JP2019008300A - 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物 - Google Patents

感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物 Download PDF

Info

Publication number
JP2019008300A
JP2019008300A JP2018142814A JP2018142814A JP2019008300A JP 2019008300 A JP2019008300 A JP 2019008300A JP 2018142814 A JP2018142814 A JP 2018142814A JP 2018142814 A JP2018142814 A JP 2018142814A JP 2019008300 A JP2019008300 A JP 2019008300A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
monovalent
formula
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018142814A
Other languages
English (en)
Other versions
JP6721839B2 (ja
Inventor
準人 生井
Hayato Namai
準人 生井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of JP2019008300A publication Critical patent/JP2019008300A/ja
Application granted granted Critical
Publication of JP6721839B2 publication Critical patent/JP6721839B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Furan Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

【課題】優れたMEEF性能、焦点深度及び露光余裕度を発揮すると共に、優れたLWR性能、CD均一性、解像性、断面形状の矩形性を有するレジストパターンを形成する感放射線性樹脂組成物の提供を目的とする。【解決手段】本発明は、酸解離性基を含む構造単位を有する重合体、放射線分解性を有するオニウムカチオンとカウンターアニオンとからなる化合物、及び溶媒を含有し、上記カウンターアニオンが、カルボニル基を2以上有し、上記カルボニル基同士が、単結合又は炭素数1〜10の置換又は非置換のアルカンジイル基を介して結合する感放射線性樹脂組成物である。【選択図】なし

