JP2019002760A - 距離計測装置 - Google Patents

距離計測装置 Download PDF

Info

Publication number
JP2019002760A
JP2019002760A JP2017116633A JP2017116633A JP2019002760A JP 2019002760 A JP2019002760 A JP 2019002760A JP 2017116633 A JP2017116633 A JP 2017116633A JP 2017116633 A JP2017116633 A JP 2017116633A JP 2019002760 A JP2019002760 A JP 2019002760A
Authority
JP
Japan
Prior art keywords
light
light receiving
output
unit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2017116633A
Other languages
English (en)
Inventor
星文 一柳
Hoshifumi Ichiyanagi
星文 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Mobility Corp
Original Assignee
Omron Automotive Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Automotive Electronics Co Ltd filed Critical Omron Automotive Electronics Co Ltd
Priority to JP2017116633A priority Critical patent/JP2019002760A/ja
Priority to CN201810605888.XA priority patent/CN109085606A/zh
Priority to US16/008,907 priority patent/US20180364340A1/en
Priority to DE102018209572.8A priority patent/DE102018209572A1/de
Publication of JP2019002760A publication Critical patent/JP2019002760A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4873Extracting wanted echo signals, e.g. pulse detection by deriving and controlling a threshold value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】受光部からの出力信号にノイズが含まれていても、対象物までの距離を精度良く計測する。【解決手段】距離計測装置100は、光パルスを照射する発光モジュール2と、光パルスの対象物による反射光を受光する受光モジュール7と、受光モジュール7からの出力信号と閾値とを比較して、該出力信号が閾値より大きい場合に所定信号を出力するコンパレータ8と、コンパレータ8から所定信号が出力された場合に、反射光の受光時刻を検出し、該受光時刻と光パルスの照射時刻とに基づいて、対象物までの距離を算出する距離算出部1aと、反射光を受光モジュール7により受光しない非受光期間に、受光モジュール7からの出力信号の最大値を検出する最大値検出部1bと、該最大値に基づいて非受光期間に閾値を設定する閾値設定部1cとを備える。【選択図】図4

