WO2021045052A1 - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
WO2021045052A1
WO2021045052A1 PCT/JP2020/033103 JP2020033103W WO2021045052A1 WO 2021045052 A1 WO2021045052 A1 WO 2021045052A1 JP 2020033103 W JP2020033103 W JP 2020033103W WO 2021045052 A1 WO2021045052 A1 WO 2021045052A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
information
value
light
distance measuring
Prior art date
Application number
PCT/JP2020/033103
Other languages
English (en)
French (fr)
Inventor
貴祥 藤澤
晶文 植野
尾崎 憲幸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020125653A external-priority patent/JP7294265B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080062536.XA priority Critical patent/CN114341665A/zh
Publication of WO2021045052A1 publication Critical patent/WO2021045052A1/ja
Priority to US17/653,528 priority patent/US20220187470A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the present disclosure relates to a technique for measuring the distance to an object that reflects light using light.
  • TOF flight time of the light from irradiation to light reception
  • Patent Document 1 describes a ranging device that uses a SPAD array in which a plurality of SPADs are arranged as a photodetector.
  • SPAD is an abbreviation for Single Photon Avalanche Diode, which is a highly sensitive avalanche photodiode that operates in Geiger mode.
  • the number of pulse signals output from each SPAD (hereinafter referred to as the number of responses) is counted, and the waveform represented by the time series of the count values is detected as the received light waveform. Further, by repeatedly performing the measurement and integrating the received light waveforms, the influence of the ambient light and the like incident on the SPAD array is suppressed.
  • Patent Document 1 As a result of detailed examination by the inventor, the following problems have been found in the prior art described in Patent Document 1.
  • the irradiation light from the distance measuring device mounted on another vehicle may be erroneously detected as reflected light from an object. That is, in the TOF, since the light receiving timing is obtained from the pulsed waveform appearing in the light receiving waveform, the pulsed waveform appears at the light receiving timing of the irradiation light from another ranging device. Even if the detection of such a pulsed waveform is sporadic, the light receiving intensity is strong, so unlike normal noise, the suppression effect by integration cannot be sufficiently obtained, and it is mistaken that it is a reflection from the target. It was sometimes recognized. It should be noted that the same problem occurs when the irradiation light from another ranging device not mounted on the vehicle, that is, the so-called interference light is received.
  • One aspect of the present disclosure is to provide a technique for suppressing false detection due to pulsed interference light.
  • One aspect of the present disclosure is a distance measuring device, which includes a light emitting unit, a light receiving unit, a characteristic setting unit, a light receiving integrating unit, and a distance calculation unit.
  • the light emitting part irradiates the object with light.
  • the light receiving unit receives the light reflected from the object.
  • the characteristic setting unit uses the time change of the received light amount acquired by the light receiving unit as the received light information, and from one or more received light information, the received light amount range of the pulsed light other than the irradiation light which is the light emitted from the light emitting unit, and the received light amount range. At least one of the light receiving time ranges is extracted as a designated range.
  • the light receiving integration unit generates integrated light receiving information in which at least a part of the information obtained from the light receiving information is integrated on the time axis in which the light emission timings are matched over a plurality of times of light emission.
  • the distance calculation unit excludes or specifies the distance noise generated by pulsed light other than the irradiation light based on the designated range extracted by the characteristic setting unit, and calculates the distance to the object that reflects the irradiation light.
  • the pulse generated by the pulsed light other than the irradiation light in the received light waveform represented by the integrated received light information since the distance to the object is calculated using the integrated received light information obtained by integrating a plurality of received light information, the pulse generated by the pulsed light other than the irradiation light in the received light waveform represented by the integrated received light information. The amount of received light with a waveform is suppressed.
  • distance noise is excluded or specified by using a specified range extracted from a plurality of received light information to be integrated. Therefore, it is possible to suppress erroneous detection based on distance noise, that is, detection of distance even when an object does not exist.