Description

本発明は、感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物に関する。
リソグラフィーによる微細加工に用いられる感放射線性樹脂組成物は、ArFエキシマレーザー光、KrFエキシマレーザー光等の遠紫外線等の電磁波、電子線等の荷電粒子線などの照射により露光部に酸を発生させ、この酸を触媒とする化学反応により、露光部と未露光部との現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成する。
かかる感放射線性樹脂組成物には、加工技術の微細化に伴って解像性、レジストパターンの断面形状の矩形性を向上させることが要求される。この要求に対し、組成物に用いられる重合体、酸発生剤、その他の成分の種類や分子構造が検討され、さらにその組み合わせについても詳細に検討されている(特開平11−125907号公報、特開平8−146610号公報及び特開2000−298347号公報参照)。
しかしながら、レジストパターンの微細化が線幅50nm以下のレベルまで進展している現在にあっては、上記解像性やレジストパターンの断面形状の矩形性は十分に満たされていない。また、リソグラフィー性能であるMEEF(Mask Error Enhancement Factor)性能、LWR(Line Width Roughness)性能、CD(Critical Dimension)均一性、焦点深度及び露光余裕度は、上記従来の酸発生剤では不都合がある。
特開平11−125907号公報 特開平8−146610号公報 特開2000−298347号公報
本発明は、上述のような事情に基づいてなされたものであり、優れたMEEF性能、焦点深度及び露光余裕度を発揮すると共に、優れたLWR性能、CD均一性、解像性、断面形状の矩形性を有するレジストパターンを形成できる感放射線性樹脂組成物の提供を目的とする。
上記課題を解決するためになされた発明は、
酸解離性基を含む構造単位を有する重合体(以下、「[A]重合体」ともいう)、
放射線分解性オニウムカチオンとカウンターアニオンとからなる化合物(以下、「[B]化合物」ともいう)、及び
溶媒(以下、「[G]溶媒」ともいう)
を含有し、
上記カウンターアニオンが、カルボニル基を2以上有し、
上記カルボニル基同士が、単結合又は炭素数1〜10の置換又は非置換のアルカンジイル基を介して結合する感放射線性樹脂組成物である。
本発明のレジストパターン形成方法は、
レジスト膜を形成する工程、
上記レジスト膜を露光する工程、及び
上記露光されたレジスト膜を現像する工程
を備え、
上記レジスト膜を当該感放射線性樹脂組成物により形成する。
本発明の感放射線性酸発生剤は、下記式(1−1)、下記式(1−2)又は下記式(1−3)で表される化合物からなる。
Figure 2019008300
(式(1−1)中、Aは、炭素数1〜30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は炭素数1〜10の置換又は非置換のアルカンジイル基である。Rは、炭素数1〜20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。)
Figure 2019008300
(式(1−2)中、Aは、炭素数1〜30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Rは、単結合又は炭素数1〜10の置換又は非置換のアルカンジイル基である。iは、0以上2以下の整数である。Rは、炭素数1〜10の置換又は非置換のアルカンジイル基である。Rは、単結合又は炭素数1〜19の2価の有機基である。iが2の場合、複数のRは、同一でも異なっていてもよい。)
Figure 2019008300
(式(1−3)中、Aは、炭素数1〜30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。Rは、炭素数1〜10の置換又は非置換のアルカンジイル基である。)
本発明の化合物は、下記式(1−1)、下記式(1−2)又は下記式(1‐3)で表される化合物である。
Figure 2019008300
(式(1−1)中、Aは、炭素数1〜30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は炭素数1〜10の置換又は非置換のアルカンジイル基である。Rは、炭素数1〜20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。)
Figure 2019008300
(式(1−2)中、Aは、炭素数1〜30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Rは、単結合又は炭素数1〜10の置換又は非置換のアルカンジイル基である。iは、0以上2以下の整数である。Rは、炭素数1〜10の置換又は非置換のアルカンジイル基である。Rは、単結合又は炭素数1〜19の2価の有機基である。iが2の場合、複数のRは、同一でも異なっていてもよい。)
Figure 2019008300
(式(1−3)中、Aは、炭素数1〜30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。Rは、炭素数1〜10の置換又は非置換のアルカンジイル基である。)
ここで、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れたMEEF性能、焦点深度及び露光余裕度を発揮すると共に、優れたLWR性能、CD均一性、解像性及び断面形状の矩形性を有するレジストパターンを形成することができる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
<感放射線性樹脂組成物>
当該感放射線性樹脂組成物は、[A]重合体、[B]化合物及び[G]溶媒を含有する。また、当該感放射線性樹脂組成物は、好適成分として、[B]化合物以外の放射線の照射により酸を発生するスルホネート化合物(以下、「[C]他の酸発生剤」ともいう)、[B]化合物以外の酸拡散制御体(以下、「[D]他の酸拡散制御体」ともいう)及びフッ素原子含有重合体(以下、「[E]フッ素原子含有重合体」ともいう)を含有していてもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。以下、各成分について説明する。
<[A]重合体>
[A]重合体は、酸解離性基を含む構造単位を有する重合体である。当該感放射線性樹脂組成物によれば、[B]化合物等から発生する酸により露光部の[A]重合体の酸解離性基が解離して、露光部と未露光部とで現像液に対する溶解性に差異が生じ、その結果、レジストパターンを形成することができる。「酸解離性基」とは、カルボキシ基、ヒドロキシ基等の水素原子を置換する基であって、酸の作用により解離する基をいう。[A]重合体は酸解離性基を有する限り特に限定されない。酸解離性基は、[A]重合体の主鎖、側鎖、末端等のどこに有していてもよい。[A]重合体は、酸解離性基を有する構造単位(以下、「構造単位(I)」ともいう)以外にも、後述する下記式(5−1)及び下記式(5−2)で表される構造単位からなる群より選ばれる少なくとも1種(以下、「構造単位(II)」ともいう)、後述する下記式(6)で表される構造単位(以下、「構造単位(III)」ともいう)及び上記構造単位(I)〜(III)以外のその他の構造単位を有していてもよい。[A]重合体は、各構造単位を1種又は2種以上有していてもよい。以下、各構造単位について説明する。
[構造単位(I)]
構造単位(I)は、酸解離性基を含む構造単位である。構造単位(I)としては、例えば、下記式(3−1)で表される構造単位(以下、「構造単位(I−1)」ともいう)、下記式(3−2)で表される構造単位(以下、「構造単位(I−2)」ともいう)等が挙げられる。
Figure 2019008300
上記式(3−1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは、1価の酸解離性基である。
上記式(3−2)中、Rは、水素原子又はメチル基である。Yは、1価の酸解離性基である。
上記Rとしては、構造単位(I−1)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
上記Yで表される1価の酸解離性基としては、下記式(Y−1)で表される基が好ましい。
Figure 2019008300
上記式(Y−1)中、Re1は、炭素数1〜10の1価の鎖状炭化水素基又は炭素数3〜20の脂環式炭化水素基である。Re2及びRe3は、それぞれ独立して、炭素数1〜10の1価の鎖状炭化水素基若しくは炭素数3〜20の1価の脂環式炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環炭素数3〜20の脂環構造を表す。
上記Re1、Re2及びRe3で表される炭素数1〜10の1価の鎖状炭化水素基としては、例えば、
メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基等のアルキル基;
エテニル基、プロペニル基、ブテニル基、ペンテニル基等のアルケニル基;
エチニル基、プロピニル基、ブチニル基、ペンチニル基等のアルキニル基等が挙げられる。
これらのうち、アルキル基が好ましく、炭素数1〜4のアルキル基がより好ましく、メチル基、エチル基、i−プロピル基がさらに好ましく、エチル基が特に好ましい。
上記Re1、Re2及びRe3で表される炭素数3〜20の1価の脂環式炭化水素基としては、例えば、
シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の単環のシクロアルキル基;
ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環のシクロアルキル基;
シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基等が挙げられる。
これらのうち、単環のシクロアルキル基、多環のシクロアルキル基が好ましく、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基がより好ましい。
上記これらの基が互いに合わせられ構成される環員数3〜20の脂環構造としては、例えば、
シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロオクタン構造等の単環のシクロアルカン構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造;
シクロプロペン構造、シクロブテン構造、シクロペンテン構造、シクロヘキセン構造、シクロオクテン構造等の単環のシクロアルケン構造;
ノルボルネン構造、トリシクロデセン構造、テトラシクロドデセン構造等の多環のシクロアルケン構造等が挙げられる。
これらのうち、単環のシクロアルカン構造、多環のシクロアルカン構造が好ましく、炭素数5〜8の単環のシクロアルカン構造、炭素数7〜12の多環のシクロアルカン構造がより好ましく、シクロペンタン構造、シクロヘキサン構造、シクロオクタン構造、ノルボルナン構造、アダマンタン構造がさらに好ましく、シクロペンタン構造、アダマンタン構造が特に好ましい。
上記式(Y−1)で表される基としては、Re1が炭素数1〜10の1価の鎖状炭化水素基であり、かつRe2及びRe3が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3〜20の脂環構造を表すことが好ましく、Re1が炭素数1〜10のアルキル基であり、かつRe2及びRe3が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3〜20のシクロアルカン構造を表すことがより好ましく、Re1が炭素数1〜4のアルキル基であり、かつRe2及びRe3が互いに合わせられこれらが結合する炭素原子と共に構成される環員数5〜8の単環のシクロアルカン構造又は環炭素数7〜12の多環のシクロアルカン構造を表すことがさらに好ましい。
上記Rとしては、構造単位(I−2)を与える単量体の共重合性の観点から、水素原子が好ましい。
上記Yで表される1価の酸解離性基としては、下記式(Y−2)で表される基が好ましい。
Figure 2019008300
上記式(Y−2)中、Re4、Re5及びRe6は、それぞれ独立して、水素原子、炭素数1〜20の1価の鎖状炭化水素基、炭素数3〜20の1価の脂環式炭化水素基、炭素数1〜20のオキシ鎖状炭化水素基又は炭素数1〜20のオキシ脂環式炭化水素基である。但し、Re4、Re5及びRe6が同時に水素原子である場合はない。
上記Re4、Re5及びRe6で表される炭素数1〜20の1価の鎖状炭化水素基としては、例えば、
メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基等のアルキル基;
エテニル基、プロペニル基、ブテニル基、ペンテニル基等のアルケニル基;
エチニル基、プロピニル基、ブチニル基、ペンチニル基等のアルキニル基等が挙げられる。
これらの中で、アルキル基が好ましく、炭素数1〜4のアルキル基が好ましく、メチル基、エチル基、n−プロピル基がさらに好ましく、メチル基が特に好ましい。
上記Re4、Re5及びRe6で表される炭素数3〜20の1価の脂環式炭化水素基としては、例えば、上記Re1、Re2及びRe3として例示したものと同様の基等が挙げられる。
これらの中で、単環のシクロアルキル基、多環のシクロアルキル基が好ましく、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基がより好ましい。
上記Re4、Re5及びRe6で表される炭素数1〜20の1価のオキシ鎖状炭化水素基としては、例えば、
メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、sec−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基等のアルコキシ基;
エテニルオキシ基、プロペニルオキシ基、ブテニルオキシ基、ペンテニルオキシ基等のアルケニルオキシ基;
エチニルオキシ基、プロピニルオキシ基、ブチニルオキシ基、ペンチニルオキシ基等のアルキニルオキシ基等が挙げられる。
これらの中で、アルコキシ基が好ましく、炭素数1〜4のアルコキシ基が好ましく、メトキシ基、エトキシ基、n−プロポキシ基がさらに好ましい。
上記Re4、Re5及びRe6で表される炭素数3〜20の1価のオキシ脂環式炭化水素基としては、例えば、
シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロオクチルオキシ基等の単環のシクロアルキルオキシ基;
ノルボルニルオキシ基、アダマンチルオキシ基、トリシクロデシルオキシ基、テトラシクロドデシルオキシ基等の多環のシクロアルキルオキシ基;
シクロプロペニルオキシ基、シクロブテニルオキシ基、シクロペンテニルオキシ基、シクロヘキセニルオキシ基等の単環のシクロアルケニルオキシ基;
ノルボルネニルオキシ基、トリシクロデセニルオキシ基等の多環のシクロアルケニルオキシ基等が挙げられる。
これらの中で、単環のシクロアルキルオキシ基、多環のシクロアルキルオキシ基が好ましく、シクロペンチルオキシ基、シクロヘキシルオキシ基、ノルボルニルオキシ基、アダマンチルオキシ基がより好ましい。
上記式(Y−2)で表される基としては、Re4、Re5及びRe6が1価の鎖状炭化水素基である基、Re4及びRe5が1価の鎖状炭化水素基かつRe6が1価のオキシ鎖状炭化水素基である基、Re4が1価の鎖状炭化水素基かつRe5及びRe6が1価のオキシ鎖状炭化水素基である基が好ましく、Re4、Re5及びRe6がアルキル基である基、Re4及びRe5がアルキル基かつRe6がアルコキシ基である基、Re4がアルキル基かつRe5及びRe6がアルコキシ基である基がより好ましく、Re4、Re5及びRe6がアルキル基である基がさらに好ましく、t−ブチル基、t−ペンチル基、t−ヘキシル基、t−ヘプチル基が特に好ましい。
構造単位(I)としては、例えば、
構造単位(I−1)として、下記式(3−1−1)〜(3−1−7)で表される構造単位等;
構造単位(I−2)として、下記式(3−2−1)〜(3−2−3)で表される構造単位等が挙げられる。
Figure 2019008300
上記式(3−1−1)〜(3−1−7)中、Rは、上記式(3−1)と同義である。Re1、Re2及びRe3は、上記式(Y−1)と同義である。rは、それぞれ独立して、1〜3の整数である。
上記式(3−2−1)〜(3−2−3)中、Rは、上記式(3−2)と同義である。
構造単位(I)としては、構造単位(I−1)が好ましく、上記式(3−1−2)で表される構造単位、上記式(3−1−3)で表される構造単位、上記式(3−1−4)で表される構造単位及び上記式(3−1−5)で表される構造単位がより好ましく、シクロペンタン構造を含む構造単位、アダマンタン構造を含む構造単位がさらに好ましく、1−エチル−1−シクロペンチル基、2−エチル−2−アダマンチル基、2−メチル−2−アダマンチル基を含む構造単位が特に好ましい。
構造単位(I)の含有割合としては、[A]重合体を構成する全構造単位に対して、10モル%〜70モル%が好ましく、20モル%〜60モル%がより好ましく、30モル%〜55モル%がさらに好ましく、35モル%〜50モル%が特に好ましい。構造単位(I)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能、CD均一性、解像性、断面形状の矩形性、MEEF性能、焦点深度及び露光余裕度(以下、「LWR性能等」ともいう)がより優れる。
[構造単位(II)]
構造単位(II)は、下記式(5−1)で表される構造単位(以下、「構造単位(II−1)」ともいう)及び下記式(5−2)で表される構造単位(以下、「構造単位(II−2)」ともいう)からなる群より選ばれる少なくとも1種である。[A]重合体が構造単位(II)を有することで、[B]化合物や[C]その他の酸発生剤の[A]重合体中での分散性を向上させることができる。その結果、当該感放射線性樹脂組成物は、LWR性能等がより優れる。また、当該感放射線性樹脂組成物から形成されるレジストパターンの基板への密着性を向上させることができる。
Figure 2019008300
上記式(5−1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Eは、単結合、−COO−又はCO−O−(CHiである。iは、1〜6の整数である。Rは、非酸解離性でかつ極性基を含む基である。
上記式(5−2)中、R8’は、水素原子又はメチル基である。R及びRは、それぞれ独立して、水素原子、フッ素原子、ヒドロキシ基又は1価の有機基である。sは、1〜3の整数である。sが2以上の場合、複数のR及びRはそれぞれ同一でも異なっていてもよい。R9a及びR9bは、それぞれ独立して水素原子、フッ素原子、ヒドロキシ基若しくは1価の有機基であるか、又はR9a及びR9bは互いに合わせられ、これらが結合する炭素原子と共に構成される環員数3〜30の環構造を表す。
構造単位(II−1)において、
上記Rとしては、構造単位(II−1)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
上記Eとしては、構造単位(II−1)を与える単量体の共重合性の観点から、CO−Oが好ましい。
上記Rで表される非酸解離性でかつ極性基を含む基における極性基としては、例えば、ヒドロキシ基、カルボキシ基、シアノ基、スルホ基、メルカプト基等の1価の基(a);カルボニル基、O、S、これらを組み合わせてなる2価の基(b)等が挙げられる。
上記Rで表される非酸解離性かつ極性基を含む基としては、例えば、炭素数1〜20の1価の炭化水素基が有する水素原子の一部又は全部を上記1価の基(a)で置換した基、炭素数1〜20の1価の炭化水素基の一部又は全部の炭素−炭素間に上記2価の基(b)を含む基、炭素数1〜20の1価の炭化水素基が有する水素原子の一部又は全部を上記1価の基(a)で置換し、かつ一部又は全部の炭素−炭素間に上記2価の基(b)を含む基等が挙げられる。
上記炭素数1〜20の1価の炭化水素基としては、例えば、炭素数1〜20の1価の鎖状炭化水素基、炭素数3〜20の1価の脂環式炭化水素基、炭素数6〜20の1価の芳香族炭化水素基等が挙げられる。
上記炭素数1〜20の1価の鎖状炭化水素基としては、例えば、上記式(Y−2)におけるRe4、Re5及びRe6として例示したものと同様の基等が挙げられる。
上記炭素数3〜20の1価の脂環式炭化水素基としては、例えば、上記式(Y−1)におけるRe1、Re2及びRe3として例示したものと同様の基等が挙げられる。
上記炭素数6〜20の1価の芳香族炭化水素基としては、例えば
フェニル基、トリル基、キシリル基、メシチル基、ナフチル基、メチルナフチル基、アントリル基、メチルアントリル基等のアリール基;
ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基等が挙げられる。