Description

本発明は、発光部から光パルスを照射した時刻と、その光パルスの対象物による反射光を受光部により受光した時刻とに基づいて、対象物までの距離を計測する距離計測装置に関する。
たとえば、衝突防止機能を有する車両などには、レーザレーダのような光学式の距離計測装置が搭載されている。この距離計測装置は、発光部の発光素子から光パルスを照射して、該光パルスの対象物による反射光を受光部の受光素子により受光し、光パルスの照射時刻と反射光の受光時刻とに基づいて対象物までの距離を計測する。
具体的には、たとえば特許文献1〜6に開示されているように、TOF(Time of Flight)法によりパルス光を照射してから対象物で反射して戻ってくるまでの飛行時間を計測し、該飛行時間に基づいて対象物までの距離を算出する。また、TOF法により対象物の画像を取得する画像取得装置もある。
TOF法に基づく距離計測装置では、アレイ状に配置された複数のガイガーモードのAPD(Avalanche Photo Diode)が受光部に用いられることが多い。ガイガーモードのAPDは、1フォトンの入射に対して1つの電圧パルスを出力するフォトカウント型の受光素子である。ガイガーモードのAPDは、単一フォトンの入射でもアバランシェ現象を起こすので、SPAD(Single Photon Avalanche Diode)とも呼ばれている。
このため、たとえば、ガイガーモードのAPDにより生じる電圧パルスと、該電圧パルスの到来時刻とを繰り返し測定して、ヒストグラムを作成し、その極大値に基づいてTOF(パルス光の飛行時間)を検出する。また、電圧パルスの到来時刻やTOFの計測には、たとえばTDC(Time to Digital Converter)が用いられる。(特許文献1〜6参照)なお、フォトカウント型の受光素子は、たとえば半導体検査用の光量検出装置でも用いられる。(特許文献7参照)
特許文献1〜7には、距離、画像、または光量などの物理量の検出精度を高めるための技術が開示されている。
たとえば、特許文献1〜6では、ガイガーモードのAPDにより生じる電圧信号と、該電圧信号の到来時刻とを繰り返し測定して、ヒストグラムを作成し、その極大値に基づいてTOFを検出する。そして、TOFに基づいて、対象物までの距離を算出する。
また、特許文献1では、発光部によるパルス光の投光休止期間中に、APDの周辺回路が対象物から受光した光の強度を求めることで、対象物との距離に依存しない対象物の画像を取得する。
特許文献2では、測定受光手段(ガイガーモードのAPD)が次回測定する領域からの光を参照受光手段により受光し、該受光量に応じて測定受光手段の感度を制御する。また、測定受光手段から出力される電圧パルスをパルス整形回路で整形した後に加算し、その加算値が所定の閾値以上である場合に、反射パルスの到来を示す判定結果がTDCに出力される。上記閾値は、参照受光手段から出力される外乱光の強さを示す信号に応じて変更される。
特許文献3では、すべてのガイガーモードのAPDから出力される電圧パルスを、電圧電流変換手段により電流パルスに変換して、該電流パルスを加算した後に積分手段により時間積分することにより、光量として出力する。
特許文献4では、SPADの検出パルス数を一定の閾値と比較した結果に基づいて、SPADの逆バイアス電圧を変化させることにより、フォトンの検出確率を制御する。
特許文献5および6では、対象物による反射光を受光したSPADの個数(画素数)である計数値を縦軸とし、時間を横軸としてヒストグラムを作成する。そして、特許文献5では、ヒストグラムの最大値と初期値との差、および最小値と初期値との差のうち、大きい方の絶対値が算出判定値以上である場合に、該絶対値に対応する時間に基づいて対象物までの距離を算出する。また、ヒストグラムの最大値または最小値以外の部分の初期値からの変化量を外乱光として認識し、該変化量に基づいて算出判定値を可変する。
特許文献6では、ヒストグラムの総和値、平均値、または中央値が第1の閾値を超えると、計数値の積算方向のデータを圧縮し、該圧縮後のヒストグラムの最大値に基づいて対象物までの距離を算出する。また、前回の計測の外乱光量値やSN比(信号・ノイズ比)に基づいて、第1の閾値を設定する。
特許文献7では、ノイズを除去するため、SPADの検出信号をA/D変換(アナログ・デジタル変換)し、変換後の検出信号が閾値以上の場合は、該検出信号を光子数算出回路に送り、変換後の検出信号が閾値以下の場合は、あらかじめ設定された基準値を光子数算出回路に送る。光子数算出回路は、光量測定が終了するまでに取得した検出信号の波形の面積から、SPADに入射した光子数あるいは光量を求める。また、無光時のSPADの検出信号をノイズ信号として取得し、該ノイズ信号の平均値、ばらつき、または最大値に基づいて、上記閾値と基準値とを設定する。
特開2010−91378号公報 特開2014−81254号公報 特開2014−81253号公報 特表2012−530917号公報 特開2016−151458号公報 特開2016−161438号公報 特開2012−37267号公報
対象物までの距離を計測する距離計測装置において、受光部が受光する光には、発光部から照射したパルス光の対象物による反射光だけでなく、周囲の外乱光も含まれる。また、受光部から出力される信号には、反射光に基づく受光信号だけでなく、外乱光や周囲の温度などに起因したノイズも含まれる。反射光に基づく受光信号は、ノイズに比べて変動が大きいため、従来は、たとえば、受光部からの出力信号を閾値と比較するなどして、受光部からの出力信号の極大値を抽出し、該極大値に基づいてパルス光を照射してから対象物による反射光を受光するまでの時間を計測していた。然るに、受光部からの出力信号の極大値や、パルス光の照射から反射光の受光までの時間を精度良く検出することができなければ、対象物までの距離も精度良く算出することができない。
本発明は、受光部から出力される信号にノイズが含まれていても、対象物までの距離を精度良く計測することができる距離計測装置を提供することを課題とする。
本発明による距離計測装置は、光パルスを照射する発光素子を有する発光部と、光パルスの対象物による反射光を受光する複数の受光素子を有する受光部と、受光素子の受光状態に応じて受光部から出力される出力信号と所定の閾値とを比較して、該出力信号が閾値より大きい場合に所定信号を出力する比較出力部と、比較出力部から所定信号が出力された場合に、受光部による反射光の受光時刻を検出し、該受光時刻と発光部からの光パルスの照射時刻とに基づいて、対象物までの距離を算出する距離算出部と、反射光を受光部により受光しない期間に、受光部からの出力信号の最大値を検出する最大値検出部と、最大値検出部により検出された最大値に基づいて、前記期間に閾値を設定する閾値設定部とを備える。
発光部から照射された光パルスの対象物による反射光が受光部で受光されない期間では、外乱光が受光部で受光されるので、受光状態に応じて受光部から出力される出力信号が、外乱光や周囲の温度などに基づくノイズだけとなる。このため、ノイズの最大値を検出して、該最大値に基づいて閾値を設定することで、ノイズのレベルに応じた閾値とすることができる。また、その後、反射光が受光部で受光される期間に、受光部からの出力信号にノイズが含まれていても、該出力信号と閾値とを比較することで、反射光に基づく受光信号とノイズとを確実に区別することができる。そして、受光部からの出力信号が閾値より大きい場合、すなわち受光部からの出力信号が反射光に基づく受光信号である場合に、比較出力部から所定信号が出力されるので、距離算出部により反射光の受光時刻を検出して、該受光時刻および光パルスの照射時刻に基づいて、対象物までの距離を精度良く算出することができる。よって、受光部から出力される信号にノイズが含まれていても、対象物までの距離を精度良く計測することが可能となる。
本発明において、閾値設定部は、閾値を、最大値検出部により検出された最大値以上の値に設定してもよい。
また、本発明において、受光素子は、ガイガーモードのAPD(Avalanche Photo Diode)から成り、受光部は、該受光素子が複数並列に接続された受光素子群を少なくとも1つ含み、受光素子群から出力される電流に応じた電圧信号を出力信号として出力してもよい。
また、本発明において、反射光を受光部により受光しない期間に、比較出力部は、大きさが段階的に異なる複数の仮閾値を順番に切り替えて、受光部からの出力信号と比較し、該出力信号が仮閾値より大きいときに所定信号を出力し、最大値検出部は、仮閾値毎に比較出力部から出力される所定信号の出力頻度に基づいて、受光部からの出力信号の最大値を検出してもよい。
また、本発明において、比較出力部から出力されるアナログの所定信号をデジタルの所定信号に変換して距離算出部に出力する1ビットのアナログデジタルコンバータをさらに備えてもよい。
さらに、本発明において、距離算出部は、TDC(Time to Digital Converter)を含んでいてもよい。
本発明によれば、受光部から出力される信号にノイズが含まれていても、対象物までの距離を精度良く計測することができる距離計測装置を提供することが可能となる。
本発明の実施形態による距離計測装置の光学系を上方から見た状態を示した図である。 図1の距離計測装置の光学系を後方から見た状態を示した図である。 図1のSPADアレイの受光面を示した図である。 図1の距離計測装置の電気的構成を示した図である。 図3の受光モジュールの出力信号を示した図である。 図1の距離計測装置の動作タイミングを示した図である。 図3の受光モジュールとコンパレータのノイズ検出時の出力信号を示した図である。 図3の受光モジュールとコンパレータの反射光検出時の出力信号を示した図である。 本発明の他の実施形態による距離計測装置の電気的構成を示した図である。 図9のTDCの回路構成を示した図である。 本発明の他の実施形態による距離計測装置の電気的構成を示した図である。
以下、本発明の実施形態につき、図面を参照しながら説明する。各図において、同一の部分または対応する部分には、同一符号を付してある。
図1は、距離計測装置100の光学系を上方から見た状態を示した図である。図2は、距離計測装置100の光学系を後方(図1で下側、すなわち対象物50と反対側)から見た状態を示した図である。
距離計測装置100は、車載用のレーザレーダである。距離計測装置100の光学系は、LD(Laser Diode)2a、投光レンズ14、回転走査部4、受光レンズ16、反射鏡17、およびSPAD(Single Photon Avalanche Diode)アレイ7aから成る。そのうち、LD2a、投光レンズ14、および回転走査部4は、投光光学系である。回転走査部4、受光レンズ16、反射鏡17、およびSPADアレイ7aは、受光光学系である。