  • the distance measuring device 1 shown in FIG. 1 is mounted on a vehicle and is used. By irradiating light and receiving reflected light from an object that reflects the irradiated light, the round-trip time of light to the measured object is measured. It is a so-called rider device that measures the distance from the light. Riders are also referred to as LIDAR. LIDAR is an abbreviation for Light Detection and Ranging.
  • the distance measuring device 1 includes a light emitting unit 2, a light receiving unit 3, a timing control unit 4, and a processing unit 5.
  • the light emitting unit 2 has one or more light emitting elements, and repeatedly irradiates a pulsed laser beam according to a light emitting trigger signal from the timing control unit 4.
  • a light emitting element for example, a laser diode is used.
  • the light receiving unit 3 includes a plurality of two-dimensionally arranged SPADs and a photodetector.
  • SPAD is an abbreviation for Single Photon Avalanche Diode.
  • the SPAD is an avalanche photodiode (hereinafter referred to as APD) that operates in Geiger mode.
  • APD avalanche photodiode
  • the Geiger mode is an operation mode in which an APD is operated by applying a reverse bias voltage higher than the breakdown voltage. SPAD breaks down due to the incident of photons.
  • the photodetector detects the voltage change when the SPAD breaks down, outputs a digital pulse having a predetermined pulse width, and totals the number of detected pulses for each preset unit time.
  • the light receiving information representing the relationship between the time and the light amount is generated by sampling the received light amount for a certain period with the light emission timing as the start time.
  • the waveform represented by the received light information is called a received light waveform.
  • the timing control unit 4 repeatedly outputs the light emission trigger signal.
  • the output cycles T1, T2, T3, ... Of the light emission trigger signal are not constant, but are randomly changed within a constant range.
  • a certain range means that the time Tmax required for the light to reciprocate the maximum detection distance of the distance measuring device 1 is set to be longer, and a plurality of light receiving information to be integrated, which will be described later, are at the same position. It is set within the range that can be regarded as measured for the object.
  • the preset reference time is Tf and Tmax ⁇ 5Tf, and the cycle is changed in units of the reference time Tf.
  • the timing at which the light emission trigger signal is output is referred to as the light emission timing.
  • the processing unit 5 includes a light receiving integration unit 6, a characteristic setting unit 7, and a distance calculation unit 8.
  • the light receiving integration unit 6 adjusts the time of the obtained M light receiving information at each of the continuous M light emitting timings supplied from the light receiving unit 3 starting from the light emitting timing. Go and add up.
  • the M light-receiving information to be integrated by the light-receiving integration unit 6 is referred to as a target information group.
  • the result integrated by the light receiving integration unit 6 is referred to as integrated light receiving information, and the waveform represented by the integrated light receiving information is referred to as integrated light receiving waveform.
  • the integrated light receiving information is supplied to the distance calculation unit 8.
  • all of the received light waveforms shown by the M light received information are pulsed waveforms based on the reflected light from the same object (hereinafter, referred to as The reflected light waveform) is detected in substantially the same time range on the time axis starting from the light emission timing.
  • the reflected light from the object corresponds to the non-interfering light.
  • pulsed interference light arriving from the outside is received regardless of the irradiation light emitted at the emission timing of the distance measuring device 1.
  • a pulsed waveform (hereinafter referred to as an interference light waveform) is detected in addition to the reflected light waveform.
  • the pulsed interference light includes irradiation light from another ranging device.
  • the interference light waveform does not occur in all of the M light receiving information, but appears sporadically.
  • the source of the interference light is another ranging device 1 mounted on another vehicle or the like, or another ranging device that repeats light emission and reception based on the same principle as the ranging device 1 in the present disclosure.
  • FIG. 3 shows a case where the interference light waveform is detected only the second time out of the three times.
  • the amplitude of the reflected light waveform detected at substantially the same position each time is increased, and the amplitude of the interference light waveform detected sporadically is suppressed.
  • the characteristic setting unit 7 includes a binarization unit 71 and a filter generation unit 72.