上記Rとしては、ラクトン構造を有する基、環状カーボネート構造を有する基、スルトン構造を有する基、ヒドロキシ基を有する基等が挙げられる。
上記ラクトン構造を有する基としては、例えば、ブチロラクトン−イル基、ノルボルナンラクトン−イル基、5−オキソ−4−オキサトリシクロ[4.3.1.13,8]ウンデカン−イル基等が挙げられる。
環状カーボネート構造を有する基としては、例えば、エチレンカーボネート−イルメチル基等が挙げられる。
スルトン構造を有する基としては、例えば、プロパンスルトン−イル基、ノルボルナンスルトン−イル基等のスルトン構造を有する基等が挙げられる。
ヒドロキシ基を有する基としては、例えば、ヒドロキシアダマンチル基、ジヒドロキシアダマンチル基、トリヒドロキシアダマンチル基、ヒドロキシエチル基等が挙げられる。
構造単位(II−2)において、
上記R8’としては、構造単位(II−2)を与える単量体の共重合性の観点から、水素原子が好ましい。
上記R、R、R9a及びR9bで表される1価の有機基としては、例えば、炭素数1〜20の1価の鎖状炭化水素基、炭素数3〜20の1価の脂環式炭化水素基、炭素数6〜20の1価の芳香族炭化水素基、これらの基が有する水素原子の一部又は全部を置換基で置換した基、これらの基の炭素−炭素間に、CO、CS、O、S若しくはNR’、又はこれらのうちの2種以上を組み合わせた基を含む基等が挙げられる。R’は、水素原子又は1価の有機基である。
9a及びR9bが互いに合わせられ、これらが結合する炭素原子と共に構成される環員数3〜30の環構造としては、例えば例えばシクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、ノルボルナン構造、アダマンタン構造等の脂環構造;オキサシクロペンタン構造、チアシクロペンタン構造、アザシクロペンタン構造等の脂肪族複素環構造等が挙げられる。
sとしては、1又は2が好ましく、1がより好ましい。
構造単位(II)としては、例えば、
構造単位(II−1)として下記式(5−1−1)〜(5−1−11)で表される構造単位等;
構造単位(II−2)として下記式(5−2−1)及び(5−2−2)で表される構造単位等が挙げられる。
Figure 2019008300
上記式(5−1−1)〜(5−1−11)中、Rは上記式(5−1)と同義である。
上記式(5−2−1)及び(5−2−2)中、R8’は、上記式(5−2)と同義である。
これらの中で、上記式(5−1−1)、(5−1−3)、(5−1−8)及び(5−1−11)で表される構造単位が好ましい。
構造単位(II)の含有割合としては、[A]重合体を構成する全構造単位に対して、0モル%〜70モル%が好ましく、10モル%〜60モル%がより好ましく、20モル%〜50モル%がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、[B]化合物や[C]その他の酸発生剤の[A]重合体中における分散性がより向上し、その結果、当該感放射線性樹脂組成物のLWR性能等がより優れる。
[構造単位(III)]
構造単位(III)は、下記式(6)で表される構造単位である。照射する放射線として、KrFエキシマレーザー光、EUV、電子線等を用いる場合には、当該感放射線性樹脂組成物は、[A]重合体中が構造単位(III)を有することで、感度を高めることができる。
Figure 2019008300
上記式(6)中、R10は、水素原子又はメチル基である。R11は、炭素数1〜20の1価の有機基である。pは、0〜3の整数である。R11が複数の場合、複数のR11は同一でも異なっていてもよい。qは、1〜3の整数である。但し、p及びqは、p+q≦5を満たす。
上記R10としては、構造単位(III)を与える単量体の共重合性の観点から、水素原子が好ましい。
上記R11で表される炭素数1〜20の1価の有機基としては、例えば、炭素数1〜20の1価の鎖状炭化水素基、炭素数3〜20の1価の脂環式炭化水素基、炭素数6〜20の1価の芳香族炭化水素基、これらの基が有する水素原子の一部又は全部を置換基で置換した基、これらの基の炭素−炭素間に、CO、CS、O、S若しくはNR”、又はこれらのうちの2種以上を組み合わせた基を含む基等が挙げられる。R”は、水素原子又は1価の有機基である。
これらの中で、1価の鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。
上記pとしては、0〜2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
上記qは、1又は2が好ましく、1がより好ましい。
構造単位(III)としては、例えば、下記式(6−1)〜(6−4)で表される構造単位等が挙げられる。
Figure 2019008300
上記式(6−1)〜(6−4)中、R10は、上記式(6)と同義である。
これらの中で、上記式(6−1)及び(6−2)で表される構造単位が好ましく、上記式(6−1)で表される構造単位がより好ましい。
構造単位(III)の含有割合としては、[A]重合体を構成する全構造単位に対して、0モル%〜90モル%が好ましく、30モル%〜80モル%がより好ましく、50モル%〜75モル%がさらに好ましい。構造単位(III)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物は、感度をより向上させることができる。
なお、構造単位(III)は、ヒドロキシスチレンのOH基の水素原子をt−ブチル基等で置換した単量体を重合した後、得られた重合体を、アミン存在下で加水分解反応を行うこと等により形成することができる。
[他の構造単位]
[A]重合体は、上記構造単位(I)〜(III)以外の他の構造単位を有していてもよい。他の構造単位としては、例えば、非解離性の1価の脂環式炭化水素基を含む(メタ)アクリル酸エステルに由来する構造単位等が挙げられる。他の構造単位の含有割合としては、[A]重合体を構成する全構造単位に対して、20モル%以下が好ましく、10モル%以下がより好ましい。
<[A]重合体の合成方法>
[A]重合体は、ラジカル重合等の常法に従って合成することができる。例えば、単量体及びラジカル開始剤を含有する溶液を反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、単量体を含有する溶液とラジカル開始剤を含有する溶液とを各別に反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、各々の単量体を含有する複数種の溶液とラジカル開始剤を含有する溶液とを各別に反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、単量体及びラジカル開始剤を含有する溶液を無溶媒中や反応溶媒中で重合反応させる方法等で合成することが好ましい。
なお、単量体溶液に対して、単量体溶液を滴下して反応させる場合、滴下される単量体溶液中の単量体量は、重合に用いられる単量体総量に対して30モル%以上であることが好ましく、50モル%以上であることがより好ましく、70モル%以上であることがさらに好ましい。
これらの方法における反応温度は開始剤種によって適宜決定すればよい。通常30℃〜150℃であり、40℃〜150℃が好ましく、50℃〜140℃がより好ましい。滴下時間は、反応温度、開始剤の種類、反応させる単量体等の条件によって異なるが、通常30分〜8時間であり、45分〜6時間が好ましく、1時間〜5時間がより好ましい。また、滴下時間を含む全反応時間も、滴下時間と同様に条件により異なるが、通常30分〜12時間であり、45分〜12時間が好ましく、1〜10時間がより好ましい。
上記重合に使用されるラジカル開始剤としては、例えば、アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−シクロプロピルプロピオニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2’−アゾビス(2−メチルプロピオネート)、ジメチル2,2’−アゾビスイソブチレート等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等が挙げられ。これらの中で、AIBN、ジメチル2,2’−アゾビス(2−メチルプロピオネート)が好ましい。なお、ラジカル開始剤は、単独で又は2種以上を組み合わせて用いてもよい。
反応溶媒としては、重合を阻害する溶媒(重合禁止効果を有するニトロベンゼン、連鎖移動効果を有するメルカプト化合物等)以外の溶媒であって、その単量体を溶解可能な溶媒であれば使用することができる。例えば、アルコール類、エーテル類、ケトン類、アミド類、エステル・ラクトン類、ニトリル類及びその混合溶媒等が挙げられる。これらの溶媒は、単独で又は2種以上を組み合わせて用いてもよい。
重合反応により得られた重合体は、再沈殿法により回収することが好ましい。すなわち重合反応終了後、重合液を再沈溶媒に投入することにより、目的の重合体を粉体として回収する。再沈溶媒としては、アルコール類やアルカン類等を単独で又は2種以上を組み合わせて用いてもよい。また、再沈殿法の他に、分液操作やカラム操作、限外ろ過操作等により、単量体、オリゴマー等の低分子成分を除去して、重合体を回収することもできる。
[A]重合体のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量(Mw)としては、1,000〜50,000が好ましく、2,000〜40,000がより好ましく、3,000〜30,000がさらに好ましく、5,000〜20,000が特に好ましい。[A]重合体のMwが上記下限未満の場合、当該感放射線性樹脂組成物から形成されたレジストパターンの耐熱性が低下するおそれがある。[A]重合体のMwが上記上限を超える場合、当該感放射線性樹脂組成物の現像性が低下するおそれがある。
[A]重合体のGPCによりポリスチレン換算数平均分子量(Mw)に対するMwの比(Mw/Mn、分散度)としては、1〜5が好ましく、1〜3がより好ましく、1〜2.5がさらに好ましい。
[A]重合体の含有量としては、当該感放射線性樹脂組成物中の全固形分に対して、70質量%以上が好ましく、80質量%以上がより好ましく、85質量%以上がさらに好ましい。
<[B]化合物>
[B]化合物は、放射線分解性オニウムカチオンとカウンターアニオンとからなる化合物であって、上記カウンターアニオンが、カルボニル基を2以上有し、上記カルボニル基同士が、単結合又は炭素数1〜10の置換又は非置換のアルカンジイル基を介して結合する化合物である。当該感放射線性樹脂組成物は、[B]化合物を含有することで、LWR性能等が優れる。
当該感放射線性樹脂組成物が上記特定構造の[B]化合物を含有することで上記効果を奏する理由については、例えば以下のように推察することができる。すなわち、[B]化合物のカウンターアニオンは、2以上のカルボニル基が互いに近傍に位置する特定構造を有している。そのため、露光により発生するプロトンが[B]化合物のカウンターアニオンに結合して得られる酸とレジスト膜中の[A]重合体との相互作用が高まり、上記酸の拡散長を適度に制御することができること、レジスト膜中に均一に分布することで酸拡散を均一に抑制することができること等が考えられる。
[B]化合物としては、下記式(1−1)で表される化合物が好ましい。当該感放射線性樹脂組成物は、下記式(1−1)で表される[B]化合物を含有することで、LWR性能等がより優れる。
Figure 2019008300
上記式(1−1)中、Aは、炭素数1〜30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は炭素数1〜10の置換又は非置換のアルカンジイル基である。Rは、炭素数1〜20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。
上記式(1−1)におけるLとしては、酸素原子が好ましい。当該感放射線性樹脂組成物は、このような特定構造の[B]化合物を含有することで、LWR性能等がさらに優れる。
[B]化合物としては、下記式(1−2)で表される化合物も好ましい。当該感放射線性樹脂組成物は、下記式(1−2)で表される[B]化合物を含有することで、LWR性能等がより優れる。
Figure 2019008300
上記式(1−2)中、Aは、炭素数1〜30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Rは、単結合又は炭素数1〜10の置換又は非置換のアルカンジイル基である。iは、0以上2以下の整数である。Rは、炭素数1〜10の置換又は非置換のアルカンジイル基である。Rは、単結合又は炭素数1〜19の2価の有機基である。iが2の場合、複数のRは、同一でも異なっていてもよい。
[B]化合物としては、下記式(1−3)で表される化合物も好ましい。当該感放射線性樹脂組成物は、下記式(1−3)で表される[B]化合物を含有することで、LWR性能等がより優れる。
Figure 2019008300
上記式(1−3)中、Aは、炭素数1〜30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。Rは、炭素数1〜10の置換又は非置換のアルカンジイル基である。
[B]化合物としては、上記式(1−1)又は(1−2)中、EがSO であって、Eに隣接する炭素原子にフッ素原子又はフッ素化アルキル基が結合する化合物(以下、「[B1]化合物」ともいう)、又は上記式(1−3)で表される化合物、EがSO であって、Eに隣接する炭素原子にフッ素原子が結合していない化合物若しくはEがCOOである化合物(以下、「[B2]化合物」ともいう)が挙げられる。[B1]化合物は酸発生剤として機能し、[B2]化合物は、酸拡散制御剤として機能するか、又はPEB温度が比較的高い場合は、酸発生剤として機能する。
Aで表される炭素数1〜30の1価の有機基としては、炭素数1〜30の1価の炭化水素基、この炭化水素基の炭素−炭素間又は結合手側の末端に−O−、−S−、−N−、−CO−、−COO−等のヘテロ原子含有基を含む基等が挙げられる。
これらのうち、上記Aとしては、−NRR、−OR又は−Rであり、Rが置換又は非置換の炭素数1〜10の鎖状炭化水素基、置換又は非置換の環員数3〜30の脂環式炭化水素基、環員数3〜30の脂肪族複素環基、置換又は非置換の環員数6〜30の芳香族炭化水素基が好ましい。
また、上記Aとしては、上記置換または非置換の環員数3〜30の脂環式炭化水素基の炭素−炭素間に−COO−を含む基も好ましい。尚、−NRRにおいては2つのRは同一でも異なっていても良い。
上記鎖状炭化水素基としては、メチル基、エチル基、プロピル基、またはブチル基等が挙げられる。
上記脂環式炭化水素基としては、例えば、
シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の単環のシクロアルキル基;
シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環のシクロアルキル基;
ノルボルネニル基、トリシクロデセニル基、テトラシクロドデセニル基等の多環のシクロアルケニル基等が挙げられる。
上記脂肪族複素環基としては、例えば、
ノルボルナンラクトン−イル基等のラクトン構造を含む基;
ノルボルナンスルトン−イル基等のスルトン構造を含む基;
オキサシクロヘプチル基、オキサノルボルニル基等の酸素原子含有複素環基;
アザシクロヘプチル基、ジアザビシクロオクタン−イル基等の窒素原子含有複素環基;
チアシクロヘプチル基、チアノルボルニル基等のイオウ原子含有複素環基等が挙げられる。
上記芳香族炭化水素基としては、例えば、
フェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
上記鎖状炭化水素基、脂環式炭化水素基又は芳香族炭化水素基が有する水素原子を置換していてもよい置換基としては、アルキル基、アルコキシ基、アリーロキシ基、アシル基、アシロキシ基、ヒドロキシ基、カルボキシ基、アミノ基、シアノ基、ニトロ基、スルホンアミド基等が挙げられる。これらのうち、炭素数1〜5の直鎖状又は分岐状のアルキル基、フェノキシ基、ヒドロキシ基が好ましい。
これらのうち、Aとしては、シクロアルキル基、ラクトン構造を有する基、シクロアルキルオキシ基、シクロアルキルアミノ基、シクロアルキルスルファニル基、ヒドロキシアリールオキシ基、アリールオキシアルキル基が好ましい。
としては、SO が好ましい。
上記式(1−1)におけるkとしては、1及び2が好ましく、1がより好ましい。但し、kが3の場合において、−C(O)−が連続して4つ以上結合することはない。
の炭素数1〜10の置換又は非置換のアルカンジイル基のうち、非置換のアルカンジイル基としては、例えばメタンジイル基、エタンジイル基、プロパンジイル基等の炭素数1〜10のアルカンジイル基が挙げられる。これらのうち、メタンジイル基、プロパン−2,2−ジイル基が好ましい。置換のアルカンジイル基としては、アルカンジイル基の同一炭素原子に結合する水素原子の一部又は全部が2価の有機基で置換された基、又はアルカンジイル基の異なる炭素原子に結合する水素原子の一部又は全部が1価の基で置換された基等が挙げられる。アルカンジイル基の同一炭素原子を置換する2価の有機基としては、ラクトン構造を有する2価の有機基、環状カーボネート構造を有する2価の有機基及びスルトン構造を有する2価の有機基が好ましく、バレロラクトン−ジイル基がより好ましい。また、アルカンジイル基の異なる炭素原子に結合する水素原子の一部又は全部を置換する1価の基としては、フッ素原子、フッ素化アルキル基が好ましく、フッ素原子がより好ましい。
としては、単結合も好ましい。
上記式(1−1)におけるRで表される炭素数1〜20の2価の有機基としては、下記式(2)で表される基、下記式(2’)で表される基等が挙げられる。これらのうち、下記式(2)で表される基が好ましい。
Figure 2019008300
上記式(2)中、R及びRは、それぞれ独立して、水素原子又は1価の有機基である。Rf及びRfは、それぞれ独立して、フッ素原子又はフッ素化アルキル基である。nは、1以上6以下の整数である。mは、0以上6以下の整数である。*1は、L又は酸素原子に結合する部位を示す。
Figure 2019008300
上記式(2’)中、Rは、炭素数2〜10の置換又は非置換のアルカンジイル基である。Rf及びRfは、それぞれ独立して、フッ素原子又はフッ素化アルキル基である。nは、1以上6以下の整数である。mは、0以上6以下の整数である。*1は、L又は酸素原子に結合する部位を示す。
上記R及びRで表される1価の有機基としては、鎖状炭化水素基等が挙げられる。
及びRとしては、水素原子が好ましい。
上記Rで表される炭素数2〜10の置換又は非置換のアルカンジイル基のうち、非置換のアルカンジイル基としては、例えば、エタンジイル基、プロパンジイル基等の炭素数1〜10のアルカンジイル基が挙げられる。置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。
上記式(2)及び(2’)におけるnとしては、2以上4以下が好ましい。
上記式(2)及び(2’)におけるRf及びRfで表されるフッ素化アルキル基としては、トリフルオロメチル基が好ましい。
上記式(2)及び(2’)におけるmとしては、0以上2以下が好ましい。
上記式(1−2)におけるiとしては、0が好ましい。
上記式(1−2)におけるRで表される炭素数1〜10の置換又は非置換のアルカンジイル基のうち、非置換のアルカンジイル基としては、例えば、メタンジイル基、エタンジイル基、プロパンジイル基等の炭素数1〜10のアルカンジイル基が挙げられる。置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。
これらのうち、Rとしては、メタンジイル基が好ましい。
上記式(1−2)におけるRの炭素数1〜19の2価の有機基としては、上記式(1−1)のRで例示した基と同様の基等が挙げられる。
上記Xで表される1価の放射線分解性オニウムカチオンは、放射線の作用により分解するカチオンである。露光部では、この放射線分解性オニウムカチオンの分解により生成するプロトンと、[B]化合物のスルホネートアニオンとからスルホン酸を生じる。上記Xで表される1価の放射線分解性オニウムカチオンとしては、例えば、スルホニウムカチオン、テトラヒドロチオフェニウムカチオン、ヨードニウムカチオン等が挙げられる。これらの中で、下記式(X−0)で表されるスルホニウムカチオン、下記式(X−1)で表されるスルホニウムカチオン、下記式(X−2)で表されるヨードニウムカチオンが好ましい。
Figure 2019008300
上記式(X−0)中、Rb4〜Rb6は、それぞれ独立して、炭素数1〜30の脂肪族炭化水素基、炭素数3〜36の脂環式炭化水素基又は炭素数10〜36の芳香族炭化水素基を表すか、Rb4とRb5とが一緒になって硫黄原子を含む3員環〜12員環の環を形成してもよい。上記脂肪族炭化水素基に含まれる水素原子は、ヒドロキシ基、炭素数1〜12のアルコキシ基、炭素数3〜12の脂環式飽和炭化水素基又は炭素数6〜18の芳香族炭化水素基で置換されていてもよく、上記脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1〜18のアルキル基、炭素数2〜4のアシル基又はグリシジルオキシ基で置換されていてもよく、上記芳香族炭化水素基に含まれる水素原子は、ハロゲン原子、ヒドロキシ基又は炭素数1〜12のアルコキシ基で置換されていてもよい。