これらの光学系は、距離計測装置100のケース(図示省略)内に収容されている。そのケースの前面(対象物50側)は開口しているが、透光性を有するカバーにより覆われている。このカバーが車両の前方、後方、または左右側方を向くように、距離計測装置100は車両の前部、後部、または左右側部に設置される。
LD2aは、高出力の光パルスを照射する発光素子である。図1および図2では、便宜上、LD2aを1つだけ示しているが、LD2aは、実際には図2で上下方向に複数配列されている。また、LD2aは、発光面が回転走査部4側を向くように配置されている。
SPADアレイ7aには、複数のSPADがアレイ状に配置されている。SPADは、ガイガーモードのAPD(Avalanche Photo Diode)であり、フォトカウント型の受光素子である。SPADアレイ7aは、受光面が反射鏡17側を向くように配置されている。
図3は、SPADアレイ7aの受光面を示した図である。SPADアレイ7aの受光面は、縦方向(図2で上下方向)に複数のチャンネル1ch〜Xchに区分されている。各チャンネル1ch〜Xchでは、縦方向にm画素、横方向にn画素の、合計m×n画素に細分化されている。この受光面の各画素に1対1で対応するように、SPADは設けられている。すなわち、SPADアレイ7aにおけるSPADの個数は、フォトンが入射する画素数と同一である。
図1および図2に示す回転走査部4は、回転鏡または光偏向器とも呼ばれている。回転走査部4には、回転鏡4aとモータ4cなどが備わっている。回転鏡4aは、板状に形成されている。回転鏡4aの表面および裏面は、反射面となっている。
図2に示すように、回転鏡4aの下方には、モータ4cが設けられている。モータ4cの回転軸4jは上下方向と平行になっている。モータ4cの回転軸4jの上端には、回転鏡4aの中央にある連結軸(図示せず)が固定されている。モータ4cの回転軸4jに連動して、回転鏡4aは回転する。
図2に示すように、受光レンズ16、反射鏡17、およびSPADアレイ7aは、回転鏡4aの上部周辺に配置されている。LD2aと投光レンズ14は、回転鏡4aの下部周辺に配置されている。
図1および図2に1点鎖線の矢印で示すように、LD2aから照射された光パルスは、投光レンズ14により拡がりを調整された後、回転鏡4aの表面または裏面の下半分の領域に当たる。この際、モータ4cが回転して、回転鏡4aの角度(向き)が変化し、回転鏡4aの表面または裏面が対象物50側を向いた所定角度となる(たとえば図1に実線で示す鏡4aの状態)。これにより、LD2aからの光パルスが投光レンズ14を透過した後、回転鏡4aの表面または裏面の下半分の領域で反射して、距離計測装置100の外方にある所定範囲に走査される。つまり、回転走査部4は、LD2aからの光パルスを、回転鏡4aの表面と裏面で反射して対象物50側に偏向する。
図1に示す走査角度範囲Zは、LD2aからの光パルスが回転走査部4の鏡4aの表面または裏面により反射されて、距離計測装置100から投射される所定範囲(上面視)である。すなわち、この走査角度範囲Zが、距離計測装置100による対象物50の検出範囲である。
上記のように、距離計測装置100から投射された光パルスは、人や物体などの対象物50で反射される。その反射光は、図1および図2に2点鎖線の矢印で示すように、回転鏡4aの表面または裏面の上半分の領域に当たる。この際、モータ4cが回転して、回転鏡4aの角度(向き)が変化し、回転鏡4aの表面または裏面が対象物50側を向いた所定角度となる(たとえば図1に実線で示す鏡4aの状態)。これにより、対象物50での反射光が、回転鏡4aの表面または裏面の上半分の領域で反射して、受光レンズ16に入射する。つまり、回転走査部4は、対象物50からの反射光を、回転鏡4aの表面または裏面で反射して、受光レンズ16側へ偏向する。
回転走査部4を経由して受光レンズ16に入射した反射光は、受光レンズ16で集光された後、反射鏡17で反射して、SPADアレイ7aで受光される。つまり、回転走査部4は、対象物50からの反射光を回転鏡4aで反射して、受光レンズ16と反射鏡17を介してSPADアレイ7aへ導く。
図4は、距離計測装置100の電気的構成図である。距離計測装置100には、制御部1、発光モジュール2、LD駆動回路3、モータ4c、モータ駆動回路5、エンコーダ6、受光モジュール7、コンパレータ8、ADC(Analog to Digital Converter)9、DAC(Digital to Analog Converter)10、記憶部11、およびインタフェイス12が備わっている。
制御部1は、マイクロコンピュータなどから成り、距離計測装置100の各部の動作を制御する。制御部1には、距離算出部1a、最大値検出部1b、および閾値設定部1cが設けられている。
記憶部11は、揮発性や不揮発性のメモリから成る。記憶部11には、制御部1が距離計測装置100の各部を制御するための情報や、対象物50までの距離を計測するための情報などが記憶されている。
インタフェイス12は、車両に搭載されたECU(電子制御装置)と通信するための通信回路から成る。制御部1は、インタフェイス12によりECUに対して、対象物50までの距離に関する情報や各種制御情報を送受信する。
発光モジュール2には、前述した複数のLD2aと、各LD2aを発光させるためのキャパシタ2cなどが設けられている。図4では、便宜上、LD2aとキャパシタ2cのブロックを、それぞれ1つ示している。発光モジュール2は、本発明の「発光部」の一例である。
制御部1は、LD駆動回路3により発光モジュール2のLD2aの動作を制御する。具体的には、制御部1は、LD駆動回路3によりLD2aを発光させて、人や物体などの対象物50に光を照射する。また、制御部1は、LD駆動回路3によりLD2aの発光を停止させて、キャパシタ2cを充電する。
また、制御部1は、モータ駆動回路5により回転走査部4のモータ4cの駆動を制御する。そして、制御部1は、前述したように、回転鏡4aを回転させて、LD2aから照射した光パルスや、対象物50による反射光を偏向する。この際、制御部1は、エンコーダ6の出力に基づいて、モータ4cや回転鏡4aの回転状態(回転角や回転数など)を検出する。
受光モジュール7には、SPADアレイ7a、TIA(Trans Impedance Amplifier)7b、およびMUX(Multiplexer)7cが含まれている。受光モジュール7は、本発明の「受光部」の一例である。
SPADアレイ7aは、複数のSPAD群7gを有している。図4では、代表的に最上位置にあるSPAD群7gの回路構成を示しているが、他のSPAD群7gの回路構成も同様である。
各SPAD群7gでは、SPAD7sのアノードにクエンチング抵抗Rcの一端を接続したものを1ピクセル(基本単位)とし、該ピクセルを多数並列に接続している。各SPAD群7gは、図3に示した各チャンネル1ch〜Xchに対応している。このため、各SPAD群7gにおいて、SPAD7sおよびクエンチング抵抗Rcは、m×n画素分設けられている。SPADアレイ7a(またはSPAD群7g)は、MPPC(Multi-Pixel Photon Counter)とも呼ばれている。
各SPAD群7gの各クエンチング抵抗Rcの他端は、TIA7bに接続されている。各SPAD群7gのSPAD7sのカソードは、電源+Vに接続されている。この各SPAD群7gと電源+Vとの間に、ローパスフィルタが設けられることもある。
TIA7bは、SPAD群7g毎に設けられている。図4では、便宜上、一部のSPAD群7gに接続されたTIA7bのみ示しているが、他のSPAD群7gにも同様にTIA7bが接続されている。
各SPAD群7gにおいて、各SPAD7sに降伏電圧以上のバイアス電圧を印加しておくことにより、少なくともいずれか1つのSPAD7sに単一のフォトンが入射すると、該SPAD7sはガイガー放電して、所定の電流を出力する(アバランシェ現象)。この際、並列に接続された各SPAD7sからの出力電流が加算されて、該加算電流がSPAD群7gに流れる。
SPAD7sが電流を出力すると、該SPAD7sに接続されたクエンチング抵抗Rcの両端電圧が上昇して、該SPAD7sのバイアス電圧が降下して行く。そして、そのバイアス電圧が降伏電圧を下回ると、SPAD7sのガイガー放電が停止して、SPAD7sから電流が出力されなくなり、クエンチング抵抗Rcの両端電圧が降下して、SPAD7sに再び降伏電圧以上の電圧が印加される。これにより、各SPAD7sの加算電流もSPAD群7gで流れなくなり、次のフォトンがSPAD7sで検出可能となる。
上記のようなSPAD群7gからの出力電流は、該SPAD群7gに接続されたTIA7bにより電圧信号に変換されて、MUX7cへ出力される。MUX7cは、各TIA7bの出力信号を選択し、コンパレータ8に出力する。すなわち、各SPAD群7gのSPAD7sの受光状態に応じた電圧信号が、受光モジュール7から順次コンパレータ8に出力される。
発光モジュール2のLD2aから照射された光パルスの照射角度によって、該光パルスの対象物50による反射光は、図3に示したSPADアレイ7aの受光面の対応するチャンネル1ch〜Xchに入射する。太陽光などの外乱光も、各チャンネル1ch〜Xchに入射する。
つまり、各SPAD群7gの各SPAD7sには、対象物50による反射光のフォトンまたは外乱光のフォトンが入射する。このため、各SPAD群7gからは、対象物50による反射光のフォトンの受光に基づく電圧信号、または外乱光のフォトンの受光に基づく電圧信号が出力される。
図5は、受光モジュール7からコンパレータ8に入力される出力信号の一例を示した図である。図5では、横軸に時間、縦軸に電圧を示している。
SPAD7sでは、従来のフォトダイオードなどの受光素子に比べて、受光時のガイガー放電により出力する信号(電流信号)の立ち上がり速度が速い。このため、SPAD群7gの各SPAD7sの受光状態に応じた受光モジュール7からの出力信号(電圧信号)は、図5に示すように、鋭く立ち上がる。そして、クエンチング抵抗Rcによるガイガー放電の停止時に、SPAD7sが出力する信号は、ある程度まで急激に立ち下がった後、なだらかに低下する。このため、受光モジュール7からの出力信号も、図5に示すように、ある程度まで急激に立ち下がった後、なだらかに低下する。