  • the binarization unit 71 sets a preset binarization threshold THb for each of the M light-receiving information integrated by the light-receiving integrating unit 6 and sets the light-receiving waveform indicated by the light-receiving information.
  • the received binary information is generated by binarizing with.
  • the value that is, the amplitude of the waveform
  • the value becomes 1.0 in the time range in which the signal intensity is larger than the binarization threshold THb in the received waveform indicated by the received information, and the signal intensity becomes 1.0.
  • the value becomes 0 in the time range where the binarization threshold is THb or less.
  • the binarization threshold THb is set to, for example, the lower limit of the received light amount range of the interference light. Further, the binarization threshold THb is not limited to a fixed value set in advance, and for example, a variable value calculated according to the received light information may be used.
  • the filter generation unit 72 includes a binary integration unit 721 and a determination unit 722.
  • the binarization unit 721 integrates the M light-receiving binary information generated by the binarization unit 71 on the time axis in which the light emission timings are matched.
  • the integrated binary waveform indicated by the integrated binary information which is the result of integration, has a value in the time range in which the reflected light waveform is detected (that is, the amplitude of the waveform) is M, and is in the time range in which the interference light waveform is detected.
  • the value is smaller than M, which is 1 in FIG.
  • the determination unit 722 sets the integrated binary waveform indicated by the integrated binary information to a value smaller than M based on the integrated binary information generated by the binary integration unit 721. Binarize with THj.
  • the determination unit 722 extracts an effective range in which the reflected light waveform is estimated to be detected from the binarized result, and supplies it to the distance calculation unit 8.
  • the light receiving time range of the interference light is included in the invalid range, which is a range other than the effective range. That is, the invalid range corresponds to the specified range.
  • a preset fixed threshold value may be used as the determination threshold value THj.
  • the distance calculation unit 8 includes a distance measuring unit 81 and a filtering unit 82.
  • the ranging unit 81 sets the light receiving timing for each of the pulsed waveforms having a peak value larger than the extraction threshold value The, which is set to be equal to or higher than the minimum intensity to be detected, based on the integrated light receiving information. calculate.
  • the extraction threshold The is set to be equal to or higher than the minimum intensity to be detected.
  • the extraction threshold value The is set to, for example, a value equal to or higher than the binarization threshold value THb and equal to or lower than the determination threshold value THj, but is not limited to this setting.
  • the distance measuring unit 81 calculates the distance to the object that reflected the irradiation light from the time difference from the light emission timing to the light reception timing.
  • the light receiving timing may be the timing at which the peak is actually obtained, or the timing at which the signal level is in the middle of the range where the signal level is equal to or higher than a certain threshold value.
  • the light emission timing may be the peak timing estimated by using an interpolating method from the signal levels obtained discretely.
  • the distance calculated by the distance measuring unit 81 is not limited to one. As a result of the processing by the distance measuring unit 81, not only the distance based on the reflected light waveform but also the distance based on the interference light waveform is calculated.
  • echo information EC the information regarding the peak detected by the distance measuring unit 81 using the extraction threshold value
  • The is referred to as echo information EC, and is referred to as EC (1), EC (2), ...
  • the echo information EC (i) may include a peak value in the integrated received light waveform in addition to the distance.
  • the filtering unit 82 converts the effective range on the time axis extracted by the determination unit 722 into an effective range on the distance axis (hereinafter, effective distance range). This conversion may be performed by the determination unit 722. Further, the filtering unit 82 extracts the echo information EC having a peak value larger than the extraction threshold value The using the extraction threshold value The from the integrated light receiving information. The filtering unit 82 determines whether or not the calculated distance is included in the effective distance range for each of the calculated distances calculated by the distance measuring unit 81 for each extracted echo information EC.
  • the filtering unit 82 determines that the calculated distance is not included in the effective distance range, it discards the calculated distance, and when it determines that the calculated distance is included in the effective range, the filtering unit 82 determines the calculated distance. Output as the distance to an existing object.