上記式(X−0)における脂肪族炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基等が挙げられる。Rb4〜Rb6の脂肪族炭化水素基の炭素数としては、1〜12が好ましい。水素原子が脂環式炭化水素基で置換された脂肪族炭化水素基としては、例えば、1−(アダマンタン−1−イル)アルカン−1−イル基等が挙げられる。
上記式(X−0)における脂肪族炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基等が挙げられる。Rb4〜Rb6の脂肪族炭化水素基の炭素数としては、1〜12が好ましい。水素原子が脂環式炭化水素基で置換された脂肪族炭化水素基としては、例えば1−(アダマンタン−1−イル)アルカン−1−イル基等が挙げられる。
上記式(X−0)における脂環式炭化水素基としては、単環式又は多環式のいずれでもよく、上記脂環式炭化水素基に含まれる水素原子は、アルキル基で置換されていてもよい。この場合、上記脂環式炭化水素基の炭素数は、アルキル基の炭素数も含めて20以下である。単環式の脂環式炭化水素基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基等のシクロアルキル基が挙げられる。多環式の脂環式炭化水素基としては、例えばデカヒドロナフチル基、アダマンチル基、ノルボルニル基等が挙げられる。
水素原子がアルキル基で置換された脂環式炭化水素基としては、例えばメチルシクロヘキシル基、ジメチルシクロへキシル基、2−アルキルアダマンタン−2−イル基、メチルノルボルニル基、イソボルニル基等が挙げられる。
上記式(X−0)における芳香族炭化水素基としては、例えばナフチル基、フェナントリル基等が挙げられる。
水素原子がアルコキシ基で置換された芳香族炭化水素基としては、例えば4−メトキシナフチル基、4−nブトキシナフチル等が挙げられる。水素原子が芳香族炭化水素基で置換されたアルキル基、すなわちアラルキル基としては、例えばベンジル基、フェネチル基、フェニルプロピル基、トリチル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。なお、芳香族炭化水素基に、アルキル基又は脂環式炭化水素基が含まれる場合は、炭素数1〜12のアルキル基及び炭素数3〜18の脂環式炭化水素基が好ましい。
アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基等が挙げられる。
アシル基としては、例えばアセチル基、プロピオニル基及びブチリル基等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
アルキルカルボニルオキシ基としては、例えばメチルカルボニルオキシ基、エチルカルボニルオキシ基、n−プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n−ブチルカルボニルオキシ基、sec−ブチルカルボニルオキシ基、tert−ブチルカルボニルオキシ基、ペンチルカルボニルオキシ基、ヘキシルカルボニルオキシ基、オクチルカルボニルオキシ基及び2−エチルヘキシルカルボニルオキシ基等が挙げられる。
b4とRb5とが一緒になって形成してもよい硫黄原子を含む環としては、単環式、多環式、芳香族性、非芳香族性、飽和及び不飽和のいずれの環であってもよく、硫黄原子を1以上含むものであれば、さらに、1以上の硫黄原子及び/又は1以上の酸素原子を含んでいてもよい。上記環としては、炭素数3〜18の環が好ましく、炭素数4〜18の環がより好ましい。
Figure 2019008300
上記式(X−1)中、R15、R16及びR17は、それぞれ独立して置換若しくは非置換の炭素数1〜12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6〜12の芳香族炭化水素基、OSO−R若しくはSO−Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1〜12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5〜25の脂環式炭化水素基又は置換若しくは非置換の炭素数6〜12の芳香族炭化水素基である。k、m及びnは、それぞれ独立して、0〜5の整数である。R15〜R17並びにR及びRがそれぞれ複数の場合、複数のR15〜R17並びにR及びRはそれぞれ同一でも異なっていてもよい。
上記式(X−2)中、R18及びR19は、それぞれ独立して置換若しくは非置換の炭素数1〜12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6〜12の芳香族炭化水素基、OSO−R若しくはSO−Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1〜12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5〜25の脂環式炭化水素基又は置換若しくは非置換の炭素数6〜12の芳香族炭化水素基である。i及びjは、それぞれ独立して、0〜5の整数である。R18、R19、R及びRがそれぞれ複数の場合、複数のR18、R19、R及びRはそれぞれ同一でも異なっていてもよい。
上記R15〜R19で表される非置換の直鎖状のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基等が挙げられる。
上記R15〜R19で表される非置換の分岐状のアルキル基としては、例えばi−プロピル基、i−ブチル基、sec−ブチル基、t−ブチル基等が挙げられる。
上記R15〜R19で表される非置換の芳香族炭化水素基としては、例えばフェニル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
上記アルキル基及び芳香族炭化水素基が有する水素原子を置換していてもよい置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。
これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
上記R15〜R19としては、非置換の直鎖状又は分岐状のアルキル基、フッ素化アルキル基、非置換の1価の芳香族炭化水素基、OSO−R、SO−Rが好ましく、フッ素化アルキル基、非置換の1価の芳香族炭化水素基がより好ましく、フッ素化アルキル基がさらに好ましい。R”は、非置換の1価の脂環式炭化水素基又は非置換の1価の芳香族炭化水素基である。
上記式(X−1)におけるk、m及びnとしては、0〜2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
上記式(X−2)におけるi及びjとしては、0〜2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
上記スルホニウムカチオンとしては、例えば下記式(b1−1)〜(b1−10)で表されるカチオンが挙げられる。上記ヨードニウムカチオンとしては、例えば下記式(b2−1)〜(b2−12)で表されるカチオンが挙げられる。
Figure 2019008300
Figure 2019008300
これらのうち、上記式(b1−1)で表されるトリフェニルスルホニウムカチオンが好ましい。
上記オニウムカチオンは、例えばAdvances in Polymer Science,Vol.62,p.1−48(1984)に記載されている一般的な方法に準じて製造することができる。
[B]化合物としては、下記式(1−1−1)〜(1−1−17)、式(1−2−1)〜(1−2−3)、並びに式(1−3−1)及び(1−3−2)で表される化合物が好ましい。
Figure 2019008300
Figure 2019008300
Figure 2019008300
上記式(1−1−1)〜(1−1−17)、式(1−2−1)〜(1−2−3)及び式(1−3−1)〜(1−3−2)中、Xは、上記式(1−1)、(1−2)及び(1−3)と同義である。
<[B]化合物の合成>
[B]化合物のうち、例えば上記式(1−1)におけるEがSO である化合物を合成する場合、下記第1の工程、下記第2の工程及び下記第3の工程を有し、下記反応スキームで示される合成方法により合成することができる。
下記式(i−a)で表される有機ハロゲン化物とDで表される亜ジチオン酸塩とを反応させ、下記式(i−b)で表される亜硫酸塩を得る第1の工程;
下記式(i−b)で表される亜硫酸塩と過酸化水素水溶液とを反応させ、下記式(i−c)で表されるスルホン酸塩を得る第2の工程;
下記式(i−c)で表されるスルホン酸塩とXYで表されるオニウム塩とを反応させる第3の工程
Figure 2019008300
上記式(i−a)、(i−b)、(i−c)中、A、R、R、k及びXは上記式(1−1)と同義である。Zは、ハロゲン原子である。Dは、アルカリ金属である。Yは、1価のアニオンである。
なお、上記式(1−1)中、EがCOOである場合や、上記式(1−2)で表される化合物も上述と同様の方法により、[B]化合物を合成することができる。
[B]化合物の含有量としては、[B]化合物が酸発生剤として機能する[B1]化合物である場合、[A]重合体100質量部に対して、0.5質量部〜30質量部が好ましく、1質量部〜20質量部がより好ましく、2.5質量部〜15質量部がさらに好ましく、5質量部〜10質量部が特に好ましい。
一方、[B]化合物が酸拡散制御剤として機能する[B2]化合物である場合、[B]化合物の含有量としては、[A]重合体100質量部に対して、30質量部以下が好ましく、0.1質量部〜20質量部がより好ましく、0.5質量部〜10質量部がさらに好ましい。
<[G]溶媒>
「[G]溶媒」は、[A]重合体、化合物及び任意成分を溶解又は分散させるための成分である。[G]溶媒としては、例えば、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒等が挙げられる。[G]溶媒は、1種単独で又は2種以上を組み合わせて用いてもよい。
アルコール系溶媒としては、例えば、
モノアルコール系溶媒として、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、sec−ブタノール、tert−ブタノール、n−ペンタノール、iso−ペンタノール、2−メチルブタノール、sec−ペンタノール、tert−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、3−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、2,6−ジメチル−4−ヘプタノール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5−トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等;
多価アルコール系溶媒として、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、2,4−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,5−ヘキサンジオール、2,4−ヘプタンジオール、2−エチル−1,3−ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等;
多価アルコール部分エーテル系溶媒として、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等が挙げられる。
上記ケトン系溶媒としては、例えば、
鎖状ケトン系溶媒として、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、2,4−ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン等;
環状ケトン系溶媒として、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等が挙げられる。
上記アミド系溶媒としては、例えば、
鎖状アミド系溶媒として、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド等;
環状アミド系溶媒として、N−メチルピロリドン、N,N’−ジメチルイミダゾリジノン等が挙げられる。
上記エーテル系溶媒としては、例えば、
鎖状エーテル系溶媒として、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジフェニルエーテル等;
環状エーテル系溶媒としてテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
上記エステル系溶媒としては、例えば、
酢酸エステル系溶媒として、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル、酢酸iso−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、ジ酢酸グリコール、酢酸メトキシトリグリコール等;
多価アルコール部分エーテルの酢酸エステル系溶媒として、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル等;
炭酸エステル系溶媒として、ジメチルカーボネート、ジエチルカーボネート等;
その他のカルボン酸のエステル系溶媒として、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸iso−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。
これらの中で、ケトン系溶媒、エステル系溶媒が好ましく、上記ケトン系溶媒としては、環状ケトン系溶媒がより好ましく、シクロヘキサノンがさらに好ましく、上記エステル系溶媒としては、多価アルコール部分エーテルの酢酸エステル系溶媒がより好ましく、酢酸プロピレングリコールモノメチルエーテルがさらに好ましい。
<[C]酸発生剤>
[C]酸発生剤は、上記[B]化合物以外の酸発生剤であって、放射線の照射により酸を発生するスルホネート化合物である。[C]酸発生剤によれば、例えば、[A]重合体の酸解離性基を含む構造単位が構造単位(I−1)である場合等においては、この酸発生剤から発生した酸が触媒となり、酸解離性基を解離させることができる。その結果、当該感放射線性樹脂組成物の感度を高めることができる。[C]酸発生剤は、1種単独で又は2種以上を組み合わせて用いてもよい。
[C]酸発生剤としては、例えば、スルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩等のオニウム塩化合物等が挙げられる。
上記スルホニウム塩としては、例えば、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、トリフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、シクロヘキシル2−オキソシクロヘキシルメチルスルホニウムトリフルオロメタンスルホネート、ジシクロヘキシル2−オキソシクロヘキシルスルホニウムトリフルオロメタンスルホネート、2−オキソシクロヘキシルジメチルスルホニウムトリフルオロメタンスルホネート、4−ヒドロキシ−1−ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウム2−(アダマンタン−1−イル)−1,1−ジフルオロエタン−1−スルホネート、トリフェニルスルホニウム4−(アダマンタン−1−イルカルボニルオキシ)−1,1,2,2−テトラフルオロブタン−1−スルホネート等が挙げられる。
上記テトラヒドロチオフェニウム塩としては、例えば、4−ヒドロキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−ヒドロキシ−1−ナフチルテトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、4−ヒドロキシ−1−ナフチルテトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(1−ナフチルアセトメチル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(1−ナフチルアセトメチル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(1−ナフチルアセトメチル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート等が挙げられる。
上記ヨードニウム塩としては、例えば、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ−n−ブタンスルホネート、ジフェニルヨードニウムパーフルオロ−n−オクタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムノナフルオロ−n−ブタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムパーフルオロ−n−オクタンスルホネート等が挙げられる。
これらの中で、オニウム塩化合物が好ましく、スルホニウム塩がより好ましく、トリフェニルスルホニウム2−(アダマンタン−1−イルカルボニルオキシ)−1,1,2,2−テトラフルオロブタン−1−スルホネートがさらに好ましい。
[C]酸発生剤の含有量としては、当該感放射線性樹脂組成物の感度及び現像性の観点から、[A]重合体100質量部に対して、0.1質量部〜30質量部が好ましく、1質量部〜20質量部がより好ましく、3質量部〜10質量部がさらに好ましい。[C]酸発生剤の含有量が上記下限未満の場合、当該感放射線性樹脂組成物の感度及び現像性が低下する傾向にある。[C]酸発生剤の含有量が上記上限を超える場合、当該感放射線性樹脂組成物の放射線に対する透明性が低下して矩形のレジストパターンが得られ難くなる傾向がある。
<[D]酸拡散制御体>
[D]酸拡散制御体は、露光により[B]化合物や[C]酸発生剤から生じる酸のレジスト膜中における拡散現象を制御し、未露光部における好ましくない化学反応を抑制する効果を奏する。当該感放射線性樹脂組成物における酸拡散制御体の含有形態としては、後述するような化合物の形態(以下、この態様を「[D]酸拡散制御剤」ともいう)でも、重合体の一部として組み込まれた態様でも、これらの両方の態様形態でもよい。
[D]酸拡散制御剤としては、例えばアミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。
アミン化合物としては、例えばモノ(シクロ)アルキルアミン類;ジ(シクロ)アルキルアミン類;トリ(シクロ)アルキルアミン類;置換アルキルアニリン又はその誘導体;エチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルアミン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2−(4−アミノフェニル)−2−(3−ヒドロキシフェニル)プロパン、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパン、1,4−ビス(1−(4−アミノフェニル)−1−メチルエチル)ベンゼン、1,3−ビス(1−(4−アミノフェニル)−1−メチルエチル)ベンゼン、ビス(2−ジメチルアミノエチル)エーテル、ビス(2−ジエチルアミノエチル)エーテル、1−(2−ヒドロキシエチル)−2−イミダゾリジノン、2−キノキサリノール、N,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’’N’’−ペンタメチルジエチレントリアミン等が挙げられる。
アミド基含有化合物としては、例えばN−t−ブトキシカルボニル基含有アミノ化合物、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン、N−アセチル−1−アダマンチルアミン、イソシアヌル酸トリス(2−ヒドロキシエチル)等が挙げられる。
ウレア化合物としては、例えば尿素、メチルウレア、1,1−ジメチルウレア、1,3−ジメチルウレア、1,1,3,3−テトラメチルウレア、1,3−ジフェニルウレア、トリ−n−ブチルチオウレア等が挙げられる。
含窒素複素環化合物としては、例えばイミダゾール類;ピリジン類;ピペラジン類;ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、ピペリジンエタノール、3−ピペリジノ−1,2−プロパンジオール、モルホリン、4−メチルモルホリン、1−(4−モルホリニル)エタノール、4−アセチルモルホリン、3−(N−モルホリノ)−1,2−プロパンジオール、1,4−ジメチルピペラジン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。