このように、受光素子として複数のSPAD7sを用いた受光モジュール7からは、従来の受光素子を用いた受光モジュールに比べて、立ち上がりと立ち下がりが急峻な電圧パルスが出力される。
LD2aから照射された光パルスの対象物50による反射光がSPAD群7gに入射した場合は、フォトンが入射するSPAD7sの数が多くなるので、該SPAD群7gからの出力電流が大きくなる。一方、外乱光がSPAD群7gに入射した場合は、対象物50による反射光が入射した場合に比べて、フォトンが入射するSPAD7sの数が少なくなるため、該SPAD群7gからの出力電流が小さくなる。
そのため、対象物50による反射光に基づく受光モジュール7からの出力信号は、図5に1点鎖線で囲んでいるように、レベル(波高値)が大きくなる。これに対して、外乱光に基づく受光モジュール7からの出力信号は、図5に2点鎖線で囲んでいるように、レベル(波高値)が小さくなる。
対象物50による反射光が一時的な光であるのに対して、外乱光は定常光であるので、SPADアレイ7aの各SPAD7sには、外乱光のフォトンが常にランダムに入射する。このため、各SPAD群7gからは、外乱光の受光に応じて電流信号が常にランダムに出力され、受光モジュール7からは、図5に示すように、外乱光に基づくレベルの小さい電圧信号が常にランダムに出力される。
また、各SPAD群7gからは、周囲の温度や個体特性などに起因したダークパルスやアフターパルスも出力されることがある。ダークパルスやアフターパルスは、対象物50による反射光に基づくパルスに比べて、レベルが小さい。このため、受光モジュール7からも、図5に2点鎖線で囲んでいるように、ダークパルスやアフターパルスに基づくレベルの小さい電圧信号がランダムに出力される。
受光モジュール7からの出力信号のうち、対象物50による反射光に基づく出力信号は、対象物50までの距離計測用の受光信号であり、外乱光やダークパルスやアフターパルスに基づく出力信号は、距離計測に関与しないノイズである。
図4に示すコンパレータ8は、MUX7cからの出力信号(電圧信号)と所定の閾値(後述する図8の閾値Vt)とを比較して、該出力信号が距離計測用の受光信号であるかノイズであるかを区別する。具体的には、コンパレータ8は、MUX7cの出力信号が閾値より大きい場合、該出力信号が距離計測用の受光信号であることを示すため、所定信号(たとえばハイレベル信号)をADC9に出力する。
また、コンパレータ8は、MUX7cの出力信号が閾値以下である場合、該出力信号がノイズであることを示すため、ADC9に所定信号を出力しない。このとき、コンパレータ8は、別の所定信号(たとえばローレベル信号)をADC9に出力してもよいし、ADC9に何も信号を出力しなくてもよい。コンパレータ8は、本発明の「比較出力部」の一例である。
ADC9は、サンプリングレートが10GSpsの1ビットのアナログデジタルコンバータである。ADC9は、コンパレータ8から出力されるアナログ信号を、高速でデジタル信号に変換して、制御部1に出力する。具体的には、コンパレータ8から所定信号が出力されたとき、ADC9は、該所定信号をデジタルの「1」信号に変換して、制御部1に出力する。また、コンパレータ8から所定信号が出力されていないとき(コンパレータ8から別の所定信号が出力されたとき、またはコンパレータ8の出力が無信号状態のとき)、ADC9は、デジタルの「0」信号を制御部1に出力する。
制御部1の距離算出部1aは、LD2aからの光パルスの照射時刻を検出する。また、ADC9から「1」信号が出力された場合に、該「1」信号に基づいて、LD2aからの光パルスの対象物50による反射光の受光時刻を検出する。そして、光パルスの照射時刻と反射光の受光時刻とに基づいて、対象物50までの距離を算出する。詳しくは、LD2aから照射した光パルスのTOF(Time of Flight)を検出し、該TOFに基づいて対象物50までの距離を算出する。
受光モジュール7により検出されるノイズ(図5)のレベルは、周囲環境などに起因して変動する。受光モジュール7からの出力信号が距離計測用の受光信号であるかノイズであるかを精度良く区別するには、コンパレータ8で用いる閾値をその都度適切に設定する必要がある。そのため、閾値は、後述するように、コンパレータ8、ADC9、制御部1の最大値検出部1b、閾値設定部1c、およびDAC10により、受光モジュール7から出力されるノイズのレベルに応じて変更される。
DAC10は、8ビットのデジタルアナログコンバータである。DAC10は、制御部1から入力される閾値に関するデジタル信号をアナログ信号に変換して、コンパレータ8に出力する。コンパレータ8は、DAC10から入力されるアナログ信号に基づいて、閾値を変更する。
図6は、距離計測装置100の動作タイミングを示した図である。たとえば、発光モジュール2のLD2aからは、図6(a)に示すように、光パルスが5ns(ナノ秒)の幅で5μs(マイクロ秒)毎に照射される。LD2aの動作は制御部1により制御され、LD2aからの光パルスの照射時刻は距離算出部1aにより検出される。
距離算出部1aのTOFによる距離測定には1μsかかる。このため、LD2aにより光パルスの照射を開始してから1μs間が、光パルスの対象物50による反射光を受光モジュール7により受光する受光期間T1である(図6(b))。そして、その後の4μsは、LD2aから光パルスが照射されないので、光パルスの対象物50による反射光を受光モジュール7により受光しない非受光期間T2である(図6(b))。この非受光期間T2に、外乱光を受光モジュール7により受光して、受光モジュール7から出力されるノイズを検出する。
図7は、受光モジュール7とコンパレータ8のノイズ検出時の出力信号を示した図である。図7(a)は、図6の非受光期間T2に受光モジュール7から出力される信号を示している。この出力信号は、外乱光やダークパルスやアフターパルスに基づくノイズであり、対象物50による反射光に基づく受光信号を含んでいない。
非受光期間T2において、制御部1の閾値設定部1cは、大きさが段階的に異なる複数の仮閾値V1〜Vnを示したデジタルの情報を、DAC10に昇順に出力する。DAC10は、閾値設定部1cからいずれかの仮閾値V1〜Vnを示した情報が入力される度に、該情報をアナログ信号に変換して、コンパレータ8に出力する。コンパレータ8は、DAC10からいずれかの仮閾値V1〜Vnを示した信号が入力される度に、受光モジュール7からの出力信号と比較する仮閾値V1〜Vnを切り替えて、両者の比較を行う。つまり、図7(a)に示すように、受光モジュール7からの出力信号と比較する仮閾値が、V1→V2→V3→・・・→Vnと段階的に変更される。
そして、コンパレータ8は、受光モジュール7からの出力信号が仮閾値より大きいときに、所定信号(オン信号)を出力する。図7(b)、(c)は、代表的に、それぞれコンパレータ8が受光モジュール7からの出力信号と仮閾値V1、V4とを比較したときの、コンパレータ8の出力状態を示している。出力信号が仮閾値V1、V4を超えている間、コンパレータ8からオン信号が出力される。また、図7(d)は、コンパレータ8が受光モジュール7からの出力信号と仮閾値V5〜Vnとを比較したときの、コンパレータ8の出力状態を示している。出力信号が仮閾値V5〜Vnを超えないため、コンパレータ8からオン信号は出力されない。
ADC9は、コンパレータ8から出力される所定信号を、デジタル信号に変換して、制御部1に出力する。制御部1の最大値検出部1bは、閾値設定部1cが出力した仮閾値V1〜Vn毎に、コンパレータ8からADC9を介して出力される所定信号の出力頻度を検出し、該出力頻度に基づいてノイズの最大値を検出する。
具体的には、たとえば最大値検出部1bは、所定信号が出力された仮閾値のうちの最大の仮閾値以上で、かつ所定信号が出力されなかった仮閾値のうちの最小の仮閾値未満の値(範囲)を、ノイズの最大値として検出する。図7の例では、仮閾値V4以上でかつ仮閾値V5未満の値が、ノイズの最大値となる。
他の例として、所定信号が出力された仮閾値のうちの最大の仮閾値を、ノイズの最大値として検出してもよい。この場合、図7の例では、仮閾値V4がノイズの最大値となる。
たとえば、仮閾値V1〜Vnとして大きさが異なる10個の値を設定した場合(n=10)、4μsの非受光期間T2が各閾値に対応して10区間に分割され、1区間あたりが400nsとなる。そして、1ビットのADC9でコンパレータ8からの出力信号を変換処理することで、非受光期間T2に少なくとも400サンプルのデータを観測することができる。
上述したように、最大値検出部1bによりノイズの最大値が検出されると、閾値設定部1cは、該最大値に基づいて距離計測用の閾値(以下、「本閾値」という。)Vtを設定する。このとき、たとえば閾値設定部1cは、最大値検出部1bにより検出されたノイズの最大値より1段階大きい仮閾値を、本閾値Vtとして設定する。図7の例では、ノイズの最大値が仮閾値V5未満なので、仮閾値V5が本閾値Vtとして設定される。
他の例として、最大値検出部1bにより検出されたノイズの最大値と同等の仮閾値を、本閾値Vtとして設定してもよい。具体的には、図7の例では、ノイズの最大値が仮閾値V4以上なので、仮閾値V4を本閾値Vtとして設定してもよい。つまり、本閾値Vtは、最大値検出部1bにより検出されたノイズの最大値以上に設定すればよい。
そして、閾値設定部1cは、本閾値Vtを示したデジタルの情報をDAC10に出力する。DAC10は、本閾値Vtを示した情報をアナログ信号に変換して、コンパレータ8に出力する。コンパレータ8は、DAC10からの入力信号に基づいて、受光モジュール7からの出力信号と比較する閾値を変更する。これにより、次の対象物50による反射光を受光モジュール7により受光する受光期間T1に、コンパレータ8が、受光モジュール7からの出力信号と本閾値Vtとを比較する。つまり、LD2aから光パルスが照射される毎に、ノイズのレベルに応じて、コンパレータ8で使用される閾値が変更される。
他の例として、たとえば、LD2aから光パルスが所定の複数回照射される毎に、ノイズのレベルに応じて、コンパレータ8で使用される閾値を変更するようにしてもよい。
図8は、受光モジュール7とコンパレータ8の反射光検出時の出力信号を示した図である。図8(a)は、図6の受光期間T1に受光モジュール7から出力される信号を示している。この出力信号は、外乱光等に基づくノイズと、対象物50による反射光に基づく受光信号とを含んでいる。
