JP2019024063A - Thin-film wiring board - Google Patents

Thin-film wiring board Download PDF

Info

Publication number
JP2019024063A
JP2019024063A JP2017143168A JP2017143168A JP2019024063A JP 2019024063 A JP2019024063 A JP 2019024063A JP 2017143168 A JP2017143168 A JP 2017143168A JP 2017143168 A JP2017143168 A JP 2017143168A JP 2019024063 A JP2019024063 A JP 2019024063A
Authority
JP
Japan
Prior art keywords
layer
adhesive layer
thin film
barrier layer
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017143168A
Other languages
Japanese (ja)
Other versions
JP6853135B2 (en
Inventor
征一朗 伊藤
Seiichiro Ito
征一朗 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017143168A priority Critical patent/JP6853135B2/en
Publication of JP2019024063A publication Critical patent/JP2019024063A/en
Application granted granted Critical
Publication of JP6853135B2 publication Critical patent/JP6853135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

To prevent short circuit and migration between wiring and alleviate thermal stress applied to an end of a thin-film wiring to prevent the occurrence of cracks and film peeling.SOLUTION: A thin-film wiring board comprises: an insulating substrate 1; and a thin-film multilayer wiring 2 consisting of three layers: an adhesion layer 3; a barrier layer 4; and a main conductor layer 5, which are laminated in order on the insulating substrate. In top view, the position of a top face end edge 51 of the main conductor layer is inside a top face end edge 41 of the barrier layer; the position of the top face end edge 41 of the barrier layer is inside a top face end edge 31 of the adhesion layer; the position of the top face end edge 31 of the adhesion layer is inside an under surface end edge 21 of the adhesion layer. The thin-film wiring board preferably has concave parts 34, 44, 54 that become concave in vertical sectional view with respect to virtual line segments L1, L2, L3 connecting the top face end edges of the layers.SELECTED DRAWING: Figure 3

Description

本発明は、絶縁基板上に薄膜多層配線が形成された薄膜配線基板に関する。   The present invention relates to a thin film wiring board in which a thin film multilayer wiring is formed on an insulating substrate.

特許文献1にも記載されるように絶縁基板上に接着層、バリア層、主導体層からなる薄膜多層配線を形成する技術がある。   As described in Patent Document 1, there is a technique for forming a thin film multilayer wiring including an adhesive layer, a barrier layer, and a main conductor layer on an insulating substrate.

従来、電気回路基板や半導体素子収納用パッケージ等における配線基板はその回路配線がMo−Mn法等の厚膜形成技法によって形成されている。
このMo−Mn法は、タングステン(W)、モリブデン(Mo)、マンガン(Mn)等の高融点金属から成る金属粉末に有機溶剤、溶媒を添加し、ペースト状となした金属ペーストを生もしくは焼結セラミック体の外表面にスクリーン印刷法により回路配線としての所定パターンに印刷塗布し、次にこれを還元雰囲気中で焼成し、高融点金属とセラミック体とを焼結一体化させる方法である。
2. Description of the Related Art Conventionally, a wiring board in an electric circuit board, a semiconductor element housing package or the like has its circuit wiring formed by a thick film forming technique such as a Mo-Mn method.
In this Mo-Mn method, an organic solvent or solvent is added to a metal powder composed of a high melting point metal such as tungsten (W), molybdenum (Mo), manganese (Mn), etc. In this method, a predetermined pattern as circuit wiring is printed and applied to the outer surface of the sintered ceramic body by screen printing, and then fired in a reducing atmosphere to sinter and integrate the refractory metal and the ceramic body.

しかしながら、このMo−Mn法を用いて回路配線を形成した場合、回路配線は金属ペーストをスクリーン印刷することにより形成されることから回路配線の微細化が困難であり、回路配線の高密度化ができないという欠点を有していた。   However, when the circuit wiring is formed using this Mo-Mn method, the circuit wiring is formed by screen printing a metal paste, so that it is difficult to make the circuit wiring finer. It had the disadvantage that it was not possible.

そこで上記欠点を解消するために回路配線を従来の厚膜形成技法により形成するのに替えて微細化が可能な薄膜形成技法を用いて形成した薄膜配線基板、即ち、絶縁基板上にTi,Cr等から成る接着層と、Pd,Pt,Ag,Cu等から成るバリア層と、金(Au)から成る主導体層をイオンプレーティング法やスパッタリング法、蒸着法、メッキ法等の薄膜形成技法により順次積層し、しかる後、これらの層をフォトリソグラフィによって所定のパターンに形成し、回路配線となした薄膜配線基板が提案されている。
なお、前記薄膜配線基板において接着層は回路配線を絶縁基板に強固に接着させる作用を奏し、またバリア層は接着層と主導体層の相互拡散を抑制するとともに主導体層を接着層に強固に接着させる作用を奏する。
Therefore, in order to eliminate the above-mentioned drawbacks, instead of forming the circuit wiring by the conventional thick film forming technique, a thin film wiring board formed by using a thin film forming technique that can be miniaturized, that is, Ti, Cr on the insulating substrate. Etc., a barrier layer made of Pd, Pt, Ag, Cu, etc., and a main conductor layer made of gold (Au) by a thin film forming technique such as an ion plating method, a sputtering method, a vapor deposition method, or a plating method. A thin film wiring board has been proposed in which these layers are sequentially stacked and then these layers are formed into a predetermined pattern by photolithography to form circuit wiring.
In the thin film wiring board, the adhesive layer acts to firmly bond the circuit wiring to the insulating substrate, and the barrier layer suppresses mutual diffusion between the adhesive layer and the main conductor layer and firmly fixes the main conductor layer to the adhesive layer. Has the effect of bonding.

上記の薄膜多層配線を形成する技術により、回路配線の高密度化が可能となったが、これに伴い配線ギャップについても狭ギャップ化が進行している。
その結果、電子部品の実装時の半田が配線間のギャップ部に流出し、ショートを発生させたり、配線形成後の実装時の加熱により、薄膜配線端部に加わる熱応力が増大し、クラックや膜剥がれを発生させたりする懸念があった。
Although the technology for forming the above-described thin film multilayer wiring has made it possible to increase the density of circuit wiring, the narrowing of the wiring gap is also progressing accordingly.
As a result, solder at the time of mounting electronic components flows into the gap between the wires, causing a short circuit, or heating at the time of mounting after wiring formation increases the thermal stress applied to the end of the thin film wiring, causing cracks and There was a concern of film peeling.

