方向は、例えば、鉛直方向であり、Z軸+側は、上側(上方)と表現され、Z軸−側は、下側(下方)と表現される。Z軸方向は、言い換えれば、固定子が有する主面に垂直な方向である。また、X軸方向及びY軸方向は、Z軸方向に垂直な平面(水平面)上において、互いに直交する方向である。X−Y平面は、固定子が有する主面に平行な平面である。例えば、以下の実施の形態において、「平面視」とは、Z軸方向から見ることを意味する。また、図面において、永久磁石または電磁石のN極は、「N」と記載され、永久磁石のS極は、「S」と記載される。
(実施の形態)
[構成]
以下、実施の形態1に係る平面モータの構成について図面を用いて説明する。図1は、実施の形態1に係る平面モータの概略構成を示す平面図である。図2は、実施の形態1に係る平面モータの模式断面図である。
図1及び図2に示されるように、実施の形態1に係る平面モータ10は、可動子20と、固定子30と、制御回路40とを備える。平面モータ10は、固定子30が有する主面31aに沿って可動子20を2次元的に移動させるリニアモータ(電磁アクチュエータ)である。
まず、可動子20について説明する。可動子20は、平面モータ10における移動対象物である。可動子20は、永久磁石21を有する。永久磁石21は、例えば、フェライト磁石であるが、アルニコ磁石、または、ネオジム磁石などであってもよく、永久磁石21を形成する磁性材料は特に限定されない。
図2の例では、永久磁石21は、S極及びN極の並び方向が主面31aに交差し、N極がS極よりも主面31a寄りに位置するように配置されている。しかしながら、永久磁石21は、S極がN極よりも主面31a寄りに位置するように配置されてもよい。永久磁石21は、永久磁石21のS極及びN極の並び方向が主面31aと交差するように配置されればよい。
また、永久磁石21は、永久磁石21のS極及びN極の並び方向が、主面31aに沿うように配置されてもよい。図3は、可動子20が有する永久磁石21のS極及びN極の並び方向が、主面31aに沿う配置例を示す模式断面図である。
なお、可動子20は、少なくとも1つの永久磁石21を有していればよく、可動子20が有する永久磁石21の個数は特に限定されない。例えば、可動子20が2つの永久磁石21を有する場合、2つの永久磁石21のそれぞれは、例えば、図4に示されるように、S極及びN極の並び方向が主面31aに沿うように配置される。図4は、可動子20が2つの永久磁石21を有する場合の永久磁石の配置の一例を示す平面図である。
次に、固定子30について説明する。固定子30は、可動子20を移動させるための構造体であり、建築物などに固定される。固定子30は、カバー部材31と、回路基板32とを有する。
カバー部材31は、回路基板32を覆う板状またはシート状の部材である。カバー部材31の平面視形状は、矩形であるが、円形等その他の形状であってもよい。カバー部材31の上面は、固定子30が有する主面31aとなる。主面31aは、可動子20と対向する。主面31aは、可動子20(永久磁石21)が固定子30に吸着してしまうことを抑制するために、透磁率が低い材料によって形成される。カバー部材31は、具体的には、樹脂材料などの非金属材料(絶縁性を有する材料)によって形成される。
回路基板32は、表面に薄膜状のパターンコイル33が複数形成される薄膜状(シート状)の基板である。回路基板32の平面視形状は、矩形であるが、円形等その他の形状であってもよい。回路基板32の基材は、例えば、ガラエポなどの樹脂材料によって形成される。回路基板32の厚みは、例えば、170μm〜200μm程度である。
回路基板32の表面には、複数のパターンコイル33が形成される。図5は、回路基板32の表面を示す平面図である。なお、図5は、模式図であり、図5に示される複数のパターンコイル33の数は一例である。
図5に示されるように、回路基板32の表面には、複数のパターンコイル33がマトリクス状に配置される。複数のパターンコイル33のそれぞれは、巻回軸が主面31aに垂直な方向に沿う矩形巻回状の配線であるが、円形巻回状等、他の巻回状であってもよい。複数のパターンコイル33の巻回方向は、同一であるが、異なってもよい。
パターンコイル33の巻回中心付近に位置する一方の端部(内周側に位置する一方の端部)は、導電ビア構造35によって回路基板32の裏面に形成された配線36に電気的に接続される。図6は、回路基板32の裏面を示す平面図である。パターンコイル33の外周側に位置する他方の端部は、制御回路40に電気的に接続される。