前述したように、前回の非受光期間T2に本閾値Vtを設定することで、今回の受光期間T1では、ノイズが本閾値Vtより大きくなることはなく、対象物50による反射光に基づく受光信号だけが本閾値Vtより大きくなる。このため、コンパレータ8が、受光モジュール7からの出力信号が本閾値Vtより大きいときに、図8(b)に示すように所定信号(オン信号)を出力することで、該所定信号が確実に対象物50による反射光に基づく信号となる。
コンパレータ8から出力された所定信号がADC9を介して制御部1に入力されると、距離算出部1aは、該入力信号に基づいて対象物50による反射光の受光時刻を検出する。そして、距離算出部1aは、LD2aからの光パルスの照射時刻と、対象物50による反射光の受光時刻とに基づいて、光パルスのTOF(Time of Flight)を検出し、該TOFに基づいて対象物50までの距離を算出する。
以上の実施形態によると、発光モジュール2から照射した光パルスの対象物50による反射光を、受光モジュール7により受光しない非受光期間T2に、外乱光が受光モジュール7のSPAD7sにより受光されるので、SPAD7sの受光状態に応じて受光モジュール7から出力される出力信号が、外乱光や周囲の温度などに基づくノイズだけとなる。このため、ノイズの最大値を最大値検出部1bにより検出して、該最大値に基づいて本閾値Vtを閾値設定部1cにより設定することで、ノイズのレベルに応じた本閾値Vtとすることができる。
また、その後、発光モジュール2から照射した光パルスの対象物50による反射光を、受光モジュール7により受光する受光期間T1に、受光モジュール7からの出力信号にノイズが含まれていても、受光モジュール7からの出力信号と本閾値Vtとをコンパレータ8により比較することで、反射光に基づく受光信号とノイズとを確実に区別することができる。そして、受光モジュール7からの出力信号が本閾値Vtより大きい場合、すなわち受光モジュール7からの出力信号が反射光に基づく受光信号である場合に、コンパレータ8から所定信号を出力するので、距離算出部1aにより反射光の受光時刻を検出して、該受光時刻および発光モジュール2からの光パルスの照射時刻に基づいて、対象物50までの距離を精度良く算出することができる。よって、受光モジュール7から出力される信号にノイズが含まれていても、対象物50までの距離を精度良く計測することが可能となる。
また、以上の実施形態では、対象物50による反射光を受光モジュール7により受光しない非受光期間T2に、閾値設定部1cが、本閾値Vtを、最大値検出部1bにより検出された最大値より大きな値に設定している。このため、その後、光パルスの対象物50による反射光を受光モジュール7により受光する受光期間T1に、コンパレータ8により受光モジュール7からの出力信号と本閾値Vtとを比較して、受光モジュール7からの出力信号が本閾値vtより大きい場合に、反射光に基づく受光信号だけに応じた所定信号を確実に出力することができる。そして、距離算出部1aにおいて、コンパレータ8からADC9を介して入力された所定信号に基づいて、反射光の受光時刻を検出し、該受光時刻および発光モジュール2からの光パルスの照射時刻に基づいて、対象物50までの距離を一層精度良く算出することができる。
また、以上の実施形態では、受光モジュール7は、SPAD7sが複数並列に接続されたSPAD群7gを複数配列したSPADアレイ7aと、各SPAD群7gから出力される電流信号を電圧信号に変換するTIA7bとを有している。このため、各SPAD7sの受光状態に応じてSPAD群7g毎に出力される電圧信号を、MUX7cにより選択して、コンパレータ8に取り込むことができる。そして、コンパレータ8により受光モジュール7からの電圧信号と閾値とを比較した結果に基づいて所定信号を出力し、該所定信号をADC9を介して制御部1に入力することができる。また、SPAD7sは、他の受光素子に比べて、出力する電流信号の立ち上がりが速いので、単位時間における受光モジュール7からの電圧信号の出力数を多くして、対象物50までの距離の検出精度を一層高めることができる。
また、以上の実施形態では、光パルスの対象物50による反射光を受光モジュール7により受光しない非受光期間T2に、コンパレータ8において、大きさが段階的に異なる複数の仮閾値を順番に切り替えて、受光モジュール7からの出力信号と比較し、出力信号が仮閾値より大きいときに所定信号を出力している。そして、仮閾値毎にコンパレータ8からADC9を介して出力される所定信号の出力頻度に基づいて、最大値検出部1bが受光モジュール7からの出力信号の最大値を検出している。このため、受光モジュール7から出力されるノイズの最大値を最大値検出部1bにより精度良く検出して、ノイズのレベルに応じた閾値を閾値設定部1cにより的確に設定することができる。
さらに、以上の実施形態では、コンパレータ8から順次出力されるアナログの所定信号を、1ビットのADC9によりデジタルの所定信号に変換している。このため、SPAD7sの受光状態に応じてSPAD群7g毎に受光モジュール7から出力される電圧信号に基づいて、コンパレータ8から出力される信号を、ADC9により高速でデジタル信号に変換して、制御部1に取り込むことができる。そして、距離算出部1aにおいて、光パルスのTOFを検出するためのサンプル数を多くして、TOFの検出精度を高め、対象物50までの距離の計測精度を一層向上させることが可能となる。
本発明は、上述した以外にも種々の実施形態を採用することができる。たとえば、以上の実施形態では、コンパレータ8から1ビットのADC9を経由して制御部1に入力された所定信号に基づいて、最大値検出部1bおよび閾値設定部1cにより本閾値Vtを設定し、かつ距離算出部1aにより対象物50までの距離を算出した例を示したが、本発明はこれのみに限定するものではない。これ以外に、たとえば図9に示すように、閾値設定用のコンパレータ8およびDAC10とは別に、距離算出用のコンパレータ8aおよびDAC10aを設けて、該コンパレータ8aの出力信号を制御部1に設けたTDC(Time to Digital Converter)1eに入力するようにしてもよい。コンパレータ8aは、本発明の「比較出力部」の一例である。TDC1eは、距離算出部1dに含まれている。
図9では、受光モジュール7のMUX7cから各コンパレータ8、8aに電圧信号を出力する。光パルスの対象物50による反射光を受光しない非受光期間T2では、閾値設定部1cが、仮閾値を順次DAC10を介してコンパレータ8に設定する。コンパレータ8は、受光モジュール7からの出力信号を仮閾値と比較して、該比較結果に基づいて所定信号を出力する。コンパレータ8からの所定信号は、1ビットのADC9を介して制御部1に入力され、該入力信号に基づいて、最大値検出部1bがノイズの最大値を検出し、該最大値に基づいて閾値設定部1cが本閾値Vtを設定する。そして、その本閾値Vtが閾値設定部1cからDAC10aを介してコンパレータ8aに設定される。
また、光パルスの対象物50による反射光を受光する受光期間T1では、コンパレータ8aが、受光モジュール7からの出力信号を本閾値Vtと比較する。そして、受光モジュール7からの出力信号が本閾値Vtより大きい場合に、コンパレータ8aからTDC1eに所定信号が出力される。
図10は、TDC1eの回路構成を示した図である。TDC1eのStartのバス13には、LD2aから光パルスを照射するための発光信号(制御部1から発光モジュール2への発光指令)が入力される。このStartのバス13に遅延バッファ15を複数挿入することにより、遅延ラインが構成されている。各遅延バッファ15に対応するように、Dラッチ16が複数設けられている。発光信号は、Startのバス13を通じて、各遅延バッファ15に順次入力されるとともに、各遅延バッファ15の手前から各Dラッチ16の一方の入力端Dに順次入力される。受光信号は、Stopのバス14を通じて、各Dラッチ16の他方の入力端に入力される。各Dラッチ16の出力端Qからのデジタルの出力信号D1〜Dnは、距離算出部1dに入力される。
距離算出部1dは、発光信号のStartのバス13への入力に基づいて、光パルスの照射時刻を検出し、各Dラッチ16からの出力信号D1〜Dnの出力に基づいて、反射光の受光時刻を検出する。そして、距離算出部1dは、光パルスの照射時刻と反射光の受光時刻とに基づいて、光パルスの飛行時間を算出し、該飛行時間に基づいて、対象物50までの距離を計測する。このようにすると、TDC1eにより高速サンプリング(たとえば、10GSps)で時間の計測を行うことができる。
また、以上の実施形態では、図4に示したように、SPAD群7gの各SPAD7sにクエンチング抵抗Rcを1対1で接続して、各SPAD群7gから出力される電流をTIA7bにより電圧に変換した例を示したが、本発明はこれのみに限定するものではない。これ以外に、たとえば図11に示すように、各SPAD群7g’の複数のSPAD7sのアノード側に、共通の抵抗Rdと、高速アンプ7dを接続してもよい。この場合、SPAD7sへのフォトンの入射により、SPAD群7g’に電流が流れて、抵抗Rdに電圧降下が生じ、該電圧降下を高速アンプ7dにより電圧信号として取り出して、MUX7cに出力する。
また、以上の実施形態では、各SPAD群からの出力電流に応じた電圧信号を、コンパレータで閾値と比較した例を示したが、本発明はこれのみに限定するものではない。これ以外に、たとえば、各SPAD群からの出力電流に応じた電流信号を、コンパレータで電流の閾値と比較して、対象物による反射光かノイズかを区別してもよい。
また、以上の実施形態では、受光素子としてSPADを用いた例を示したが、本発明はこれのみに限定するものではなく、その他の受光素子を用いてもよい。また、SPAD群のような、複数の受光素子を並列に接続した素子群を、受光部に1つだけ設けてもよい。また、受光素子群を構成せずに、複数の受光素子を独立して受光部に設けて、受光部から各受光素子の受光状態に応じた信号をそれぞれ出力してもよい。また、LD以外の発光素子を1つまたは複数用いてもよい。
さらに、以上の実施形態では、車載用の距離計測装置100に本発明を適用した例を挙げたが、その他の用途の距離計測装置に対しても、本発明を適用することは可能である。
1a、1d 距離算出部
1b 最大値検出部
1c 閾値設定部
1e TDC
2 発光モジュール(発光部)
2a LD(発光素子)
7 受光モジュール(受光部)
7g、7g’ SPAD群
7s SPAD(受光素子)
8、8a コンパレータ(比較出力部)
9 1ビットのADC
50 対象物
100 距離計測装置
T1 受光期間
T2 非受光期間
V1〜Vn 仮閾値
Vt 本閾値