特開昭63−78591号公報JP-A 63-78591

本発明は以上の従来の課題に鑑みて案出されたものであり、その目的は、絶縁基板上に薄膜多層配線が形成された薄膜配線基板において、配線間のショートやマイグレーションを抑制すること、さらには薄膜配線端部に加わる熱応力を緩和し、クラックや膜剥がれの発生を抑制することにある。   The present invention has been devised in view of the above conventional problems, and its purpose is to suppress short-circuiting and migration between wirings in a thin-film wiring board in which a thin-film multilayer wiring is formed on an insulating substrate. Furthermore, the thermal stress applied to the end portion of the thin film wiring is relaxed to suppress the occurrence of cracks and film peeling.

本発明は、絶縁基板と、前記絶縁基板上に接着層、バリア層、主導体層を順次積層したこれら3層からなる薄膜多層配線とを有する薄膜配線基板において、上面視で、前記主導体層の上面端縁の位置が、前記バリア層の上面端縁より内側にあり、前記バリア層の上面端縁の位置が前記接着層の上面端縁より内側にあるとともに、前記接着層の上面端縁の位置が、前記接着層の下面端縁より内側にあることを特徴とする。   The present invention provides a thin-film wiring board having an insulating substrate and a thin-film multilayer wiring composed of these three layers in which an adhesive layer, a barrier layer, and a main conductor layer are sequentially laminated on the insulating substrate. The position of the upper surface edge of the barrier layer is on the inner side of the upper surface edge of the barrier layer, the position of the upper surface edge of the barrier layer is on the inner side of the upper surface edge of the adhesive layer, and the upper surface edge of the adhesive layer Is located inside the lower edge of the adhesive layer.

本発明の薄膜配線基板は、好ましくは、前記主導体層の上面端縁と前記バリア層の上面端縁との間の距離が、前記バリア層の上面端縁と前記接着層の上面端縁との間の距離より長いことを特徴とする。   In the thin film wiring board of the present invention, preferably, the distance between the upper surface edge of the main conductor layer and the upper surface edge of the barrier layer is such that the upper surface edge of the barrier layer and the upper surface edge of the adhesive layer are It is characterized by being longer than the distance between.

本発明の薄膜配線基板は、好ましくは、前記主導体層、前記バリア層、前記接着層の側面において、各層の上面端縁を結んだ仮想線分に対し、縦断面視で凹状となる凹部を有することを特徴とする。   The thin film wiring board according to the present invention preferably has a concave portion in a side view of the main conductor layer, the barrier layer, and the adhesive layer that is concave in a longitudinal sectional view with respect to a virtual line segment connecting the upper edge of each layer. It is characterized by having.

本発明の薄膜配線基板は、好ましくは、前記凹部が前記バリア層の側面全体と、前記接着層の側面全体とにそれぞれ設けられていることを特徴とする。   The thin film wiring board of the present invention is preferably characterized in that the recess is provided on the entire side surface of the barrier layer and the entire side surface of the adhesive layer.

本発明の薄膜配線基板は、好ましくは、前記仮想線分からの前記バリア層の凹部の深さが、前記仮想線分からの前記接着層の凹部の深さよりも深いことを特徴とする。   The thin film wiring board of the present invention is preferably characterized in that the depth of the concave portion of the barrier layer from the virtual line segment is deeper than the depth of the concave portion of the adhesive layer from the virtual line segment.

本発明の薄膜配線基板は、好ましくは、縦断面視で、前記主導体層の上面端縁と前記バリア層の上面端縁とを結んだ仮想線分と、前記バリア層の上面端縁と前記接着層の上面端縁とを結んだ仮想線分とが配線内部側につくる角度が鈍角であることを特徴とする。   The thin film wiring board of the present invention preferably has a virtual line segment connecting the upper surface edge of the main conductor layer and the upper surface edge of the barrier layer, and the upper surface edge of the barrier layer and the An angle formed by the virtual line segment connecting the upper edge of the adhesive layer on the inner side of the wiring is an obtuse angle.

本発明の薄膜配線基板は、好ましくは、前記絶縁基板は、前記接着層の下面が接合する上段面に対して低くされた下段面を有し、上面視で、前記接着層の下面端縁が前記上段面の端縁にあるとともに、前記上段面に近接する前記下段面の端縁より内側にあることを特徴とする。   In the thin film wiring board of the present invention, preferably, the insulating substrate has a lower step surface that is lowered with respect to an upper step surface to which the lower surface of the adhesive layer is bonded, and the lower surface edge of the adhesive layer is viewed from above. It exists in the edge of the said upper stage surface, and exists inside the edge of the said lower stage surface which adjoins the said upper stage surface, It is characterized by the above-mentioned.

本発明の薄膜配線基板は、好ましくは、前記絶縁基板の前記上段面と前記下段面とを繋ぐ側面は、縦断面視で、前記接着層の上面端縁から前記接着層の下面端縁に通した仮想半直線上にあることを特徴とする。   In the thin film wiring board of the present invention, preferably, a side surface connecting the upper surface and the lower surface of the insulating substrate passes from the upper surface edge of the adhesive layer to the lower surface edge of the adhesive layer in a longitudinal sectional view. It is characterized by being on a virtual half line.

本発明の薄膜配線基板によれば、絶縁基板上に薄膜多層配線が形成された薄膜配線基板において、配線間のショートやマイグレーションを抑制すること、さらには薄膜配線端部に加わる熱応力を緩和し、クラックや膜剥がれの発生を抑制する。   According to the thin film wiring board of the present invention, in the thin film wiring board in which the thin film multilayer wiring is formed on the insulating substrate, the short circuit and the migration between the wirings are suppressed, and further, the thermal stress applied to the end of the thin film wiring is reduced. Suppresses the occurrence of cracks and film peeling.