パターンコイル33、導電ビア構造35、及び、配線36は、例えば、銅などの金属材料によって形成される。パターンコイル33及び配線36は、例えば、エッチングによって形成される。
次に、制御回路40について説明する。制御回路40は、複数のパターンコイル33の駆動を制御する回路である。図5に模式的に示されるように、制御回路40は、制御部41を有する。図5では、制御回路40(制御部41)は、一つのパターンコイル33の駆動を制御するように図示されているが、実際には、複数のパターンコイル33の駆動を制御する。
制御部41は、例えば、複数のパターンコイル33のそれぞれに対して、(a)電力を供給しない、(b)第一の極性(例えば、正極性)の直流電圧を供給する、及び、(c)第一の極性の逆の第二の極性(例えば、負極性)の直流電圧を供給する、のいずれかを行う。第一の極性の直流電圧が供給されたパターンコイル33は、例えば、主面31a側がS極の電磁石として機能し、第二の極性の直流電圧が供給されたパターンコイル33は、例えば、主面31a側がN極の電磁石として機能する。
このように、制御回路40(制御部41)は、複数のパターンコイル33のそれぞれに直流電圧を供給し、当該直流電圧の極性を切り替えることができる。なお、直流電圧の極性を切り替えることは必須ではなく、制御回路40は、少なくとも直流電圧の供給をオン及びオフできればよい。
制御部41は、具体的には、プロセッサ、マイクロコンピュータ、及び、回路の少なくとも1つ以上によって実現される。図2では、制御回路40は、回路基板32の下方に配置されているが、回路基板32の側方に配置されてもよい。
なお、図5及び図6に示される例では、制御回路40(制御部41)は、複数のパターンコイル33のそれぞれを個別に制御するが、複数のパターンコイル33をグループごとに制御してもよい。図7は、回路基板32の表面の別の例を示す平面図であり、図8は、回路基板32の裏面の別の例を示す平面図である。図7及び図8に示される回路基板32に対しては、制御回路40は、4つのパターンコイル33からなるグループを一括して制御する。
一般に、小さなパターンコイル33をマトリクス状に敷き詰めることで可動子20の細かい移動が可能である。このとき、一つのパターンコイル33の磁力が弱いような場合に、複数のパターンコイル33を一つのグループとして制御することで、可動子20の細かい移動を実現しつつ、磁力を高めることができる。
[動作]
次に、平面モータ10の動作について説明する。平面モータ10において、制御回路40は、永久磁石21及びパターンコイル33の間に生じる吸引力によって可動子20を移動させる。図9は、可動子20を吸引力によって移動させる例を示す図である。
図9に示されるように、N極が主面31aに対向する永久磁石21を有する可動子20をX軸+方向に移動させる場合、制御回路40は、複数のパターンコイル33のうち可動子20のX軸+方向側に位置するパターンコイル33に第一の極性の直流電圧を供給する。これにより、第一の極性の直流電圧が供給されたパターンコイル33は、主面31a側がS極の電磁石として機能し、パターンコイル33及び永久磁石21の間に吸引力が発生する。可動子20は、このような吸引力によってX軸+方向に移動する。
なお、図9では、1つの可動子20(永久磁石)を移動させるために、可動子20のX軸+方向側に位置する2つ以上のパターンコイル33に第一の極性の直流電圧が同時に供給されている。これにより、可動子20に対して比較的大きな推力を与えることができる。
また、制御回路40は、永久磁石21及びパターンコイル33の間に生じる反発力によって可動子20を移動させてもよい。図10は、可動子20を反発力によって移動させる例を示す図である。
図10に示されるように、N極が主面31aに対向する永久磁石21を有する可動子20をX軸+方向に移動させる場合、制御回路40は、複数のパターンコイル33のうち可動子20のX軸−方向側に位置するパターンコイル33に第二の極性の直流電圧を供給する。これにより、第二の極性の直流電圧が供給されたパターンコイル33は、主面31a側がN極の電磁石として機能し、パターンコイル33及び永久磁石21の間に反発力が発生する。可動子20は、このような反発力によってX軸+方向に移動する。