[D]酸拡散制御剤は、単独で使用してもよく2種以上を併用してもよい。[D]酸拡散制御剤の含有量としては、[A]重合体100質量部に対して、15質量部未満が好ましい。[D]酸拡散制御剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等をさらに向上させることができる。
<[E]フッ素原子含有重合体>
[E]フッ素原子含有重合体は、フッ素原子を含む重合体であって、上記[A]重合体とは異なる重合体である。当該感放射線性樹脂組成物によれば、[A]重合体に加えて[E]フッ素原子含有重合体をさらに含有することで、形成されるレジスト膜の表層に[E]フッ素原子含有重合体が偏在化し、その結果、レジスト膜表面の疎水性を向上させることができる。これにより、液浸露光を行う場合等に、レジスト膜からの物質溶出抑制性に優れると共に、レジスト膜と液浸液との後退接触角を十分高くすることができ、より高速なスキャンが可能になる。
[E]フッ素原子含有重合体としては特に限定されないが、それ自体は現像液に不溶で酸の作用によりアルカリ可溶性となる重合体、それ自体が現像液に可溶であり酸の作用によりアルカリ可溶性が増大する重合体、それ自体は現像液に不溶でアルカリの作用によりアルカリ可溶性となる重合体、それ自体が現像液に可溶でありアルカリの作用によりアルカリ可溶性が増大する重合体等が挙げられる。
[E]フッ素原子含有重合体の態様としては、例えば、
主鎖にフッ素化アルキル基が結合した構造;
側鎖にフッ素化アルキル基が結合した構造;
主鎖と側鎖とにフッ素化アルキル基が結合した構造等が挙げられる。
主鎖にフッ素化アルキル基が結合した構造を与える単量体としては、例えば、α−トリフルオロメチルアクリレート化合物、β−トリフルオロメチルアクリレート化合物、α,β−トリフルオロメチルアクリレート化合物、1種類以上のビニル部位の水素原子がトリフルオロメチル基等のフッ素化アルキル基で置換された化合物等が挙げられる。
側鎖にフッ素化アルキル基が結合した構造を与える単量体としては、例えば、ノルボルネン等の脂環式オレフィン化合物の側鎖がフッ素化アルキル基やその誘導体であるもの、アクリル酸又はメタクリル酸の側鎖がフッ素化アルキル基やその誘導体のエステル化合物、1種類以上のオレフィンの側鎖(二重結合を含まない部位)がフッ素化アルキル基やその誘導体であるもの等が挙げられる。
主鎖と側鎖とにフッ素化アルキル基が結合した構造を与える単量体としては、例えば、α−トリフルオロメチルアクリル酸、β−トリフルオロメチルアクリル酸、α,β−トリフルオロメチルアクリル酸等の側鎖がフッ素化アルキル基やその誘導体のエステル化合物、1種類以上のビニル部位の水素原子がトリフルオロメチル基等のフッ素化アルキル基で置換された化合物の側鎖をフッ素化アルキル基やその誘導体で置換したもの、1種類以上の脂環式オレフィン化合物の二重結合に結合している水素原子をトリフルオロメチル基等のフッ素化アルキル基で置換し、かつ側鎖がフッ素化アルキル基やその誘導体であるもの等が挙げられる。なお、脂環式オレフィン化合物とは、環の一部が二重結合である化合物を示す。
[E]フッ素原子含有重合体は、下記式(7)で表される構造単位(以下、「構造単位(f1)ともいう」及び/又は下記式(8)で表される構造単位(以下、「構造単位(f2)」ともいう)を有することが好ましい。また、[E]フッ素原子含有重合体は、構造単位(f1)及び構造単位(f2)以外の「他の構造単位」を有してもよい。なお、[E]フッ素原子含有重合体は、各構造単位を1種又は2種以上含んでいてもよい。以下、各構造単位について詳述する。
[構造単位(f1)]
構造単位(f1)は下記式(7)で表される構造単位である。
Figure 2019008300
上記式(7)中、Rf3は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rf4は、フッ素原子を有する炭素数1〜6の直鎖状若しくは分岐状のアルキル基又はフッ素原子を有する炭素数4〜20の1価の脂環式炭化水素基である。但し、上記アルキル基及び脂環式炭化水素基が有する水素原子の一部又は全部は、置換されていてもよい。
上記炭素数1〜6の直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。
上記炭素数4〜20の1価の脂環式炭化水素基としては、例えば、シクロペンチル基、シクロペンチルプロピル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘプチル基、シクロオクチル基、シクロオクチルメチル基等が挙げられる。
構造単位(f1)を与える単量体としては、例えば、トリフルオロメチル(メタ)アクレート、2,2,2−トリフルオロエチル(メタ)アクリレート、パーフルオロエチル(メタ)アクリレート、パーフルオロn−プロピル(メタ)アクリレート、パーフルオロi−プロピル(メタ)アクリレート、パーフルオロn−ブチル(メタ)アクリレート、パーフルオロi−ブチル(メタ)アクリレート、パーフルオロt−ブチル(メタ)アクリレート、パーフルオロシクロヘキシル(メタ)アクリレート、2−(1,1,1,3,3,3−ヘキサフルオロ)プロピル(メタ)アクリレート、1−(2,2,3,3,4,4,5,5−オクタフルオロ)ペンチル(メタ)アクリレート、1−(2,2,3,3,4,4,5,5−オクタフルオロ)ヘキシル(メタ)アクリレート、パーフルオロシクロヘキシルメチル(メタ)アクリレート、1−(2,2,3,3,3−ペンタフルオロ)プロピル(メタ)アクリレート、1−(2,2,3,3,4,4,4−ヘプタフルオロ)ペンタ(メタ)アクリレート、1−(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10−ヘプタデカフルオロ)デシル(メタ)アクリレート、1−(5−トリフルオロメチル−3,3,4,4,5,6,6,6−オクタフルオロ)ヘキシル(メタ)アクリレート等が挙げられる。
構造単位(f1)としては、下記式(7−1)及び(7−2)で表される構造単位が好ましい。
Figure 2019008300
上記式(7−1)及び(7−2)中、Rf3は、上記式(7)と同義である。
これらの中で、式(7−1)で表される構造単位がより好ましい。
構造単位(f1)の含有割合としては、[E]フッ素原子含有重合体を構成する全構造単位に対して、10モル%〜70モル%が好ましく、20モル%〜50モル%がより好ましい。
[構造単位(f2)]
構造単位(f2)は、下記式(8)で表される構造単位である。
Figure 2019008300
上記式(8)中、Rf5は、水素原子、フッ素原子、メチル基、又はトリフルオロメチル基である。Rf6は、(r+1)価の連結基である。Xは、フッ素原子を有する2価の連結基である。Rf7は、水素原子又は1価の有機基である。rは、1〜3の整数である。但し、rが2又は3の場合、複数のX及びRf7は、それぞれ同一であっても異なっていてもよい。
上記式(8)中、Rf6で表される(r+1)価の連結基としては、例えば、炭素数1〜30の直鎖状又は分岐状の炭化水素基、炭素数3〜30の脂環式炭化水素基、炭素数6〜30の芳香族炭化水素基、又はこれらの基と酸素原子、硫黄原子、エーテル基、エステル基、カルボニル基及びイミノ基からなる群より選ばれる1種以上の基とを組み合わせた基が挙げられる。また、上記(r+1)価の連結基は、置換基を有していてもよい。
上記炭素数1〜30の直鎖状又は分岐状の炭化水素基としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、デカン、イコサン、トリアコンタン等の炭化水素基から(r+1)個の水素原子を除いた基等が挙げられる。
上記炭素数3〜30の脂環式炭化水素基としては、例えば、
単環式飽和炭化水素として、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、メチルシクロヘキサン、エチルシクロヘキサン等;
単環式不飽和炭化水素として、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、シクロデカジエン等;
多環式飽和炭化水素として、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン、アダマンタン等;
多環式不飽和炭化水素として、ビシクロ[2.2.1]ヘプテン、ビシクロ[2.2.2]オクテン、トリシクロ[5.2.1.02,6]デセン、トリシクロ[3.3.1.13,7]デセン、テトラシクロ[6.2.1.13,6.02,7]ドデセン等から(r+1)個の水素原子を除いた基等が挙げられる。
上記炭素数6〜30の芳香族炭化水素基としては、例えば、ベンゼン、ナフタレン、フェナントレン、アントラセン、テトラセン、ペンタセン、ピレン、ピセン、トルエン、キシレン、エチルベンゼン、メシチレン、クメン等の芳香族炭化水素基から(r+1)個の水素原子を除いた基等が挙げられる。
上記式(8)中、Xで表されるフッ素原子を有する2価の連結基としては、フッ素原子を有する炭素数1〜20の2価の直鎖状炭化水素基が挙げられる。Xとしては、例えば、下記式(X1−1)〜(X1−6)で表される基等が挙げられる。
Figure 2019008300
としては、上記式(X1−1)及び(X1−2)で表される基が好ましく、式(X1−2)で表される基がより好ましい。
上記式(8)中、Rf7で表される1価の有機基としては、例えば、炭素数1〜30の直鎖状又は分岐状の炭化水素基、炭素数3〜30の脂環式炭化水素基、炭素数6〜30の芳香族炭化水素基、又はこれらの基と酸素原子、硫黄原子、エーテル基、エステル基、カルボニル基及びイミノ基からなる群より選ばれる1種以上の基とを組み合わせた基等が挙げられる。
上記構造単位(f2)としては、例えば、下記式(8−1)及び式(8−2)で表される構造単位等が挙げられる。
Figure 2019008300
上記式(8−1)中、Rf6は、炭素数1〜20の2価の直鎖状又は分岐状の飽和若しくは不飽和の炭化水素基、炭素数3〜20の環状の飽和若しくは不飽和の炭化水素基である。Rf5、X及びRf7は、上記式(8)と同義である。
上記式(8−2)中、Rf5、X、Rf7及びoは上記式(8)と同義である。但し、kが2又は3の場合、複数のX及びRf7は、それぞれ同一であっても異なっていてもよい。
上記式(8−1)及び式(8−2)で表される構造単位としては、例えば、下記式(8−1−1)〜(8−1−3)及び式(8−2−1)で表される構造単位等が挙げられる。
Figure 2019008300
上記式(8−1−1)〜(8−1−3)及び式(8−2−1)中、Rf5は上記式(8)と同義である。
構造単位(f2)としては、上記式(8−1)で表される構造単位が好ましく、上記式(8−1−3)で表される構造単位がより好ましい。
構造単位(f2)を与える単量体としては、例えば、(メタ)アクリル酸[2−(1−エチルオキシカルボニル−1,1−ジフルオロ−n−ブチル)]エステル、(メタ)アクリル酸(1,1,1−トリフルオロ−2−トリフルオロメチル−2−ヒドロキシ−3−プロピル)エステル、(メタ)アクリル酸(1,1,1−トリフルオロ−2−トリフルオロメチル−2−ヒドロキシ−4−ブチル)エステル、(メタ)アクリル酸(1,1,1−トリフルオロ−2−トリフルオロメチル−2−ヒドロキシ−5−ペンチル)エステル、(メタ)アクリル酸2−{[5−(1’,1’,1’−トリフルオロ−2’−トリフルオロメチル−2’−ヒドロキシ)プロピル]ビシクロ[2.2.1]ヘプチル}エステル等が挙げられる。これらの中で、(メタ)アクリル酸[2−(1−エチルオキシカルボニル−1,1−ジフルオロ−n−ブチル)]エステルが好ましい。
構造単位(f2)の含有割合としては、[E]フッ素原子含有重合体を構成する全構造単位に対して、30モル%〜90モル%が好ましく、50モル%〜80モル%がより好ましい。
[他の構造単位]
[E]フッ素原子含有重合体は、構造単位(f1)、構造単位(f2)以外の「他の構造単位」を含んでいてもよい。他の構造単位としては、例えば、[A]重合体の構造単位(I)等が挙げられる。
他の構造単位の含有割合としては、[E]フッ素原子含有重合体を構成する全構造単位に対して、5モル%〜90モル%が好ましく、10モル%〜80モル%がより好ましく、20モル%〜70モル%がさらに好ましい。
[E]フッ素原子含有重合体の含有量としては、[A]重合体100質量部に対して、20質量部以下が好ましく、0.1質量部〜15質量部がより好ましく、1質量部〜10質量部がさらに好ましく、1質量部〜6質量部が特に好ましい。[E]フッ素原子含有重合体の含有量が上記上限を超える場合、レジスト膜表面の撥水性が高くなり過ぎて現像不良が起こる場合がある。
[E]フッ素原子含有重合体のフッ素原子含有率としては、[A]重合体のフッ素原子含有率よりも大きいことが好ましい。[E]フッ素原子含有重合体におけるフッ素原子含有率が[A]重合体よりも大きいと、[A]重合体及び[E]フッ素原子含有重合体を含有する感放射線性樹脂組成物により形成されたレジスト膜表面の撥水性をより高めることができる。[E]フッ素原子含有重合体のフッ素原子含有率と、[A]重合体のフッ素原子含有率との差は1質量%以上が好ましく、3質量%以上がより好ましい。
また、[E]フッ素原子含有重合体のフッ素原子含有率としては、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上が特に好ましい。なお、このフッ素原子含有率(質量%)は、13C−NMRにより重合体の構造を求め、その構造から算出することができる。
<[E]フッ素原子含有重合体の合成方法>
[E]フッ素原子含有重合体は、例えば、所定の各構造単位に対応する単量体を、ラジカル重合開始剤を使用し、適当な重合溶媒中で重合することにより合成できる。
上記ラジカル重合開始剤としては、例えば、[A]重合体の合成方法で用いたラジカル重合開始剤と同様のもの等が挙げられる。上記重合溶媒としては、例えば、[A]重合体の合成方法で用いた重合溶媒と同様のもの等が挙げられる。
上記重合における反応温度としては、通常40℃〜150℃であり、50℃〜120℃が好ましい。反応時間としては、通常1時間〜48時間であり、1時間〜24時間が好ましい。
[E]フッ素原子含有重合体のMwとしては、1,000〜50,000が好ましく、2,000〜30,000がより好ましく、3,000〜10,000がさらに好ましい。[E]フッ素原子含有重合体のMwが1,000未満の場合、十分な後退接触角を得ることができない。一方、Mwが50,000を超えると、レジストとした際の現像性が低下する傾向にある。
[E]フッ素原子含有重合体のMwとMnとの比(Mw/Mn)としては、1〜5が好ましく、1〜3がより好ましい。
<[F]偏在化促進剤>
偏在化促進剤(以下、「[F]偏在化促進剤」ともいう)は、[E]フッ素原子含有重合体を、より効率的にレジスト膜表面に偏析させる成分である。当該感放射線性樹脂組成物が[F]偏在化促進剤を含有することで、[E]フッ素原子含有重合体をレジスト膜表面により効果的に偏析させることができ、結果として[E]フッ素原子含有重合体の使用量を少なくすることができる。[F]偏在化促進剤としては、例えば、ラクトン化合物、カーボネート化合物、ニトリル化合物等が挙げられる。[F]偏在化促進剤は、1種単独で又は2種以上を組み合わせて用いてもよい。
上記ラクトン化合物としては、例えば、γ−ブチロラクトン、バレロラクトン、メバロニックラクトン、ノルボルナンラクトン等が挙げられる。
上記カーボネート化合物としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。
上記ニトリル化合物としては、例えば、スクシノニトリル等が挙げられる。
これらの中で、ラクトン化合物が好ましく、γ−ブチロラクトンがより好ましい。
[F]偏在化促進剤の含有量としては、[A]重合体100質量部に対して、5質量部〜300質量部が好ましく、10質量〜100質量部がより好ましく、20質量部〜70質量部がさらに好ましい。
<その他の任意成分>
当該感放射線性樹脂組成物は、上記[A]〜[G]成分に加え、本発明の効果を損なわない限り、界面活性剤、脂環式骨格含有化合物、増感剤等のその他の任意成分を含有できる。その他の任意成分は、各成分を2種以上併用してもよい。また、その他の任意成分の含有量は、その目的に応じて適宜決定することができる。
<感放射線性樹脂組成物の調製方法>
当該感放射線性樹脂組成物は、[A]重合体、[B]化合物、[G]溶媒及び必要に応じて[C]酸発生剤、[D]酸拡散制御体、[E]フッ素原子含有重合体等の各任意成分を所定の割合で混合することにより調製できる。
当該感放射線性樹脂組成物の固形分濃度としては0.1質量%〜50質量%が好ましく、0.5質量%〜30質量%がより好ましく、1質量%〜10質量%がさらに好ましい。
<レジストパターンの形成方法>
当該レジストパターンの形成方法は、
当該感放射線性樹脂組成物でレジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)、上記レジスト膜を露光する工程(以下、「露光工程」ともいう)及び上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)を有する。以下、各工程について説明する。
[レジスト膜形成工程]
本工程では、上述の本発明の感放射線性樹脂組成物を用い、レジスト膜を形成する。塗布方法としては特に限定されないが、例えば、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段を採用することができる。基板としては、例えば、シリコンウエハ、アルミニウムで被覆されたウエハ等が挙げられる。具体的には、得られるレジスト膜が所定の厚さになるように当該組成物を塗布した後、必要に応じてプレベーク(PB)することで塗膜中の溶媒を揮発させる。塗膜の膜厚としては、10nm〜500nmが好ましい。PBの温度としては、通常60℃〜140℃であり、80℃〜120℃が好ましい。PBの時間としては、通常5秒〜600秒であり、10秒〜300秒が好ましい。
[露光工程]
本工程では、上記レジスト膜形成工程で形成されたレジスト膜を露光する。この露光は、場合によっては、水等の液浸媒体を介し、所定のパターンを有するマスクを介して放射線を照射することにより行う。上記放射線としては、目的とするパターンの線幅に応じて、例えば、可視光線、紫外線、遠紫外線、EUV(波長13.5nm)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線等から適宜選択される。これらの中で、当該感放射線性樹脂組成物の[A]重合体が構造単位(I−1)を有する場合等は、遠紫外線が好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)がより好ましく、ArFエキシマレーザー光がさらに好ましい。また、当該感放射線性樹脂組成物の[A]重合体が構造単位(I−2)を有する場合等は、電子線、EUVが好ましい。
また、露光後にポストエクスポージャーベーク(PEB)を行うことが好ましい。PEBを行うことで、レジスト膜の露光された部位における酸解離性基の解離反応を円滑に進行させることができる。PEBの温度としては、通常50℃〜180℃であり、80℃〜130℃が好ましい。PEBの時間としては、通常5秒〜600秒であり、10秒〜300秒が好ましい。
本発明においては、感放射線性樹脂組成物の潜在能力を最大限に引き出すため、例えば、使用される基板上に有機系又は無機系の反射防止膜を形成しておくこともできる。また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば、塗膜上に保護膜を設けることもできる。また、液浸露光を行う場合は、液浸媒体とレジスト膜との直接的な接触を避けるため、例えば、レジスト膜上に液浸用保護膜を設けてもよい。
[現像工程]
本工程では、上記露光工程で露光されたレジスト膜を現像する。この現像に用いる現像液としては、例えば、アルカリ現像液、有機溶媒現像液等が挙げられる。これにより、所定のレジストパターンが形成される。
上記アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n−プロピルアミン、ジエチルアミン、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ−[4.3.0]−5−ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液等が挙げられる。
上記有機溶媒現像液としては、例えば、
アルコール系溶媒として、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、sec−ブタノール等;
エーテル系溶媒として、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジフェニルエーテル、アニソール等;