  • the process in the filtering unit 82 is called a filter process. That is, the characteristics of the filter are set by the effective range extracted by the determination unit 722.
  • the distance to the object that reflects the irradiation light is calculated using the integrated light receiving information obtained by integrating M light receiving information. Therefore, noise generated randomly in the received light information can be suppressed, and erroneous detection due to noise can be suppressed.
  • binary information is generated by binarizing each of the M light receiving information using the binarization threshold THb. Further, by binarizing the integrated binary information obtained by integrating the generated M binary information using the determination threshold value THj, the effective range in which the reflected light waveform is presumed to exist is extracted. Then, among the distances calculated for each pulse waveform by the distance measuring unit 81, the distance included in the effective range is output as the distance to the object. That is, the distance included in the invalid range (that is, the specified range) other than the valid range is discarded. Therefore, according to the present embodiment, it is possible to suppress erroneous detection based on the interference light waveform, that is, detection of the distance even though the object does not exist.
  • the integrated received light information even if the interference light waveform is detected only once, if the signal level at one time is large, a peak value equal to or higher than the reflected light waveform can be obtained. Therefore, it may be difficult to distinguish between the reflected light waveform and the interference light waveform in the integrated received light information.
  • the integrated binary information since the integrated binary information has an amplitude corresponding to the integrated number regardless of the signal level of the waveform indicated by the received light information, it is possible to distinguish between the reflected light waveform and the interference light waveform.
  • the distance to the object is calculated using the M light-receiving information measured by randomly changing the light emission timing. Therefore, an interference light waveform having a pulsed waveform such as light emission from another ranging device mounted on another vehicle or the like is detected at a time different from the reflected light waveform in the received information of M pieces to be integrated. Therefore, the detection accuracy of the effective range based on the integrated binary information can be improved.
  • the configuration of the characteristic setting unit 7a in the processing unit 5a is different from that in the first embodiment. Specifically, among the characteristic setting units 7a, the configuration of the filter generation unit 72a is different. As shown in FIG. 8, the filter generation unit 72a includes a logical operation unit 723 instead of the binary integration unit 721 and the determination unit 722.
  • the logical operation unit 723 extracts the effective range by calculating the logical product of M binarized information generated by the binarization unit 71. By this logical product operation, the range in which the signal is detected in all of the M binary information is extracted as the effective range.
  • the distance to the object is calculated using the M light-receiving information measured by randomly changing the light emission timing. Therefore, an interference light waveform having a pulsed waveform, such as light emitted from another ranging device, is detected at a time different from the reflected light waveform in the received information of M pieces to be ANDed.
  • the detection accuracy of the effective range by the logical operation unit 723 can be improved.
  • the configuration of the distance calculation unit 8b in the processing unit 5b is different from that in the first embodiment.
  • the filtering process by the filtering unit 82 is performed on the result of the ranging processing by the ranging unit 81.
  • the integrated light receiving information from the light receiving integrating unit 6 is filtered by the filtering unit 82b, and the result of the filtering is subjected to the ranging unit.
  • the distance measurement process at 81 is performed.
  • the filtering unit 82b extracts the signal waveform in the time range corresponding to the valid period by filtering the integrated received light waveform on the time axis, and the period other than the valid period.
  • the signal waveform in the time range corresponding to the invalid period is removed.
  • the distance measuring unit 81 executes the distance measuring process only on the pulsed waveform extracted by the filter processing, that is, the reflected light waveform, and generates the echo information EC including the distance to the object.
  • the processing load on the distance measuring unit 81 can be reduced.
  • the configurations of the characteristic setting unit 7d and the distance calculation unit 8b in the processing unit 5d are different from those in the first embodiment. Specifically, among the characteristic setting units 7d, the configuration of the filter generation unit 72d is different. As shown in FIG. 13, the filter generation unit 72d is provided with a normalization unit 724 instead of the determination unit 722, as compared with the filter generation unit 72 of the first embodiment. Further, in the fourth embodiment, instead of the distance calculation unit 8, the distance calculation unit 8b described in the third embodiment is provided.