なお、図10では、1つの可動子20(永久磁石)を移動させるために、可動子20のX軸−方向側に位置する2つ以上のパターンコイル33に第二の極性の直流電圧が同時に供給されている。これにより、可動子20に対して比較的大きな推力を与えることができる。なお、平面視における一つの永久磁石21の大きさは、例えば、一つのパターンコイル33の大きさよりも大きい。
また、制御回路40は、永久磁石21及びパターンコイル33の間に生じる吸引力、並びに、永久磁石21及びパターンコイル33の間に生じる反発力によって可動子20を移動させてもよい。図11は、可動子20を吸引力及び反発力によって移動させる例を示す図である。
図11に示されるように、N極が主面31aに対向する永久磁石21を有する可動子20をX軸+方向に移動させる場合、制御回路40は、複数のパターンコイル33のうち可動子20のX軸+方向側に位置するパターンコイル33に第一の極性の直流電圧を供給する。これにより、第一の極性の直流電圧が供給されたパターンコイル33は、主面31a側がS極の電磁石として機能し、パターンコイル33及び永久磁石21の間に吸引力が発生する。
また、制御回路40は、複数のパターンコイル33のうち可動子20のX軸−方向側に位置するパターンコイル33に第二の極性の直流電圧を供給する。これにより、第二の極性の直流電圧が供給されたパターンコイル33は、主面31a側がN極の電磁石として機能し、パターンコイル33及び永久磁石21の間に反発力が発生する。これにより、制御回路40は、吸引力及び反発力を同時に使用して可動子20をX軸+方向に移動させることができる。
なお、図11では、可動子20のX軸+方向側に位置する2つ以上のパターンコイル33に第一の極性の直流電圧が同時に供給され、かつ、可動子20のX軸−方向側に位置する2つ以上のパターンコイル33に第二の極性の直流電圧が同時に供給されている。これにより、可動子20に対して比較的大きな推力を与えることができる。
以上説明したように、平面モータ10は、固定子30が有する複数のパターンコイル33を用いて可動子20を移動させる。平面モータ10においては、巻線コイルを使用した平面モータよりも固定子30の小型化及び薄型化が容易となる。
[変形例1]
固定子30は、さらに、複数のパターンコイル33及び主面31aの間に磁性体を有してもよい。例えば、回路基板32の上方には、磁性体を含む基板が配置されてもよい。図12は、磁性体を含む基板の平面図であり、図13は、磁性体を含む基板の模式断面図である。
図12及び図13に示されるように、基板50では、パターンコイル33に対応する位置に磁性体51が配置されている。複数の磁性体51は、複数のパターンコイル33に1対1で対応する。磁性体51は、平たい円柱状である。磁性体51は、例えば、フェライト、ケイ素鋼板、酸化鉄、酸化クロム、または、コバルトなどである。基板50の基材は、樹脂材料などの絶縁性を有する材料である。
このように、複数のパターンコイル33のそれぞれの上方に磁性体51が配置されれば、複数のパターンコイル33の磁力を強めることができる。なお、基板50は、例えば、カバー部材31及び回路基板32の間に配置されるが、基板50に代えて、磁性体51が埋め込まれたカバー部材31が用いられてもよい。また、基板50の全体が磁性体であってもよい。
また、固定子30は、複数のパターンコイル33の各中心部に磁性体を有してもよい。図14は、中心部に磁性体が配置されたパターンコイル33を有する回路基板32の平面図であり、図15は、中心部に磁性体が配置されたパターンコイル33の模式断面図である。
図14及び図15に示されるように、回路基板32aでは、パターンコイル33の中心部に磁性体52が配置されている。回路基板32aの複数のパターンコイル33の中心部に対応する位置には、スルーホールを含む導電ビア構造35が設けられ、磁性体52は、スルーホールに埋め込まれている。磁性体52は、具体的には、樹脂バインダーに微粉末状の磁性体を混ぜたもの(例えば、ペースト状のフェライトなど)がスクリーン印刷されることにより、スルーホール内に配置される。なお、あらかじめスルーホール内に樹脂接着剤がコーティングされ、回路基板32上に微粉末状の磁性体が配置された状態で回路基板32に微細な振動を与えることによりスルーホール内に磁性体52を配置することもできる。スルーホールには、固体のフェライトまたはケイ素鋼板などがはめ込まれていてもよい。