本発明の一実施形態に係る薄膜配線基板を示す縦断面図である。It is a longitudinal section showing a thin film wiring board concerning one embodiment of the present invention. 本発明の他の一実施形態に係る薄膜配線基板を示す縦断面図である。It is a longitudinal cross-sectional view which shows the thin film wiring board which concerns on other one Embodiment of this invention. 本発明の他の一実施形態に係る薄膜配線基板を示す縦断面図である。It is a longitudinal cross-sectional view which shows the thin film wiring board which concerns on other one Embodiment of this invention. 本発明の他の一実施形態に係る薄膜配線基板を示す縦断面図である。It is a longitudinal cross-sectional view which shows the thin film wiring board which concerns on other one Embodiment of this invention. 本発明の実施形態に係り、薄膜配線基板の配線形成プロセスを示す縦断面図である。It is a longitudinal cross-sectional view which shows the wiring formation process of a thin film wiring board concerning embodiment of this invention. 反応性イオンエッチングにおける垂直なスパッタリングによるエッチングの様子を示す模式図である。It is a schematic diagram which shows the mode of the etching by perpendicular | vertical sputtering in reactive ion etching. 反応性イオンエッチングにおける散乱確率を上げたスパッタリングによるエッチングの様子を示す模式図である。It is a schematic diagram which shows the mode of the etching by sputtering which raised the scattering probability in reactive ion etching.

以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。   An embodiment of the present invention will be described below with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.

(積層構成物)
図1から図4に示すように本発明の一実施形態の薄膜配線基板は、絶縁基板1と、絶縁基板1上に接着層3、バリア層4、主導体層5を順次積層したこれら3層からなる薄膜多層配線2とを有する。
絶縁基板1は酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、ガラスセラミックス焼結体等から成り、絶縁基板1が例えば酸化アルミニウム質焼結体から成る場合には、アルミナ、マグネシア、カルシア、シリカ等の原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状となすとともにこれをドクターブレード法やカレンダーロール法等を採用することによってセラミックグリーンシート(セラミック生シート)を形成し、しかる後、前記セラミックグリーンシートに適当な打ち抜き加工を施し、所定形状となすとともに高温(約1600℃)で焼成することによって製作される。
(Laminated structure)
As shown in FIGS. 1 to 4, a thin film wiring board according to an embodiment of the present invention includes an insulating substrate 1, and these three layers in which an adhesive layer 3, a barrier layer 4, and a main conductor layer 5 are sequentially laminated on the insulating substrate 1. And a thin film multilayer wiring 2 made of
The insulating substrate 1 includes an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a glass ceramic sintered body, and the like. The insulating substrate 1 is, for example, an aluminum oxide sintered body. In the case of a body, by adding a suitable organic solvent and solvent to the raw material powder such as alumina, magnesia, calcia, silica, etc. and mixing it into a mud, this is adopted by adopting the doctor blade method, calender roll method, etc. The ceramic green sheet (ceramic green sheet) is formed, and then the ceramic green sheet is subjected to an appropriate punching process to obtain a predetermined shape and fired at a high temperature (about 1600 ° C.).

また絶縁基板1の上面には薄膜多層配線2が薄膜形成技法によって被着形成されており、該薄膜多層配線2は接着層3、バリア層4、主導体層5の3層構造を有している。   A thin film multilayer wiring 2 is deposited on the upper surface of the insulating substrate 1 by a thin film formation technique. The thin film multilayer wiring 2 has a three-layer structure of an adhesive layer 3, a barrier layer 4, and a main conductor layer 5. Yes.

薄膜多層配線2を構成する接着層3はTi,Cr等から成り、蒸着法やイオンプレーティング法等の薄膜形成技法により絶縁基板1上に被着される。   The adhesive layer 3 constituting the thin film multilayer wiring 2 is made of Ti, Cr or the like and is deposited on the insulating substrate 1 by a thin film forming technique such as a vapor deposition method or an ion plating method.

なお、接着層3 は絶縁基板1と薄膜多層配線2との接着強度を上げる作用を奏し、その厚みは100 オングストローム未満であると薄膜多層配線2を絶縁基板1に強固に接着させることが困難となる傾向にあり、また10000 オングストロームを越えると接着層3を薄膜形成技法により被着させる際の内部応力によって絶縁基板1と接着層3との接着強度が低下する傾向にあることから100 乃至10000 オングストロームの範囲が良く、好適には300 乃至2000オングストロームの厚みに、最適には500 乃至1500オングストロームの厚みにしておくことが良い。   The adhesive layer 3 has an effect of increasing the adhesive strength between the insulating substrate 1 and the thin film multilayer wiring 2, and if the thickness is less than 100 angstroms, it is difficult to firmly adhere the thin film multilayer wiring 2 to the insulating substrate 1. In addition, when it exceeds 10000 angstroms, the adhesive strength between the insulating substrate 1 and the adhesive layer 3 tends to decrease due to internal stress when the adhesive layer 3 is applied by the thin film formation technique. The thickness is preferably in the range of 300 to 2000 angstroms, and more preferably in the range of 500 to 1500 angstroms.

また接着層3の上面にはバリア層4が被着されており、該バリア層4は接着層3と主導体層5との密着性を向上させるとともに接着層3と主導体層5との相互拡散を防止する作用を奏する。   Further, a barrier layer 4 is deposited on the upper surface of the adhesive layer 3, and the barrier layer 4 improves the adhesion between the adhesive layer 3 and the main conductor layer 5, and the adhesive layer 3 and the main conductor layer 5 are mutually connected. It has the effect of preventing diffusion.

バリア層4はPd,Pt,Ag,Cu等から成り、蒸着法やイオンプレーティング法、スパッタリング法等の薄膜形成技法により接着層3の上面に被着される。   The barrier layer 4 is made of Pd, Pt, Ag, Cu or the like, and is deposited on the upper surface of the adhesive layer 3 by a thin film forming technique such as vapor deposition, ion plating, or sputtering.