Claims (6)

  1. 光パルスを照射する発光素子を有する発光部と、
    前記光パルスの前記対象物による反射光を受光する複数の受光素子を有する受光部と、
    前記受光素子の受光状態に応じて前記受光部から出力される出力信号と所定の閾値とを比較して、前記出力信号が前記閾値より大きい場合に所定信号を出力する比較出力部と、
    前記比較出力部から前記所定信号が出力された場合に、前記受光部による前記反射光の受光時刻を検出し、該受光時刻と前記発光部からの前記光パルスの照射時刻とに基づいて、前記対象物までの距離を算出する距離算出部と、を備えた距離計測装置において、
    前記反射光を前記受光部により受光しない非受光期間に、前記受光部からの前記出力信号の最大値を検出する最大値検出部と、
    前記最大値検出部により検出された前記最大値に基づいて、前記非受光期間に前記閾値を設定する閾値設定部と、をさらに備えたことを特徴とする距離計測装置。
  2. 請求項1に記載の距離計測装置において、
    前記閾値設定部は、前記閾値を、前記最大値検出部により検出された前記最大値以上の値に設定する、ことを特徴とする距離計測装置。
  3. 請求項1または請求項2に記載の距離計測装置において、
    前記受光素子は、ガイガーモードのAPD(Avalanche Photo Diode)から成り、
    前記受光部は、前記受光素子が複数並列に接続された受光素子群を少なくとも1つ含み、前記受光素子群から出力される電流に応じた電圧信号を前記出力信号として出力する、ことを特徴とする距離計測装置。
  4. 請求項1ないし請求項3のいずれかに記載の距離計測装置において、
    前記非受光期間に、
    前記比較出力部は、大きさが段階的に異なる複数の仮閾値を順番に切り替えて、前記受光部からの前記出力信号と比較し、前記出力信号が前記仮閾値より大きいときに前記所定信号を出力し、
    前記最大値検出部は、前記仮閾値毎に前記比較出力部から出力される前記所定信号の出力頻度に基づいて、前記受光部からの前記出力信号の前記最大値を検出する、ことを特徴とする距離計測装置。
  5. 請求項1ないし請求項4のいずれかに記載の距離計測装置において、
    前記比較出力部から出力されるアナログの前記所定信号をデジタルの所定信号に変換して前記距離算出部に出力する1ビットのアナログデジタルコンバータをさらに備えた、ことを特徴とする距離計測装置。
  6. 請求項1ないし請求項4のいずれかに記載の距離計測装置において、
    前記距離算出部は、TDC(Time to Digital Converter)を含んでいる、ことを特徴とする距離計測装置。
JP2017116633A 2017-06-14 2017-06-14 距離計測装置 Abandoned JP2019002760A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017116633A JP2019002760A (ja) 2017-06-14 2017-06-14 距離計測装置
CN201810605888.XA CN109085606A (zh) 2017-06-14 2018-06-13 测距装置
US16/008,907 US20180364340A1 (en) 2017-06-14 2018-06-14 Distance measuring apparatus
DE102018209572.8A DE102018209572A1 (de) 2017-06-14 2018-06-14 Entfernungsmessvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116633A JP2019002760A (ja) 2017-06-14 2017-06-14 距離計測装置