このように、複数のパターンコイル33の中心部に磁性体52が配置されれば、複数のパターンコイル33の磁力を強めることができる。なお、磁性体52が導電ビア構造35に含まれるスルーホールに埋め込まれることは必須ではなく、磁性体52は、どのような態様でパターンコイル33の中心部に配置されてもよい。
[変形例2]
固定子30は、回路基板32が複数積層された構造を有していてもよい。図16は、パターンコイル33が形成された回路基板32が複数積層された固定子の構造を示す図である。
図16の(b)に示される固定子30aは、回路基板32に相当する基板層が3つ積層された構造を有する。具体的には、基板層L1、L2、及び、L3が積層されている。3つの基板層のそれぞれは、基材層、基材層の表面に形成されたパターンコイル層、及び、基材層の裏面に形成された配線層を有する。また、固定子30aは、基板層L1及びL2の間に、層間絶縁膜F1を有し、基板層L2及びL3の間に、層間絶縁膜F2を有する。層間絶縁膜F1及びF2には、例えば、プリント基板の中間材料であるプリブレグなどを利用することができる。図16の(a)に示されるように、パターンコイル層に形成されたパターンコイルの平面視形状は、例えば、円形巻回状である。
このような固定子30aでは、基板層の積層により磁力を強めることができるが、磁力が中間層である基板層L2に集まり、可動子20に磁力が伝わりにくい場合がある。ここで、上記変形例1と同様に導電ビア構造35に含まれるスルーホールであって、基板層L1、L2、及び、L3の積層体を貫通するスルーホールに磁性体52が配置されれば、固定子30aのうち可動子20側の磁力を強めることができる。
また、図17に示されるように、固定子30aは、基板層L1、L2、及び、L3の積層構造の上方にさらに磁性体53を有していてもよい。図17は、基板層L1、L2、及び、L3の積層体の上方にさらに磁性体が配置された固定子30aの模式断面図である。これにより、固定子30aのうち可動子20側の磁力を強めることができる。また、固定子30aの可動子と対向する主面における磁力の均一化を図ることができる。なお、磁性体52及び53は、一体的に形成されてもよいし、別体であってもよい。
なお、磁性体52が導電性を有する場合、磁性体52及び導電ビア構造35の間には、絶縁膜が配置されてもよい。同様に、磁性体53が絶縁性を有する場合、磁性体53及び基板層L1の間には、絶縁膜が配置されてもよい。図18は、磁性体52及び導電ビア構造35の間、並びに、磁性体53及び基板層L1の間に、絶縁膜F3が配置された固定子30aの模式断面図である。絶縁膜F3には、例えば、プリント基板の中間材料であるプリブレグなどを利用することができる。
このような絶縁膜F3によれば、磁性体52及び53へ流れ込む漏れ電流を減らすことができる。
[効果等]
以上説明したように、平面モータ10は、永久磁石21(または電磁石)を有する可動子20と、可動子20と対向する主面31a、及び、主面31aに沿って配置される薄膜状の複数のパターンコイル33を有する固定子30と、複数のパターンコイル33の駆動を制御する制御回路40とを備える。
これにより、薄膜状のパターンコイル33によって可動子20が移動されるため、平面モータ10(固定子30)の小型化及び薄型化が容易となる。
また、固定子30は、さらに、複数のパターンコイル33及び主面31aの間に磁性体51を有してもよい。
これにより、複数のパターンコイル33の磁力を強めることができる。
また、固定子30は、複数のパターンコイル33の各中心部に磁性体を有してもよい。
これにより、複数のパターンコイル33の磁力を強めることができる。
また、固定子30は、複数のパターンコイル33が形成された回路基板32を有し、回路基板32の複数のパターンコイル33の中心部に対応する位置には、スルーホールが設けられ、磁性体52は、スルーホールに埋め込まれてもよい。
これにより、回路基板32のスルーホールを利用して複数のパターンコイル33の磁力を強めることができる。
また、固定子30aは、複数のパターンコイル33が形成された基板層が複数積層された積層体を有する。積層体には、積層された複数のパターンコイル33の中心部を貫通するスルーホールが設けられる。磁性体52は、スルーホールに埋め込まれる。
これにより、磁力が中間層に集まってしまうような場合に、可動子20側の磁力を強めることができる。
また、可動子20は、永久磁石21を有し、永久磁石21のS極及びN極の並び方向は、主面31aと交差してもよい。
これにより、平面モータ10は、S極及びN極が主面31aと交差するように配置された永久磁石21を有する可動子20を移動させることができる。