なお、バリア層4はその厚みが500 オングストローム未満であると接着層3と主導体層5との密着性が低下するとともに接着層3と主導体層5との相互拡散を有効に防止することができない傾向にあり、また10000 オングストロームを越えるとバリア層4を薄膜形成技法により被着させる際の内部応力によって接着層3とバリア層4との接着強度が低下する傾向にあることから500 乃至10000 オングストロームの範囲が良く、好適には800 乃至5000オングストロームの厚みに、最適には1000乃至3000オングストロームの厚みにしておくことが良い。   When the thickness of the barrier layer 4 is less than 500 angstroms, the adhesion between the adhesive layer 3 and the main conductor layer 5 is lowered and the mutual diffusion between the adhesive layer 3 and the main conductor layer 5 can be effectively prevented. When the thickness exceeds 10,000 angstroms, the adhesive strength between the adhesive layer 3 and the barrier layer 4 tends to decrease due to internal stress when the barrier layer 4 is deposited by the thin film formation technique. The thickness is preferably in the range of 800 to 5000 angstroms, and more preferably 1000 to 3000 angstroms.

またバリア層4の上面には主導体層5が蒸着法やイオンプレーティング法、スパッタリング法、メッキ法等の薄膜形成技法により被着されており、該主導体層5は主として電気を通す通路として作用を奏する。   A main conductor layer 5 is deposited on the upper surface of the barrier layer 4 by a thin film forming technique such as a vapor deposition method, an ion plating method, a sputtering method, or a plating method. The main conductor layer 5 is mainly used as a passage for conducting electricity. Has an effect.

主導体層5は導通抵抗が極めて小さい金(Au)が使用され、その厚みは1μm未満であると薄膜多層配線2の導通抵抗が高くなって薄膜配線基板としては不向きとなる傾向にあることから1μm以上の厚み、より好適には4μm以上の厚みとすることが良い。   The main conductor layer 5 is made of gold (Au) having a very small conduction resistance, and if the thickness is less than 1 μm, the conduction resistance of the thin film multilayer wiring 2 tends to be high and tends to be unsuitable as a thin film wiring board. The thickness is preferably 1 μm or more, more preferably 4 μm or more.

絶縁基板1上に形成された薄膜多層配線2は、これを構成する接着層3、バリア層4及び主導体層5の各々が薄膜形成技法により形成されることから薄膜多層配線2の微細化を可能とし、薄膜多層配線2の高密度化が達成し得る。   The thin-film multilayer wiring 2 formed on the insulating substrate 1 is made finer because the adhesive layer 3, the barrier layer 4 and the main conductor layer 5 constituting the thin-film multilayer wiring 2 are formed by a thin-film formation technique. It is possible to achieve high density of the thin film multilayer wiring 2.

(配線側縁部の構造)
本発明の一実施形態の薄膜配線基板にあっては、配線間のショートやマイグレーションを抑制するために、薄膜多層配線2の側縁部が以下のような構造に形成されている。
(Wiring side edge structure)
In the thin film wiring substrate according to the embodiment of the present invention, the side edge portion of the thin film multilayer wiring 2 is formed in the following structure in order to suppress short circuit and migration between the wirings.

図1から図4に示す薄膜配線基板おいて、上面視(矢視A)で、主導体層5の上面端縁の位置51が、バリア層4の上面端縁41より内側にあり、バリア層4の上面端縁41の位置が接着層3の上面端縁31より内側にあるとともに、接着層3の上面端縁31の位置が、接着層3の下面端縁21より内側にある。
主導体層5の側面52は傾斜しており、主導体層5の下面端縁の位置がバリア層4の上面端縁41に一致している。
バリア層4の側面42は傾斜しており、バリア層4の下面端縁の位置は接着層3の上面端縁31に一致している。
接着層3の側面32は傾斜しており、接着層3の下面端縁の位置は絶縁基板1の上段面20の端縁21に一致している。
かかる構造によれば、主導体層5上に素子などを実装した際に、半田が配線2の側面に回り込むが、主導体層5の側面に傾斜がついていることで側面長が長いため、配線2のショートやマイグレーションが抑制される。
傾斜がついていることで、隣り合う配線2,2の上端部間の距離が長くなり、実装時の半田のショート発生が抑制される。
主導体層5とバリア層4の界面の面積と、バリア層4と接着層3の界面の面積とを比較すると、バリア層4と接着層3の界面の面積の方が大きいので、半田成分の拡散抑制効果が高く得られる。
In the thin film wiring substrate shown in FIGS. 1 to 4, the position 51 of the upper surface edge of the main conductor layer 5 is inside the upper surface edge 41 of the barrier layer 4 when viewed from above (arrow A). 4 is located on the inner side of the upper surface edge 31 of the adhesive layer 3, and the position of the upper surface edge 31 of the adhesive layer 3 is located on the inner side of the lower surface edge 21 of the adhesive layer 3.
The side surface 52 of the main conductor layer 5 is inclined, and the position of the lower surface edge of the main conductor layer 5 coincides with the upper surface edge 41 of the barrier layer 4.
The side surface 42 of the barrier layer 4 is inclined, and the position of the lower surface edge of the barrier layer 4 coincides with the upper surface edge 31 of the adhesive layer 3.
The side surface 32 of the adhesive layer 3 is inclined, and the position of the lower surface edge of the adhesive layer 3 coincides with the edge 21 of the upper stage surface 20 of the insulating substrate 1.
According to such a structure, when an element or the like is mounted on the main conductor layer 5, the solder wraps around the side surface of the wiring 2, but the side surface length is long because the side surface of the main conductor layer 5 is inclined. 2 short circuit and migration are suppressed.
By being inclined, the distance between the upper ends of the adjacent wirings 2 and 2 is increased, and the occurrence of a solder short during mounting is suppressed.
When the area of the interface between the main conductor layer 5 and the barrier layer 4 is compared with the area of the interface between the barrier layer 4 and the adhesive layer 3, the area of the interface between the barrier layer 4 and the adhesive layer 3 is larger. A high diffusion suppressing effect can be obtained.