Publications (1)

Publication Number Publication Date
JP2019002760A true JP2019002760A (ja) 2019-01-10

Family

ID=64457805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116633A Abandoned JP2019002760A (ja) 2017-06-14 2017-06-14 距離計測装置

Country Status (4)

Country Link
US (1) US20180364340A1 (ja)
JP (1) JP2019002760A (ja)
CN (1) CN109085606A (ja)
DE (1) DE102018209572A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150589A (ja) * 2019-03-11 2020-09-17 パナソニックIpマネジメント株式会社 検出装置、充電装置、プログラム
JP2020202312A (ja) * 2019-06-11 2020-12-17 株式会社東芝 光検出装置、電子装置及び光検出方法
WO2021045052A1 (ja) * 2019-09-06 2021-03-11 株式会社デンソー 測距装置
JP2021047126A (ja) * 2019-09-19 2021-03-25 株式会社東芝 距離計測装置、及び距離計測方法
WO2021059675A1 (ja) * 2019-09-24 2021-04-01 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および、電子機器
WO2021085123A1 (ja) * 2019-11-01 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 受光装置、測距装置および受光回路
JP2021119336A (ja) * 2019-09-06 2021-08-12 株式会社デンソー 測距装置
WO2021256276A1 (ja) * 2020-06-16 2021-12-23 ソニーセミコンダクタソリューションズ株式会社 測距装置および測距システム
CN115963506A (zh) * 2023-03-16 2023-04-14 杭州宇称电子技术有限公司 单光子雪崩二极管直接时间飞行测距方法、装置及其应用