ケトン系溶媒として、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチルアミルケントン、メチル−n−ブチルケトン等;
アミド系溶媒として、N,N’−ジメチルイミダゾリジノン、N−メチルホルムアミド、N,N−ジメチルホルムアミド等;
エステル系溶媒として、ジエチルカーボネート、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル等が挙げられる。
これらの現像液は、単独で又は2種以上を組み合わせて用いてもよい。なお、現像後は、水等で洗浄し、乾燥することが一般的である。
本発明の感放射線性酸発生剤は、上記式(1−1)、上記式(1−2)又は上記式(1−3)で表される化合物からなる。当該感放射線性酸発生剤は、上記構造を有する化合物からなるので、感放射線性酸発生剤として好適に用いられる。
<化合物>
本発明の化合物は、上記式(1−1)、上記式(1−2)又は上記式(1−3)で表される。当該化合物は、上記構造を有するので、当該感放射線性酸発生剤を構成する化合物として好適に用いることができる。
当該感放射線性酸発生剤及び当該化合物については、上述の感放射線性樹脂組成物の[B]化合物の項で説明している。
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定
されるものではない。各種物性値の測定方法を以下に示す。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー株式会社のGPCカラム(G2000HXL:2本、G3000HXL:1本、G4000HXL:1本)を使用し、以下の条件により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
溶出溶媒 :テトラヒドロフラン
流量 :1.0mL/分
試料濃度 :1.0質量%
試料注入量:100μL
カラム温度:40℃
検出器 :示差屈折計
標準物質 :単分散ポリスチレン
13C−NMR分析]
核磁気共鳴装置(日本電子株式会社の「JNM−ECX400」)を用い、測定溶媒として重クロロホルムを使用して、各重合体における各構造単位の含有割合(モル%)を求めた。
<[B]化合物の合成>
[実施例1](化合物(B−1)の合成)
3Lのナス型フラスコにアダマンタノールA122g(0.80mol)、トリエチルアミン97.1g(0.96mol)、アセトニトリル800gを加え、氷浴にて0℃に冷却した。そこへ、酸クロリドBを120g(0.88mol)滴下した。滴下終了後、室温で7時間撹拌した。溶媒を酢酸エチルに置換した後、セライトろ過によって塩を除去した。水洗した後に有機相を無水硫酸ナトリウムで乾燥し、溶媒を留去した。カラムクロマトグラフィで精製することにより、エチルエステルC181gを得た(収率90%)。
200mLのナス型フラスコに上記得られたエチルエステルC15g(59.5mmol)を加え、100gのテトラヒドロフランに溶解した。そこへ5質量%の水酸化リチウム水溶液を34.2g(71.3mmol)滴下した。室温で10時間撹拌した後、水酸化リチウムと当量の濃塩酸を加え室温で20分撹拌した。有機相を回収し無水硫酸ナトリウムで乾燥させた後、溶媒を留去することでカルボン酸D13.0gを得た(収率98%)。
100mLのナス型フラスコに上記得られたカルボン酸Dを3.30g(14.7mmol)加え、アセトニトリル15gに溶解させた。そこへ、ジクロロメチルメチルエーテル5.07g(44.1mmol)をゆっくりと滴下した後、60℃にて10時間加熱撹拌した。溶媒と過剰のジクロロメチルメチルエーテルを除去した後、10mLのアセトニトリルを加え、氷浴にて0℃に冷却した(E)。そこへ、4−ブロモ−3,3,4,4−テトラフルオロブタン−1−オール3.51g(14.7mmol)と、トリエチルアミン1.78g(17.6mmol)を30mLのアセトニトリルに溶解させた溶液をゆっくりと滴下した。滴下終了後、室温で10時間撹拌した。溶媒を酢酸エチルに置換した後、セライトろ過によって塩を除去した。水洗した後に、有機相を無水硫酸ナトリウムで乾燥し、溶媒を留去した。カラムクロマトグラフィで精製することにより、エステルFを4.89g得た(収率75%)。
200mLのナス型フラスコにエステルF3.18g(7.37mmol)と30gのアセトニトリルとを加え溶解させた。そこへ、1.86g(22.1mmol)の炭酸水素ナトリウムと2.57g(14.7mmol)の亜ジチオンサンナトリウムとを30gの水に溶解させたものを一気に加えた後、65℃で4時間加熱撹拌した。室温まで冷却した後に、チオ硫酸ナトリウム水溶液で2回洗浄した(G)。有機層を回収し、30%の過酸化水素水溶液を2.51g(22.1mmol)加え、55℃にて6時間加熱撹拌した。室温に冷却した後、亜硫酸ナトリウム水溶液で過剰の過酸化水素をクエンチした(H)。有機層を回収し、溶媒留去した後にトリフェニルスルホニウムクロリド2.20g(7.37mmol)、ジクロロメタン50g、水25gを加え室温にて10時間撹拌した。有機層を6回水洗した後、溶媒を留去することにより下記式(B−1)で表される化合物(以下、「化合物(B−1)」ともいう)を4.45g得た(収率87%)。以下に、(B−1)化合物合成のスキームを示す。
Figure 2019008300
[実施例2〜16](化合物(B−2)〜化合物(B−22)の合成)
前駆体を適宜選択したこと以外は、実施例1と同様に操作して、下記式(B−2)〜(B−22)で表される化合物を合成した。
Figure 2019008300
Figure 2019008300
<[A]重合体及び[E]フッ素原子含有重合体の合成>
各実施例及び比較例における各重合体の合成に用いた単量体を下記に示す。
Figure 2019008300
[合成例1](重合体(A−1)の合成)
化合物(M−6)7.97g(35モル%)、化合物(M−7)7.44g(45モル%)及び化合物(M−8)4.49g(20モル%)を2−ブタノン40gに溶解し、開始剤としてAIBN0.80g(全モノマーに対して5モル%)を添加して単量体溶液を調製した。次いで20gの2−ブタノンを投入した100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。400gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を80gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A−1)を合成した(15.2g、収率76%)。重合体(A−1)のMwは7,300であり、Mw/Mnは1.53であった。13C−NMR分析の結果、(M−6)、(M−7)、(M−8)に由来する各構造単位の含有割合は、それぞれ34.3モル%、45.1モル%及び20.6モル%であった。
[合成例2](重合体(A−2)の合成)
化合物(M−1)6.88g(40モル%)、化合物(M−9)2.30g(10モル%)及び化合物(M−2)10.83g(50モル%)を2−ブタノン40gに溶解し、開始剤としてAIBN0.72g(全モノマーに対して5モル%)を添加して単量体溶液を調製した。次いで20gの2−ブタノンを入れた100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。400gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を80gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A−2)を合成した(14.9g、収率75%)。重合体(A−2)のMwは7,500であり、Mw/Mnは1.55であった。13C−NMR分析の結果、(M−1)、(M−9)、(M−2)に由来する各構造単位の含有割合は、それぞれ40.1モル%、10.1モル%及び9.8モル%であった。
[合成例3](重合体(A−3)の合成)
化合物(M−1)3.43g(20モル%)、化合物(M−11)3.59g(15モル%)、化合物(M−10)7.83g(40モル%)及び化合物(M−8)5.16g(25モル%)を2−ブタノン40gに溶解し、開始剤としてAIBN0.72g(全モノマーに対して5モル%)を添加して単量体溶液を調製した。次いで20gの2−ブタノンを入れた100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。400gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を80gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A−3)を合成した(15.3g、収率77%)。重合体(A−3)のMwは7,200であり、Mw/Mnは1.53であった。13C−NMR分析の結果、(M−1)、(M−11)、(M−10)、(M−8)に由来する各構造単位の含有割合は、それぞれ19.5モル%、15.5モル%、40.1モル%及び24.9モル%であった。
[合成例4](重合体(A−4)の合成)
化合物(M−5)55.0g(65モル%)及び化合物(M−3)45.0g(35モル%)、開始剤としてAIBN4g、並びにt−ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル100gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して、16時間共重合させた。重合反応終了後、重合溶液を1,000gのn−ヘキサン中に滴下して、重合体を凝固精製した。次いで上記重合体に、再度プロピレングリコールモノメチルエーテル150gを加えた後、更に、メタノール150g、トリエチルアミン34g及び水6gを加えて、沸点にて還流させながら、8時間加水分解反応を行った。反応終了後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン150gに溶解した後、2,000gの水中に滴下して凝固させ、生成した白色粉末をろ過し、50℃で17時間乾燥させて白色粉末状の重合体(A−4)を得た(65.7g、収率77%)。重合体(A−4)のMwは7,500であり、Mw/Mnは1.90であった。13C−NMR分析の結果、p−ヒドロキシスチレン及び(M−3)に由来する各構造単位の含有割合は、それぞれ65.4モル%及び34.6モル%であった。
[合成例5](重合体(E−1)の合成)
化合物(M−1)79.9g(70モル%)及び化合物(M−4)20.91g(30モル%)を、100gの2−ブタノンに溶解し、開始剤としてジメチル2,2’−アゾビスイソブチレート4.77gを溶解させて単量体溶液を調製した。次いで100gの2−ブタノンを入れた1,000mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。反応溶液を2L分液漏斗に移液した後、150gのn−ヘキサンで上記重合溶液を均一に希釈し、600gのメタノールを投入して混合した。
次いで30gの蒸留水を投入し、さらに攪拌して30分静置した。その後、下層を回収し、固形分である重合体(E−1)を含むプロピレングリコールモノメチルエーテルアセテート溶液を得た(収率60%)。重合体(E−1)のMwは7,200であり、Mw/Mnは2.00であった。13C−NMR分析の結果、(M−1)及び(M−4)に由来する各構造単位の含有割合は、それぞれ71.1モル%及び28.9モル%であった。
<感放射線性樹脂組成物の調製>
各感放射線性樹脂組成物の調製に用いた成分を下記に示す。
[[C]酸発生剤]
下記式(C−1)で表される化合物
Figure 2019008300
[[D]酸拡散制御剤]
下記式(D−1)及び(D−2)で表される化合物
Figure 2019008300
[[G]溶媒]
G−1:酢酸プロピレングリコールモノメチルエーテル
G−2:シクロヘキサノン
[[F]偏在化促進剤]
F−1:γ−ブチロラクトン
[実施例17](感放射線性樹脂組成物(J−1)の調製)
[A]重合体としての(A−1)100質量部、[D]酸拡散制御剤としての(D−1)2.3質量部、[B]化合物としての(B−1)8.5質量部、[E]フッ素原子含有重合体としての(E−1)3質量部、[G]溶媒としての(G−1)2,240質量部及び(G−2)960質量部、並びに[F]偏在化促進剤としての(F−1)30質量部を混合し、0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J−1)を調製した。
[実施例18〜48及び比較例1〜6]
下記表1に示す種類及び含有量の[A]〜[D]成分を用いた以外は、実施例17と同様に操作して、各感放射線性樹脂組成物(J−2)〜(J−32)及び(CJ−1)〜(CJ−6)を調製した。
Figure 2019008300
<レジストパターンの形成(1)>
12インチのシリコンウエハー表面に、スピンコーター(東京エレクトロン株式会社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより膜厚105nmの下層反射防止膜を形成した。この下層反射防止膜上に、上記スピンコーターを使用して上記調製した各感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後、23℃で30秒間冷却し、膜厚90nmのレジスト膜を形成した。次に、このレジスト膜を、ArFエキシマレーザー液浸露光装置(株式会社NIKONの「NSR−S610C」)を用い、NA=1.3、ダイポール(シグマ0.977/0.782)の光学条件にて、40nmラインアンドスペース(1L1S)マスクパターンを介して露光した。露光後、90℃で60秒間PEBを行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いてアルカリ現像し、水で洗浄し、乾燥してポジ型のレジストパターンを形成した。このレジストパターン形成の際、ターゲット寸法が40nmの1対1ラインアンドスペースのマスクを介して形成した線幅が、40nmの1対1ラインアンドスペースに形成される露光量を最適露光量とした。
<レジストパターンの形成(2)>
上記TMAH水溶液の代わりに酢酸n−ブチルを用いて有機溶媒現像し、かつ水での洗浄を行わなかった以外は、上記レジストパターンの形成(1)と同様に操作して、ネガ型のレジストパターンを形成した。
<評価>
上記各感放射線性樹脂組成物を用いて形成したレジストパターンについて、LWR性能、解像性、断面形状、焦点深度、露光余裕度、CD均一性及びMEEFを下記方法に従い評価した。その結果を表2に示す。上記レジストパターンの測長には、走査型電子顕微鏡(株式会社日立ハイテクノロジーズの「S−9380」)を用いた。
[LWR性能]
レジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅を任意のポイントで計50点測定し、その測定値の分布から3シグマ値を求め、これをLWR性能とした。LWR性能(nm)は、その値が小さいほど良好であることを示す。LWR性能の値を判定基準と比べたとき、10%以上のLWR性能向上(LWR性能の数値が0.9倍以下になることをいう)が見られたものは「良好」と、10%未満のLWR性能向上であったものは「不良」と評価した。
[解像性]
上記最適露光量において解像される最小のレジストパターンの寸法を解像性とした。解像性(nm)は、その値が小さいほど良好であることを示す。このとき、判定基準との解像性を比べた際に、10%以上の解像性向上(解像性の数値が0.9倍以下になることをいう)が見られたものは「良好」と、10%未満の解像性向上であったものは「不良」と評価した。
[断面形状の矩形性]
上記最適露光量において解像されるレジストパターンの断面形状を観察し、レジストパターンの中間での線幅Lbと、膜の上部での線幅Laを測定した。このとき、断面形状の矩形性は、0.9≦La/Lb≦1.1の範囲内である場合は「良好」と、上記範囲外である場合は「不良」と評価した。
[焦点深度]
上記最適露光量において解像されるレジストパターンにおいて、深さ方向にフォーカスを変化させた際の寸法を観測し、ブリッジや残渣が無いままパターン寸法が基準の90%〜110%に入る深さ方向の余裕度を焦点深度とした。焦点深度(nm)は、その値が大きいほど良好であることを示す。焦点深度は、判定基準と比べた際に、10%以上の焦点深度向上(焦点深度の値が1.1倍以上になることをいう)が見られたものを「良好」、10%未満の焦点深度向上であったものを「不良」と評価した。
[露光余裕度]
40nmラインアンドスペース(1L/1S)のレジストパターン形成用のマスクパターンを用いた場合に解像されるパターン寸法が、マスクの設計寸法の±10%以内となる場合の露光量の範囲の上記最適露光量に対する割合を露光余裕度(EL性能)(%)とした。露光余裕度は、その値が大きいほど、露光量変化に対するパターニング性能の変化量が小さく良好である。露光余裕度は、18%以上の場合は「良好」と、18%未満の場合は「不良」と評価した。
[CD均一性]
上記形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。400nmの範囲で線幅を20点測定し、その平均値を任意のポイントで計500点測定し、その測定値の分布から3シグマ値を求め、これをCD均一性(nm)とした。CD均一性は、その値が小さいほど、長周期での線幅のばらつきが小さく良好である。CD均一性は、1.5nm以下の場合は「良好」と、1.5を超える場合は「不良」と評価した。
[MEEF]
上記走査型電子顕微鏡を用い、上記最適露光量において、5種類のマスクサイズ(38.0nmLine/80nmPitch、39.0nmLine/80nmPitch、
40.0nmLine/80nmPitch、41.0nmLine/80nmPitch、42.0nmLine/80nmPitch)で解像されるレジストパターンの線幅を測定した。横軸をマスクサイズ、縦軸を各マスクサイズで形成された線幅として、得られた測定値をプロットし、最小二乗法により算出した近似直線の傾きを求め、この傾きをMEEF性能とした。MEEF性能は、その値が1に近いほど良好であることを示す。MEEF性能は、4.7以下の場合は「良好」と、4.7を超える場合は「不良」と評価した。
Figure 2019008300
表2の結果から分かるように、本発明の感放射線性樹脂組成物は、ArF露光に用いた場合、アルカリ現像及び有機溶媒現像の場合とも、LWR性能、解像性、断面形状、焦点深度、露光余裕度、CD均一性及びMEEFが良好であったのに対し、比較例では、各特性が実施例に比べて劣っていた。
[電子線露光用感放射線性樹脂組成物の調製]
[実施例49]
[A]重合体としての(A−4)100質量部、[D]その他の酸拡散制御剤としての(D−1)3.6質量部、[B]化合物としての(B−1)20質量部、並びに[G]溶媒としての(G−1)4,280質量部及び(G−2)1,830質量部を混合し、0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J−27)を調製した。
[実施例50〜73並びに比較例7及び8]
下記表3に示す種類及び含有量の各成分を用いた以外は実施例49と同様に操作して、感放射線性樹脂組成物(J−33)〜(J−57)並びに(CJ−7)及び(CJ−8)を調製した。
Figure 2019008300
<レジストパターンの形成(3)>
8インチのシリコンウエハー表面にスピンコーター(東京エレクトロン株式会社の「CLEAN TRACK ACT8」)を使用して、表3に記載の各感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後、23℃で30秒間冷却し、膜厚50nmのレジスト膜を形成した。次に、このレジスト膜に、簡易型の電子線描画装置(株式会社日立製作所の「HL800D」、出力:50KeV、電流密度:5.0A/cm)を用いて電子線を照射した。照射後、120℃で60秒間PEBを行った。その後、2.38質量%のTMAH水溶液を用いて23℃で30秒間現像し、水で洗浄し、乾燥してポジ型のレジストパターンを形成した。形成した各レジストパターンについて、上記同様にして評価を実施した。評価結果を表4に示す。
Figure 2019008300
表4の結果から分かるように、本発明の感放射線性樹脂組成物は、電子線露光でアルカリ現像に用いた場合、LWR性能、解像性、断面形状、焦点深度、露光余裕度及びCD均一性が良好であったのに対し、比較例では、各特性が実施例に比べて不良であった。
本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れたMEEF性能、焦点深度及び露光余裕度を発揮すると共に、優れたLWR性能、CD均一性、解像性及び断面形状の矩形性を有するレジストパターンを形成することができる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。