さらに図1に示すように主導体層5の上面端縁51とバリア層4の上面端縁41との間の距離53が、バリア層4の上面端縁41と接着層3の上面端縁31との間の距離43より長いことが好ましい。
かかる構造によれば、主導体層5上に素子などを実装した際に、半田が配線2の側面に回り込むと、半田濡れ性の高い主導体層5の側面に半田をより多く保持でき、半田濡れ性の無いバリア層4の側面で弾かれるので、配線のショートやマイグレーションが抑制される。
Further, as shown in FIG. 1, a distance 53 between the upper surface edge 51 of the main conductor layer 5 and the upper surface edge 41 of the barrier layer 4 is such that the upper surface edge 41 of the barrier layer 4 and the upper surface edge 31 of the adhesive layer 3. It is preferable that it is longer than the distance 43 between.
According to such a structure, when an element or the like is mounted on the main conductor layer 5, if the solder wraps around the side surface of the wiring 2, more solder can be held on the side surface of the main conductor layer 5 having high solder wettability. Since it is repelled on the side surface of the barrier layer 4 having no wettability, wiring short-circuiting and migration are suppressed.

また図2に示すように主導体層5、バリア層4、接着層3の側面において、各層の上面端縁を結んだ仮想線分L1,L2に対し、縦断面視で凹状となる凹部44,54を有することが好ましい。仮想線分L1は、2つ端縁51,41を結んだ仮想線分である。仮想線分L2は、2つの端縁41,31を結んだ仮想線分である。仮想線分L3は、2つの端縁31,21を結んだ仮想線分である。
かかる構造によれば、深さの大きい凹部44,54があることで、配線2の側面長が長くなり側面に回り込んだ半田のショートやマイグレーションが抑制される。
一つの凹部44(54)は複数層に跨らずに各層の側面内に収めて設けることが好ましい。バリア層4の側面に一の凹部44が設けられ、主導体層5の側面に他の凹部54が設けられる。
このような凹部44,54があることで、主導体層5とバリア層4との界面の配線端縁付近が肉薄になり、変形しやすくなるため、応力が緩和され、主導体層5やバリア層4の剥がれが抑制される。
In addition, as shown in FIG. 2, on the side surfaces of the main conductor layer 5, the barrier layer 4 and the adhesive layer 3, the imaginary line segments L1 and L2 connecting the upper surface edges of the respective layers are provided with concave portions 44 which are concave in a longitudinal sectional view. 54 is preferred. The virtual line segment L1 is a virtual line segment connecting the two end edges 51 and 41. The virtual line segment L2 is a virtual line segment that connects the two end edges 41 and 31. The virtual line segment L3 is a virtual line segment connecting the two end edges 31 and 21.
According to such a structure, since the recesses 44 and 54 having a large depth are present, the length of the side surface of the wiring 2 is increased, and the shorting and migration of the solder that has entered the side surface are suppressed.
One recess 44 (54) is preferably provided in a side surface of each layer without straddling a plurality of layers. One recess 44 is provided on the side surface of the barrier layer 4, and another recess 54 is provided on the side surface of the main conductor layer 5.
By having such recesses 44 and 54, the vicinity of the wiring edge at the interface between the main conductor layer 5 and the barrier layer 4 becomes thin and easily deforms, so that the stress is relieved and the main conductor layer 5 and the barrier Peeling of the layer 4 is suppressed.

また図3に示すように一の凹部44がバリア層4の側面全体に設けられ、他の凹部34が接着層3の側面全体と設けられていることが好ましい。
図2に示した構造よりもさらに配線2の側面長が長くなるため、半田のショートやマイグレーションを抑制できる。
In addition, as shown in FIG. 3, it is preferable that one recess 44 is provided on the entire side surface of the barrier layer 4 and the other recess 34 is provided on the entire side surface of the adhesive layer 3.
Since the side surface length of the wiring 2 is further longer than the structure shown in FIG. 2, it is possible to suppress solder shorting and migration.

また図4に示すように仮想線分L2からのバリア層4の凹部44の深さが、仮想線分L3からの接着層3の凹部34の深さよりも大きいことが好ましい。
かかる構造によれば、半田拡散防止機能の高いバリア層4の凹部44が大きいことで、半田のショートやマイグレーションをより効果的に抑制できる。
Moreover, as shown in FIG. 4, it is preferable that the depth of the recessed part 44 of the barrier layer 4 from the virtual line segment L2 is larger than the depth of the recessed part 34 of the adhesive layer 3 from the virtual line segment L3.
According to such a structure, since the concave portion 44 of the barrier layer 4 having a high solder diffusion preventing function is large, solder short-circuiting and migration can be more effectively suppressed.

また図1に示すように縦断面視で、主導体層5の上面端縁51とバリア層4の上面端縁41とを結んだ仮想線分L1と、バリア層4の上面端縁41と接着層3の上面端縁31とを結んだ仮想線分L2とが配線2の内部側につくる角度αが鈍角(90度より大きく180度より小さい角)であることが好ましい。
かかる構造によれば、主導体層5の側面長が長くなるため、半田のショートを抑制できるとともに、半田実装面積に対しバリア層4の面積が大きくなるので、半田成分の拡散抑制を図ることができる。
Further, as shown in FIG. 1, a virtual line segment L1 connecting the upper surface edge 51 of the main conductor layer 5 and the upper surface edge 41 of the barrier layer 4 and the upper surface edge 41 of the barrier layer 4 are bonded to each other in a longitudinal sectional view. The angle α formed by the virtual line segment L2 connecting the upper surface edge 31 of the layer 3 on the inner side of the wiring 2 is preferably an obtuse angle (an angle greater than 90 degrees and smaller than 180 degrees).
According to such a structure, since the side length of the main conductor layer 5 is increased, solder shorts can be suppressed and the area of the barrier layer 4 is increased with respect to the solder mounting area, thereby suppressing the diffusion of solder components. it can.