  • the normalization unit 724 is the number of light receiving information whose integrated value represented by the integrated binary information obtained by the binary integration unit 721 is integrated by the light receiving integration unit 6. Normalization information is generated by dividing by the integrated number M. That is, the signal level in the normalized information is 1.0 in the range where the signal is detected in all the received light received information to be integrated, and in the range where the signal is detected in only one received light information, the normalized information is used. The signal level is 1 / M.
  • the filtering unit 82b multiplies the integrated light receiving information by using the signal level indicated by the normalized information as a gain.
  • the peak value of the waveform is more suppressed in the range where the pulsed waveform is detected sporadically, and there is a high possibility that the peak value becomes smaller than the extraction threshold value The.
  • the possibility that the distance measuring unit 81 performs the distance measuring process on the pulsed waveform belonging to the range where the gain is low is reduced.
  • an effective range having a gain smaller than 1 is extracted. For this reason, it is possible to suppress erroneous detection based on the interference light waveform, that is, the detection of the distance even though the object does not exist, and also for the pulse waveform detected in the same range with high frequency, but not every time. The distance can be calculated.
  • the distance is calculated using M light-receiving information measured by randomly changing the light emission timing. Therefore, the range in which the interference light waveform is detected by detecting the interference light waveform having a pulsed waveform such as light emission from another ranging device at a time different from the reflected light waveform in the M light receiving information. The gain of the normalized information in can be sufficiently suppressed.
  • the filtering unit 82 filters the distance to the object calculated by the distance measuring unit 81, and the filtering unit 82b performs the time calculated by the light receiving integration unit 6. Filter processing is performed on the integrated received light waveform on the axis.
  • the ranging unit 81 uses data necessary for calculating the half width and intermediate data such as a plurality of discrete signal levels near the peak when calculating the light receiving timing, as shown in FIGS. 55 to 58.
  • the intermediate data may be filtered.
  • the distance calculation unit 8q shown in FIG. 55 includes a front distance measurement unit 81q, a filtering unit 82, and a rear distance measurement unit 83q.
  • the front distance measuring unit 81q extracts the timing required for calculating the intermediate data on the time axis, and converts the extracted timing into distance data.
  • FIG. 56 shows a case where the full width at half maximum distance, which is the distance data calculated from the timing at which the 1/2 level of the peak required for the calculation of the full width at half maximum is obtained, is extracted.
  • the filtering unit 82 performs filtering processing on the distance axis to extract the half width distance related to the peak for which the echo information EC is to be generated.
  • the post-range measuring unit 83q calculates the distance to the object that reflected the irradiation light by using the half-value width distance extracted by the filtering unit 82.
  • the distance calculation unit 8r shown in FIG. 57 includes a front distance measuring unit 81r, a filtering unit 82b, and a rear distance measuring unit 83r.
  • the front ranging unit 81r extracts the timing required for calculating the intermediate data on the time axis.
  • FIG. 58 shows a case where the full width at half maximum time, which is the timing at which the 1/2 level of the peak required for calculating the full width at half maximum is obtained, is extracted.
  • the filtering unit 82b performs a filter process on the time axis with respect to the half width time extracted by the front distance measuring unit 81r, and extracts the half width time related to the peak for which the echo information EC is to be generated.
  • the post-distance measuring unit 83r converts the full width at half maximum time extracted by the filtering unit 82b into distance data, and uses the converted distance data to calculate the distance to the object that reflected the irradiation light.
  • the intermediate data is not limited to the half-value width, and is extracted from pulses having an extraction threshold of The or higher, such as the peak time of the pulse. It may be time data or distance data.
  • the configurations of the characteristic setting unit 7e and the distance calculation unit 8e in the processing unit 5e are different from those in the first embodiment.