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196377B (zh) * 2016-06-02 2023-01-10 夏普株式会社 光传感器及电子设备
JP2020106397A (ja) * 2018-12-27 2020-07-09 ソニーセミコンダクタソリューションズ株式会社 測距装置
JP2020118567A (ja) * 2019-01-24 2020-08-06 ソニーセミコンダクタソリューションズ株式会社 測距装置、車載システム及び測距方法
JP7208052B2 (ja) * 2019-02-15 2023-01-18 株式会社豊田中央研究所 光学的測距装置
JP7095626B2 (ja) * 2019-03-06 2022-07-05 株式会社デンソー 光学的測距装置
CN109901184B (zh) * 2019-03-25 2021-12-24 Oppo广东移动通信有限公司 飞行时间组件、终端及飞行时间组件的控制方法
CN112236687A (zh) * 2019-04-30 2021-01-15 深圳市大疆创新科技有限公司 一种探测电路、探测方法及测距装置、移动平台
JP7193413B2 (ja) * 2019-05-10 2022-12-20 株式会社東芝 電子装置及び距離計測方法
DE102019207741A1 (de) 2019-05-27 2020-12-03 Infineon Technologies Ag Ein LIDAR-System, ein Verfahren für ein LIDAR-System und ein Empfänger für ein LIDAR-System mit ersten und zweiten Umwandlungselementen
JPWO2020262476A1 (ja) * 2019-06-25 2020-12-30
EP3770633B1 (de) 2019-07-23 2021-05-05 Sick Ag Optoelektronischer sensor und verfahren zur abstandsbestimmung
CN110361714B (zh) * 2019-08-07 2021-11-19 武汉灵途传感科技有限公司 激光雷达的测距补偿系统及方法
US20210223398A1 (en) * 2020-01-21 2021-07-22 Semiconductor Components Industries, Llc Imaging systems with single-photon avalanche diodes and ambient light level detection
US20210341619A1 (en) * 2020-04-29 2021-11-04 Semiking Llc High Dynamic Range Single Photon Avalanche Detector Array on Silicon with Circuitry for Light Detection and Ranging
CN115144863A (zh) * 2021-03-31 2022-10-04 上海禾赛科技有限公司 确定噪声水平的方法、激光雷达以及测距方法
EP4249949B1 (de) * 2022-03-25 2024-03-13 Sick Ag Erfassung und abstandsbestimmung eines objekts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957116B2 (en) * 2006-10-13 2011-06-07 Advanced Analogic Technologies, Inc. System and method for detection of multiple current limits
JP5617159B2 (ja) 2008-10-07 2014-11-05 トヨタ自動車株式会社 画像取得装置及び方法
JP6017916B2 (ja) 2012-10-16 2016-11-02 株式会社豊田中央研究所 光検出器
JP6225411B2 (ja) 2012-10-16 2017-11-08 株式会社豊田中央研究所 光学的測距装置
JP6226551B2 (ja) * 2013-05-08 2017-11-08 キヤノン株式会社 撮像装置
US9874629B2 (en) * 2013-12-23 2018-01-23 Oulun Yliopisto Distance measurement device, receiver thereof and method of distance measurement
JP6012589B2 (ja) * 2013-12-27 2016-10-25 オムロンオートモーティブエレクトロニクス株式会社 レーザレーダ装置及び物体検出方法
JP6750216B2 (ja) 2015-12-22 2020-09-02 大日本印刷株式会社 撮像モジュール、撮像装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150589A (ja) * 2019-03-11 2020-09-17 パナソニックIpマネジメント株式会社 検出装置、充電装置、プログラム
JP7142331B2 (ja) 2019-03-11 2022-09-27 パナソニックIpマネジメント株式会社 検出装置、充電装置、プログラム
US11265500B2 (en) 2019-06-11 2022-03-01 Kabushiki Kaisha Toshiba Photodetection apparatus, electronic apparatus and photodetection method
JP2020202312A (ja) * 2019-06-11 2020-12-17 株式会社東芝 光検出装置、電子装置及び光検出方法
JP7079753B2 (ja) 2019-06-11 2022-06-02 株式会社東芝 光検出装置、電子装置及び光検出方法
JP7294265B2 (ja) 2019-09-06 2023-06-20 株式会社デンソー 測距装置
JP2021119336A (ja) * 2019-09-06 2021-08-12 株式会社デンソー 測距装置
WO2021045052A1 (ja) * 2019-09-06 2021-03-11 株式会社デンソー 測距装置
JP7435851B2 (ja) 2019-09-06 2024-02-21 株式会社デンソー 測距装置
JP7435852B2 (ja) 2019-09-06 2024-02-21 株式会社デンソー 測距装置
JP2021047126A (ja) * 2019-09-19 2021-03-25 株式会社東芝 距離計測装置、及び距離計測方法
JP7433819B2 (ja) 2019-09-19 2024-02-20 株式会社東芝 距離計測装置、及び距離計測方法
US12007479B2 (en) 2019-09-19 2024-06-11 Kabushiki Kaisha Toshiba Distance measuring device and distance measuring method
WO2021059675A1 (ja) * 2019-09-24 2021-04-01 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および、電子機器
WO2021085123A1 (ja) * 2019-11-01 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 受光装置、測距装置および受光回路
WO2021256276A1 (ja) * 2020-06-16 2021-12-23 ソニーセミコンダクタソリューションズ株式会社 測距装置および測距システム
CN115963506A (zh) * 2023-03-16 2023-04-14 杭州宇称电子技术有限公司 单光子雪崩二极管直接时间飞行测距方法、装置及其应用

Also Published As

Publication number Publication date
US20180364340A1 (en) 2018-12-20
DE102018209572A1 (de) 2018-12-20
CN109085606A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
JP2019002760A (ja) 距離計測装置
US11598856B2 (en) Receiver arrangement for the reception of light impulses, lidar module and method for receiving light impulses
JP6225411B2 (ja) 光学的測距装置
US10775507B2 (en) Adaptive transmission power control for a LIDAR
EP3457170B1 (en) Distance measuring device
JP6236758B2 (ja) 光学的測距装置
JP6017916B2 (ja) 光検出器
JP6314418B2 (ja) レーダ装置
WO2020201452A1 (en) Method of measuring optical crosstalk in a time of flight sensor and corresponding time of flight sensor
US11340109B2 (en) Array of single-photon avalanche diode (SPAD) microcells and operating the same
CN111656219B (zh) 用于使用光信号确定至少一个对象的距离的装置和方法
CN111656220B (zh) 用于接收光信号的接收装置
WO2020166609A1 (ja) 光学的測距装置
Jahromi et al. A single chip laser radar receiver with a 9× 9 SPAD detector array and a 10-channel TDC
JP2019015522A (ja) 距離計測装置
WO2019050024A1 (ja) 距離測定方法および距離測定装置
US20210088661A1 (en) Photodetector and optical ranging apparatus using the same
JP2019090679A (ja) 対象物検出装置
US20240004070A1 (en) Optical rangefinder and optical rangefinding method
JP7462037B2 (ja) Spadベースの検出器のダイナミックレンジの拡大

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190802

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20200609