また図1に示すように絶縁基板1は、接着層3の下面が接合する上段面20に対して低くされた下段面10を有すること、上面視(矢視A)で、接着層3の下面端縁が上段面20の端縁21にあるとともに、上段面20に近接する下段面10の端縁11より内側にあることが好ましい。
かかる構造によれば、薄膜多層配線2に生じる応力を、上段面20から下段面10にかけての絶縁基板1の段部(凸部)が変形して緩和し、その結果、絶縁基板1と薄膜多層配線2との間の膜剥がれが抑制される。
In addition, as shown in FIG. 1, the insulating substrate 1 has a lower step surface 10 that is lowered with respect to the upper step surface 20 to which the lower surface of the adhesive layer 3 is bonded, and the lower surface of the adhesive layer 3 as viewed from above (arrow A). It is preferable that the end edge is located at the end edge 21 of the upper stage surface 20 and is located inside the edge 11 of the lower stage surface 10 adjacent to the upper stage surface 20.
According to such a structure, the stress generated in the thin-film multilayer wiring 2 is relaxed by deforming the step portion (convex portion) of the insulating substrate 1 from the upper step surface 20 to the lower step surface 10, and as a result, the insulating substrate 1 and the thin-film multilayer are relieved. Film peeling between the wiring 2 is suppressed.

また図1に示すように絶縁基板1の上段面20と下段面10とを繋ぐ側面22は、縦断面視で、接着層3の上面端縁31から接着層3の下面端縁21に通した仮想半直線L4上にあることが好ましい。
接着層3の側面32から水分が側面22に沿って円滑に下段面10まで落下しやすく、水分が配線2の側縁部に溜まることなく配線2に接触しない底位置に捌けるので、耐マイグレーション性が向上する。
Further, as shown in FIG. 1, the side surface 22 that connects the upper surface 20 and the lower surface 10 of the insulating substrate 1 passes from the upper surface edge 31 of the adhesive layer 3 to the lower surface edge 21 of the adhesive layer 3 in a longitudinal sectional view. It is preferable to be on the virtual half line L4.
Moisture easily falls from the side surface 32 of the adhesive layer 3 along the side surface 22 to the lower step surface 10, and does not accumulate on the side edge of the wiring 2. Will improve.

(製造方法)
次に、以上の薄膜配線基板を製造する方法につき説明を加える。
上述したように所定形状の絶縁基板1上に薄膜形成技法によって接着層3、バリア層4、主導体層5を順次被着形成する(図5(a)(b))。
次に、図5(c)に示すように配線パターンに対応したレジストマスク6を主導体層5上に形成し、図5(d)に示すように薄膜多層配線2となる部分の隣接領域の接着層3、バリア層4及び主導体層5並びに絶縁基板1の表面をドライエッチングし、その後、図5(e)に示すようにレジストマスク6を除去して薄膜多層配線2を得る。
(Production method)
Next, a method for manufacturing the above thin film wiring board will be described.
As described above, the adhesive layer 3, the barrier layer 4, and the main conductor layer 5 are sequentially deposited on the insulating substrate 1 having a predetermined shape by a thin film forming technique (FIGS. 5A and 5B).
Next, a resist mask 6 corresponding to the wiring pattern is formed on the main conductor layer 5 as shown in FIG. 5 (c), and an adjacent region of the portion to be the thin film multilayer wiring 2 is shown in FIG. 5 (d). The adhesive layer 3, the barrier layer 4, the main conductor layer 5, and the surface of the insulating substrate 1 are dry-etched, and then the resist mask 6 is removed as shown in FIG.

図5(d)のドライエッチングにおいては、反応性イオンエッチング (Reactive Ion Etching; RIE)を適用する。
反応性イオンエッチングでは、反応室内でエッチングガスに電磁波などを与えプラズマ化し、同時に試料を置く陰極に高周波電圧を印加する。すると試料とプラズマの間に自己バイアス電位が生じ、プラズマ中のイオン種やラジカル種が試料方向に加速されて衝突する。その際、イオンによるスパッタリングと、エッチングガスの化学反応が同時に起こり、微細加工に適した高い精度でのエッチングが行える。
イオンによるスパッタリングは異方性の強い物理エッチング、エッチングガスの化学反応は等方性の化学エッチングであり、反応性イオンエッチングは、これらを組み合わせた微細加工技術である。
反応性イオンエッチングの進捗により、主導体層5、バリア層4、接着層3の順でエッチングされる。反応性イオンエッチングの進捗に従い露出する層の材質のエッチング特性(参考表I,表II)に応じて反応性イオンエッチングにおける異方性と等方性を制御することで、薄膜多層配線2の側面の傾斜や凹部の形成を行うことができる。
In dry etching of FIG. 5D, reactive ion etching (RIE) is applied.
In reactive ion etching, an etching gas is subjected to an electromagnetic wave or the like in a reaction chamber to form plasma, and at the same time, a high frequency voltage is applied to a cathode on which a sample is placed. Then, a self-bias potential is generated between the sample and the plasma, and ion species and radical species in the plasma are accelerated toward the sample and collide with each other. At that time, sputtering by ions and the chemical reaction of the etching gas occur at the same time, and etching with high accuracy suitable for fine processing can be performed.
Sputtering by ions is highly anisotropic physical etching, chemical reaction of etching gas is isotropic chemical etching, and reactive ion etching is a fine processing technique that combines these.
As the reactive ion etching progresses, the main conductor layer 5, the barrier layer 4, and the adhesive layer 3 are etched in this order. The side surface of the thin-film multilayer wiring 2 is controlled by controlling the anisotropy and isotropic property in the reactive ion etching according to the etching characteristics (reference tables I and II) of the material of the exposed layer according to the progress of the reactive ion etching. Inclination and depression can be formed.

主導体層5を構成するAuなどにおいては化学反応性に乏しいため、化学エッチングによる凹部形成は難しい。そのため、イオン7が図6に示すような垂直ではなく、Arなどのガス圧を上げて図7(a)に示すようにプラズマ中の散乱確率を上げることでワークに対して傾斜した角度をもって入射する割合が増加するように(すなわち、等方性が強くなるように)制御する。そうすると図7(b)に示すように主導体層5のAuのエッチングがレジスト6の下にまわり込むような、エッチングになり傾斜面や凹部が形成される。   Since Au or the like constituting the main conductor layer 5 has poor chemical reactivity, it is difficult to form recesses by chemical etching. Therefore, the ions 7 are not perpendicular as shown in FIG. 6, but are incident at an angle inclined with respect to the workpiece by raising the gas pressure of Ar or the like and raising the scattering probability in the plasma as shown in FIG. 7A. Control is performed so that the ratio of the increase is increased (that is, the isotropic property is increased). Then, as shown in FIG. 7 (b), the etching of Au of the main conductor layer 5 wraps under the resist 6 to form an inclined surface and a recess.