Claims (12)

  1. 酸解離性基を含む構造単位を有する重合体、
    下記式(1−1)で表される化合物、及び
    溶媒
    を含有する感放射線性樹脂組成物。
    Figure 2019008300
    (式(1−1)中、Aは、炭素数1〜30の1価の有機基である。Eは、SO である。Xは、1価の放射線分解性オニウムカチオンである。Lは、酸素原子である。Rは、単結合又は炭素数1〜10の置換若しくは非置換のアルカンジイル基である。Rは、炭素数1〜20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。但し、kが1であり、Rが単結合である場合、Aは、炭素数1〜30の置換若しくは非置換の1価の炭化水素基、又はこの炭化水素基の炭素−炭素間若しくは結合手側の末端に−O−、−S−、−NH−若しくは−COO−のヘテロ原子含有基を含む基であるか、又はkが1又は2であり、Rが炭素数1〜10の置換若しくは非置換のアルカンジイル基である場合、近接する2つのカルボニル基は、それぞれR中の同一の炭素原子に結合している。)
  2. 上記式(1−1)におけるRが下記式(2)で表される請求項1に記載の感放射線性樹脂組成物。
    Figure 2019008300
    (式(2)中、R及びRは、それぞれ独立して、水素原子又は1価の有機基である。Rf及びRfは、それぞれ独立して、フッ素原子又はフッ素化アルキル基である。nは、1以上6以下の整数である。mは、0以上6以下の整数である。*1は、Lに結合する部位を示す。)
  3. 上記式(1−1)におけるRが下記式(2’)で表される請求項1に記載の感放射線性樹脂組成物。
    Figure 2019008300
    (式(2’)中、Rは、炭素数2〜10の置換又は非置換のアルカンジイル基である。Rf及びRfは、それぞれ独立して、フッ素原子又はフッ素化アルキル基である。nは、1以上6以下の整数である。mは、0以上6以下の整数である。*1は、Lに結合する部位を示す。)
  4. 上記式(1−1)におけるkが1である請求項1に記載の感放射線性樹脂組成物。
  5. 上記式(1−1)におけるRが単結合であり、−C(O)−が連続して4つ以上結合しない請求項1に記載の感放射線性樹脂組成物。
  6. 上記式(1−1)におけるRが置換又は非置換のアルカンジイル基であり、このアルカンジイル基がメタンジイル基である請求項1に記載の感放射線性樹脂組成物。
  7. 上記式(1−1)におけるAが−OR又は−Rであり、Rが、環員数3〜30の1価の脂環式炭化水素基、環員数3〜30の1価の脂肪族複素環基又は環員数6〜30の1価の芳香族炭化水素基である請求項1に記載の感放射線性樹脂組成物。
  8. 上記構造単位が、下記式(3)で表される請求項1から請求項7のいずれか1項に記載の感放射線性樹脂組成物。
    Figure 2019008300
    (式(3)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは、下記式(Y−1)で表される1価の酸解離性基である。)
    Figure 2019008300
    (式(Y−1)中、Re1は、炭素数1〜10の1価の鎖状炭化水素基又は炭素数3〜20の脂環式炭化水素基である。Re2及びRe3は、それぞれ独立して炭素数1〜10の1価の鎖状炭化水素基若しくは炭素数3〜20の1価の脂環式炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3〜20の脂環構造を表す。)
  9. 上記放射線分解性オニウムカチオンが、スルホニウムカチオン又はヨードニウムカチオンである請求項1から請求項8のいずれか1項に記載の感放射線性樹脂組成物。
  10. レジスト膜を形成する工程、
    上記レジスト膜を露光する工程、及び
    上記露光されたレジスト膜を現像する工程
    を備え、
    上記レジスト膜を請求項1から請求項9のいずれか1項に記載の感放射線性樹脂組成物により形成するレジストパターン形成方法。
  11. 下記式(1−1)で表される化合物からなる感放射線性酸発生剤。
    Figure 2019008300
    (式(1−1)中、Aは、炭素数1〜30の1価の有機基である。Eは、SO である。Xは、1価の放射線分解性オニウムカチオンである。Lは、酸素原子である。Rは、単結合又は炭素数1〜10の置換若しくは非置換のアルカンジイル基である。Rは、炭素数1〜20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。但し、kが1であり、Rが単結合である場合、Aは、炭素数1〜30の置換若しくは非置換の1価の炭化水素基、又はこの炭化水素基の炭素−炭素間若しくは結合手側の末端に−O−、−S−、−NH−若しくは−COO−のヘテロ原子含有基を含む基であるか、又はkが1又は2であり、Rが炭素数1〜10の置換若しくは非置換のアルカンジイル基である場合、近接する2つのカルボニル基は、それぞれR中の同一の炭素原子に結合している。)
  12. 下記式(1−1)で表される化合物。
    Figure 2019008300
    (式(1−1)中、Aは、炭素数1〜30の1価の有機基である。Eは、SO である。Xは、1価の放射線分解性オニウムカチオンである。Lは、酸素原子である。Rは、単結合又は炭素数1〜10の置換若しくは非置換のアルカンジイル基である。Rは、炭素数1〜20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。但し、kが1であり、Rが単結合である場合、Aは、炭素数1〜30の置換若しくは非置換の1価の炭化水素基、又はこの炭化水素基の炭素−炭素間若しくは結合手側の末端に−O−、−S−、−NH−若しくは−COO−のヘテロ原子含有基を含む基であるか、又はkが1又は2であり、Rが炭素数1〜10の置換若しくは非置換のアルカンジイル基である場合、近接する2つのカルボニル基は、それぞれR中の同一の炭素原子に結合している。)
JP2018142814A 2013-08-20 2018-07-30 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物 Active JP6721839B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013170357 2013-08-20
JP2013170357 2013-08-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014143742A Division JP6459266B2 (ja) 2013-08-20 2014-07-11 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物