  • the characteristic setting unit 7e includes a baseline calculation unit 73, a peak calculation unit 74, and a threshold value setting unit 75.
  • the baseline calculation unit 73 calculates an individual baseline value representing a baseline value for each of a plurality of light reception information to be integrated by the light reception integration unit 6.
  • the baseline refers to the amount of light received as an offset excluding the influence of reflected light based on the irradiation light, the influence of interference light from other rider devices, and the influence of clutter.
  • the clutter is light-receiving noise generated near zero distance when synchrotron radiation is reflected by the housing of the distance measuring device 1 and received.
  • the baseline value for example, the average value or the median value of the received light amount detected in the time range excluding the time range affected by the reflected light, the interference light, and the clutter may be used.
  • the baseline is also called the noise floor level.
  • the baseline calculation unit 73 calculates an integrated baseline value representing a baseline value in the integrated received light information.
  • the peak calculation unit 74 acquires the maximum amount of received light for each received information.
  • the maximum received light amount may be acquired from within the entire time range indicated by the received light information, or may be acquired from within a time range excluding the time range in which the clutter is detected, for example.
  • the maximum amount of received light in the m-th received information is referred to as a raw peak value Am .
  • Peak calculating unit 74 further, for each of the M receiving information, by subtracting the individual baseline value N m from the raw peak value A m, calculating the relative peak value S m of receiver frequency. In calculating the relative peak value S m , instead of the individual baseline value N m , a value obtained by dividing the integrated baseline value Ns by the integrated number M may be used.
  • the threshold setting unit 75 includes a maximum extraction unit 751.
  • the margin ⁇ may be omitted.
  • the distance calculation unit 8e includes a distance measurement unit 81e.
  • the ranging unit 81e extracts a pulse waveform having a peak value larger than the extraction threshold value The set by the threshold value setting unit 75 by using the integrated light receiving information, and from each reception timing of the extracted pulse waveform to the object. Calculate the distance. That is, the distance measuring unit 81e is different from the distance measuring unit 81 in that the setting of the extraction threshold value The can be changed. Then, the echo information EC that associates the calculated distance with the peak value is generated and output.
  • the extraction threshold value The used for extracting the pulse waveform to be distance-measured is set based on the maximum relative peak value Smax extracted from the M light-receiving information. Therefore, according to the present embodiment, it is possible to suppress erroneous detection based on the interference light waveform, that is, detection of a distance even though there is no object, and distance measurement processing is performed on the interference light waveform. Is suppressed, so that the processing load on the ranging unit 81e can be reduced. Further, in the first to fourth embodiments, the memory for the filter for the time range is required, whereas the memory for the maximum relative peak value Smax is sufficient, which has the effect of reducing the amount of memory required for mounting.
  • the interference light waveform has a plurality of light receiving information W (1) to W (M) at the same timing. Unless detected, the peak value of the interference light waveform in the integrated received light information does not exceed the extraction threshold The. Therefore, the distance measurement process can be performed after removing the interference light waveform by the extraction threshold value The.
  • the light receiving integrating unit 6 calculates the accumulated received information by simply adding a plurality of light-reception information W (1) ⁇ W (M ), the sum of the individual baseline value N 1 ⁇ N M
  • the integration baseline value Ns is set, the integration method of the received light information is not limited to simple addition.
  • the light receiving integration unit 6 may be configured to integrate a plurality of light receiving information W (1) to W (M) so that the integrated baseline value Ns becomes zero.
  • the integrated light-receiving information integrated so that Ns ⁇ 0 is referred to as non-zero-based integrated light-receiving information.
  • the light receiving integrating unit 6 calculates the individual baseline value N 1 ⁇ N M each receiving information W (1) ⁇ W (M ). Further, the light receiving integration unit 6 calculates the zero-based integrated light receiving information by adding the result (W (m) ⁇ N m ) obtained by subtracting the individual baseline value N m from each of the light receiving information W (m). ..
  • this method will be referred to as a subtraction-after integration method.