図2に示すような局所的な凹部(44,54)を形成したい場合は、エッチングプロセス中の部分的な時間だけにおいてガス圧を上げる(すなわち、等方性を上げる)ことでArイオンの入射角度が変わり、局所的な凹部(44,54)を形成することができる。
以上は、主導体層5、バリア層4、接着層3のすべてに共通した形成方法として適用できる。
When it is desired to form local recesses (44, 54) as shown in FIG. 2, the incidence of Ar ions is increased by increasing the gas pressure (ie, increasing isotropicity) only during a partial time during the etching process. The angle changes and local recesses (44, 54) can be formed.
The above can be applied as a formation method common to all of the main conductor layer 5, the barrier layer 4, and the adhesive layer 3.

また、バリア層4を構成するPt、Pdなどは化学反応をするため、化学エッチングでも凹部が形成できる。
主導体層5をArイオンなどで物理エッチングした後、ガス雰囲気をCFに切り替えて、化学エッチングに変更することで、異方性エッチングから等方性エッチングに切り替わり、バリア層4の側面に凹部を形成することが可能になる。
Further, since Pt, Pd, etc. constituting the barrier layer 4 undergo a chemical reaction, recesses can be formed even by chemical etching.
After the main conductor layer 5 is physically etched with Ar ions or the like, the gas atmosphere is switched to CF 4 and changed to chemical etching, so that anisotropic etching is switched to isotropic etching, and concave portions are formed on the side surfaces of the barrier layer 4. Can be formed.

<具体的な加工条件について>
具体的な加工条件の一例としては、IE(2周波励起型の反応性イオンエッチング装置)又はICP(Inductively Coupled Plasma:容量結合プラズマ)方式のRIEにより、Cガス、CFガス及びArガス(Cl/C/Ar)の混合ガスを使用し、レジスト6をマスクとして、薄膜3,4,5をドライエッチングし、薄膜多層配線2を形成する。ICPにて、圧力=0.5〜5Pa、ソースパワー=500〜1000W、バイアスパワー=200W〜500Wが適用できる。
<Specific processing conditions>
Specific examples of processing conditions include C 3 F 8 gas, CF 4 gas, and Ar by IE (double frequency excitation type reactive ion etching apparatus) or ICP (Inductively Coupled Plasma) type RIE. Using a mixed gas of gas (Cl 2 / C 3 F 8 / Ar) and using the resist 6 as a mask, the thin films 3, 4, and 5 are dry-etched to form the thin film multilayer wiring 2. In ICP, pressure = 0.5-5 Pa, source power = 500-1000 W, bias power = 200 W-500 W can be applied.

Figure 2019024063

Au,Pdはスパッタチング率が大きいので、メカニカルなエッチングが進行しやすい。つまりガス圧を上げて、Arイオンを散乱させ物理エッチングで凹部を形成する方が良い。
Figure 2019024063

Since Au and Pd have a high sputtering rate, mechanical etching tends to proceed. In other words, it is better to increase the gas pressure to scatter Ar ions and form the recesses by physical etching.

Figure 2019024063

Ptは融点の低いフッ化物をつくるので、化学なエッチングで凹部を作るとよい。
Figure 2019024063

Since Pt forms a fluoride having a low melting point, it is preferable to form a recess by chemical etching.

1 絶縁基板
2 薄膜多層配線
3 接着層
4 バリア層
5 主導体層
6 レジストマスク
34 凹部
44 凹部
54 凹部
L1,L2,L3 仮想線分
α 角度
DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Thin film multilayer wiring 3 Adhesion layer 4 Barrier layer 5 Main conductor layer 6 Resist mask 34 Recess 44 Recess 54 Recess L1, L2, L3 Virtual line segment α Angle

Claims (8)