また、可動子20は、永久磁石21を有し、永久磁石21のS極及びN極の並び方向は、主面31aに沿ってもよい。
これにより、平面モータ10は、S極及びN極が主面31aに沿うように配置された永久磁石21を有する可動子20を移動させることができる。
また、制御回路40は、複数のパターンコイル33のそれぞれに直流電圧を供給し、当該直流電圧の極性を切り替えてもよい。
これにより、平面モータ10は、複数のパターンコイル33のそれぞれを、主面31a側がS極の電磁石として機能させるか、主面31a側がN極の電磁石として機能させるかを切り替えることができる。
また、制御回路40は、複数のパターンコイル33のうち可動子20の第一方向側に位置する第一のパターンコイルに第一の極性の直流電圧を供給し、かつ、複数のパターンコイル33のうち可動子20の第一方向と反対の第二方向側に位置する第二のパターンコイルに第一の極性と逆の第二の極性の直流電圧を供給することにより、可動子20を第一方向に移動させてもよい。
これにより、平面モータ10は、パターンコイル33及び永久磁石21の間に反発力、及び、パターンコイル33及び永久磁石21の間の吸引力を同時に使用して可動子20の推力を高めることができる。
(実施の形態2)
実施の形態1に係る平面モータ10においては、可動子20は、永久磁石21を有していたが、可動子20は、永久磁石21に代えて電磁石を有してもよい。以下、このような実施の形態2に係る平面モータの構成について説明する。図19は、実施の形態2に係る平面モータの構成を示す斜視図である。なお、以下の実施の形態2では、実施の形態1との相違点を中心に説明が行われ、既出事項についての説明は省略される。
図19に示されるように、実施の形態2に係る平面モータ10bは、可動子20bと、固定子30bと、制御回路40bとを備える。図19では、制御回路40bは、一つのパターンコイル33及び一つの給電用コイル34の駆動を制御するように図示されているが、実際には、複数のパターンコイル33及び複数の給電用コイル34の駆動を制御する。
まず、可動子20bについて説明する。可動子20bは、平面モータ10bにおける移動対象物である。可動子20bは、電磁石21bと、受電コイル22bと、駆動回路23bとを有する。電磁石21bは、具体的には、磁性体により形成された芯材に、電線が巻きつけられることによって形成される。芯材は、例えば、鉄であり、電線は、例えば、銅の芯線がエナメルで絶縁被覆されたエナメル線であるが、芯材として採用される材料及び電線として採用される材料は、特に限定されない。また、芯材の形状なども特に限定されない。
電磁石21bは、巻回軸が主面31aに沿うように配置されるが、巻回軸が主面31aと交差するように配置されてもよい。
受電コイル22bは、給電用コイル34から非接触で給電を受ける。受電コイル22bは、具体的には、コイルボビンに電線が巻きつけられることによって形成される。コイルボビンは、例えば、樹脂または磁性体により形成され、電線は、例えば、銅の芯線がエナメルで絶縁被覆されたエナメル線である。
受電コイル22bは、巻回軸が主面31aと垂直に交差するように配置される。このような配置により、受電コイル22bは、電磁誘導によって給電用コイル34から交流電力を受電することができる。
駆動回路23bは、受電コイル22bを通じて得られる交流電力を用いて電磁石21bを駆動する。駆動回路23bは、具体的には、交流電力を整流する整流回路などを含む。
次に、固定子30bについて説明する。固定子30bは、固定子30と同様に、可動子20bと対向する主面31a、及び、主面31aに沿って複数配置される薄膜状のパターンコイル33を有する。なお、図19においては、パターンコイル33は、円形巻回状に図示されている。
また、固定子30bは、さらに、可動子20bに非接触給電を行う給電用コイル34(図19でパターンコイル33よりも小さく図示されているコイル)を有する。給電用コイル34は、薄膜状の給電用パターンコイルであり、主面31aに沿って複数配置される。複数の給電用コイル34は、平面視においてパターンコイル33に重ならないようにマトリクス状に配置される。複数の給電用コイル34のそれぞれは、巻回軸が主面31aに垂直な方向に沿う円形巻回状の配線であるが、矩形巻回状等、他の巻回状であってもよい。複数の給電用コイル34の巻回方向は、同一であるが、異なってもよい。