Publications (2)

Publication Number Publication Date
JP2019008300A true JP2019008300A (ja) 2019-01-17
JP6721839B2 JP6721839B2 (ja) 2020-07-15

Family

ID=52821416

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014143742A Active JP6459266B2 (ja) 2013-08-20 2014-07-11 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP2018142814A Active JP6721839B2 (ja) 2013-08-20 2018-07-30 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014143742A Active JP6459266B2 (ja) 2013-08-20 2014-07-11 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物

Country Status (1)

Country Link
JP (2) JP6459266B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438954B2 (ja) * 2014-07-01 2018-12-19 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、及び電子デバイスの製造方法
JP6645464B2 (ja) * 2017-03-17 2020-02-14 信越化学工業株式会社 レジスト材料及びパターン形成方法
JP7445396B2 (ja) * 2018-08-02 2024-03-07 住友化学株式会社 塩、レジスト組成物及びレジストパターンの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920369A (ja) * 1982-07-27 1984-02-02 Mitsubishi Paper Mills Ltd ゼラチンの硬化方法
JPS6185487A (ja) * 1984-09-24 1986-05-01 アメリカン・サイアナミド・カンパニー 水性化学発光組成物
JP2011016794A (ja) * 2009-06-12 2011-01-27 Sumitomo Chemical Co Ltd レジスト組成物の酸発生剤用の塩
WO2012033145A1 (ja) * 2010-09-09 2012-03-15 Jsr株式会社 感放射線性樹脂組成物
JP2012145868A (ja) * 2011-01-14 2012-08-02 Tokyo Ohka Kogyo Co Ltd レジスト組成物及びレジストパターン形成方法
JP2012242813A (ja) * 2011-05-24 2012-12-10 Jsr Corp 感放射線性樹脂組成物及びレジストパターン形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083528B2 (ja) * 2006-09-28 2012-11-28 信越化学工業株式会社 新規光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
JP2010248174A (ja) * 2009-03-26 2010-11-04 Sumitomo Chemical Co Ltd 酸発生剤として用いられる塩
JP5732306B2 (ja) * 2011-04-20 2015-06-10 東京応化工業株式会社 化合物、高分子化合物、酸発生剤、レジスト組成物、レジストパターン形成方法
US8614047B2 (en) * 2011-08-26 2013-12-24 International Business Machines Corporation Photodecomposable bases and photoresist compositions
JP5814072B2 (ja) * 2011-10-25 2015-11-17 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法、新規な化合物、酸発生剤
JP2013152450A (ja) * 2011-12-27 2013-08-08 Fujifilm Corp パターン形成方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜、電子デバイスの製造方法及び電子デバイス
JP5834956B2 (ja) * 2012-01-25 2015-12-24 Jsr株式会社 ネガ型感放射線性組成物、パターン形成方法及び絶縁膜の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920369A (ja) * 1982-07-27 1984-02-02 Mitsubishi Paper Mills Ltd ゼラチンの硬化方法
JPS6185487A (ja) * 1984-09-24 1986-05-01 アメリカン・サイアナミド・カンパニー 水性化学発光組成物
JP2011016794A (ja) * 2009-06-12 2011-01-27 Sumitomo Chemical Co Ltd レジスト組成物の酸発生剤用の塩
WO2012033145A1 (ja) * 2010-09-09 2012-03-15 Jsr株式会社 感放射線性樹脂組成物
JP2012145868A (ja) * 2011-01-14 2012-08-02 Tokyo Ohka Kogyo Co Ltd レジスト組成物及びレジストパターン形成方法
JP2012242813A (ja) * 2011-05-24 2012-12-10 Jsr Corp 感放射線性樹脂組成物及びレジストパターン形成方法

Also Published As

Publication number Publication date
JP6459266B2 (ja) 2019-01-30
JP6721839B2 (ja) 2020-07-15
JP2015062057A (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6304246B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6052283B2 (ja) フォトレジスト組成物
JP6569221B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6028732B2 (ja) フォトレジスト組成物
JP6241212B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生体及び化合物
JP6237763B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6421449B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸発生体及び化合物
WO2014034190A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、化合物及び化合物の製造方法
JP6160435B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6721839B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP5812006B2 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2015025859A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、酸拡散制御剤及び化合物
JP6146329B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6171774B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
JP6060967B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP2012063741A (ja) 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物
JP6241303B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6319291B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6191684B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び重合体
KR102248827B1 (ko) 감방사선성 수지 조성물, 레지스트 패턴 형성 방법, 산 발생체 및 화합물
JP2013254084A (ja) フォトレジスト組成物、レジストパターン形成方法、重合体、化合物及び化合物の製造方法
JP6146328B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生体及び化合物
KR20120122947A (ko) 감방사선성 수지 조성물, 패턴 형성 방법, 중합체 및 화합물

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R150 Certificate of patent or registration of utility model

Ref document number: 6721839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250