絶縁基板と、前記絶縁基板上に接着層、バリア層、主導体層を順次積層したこれら3層からなる薄膜多層配線とを有する薄膜配線基板において、
上面視で、前記主導体層の上面端縁の位置が、前記バリア層の上面端縁より内側にあり、前記バリア層の上面端縁の位置が前記接着層の上面端縁より内側にあるとともに、前記接着層の上面端縁の位置が、前記接着層の下面端縁より内側にあることを特徴とする薄膜配線基板。
In a thin film wiring board having an insulating substrate and a thin film multilayer wiring composed of these three layers in which an adhesive layer, a barrier layer, and a main conductor layer are sequentially laminated on the insulating substrate,
In top view, the position of the upper surface edge of the main conductor layer is inside the upper surface edge of the barrier layer, and the position of the upper surface edge of the barrier layer is inside the upper surface edge of the adhesive layer The thin film wiring board is characterized in that the position of the upper surface edge of the adhesive layer is inside the lower surface edge of the adhesive layer.
前記主導体層の上面端縁と前記バリア層の上面端縁との間の距離が、前記バリア層の上面端縁と前記接着層の上面端縁との間の距離より長いことを特徴とする請求項1に記載の薄膜配線基板。 The distance between the upper surface edge of the main conductor layer and the upper surface edge of the barrier layer is longer than the distance between the upper surface edge of the barrier layer and the upper surface edge of the adhesive layer. The thin film wiring board according to claim 1. 前記主導体層、前記バリア層、前記接着層の側面において、各層の上面端縁を結んだ仮想線分に対し、縦断面視で凹状となる凹部を有することを特徴とする請求項1又は請求項2に記載の薄膜配線基板。 The side surfaces of the main conductor layer, the barrier layer, and the adhesive layer have a concave portion that is concave in a longitudinal sectional view with respect to an imaginary line segment that connects the upper edge of each layer. Item 3. The thin film wiring board according to Item 2. 前記凹部が前記バリア層の側面全体と、前記接着層の側面全体とにそれぞれ設けられていることを特徴とする請求項3に記載の薄膜配線基板。 4. The thin film wiring board according to claim 3, wherein the concave portion is provided on the entire side surface of the barrier layer and the entire side surface of the adhesive layer. 前記仮想線分からの前記バリア層の凹部の深さが、前記仮想線分からの前記接着層の凹部の深さよりも深いことを特徴とする請求項3又は請求項4に記載の薄膜配線基板。 5. The thin film wiring board according to claim 3, wherein a depth of the concave portion of the barrier layer from the virtual line segment is deeper than a depth of the concave portion of the adhesive layer from the virtual line segment. 縦断面視で、前記主導体層の上面端縁と前記バリア層の上面端縁とを結んだ仮想線分と、前記バリア層の上面端縁と前記接着層の上面端縁とを結んだ仮想線分とが配線内部側につくる角度が鈍角であることを特徴とする請求項1から請求項5のうちいずれか一つに記載の薄膜配線基板。 In a longitudinal sectional view, a virtual line segment connecting the upper surface edge of the main conductor layer and the upper surface edge of the barrier layer, and a virtual line connecting the upper surface edge of the barrier layer and the upper surface edge of the adhesive layer 6. The thin film wiring substrate according to claim 1, wherein an angle formed between the line segment and the inside of the wiring is an obtuse angle. 前記絶縁基板は、前記接着層の下面が接合する上段面に対して低くされた下段面を有し、
上面視で、前記接着層の下面端縁が前記上段面の端縁にあるとともに、前記上段面に近接する前記下段面の端縁より内側にあることを特徴とする請求項1から請求項6のうちいずれか一つに記載の薄膜配線基板。
The insulating substrate has a lower step surface that is lowered with respect to an upper step surface to which the lower surface of the adhesive layer is bonded,
7. The upper surface of the adhesive layer is located on an edge of the upper surface and is located on an inner side of an edge of the lower surface adjacent to the upper surface in a top view. The thin film wiring board according to any one of the above.
前記絶縁基板の前記上段面と前記下段面とを繋ぐ側面は、縦断面視で、前記接着層の上面端縁から前記接着層の下面端縁に通した仮想半直線上にあることを特徴とする請求項7に記載の薄膜配線基板。 A side surface connecting the upper surface and the lower surface of the insulating substrate is on a virtual half line that passes from the upper surface edge of the adhesive layer to the lower surface edge of the adhesive layer in a longitudinal sectional view. The thin film wiring board according to claim 7.
JP2017143168A 2017-07-25 2017-07-25 Thin film wiring board Active JP6853135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017143168A JP6853135B2 (en) 2017-07-25 2017-07-25 Thin film wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143168A JP6853135B2 (en) 2017-07-25 2017-07-25 Thin film wiring board

Publications (2)

Publication Number Publication Date
JP2019024063A true JP2019024063A (en) 2019-02-14
JP6853135B2 JP6853135B2 (en) 2021-03-31

Family

ID=65368641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143168A Active JP6853135B2 (en) 2017-07-25 2017-07-25 Thin film wiring board

Country Status (1)

Country Link
JP (1) JP6853135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019242A1 (en) * 2020-07-22 2022-01-27 京セラ株式会社 Circuit board, and method for producing circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202913A (en) * 2005-01-19 2006-08-03 Ricoh Co Ltd Wiring structure and method of manufacturing the same
WO2013021750A1 (en) * 2011-08-11 2013-02-14 古河電気工業株式会社 Wiring substrate and method for manufacturing same and semiconductor device
JP2013110231A (en) * 2011-11-18 2013-06-06 Fujitsu Ltd Wiring structure and manufacturing method for wiring structure
JP2017073530A (en) * 2015-10-09 2017-04-13 富士通株式会社 Adhesion improvement material, wiring structure and manufacturing method for wiring structure, and semiconductor device and manufacturing method for semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202913A (en) * 2005-01-19 2006-08-03 Ricoh Co Ltd Wiring structure and method of manufacturing the same
WO2013021750A1 (en) * 2011-08-11 2013-02-14 古河電気工業株式会社 Wiring substrate and method for manufacturing same and semiconductor device
JP2013110231A (en) * 2011-11-18 2013-06-06 Fujitsu Ltd Wiring structure and manufacturing method for wiring structure
JP2017073530A (en) * 2015-10-09 2017-04-13 富士通株式会社 Adhesion improvement material, wiring structure and manufacturing method for wiring structure, and semiconductor device and manufacturing method for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019242A1 (en) * 2020-07-22 2022-01-27 京セラ株式会社 Circuit board, and method for producing circuit board
JP7446430B2 (en) 2020-07-22 2024-03-08 京セラ株式会社 circuit board

Also Published As

Publication number Publication date
JP6853135B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP4202641B2 (en) Circuit board and manufacturing method thereof
WO2019117073A1 (en) Glass wiring substrate, method for manufacturing same, and semiconductor device
JP2006319314A (en) Circuit board and its manufacturing method
JP4783842B2 (en) Multilayer ceramic substrate
JP5349007B2 (en) Wiring board and manufacturing method thereof
JP4372669B2 (en) Device mounting substrate manufacturing method
JP2019024063A (en) Thin-film wiring board
US11395405B2 (en) Wiring substrate and electronic device
JP2005243864A (en) Wiring board
JP2008311682A (en) Wiring board
JP2007234660A (en) Wiring board, and production process of wiring board
JP2008159969A (en) Circuit board, electronic apparatus, and method of manufacturing circuit board
TWI738712B (en) Through electrode substrate and manufacturing method thereof
JP4373752B2 (en) Wiring board
JP4340131B2 (en) Wiring board
JP5356434B2 (en) Manufacturing method of ceramic substrate
US8241449B2 (en) Method for producing ceramic body
JP7182856B2 (en) Wiring board and its manufacturing method
JP4484676B2 (en) Ceramic circuit board and manufacturing method thereof
JP2002171029A (en) Ceramic wiring board, and manufacturing method
JP4177849B2 (en) Wiring board for mounting electronic parts and electronic device
WO2024024945A1 (en) Circuit board, semiconductor device, and electronic module
WO2023276923A1 (en) Circuit board and electronic device
KR20090093211A (en) Method for Manufacturing of Multi-layer Thin film Substrate
JP2002299924A (en) Laminated stripline resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6853135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150