制御回路40bは、複数のパターンコイル33の駆動制御に加えて、給電用コイル34に交流電力を供給する。給電用コイル34に供給される交流電力の周波数は、数kHz〜数MHz程度である。なお、給電用コイル34への交流電力の供給は、制御回路40bとは別の交流電源回路によって行われてもよい。給電用コイル34への交流電力の供給は、定常的に行われてもよいし、間欠的に行われてもよい。
以上説明したように、平面モータ10bでは、可動子20bは、電磁石21bを有し、固定子30bは、さらに、可動子20bに非接触給電を行う給電用コイル34を有する。
このように、可動子20bが永久磁石ではなく電磁石21bを有していれば、可動子20b側で電磁石21bの駆動制御が行われることにより、可動子20bにブレーキをかけるなどの細かい制御が可能となる。
また、給電用コイル34は、薄膜状の給電用パターンコイルであり、主面31aに沿って複数配置される。
これにより、給電用コイル34が配置されることによる固定子30の大型化(厚型化)が抑制される。
[実施の形態2の変形例]
可動子20b(電磁石21b)への給電は、パターンコイル33を介して行われてもよい。図20は、このような実施の形態2の変形例に係る平面モータの構成を示す斜視図である。
図20に示されるように、実施の形態2の変形例に係る平面モータ10cは、可動子20bと、固定子30と、制御回路40cとを備える。実施の形態1で説明されたように、固定子30は、給電用コイル34を有していない。図20では、制御回路40cは、一つのパターンコイル33の駆動を制御するように図示されているが、実際には、複数のパターンコイル33の駆動を制御する。
制御回路40cは、複数のパターンコイル33の駆動を制御する回路である。制御回路40cは、制御部41cを有する。制御部41cは、例えば、複数のパターンコイル33のそれぞれに対して、(a)電力を供給しない、(b)第一の極性(例えば、正極性)の直流電圧を供給する、(c)第一の極性の逆の第二の極性(例えば、負極性)の直流電圧を供給する、及び、(d)交流電力を供給する、のいずれかを行う。
例えば、可動子20bをX軸+方向に移動させる場合、制御回路40cは、複数のパターンコイル33のうち可動子20bのX軸+方向側に位置するパターンコイル33に第一の極性の直流電圧を供給する。これにより、第一の極性の直流電圧が供給されたパターンコイル33は、主面31a側がS極の電磁石として機能し、パターンコイル33及び永久磁石21の間に吸引力が発生する。可動子20bは、このような吸引力によってX軸+方向に移動する。
一方で、制御回路40cは、複数のパターンコイル33のうち可動子20bの近傍に位置するパターンコイル33には、交流電力を供給する。これにより、制御回路40cは、可動子20bへの非接触給電を行うことができる。
このように、平面モータ10cにおいて、制御回路40cは、一つのパターンコイル33に交流電力を供給することにより可動子20bに非接触給電を行う第一制御、及び、当該一つのパターンコイル33に直流電力を供給することにより可動子20bを移動させる第二制御を選択的に実行する。
これにより、平面モータ10cは、パターンコイル33を、可動子20bの移動、及び、可動子20bへの非接触給電に共用することができる。
なお、可動子20bが電磁石21bを備える場合、可動子20bは、電磁石21bを駆動するための電源となる電池、または、蓄電池を有していてもよい。この場合、固定子30または固定子30bから可動子20bへの非接触給電は省略されてもよい。
(他の実施の形態)
以上、実施の形態に係る平面モータについて説明したが、本発明は、上記実施の形態に限定されるものではない。
例えば、上記実施の形態では、固定子は薄膜状のパターンコイルを有していたが、固定子が備えるコイルは、パターンコイルに限定されない。固定子は、パターンコイルに代えて複数の巻線コイルを備えてもよい。また、上記実施の形態では、複数のパターンコイルは、マトリクス状に配置されたが、マトリクス状以外のレイアウトで配置されてもよい。
また、上記実施の形態の固定子の模式断面図に示される積層構造は一例である。平面モータは、本発明の特徴的な機能を実現できる他の積層構造を有する固定子を備えてもよい。平面モータは、例えば、上記実施の形態で説明された積層構造と同様の機能を実現できる範囲で、上記実施の形態の積層構造の層間に別の層が設けられた固定子を備えてもよい。
また、上記実施の形態では、固定子が有する積層構造の各層を構成する主たる材料について例示しているが、固定子が有する積層構造の各層には、上記実施の形態の積層構造と同様の機能を実現できる範囲で他の材料が含まれてもよい。
また、上記実施の形態において、制御部等の構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。例えば、本発明は、スルーホール内への磁性体の配置方法として実現されてもよい。
10、10b、10c 平面モータ
20、20b 可動子
21 永久磁石
21b 電磁石
30、30a、30b 固定子
31a 主面
32、32a 回路基板
33 パターンコイル
34 給電用コイル
40、40b、40c 制御回路
51、52、53 磁性体

Claims (12)

  1. 永久磁石または電磁石を有する可動子と、
    前記可動子と対向する主面、及び、前記主面に沿って配置される薄膜状の複数のパターンコイルを有する固定子と、
    前記複数のパターンコイルの駆動を制御する制御回路とを備える
    平面モータ。
  2. 前記固定子は、さらに、前記複数のパターンコイル及び前記主面の間に磁性体を有する
    請求項1に記載の平面モータ。
  3. 前記固定子は、前記複数のパターンコイルの各中心部に磁性体を有する
    請求項1に記載の平面モータ。
  4. 前記固定子は、前記複数のパターンコイルが形成された基板を有し、
    前記基板の前記複数のパターンコイルの中心部に対応する位置には、スルーホールが設けられ、
    前記磁性体は、前記スルーホールに埋め込まれる
    請求項3に記載の平面モータ。
  5. 前記固定子は、前記複数のパターンコイルが形成された基板が複数積層された積層体を有し、
    前記積層体には、積層された複数のパターンコイルの中心部を貫通するスルーホールが設けられ、
    前記磁性体は、前記スルーホールに埋め込まれる
    請求項3に記載の平面モータ。
  6. 前記可動子は、前記永久磁石を有し、
    当該永久磁石のS極及びN極の並び方向は、前記主面と交差する
    請求項1〜5のいずれか1項に記載の平面モータ。
  7. 前記可動子は、前記永久磁石を有し、
    当該永久磁石のS極及びN極の並び方向は、前記主面に沿う
    請求項1〜5のいずれか1項に記載の平面モータ。
  8. 前記可動子は、前記電磁石を有し、
    前記制御回路は、一つの前記パターンコイルに交流電力を供給することにより前記可動子に非接触給電を行う第一制御、及び、当該一つの前記パターンコイルに直流電力を供給することにより前記可動子を移動させる第二制御を選択的に実行する
    請求項1〜5のいずれか1項に記載の平面モータ。
  9. 前記可動子は、前記電磁石を有し、
    前記固定子は、さらに、前記可動子に非接触給電を行う給電用コイルを有する
    請求項1〜5のいずれか1項に記載の平面モータ。
  10. 前記給電用コイルは、薄膜状の給電用パターンコイルであり、前記主面に沿って複数配置される
    請求項9に記載の平面モータ。
  11. 前記制御回路は、前記複数のパターンコイルのそれぞれに直流電圧を供給し、当該直流電圧の極性を切り替える
    請求項1〜10のいずれか1項に記載の平面モータ。
  12. 前記制御回路は、前記複数のパターンコイルのうち前記可動子の第一方向側に位置する第一のパターンコイルに第一の極性の直流電圧を供給し、かつ、前記複数のパターンコイルのうち前記可動子の前記第一方向と反対の第二方向側に位置する第二のパターンコイルに前記第一の極性と逆の第二の極性の直流電圧を供給することにより、前記可動子を前記第一方向に移動させる
    請求項11に記載の平面モータ。
JP2017144732A 2017-07-26 2017-07-26 平面モータ Withdrawn JP2019030067A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017144732A JP2019030067A (ja) 2017-07-26 2017-07-26 平面モータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144732A JP2019030067A (ja) 2017-07-26 2017-07-26 平面モータ

Publications (1)

Publication Number Publication Date
JP2019030067A true JP2019030067A (ja) 2019-02-21

Family

ID=65476773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144732A Withdrawn JP2019030067A (ja) 2017-07-26 2017-07-26 平面モータ

Country Status (1)

Country Link
JP (1) JP2019030067A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053563A1 (ja) * 2021-09-28 2023-04-06 パナソニックIpマネジメント株式会社 実装システム、部品保持装置、平面モータ装置及び実装方法
WO2024122237A1 (ja) * 2022-12-06 2024-06-13 日東電工株式会社 モータ用配線回路基板、リニアモータおよびモータ用配線回路基板の製造方法
JP7499172B2 (ja) 2020-12-29 2024-06-13 株式会社日立ハイテク 搬送装置、検体分析システム、および検体前処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499172B2 (ja) 2020-12-29 2024-06-13 株式会社日立ハイテク 搬送装置、検体分析システム、および検体前処理装置
WO2023053563A1 (ja) * 2021-09-28 2023-04-06 パナソニックIpマネジメント株式会社 実装システム、部品保持装置、平面モータ装置及び実装方法
WO2024122237A1 (ja) * 2022-12-06 2024-06-13 日東電工株式会社 モータ用配線回路基板、リニアモータおよびモータ用配線回路基板の製造方法

Similar Documents

Publication Publication Date Title
WO2010026883A1 (ja) リニアモータおよびリニアモータを備えた携帯機器
JP2019030067A (ja) 平面モータ
WO2010050285A1 (ja) リニアモータおよびリニアモータを備えた携帯機器
JP2020025414A (ja) 磁石ユニットの製造方法、磁石ユニット、振動モータおよび触覚デバイス
CN104009674B (zh) 六自由度短行程磁悬浮工作台
JPWO2009128321A1 (ja) 多自由度アクチュエータおよびステージ装置
JP2011072856A (ja) 加速度発生デバイスおよび複合型加速度発生デバイス
JPWO2019058735A1 (ja) 平面モータ
JP6846722B2 (ja) 平面モータ
WO2019142605A1 (ja) 平面モータ
KR102119367B1 (ko) 로터
EP3270493B1 (en) A multi-degree of freedom electromagnetic machine with input amplitude modulation control
JP2001333565A (ja) 平面モータ
JP2019161834A (ja) 平面モータ
JP2020089109A (ja) 磁気搬送装置、及び、制御方法
KR20240077490A (ko) 자성 물질 충전된 인쇄 회로 기판 및 인쇄 회로 기판 고정자
JP2011217534A (ja) リニア駆動装置の可動子及び固定子
JPWO2019176507A1 (ja) 平面モータ
JP2010051163A (ja) リニアモータ
JP2019115134A (ja) 平面モータ
JP2019062654A (ja) 平面モータ
JP2000333434A (ja) リニアモータ
JP2016136497A (ja) 回転入力装置
US11205933B1 (en) Motor made from printed circuit boards
JP5656902B2 (ja) アクチュエータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200519

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908