  • the light receiving integrating unit 6 the light-reception information W (1) ⁇ W (M ) simply subtracting the total value Nsum of the addition result ⁇ W individual baseline value from (m) N 1 ⁇ N M By doing so, the zero-based integrated light receiving information is calculated.
  • the baseline value extracted from ⁇ W (m) may be used instead of Nsum.
  • this method will be referred to as a subtraction method after integration.
  • this method will be referred to as a zero-based sequential integration method.
  • the i-th light receiving information is added after subtracting the individual baseline value Ni-1 from the i-1st intermediate integration information, but the order of calculation is not limited to this. Absent.
  • the individual baseline value Ni-1 may be subtracted from the result of adding the i-1st intermediate integration information and the ith received light receiving information.
  • the extraction threshold value The is any of the following equations (1) to (3). It may be set by the above method.
  • The Smax (1)
  • Amax is the maximum value MAX (A 1 , A 2 , ..., AM ) out of M raw peak values A 1 to AM, and is called the maximum raw peak value.
  • Nx is an individual baseline value in the received light information from which the maximum raw peak value Amax is extracted.
  • Nave is average AVE (N 1, N 2, ..., N M) of M individual baseline values N 1 ⁇ N M a.
  • a margin ⁇ may be added to the extraction threshold value The.
  • Nx in (2) and Nave in Eq. (3) correspond to offset values.
  • Ns N M become integrated receiving information, i.e. if it is configured to calculate the non-zero-based integrated receiving information, extraction threshold value THe, the following It may be set by any of the methods shown in the equations (4) to (7).
  • THe Smax + N M (4 )
  • THe Amax-Nx + N M
  • THe Amax-Nave + N M (6)
  • The Amax (7) (4) - (6) are (1) to (3) is an expression obtained by adding the individual baseline value N M of M-th receiving information to be accumulated baseline value Ns.
  • a margin ⁇ may be added to the extraction threshold value The.
  • the individual baseline value NM of the Mth light receiving information becomes the integrated baseline value Ns of the non-zero-based integrated light receiving information.
  • the individual baseline value of one arbitrarily selected received light information may be configured to be the integrated baseline value Ns.
  • the total value of the individual baseline values of any arbitrarily selected received light information may be configured to be the integrated baseline value.
  • the process of the light receiving integration unit 6 described with reference to FIGS. 41 to 43 can be applied not only to the sixth and subsequent embodiments but also to the light receiving integration unit 6 in the first to fourth embodiments.
  • the configurations of the characteristic setting unit 7f and the distance calculation unit 8e in the processing unit 5f are different from those in the first embodiment.
  • the distance calculation unit 8e is the same as that described in the fifth embodiment.
  • the characteristic setting unit 7f generates the extraction threshold value The based on the integrated light receiving information supplied from the light receiving integrating unit 6.
  • the characteristic setting unit 7f includes a baseline calculation unit 73f, a peak calculation unit 74f, and a threshold value setting unit 75f.
  • the baseline calculation unit 73f calculates the integrated baseline value Ns representing the baseline value of the integrated light receiving information calculated by the light receiving integrating unit 6.
  • the integrated baseline value Ns a value extracted from the integrated light receiving information may be used, or an individual baseline value N extracted from each of a plurality of light receiving information to be integrated by the light receiving integrating unit 6. it may be used sum Nsum of 1 ⁇ N M.
  • the peak calculation unit 74f extracts the maximum value from the integrated light receiving information, and subtracts the integrated baseline value Ns calculated by the baseline calculation unit 73f from the extracted maximum value, whereby the relative peak value S of the integrated light receiving information S. Is calculated.
  • the threshold setting unit 75f includes a division unit 752.
  • the division unit 752 divides the relative peak value S of the integrated light-receiving information calculated by the peak calculation unit 74f by the integrated number M, which is the number of light-receiving information to be integrated by the light-receiving integration unit 6. Further, the division unit 752 sets a value obtained by adding the margin ⁇ and the integrated baseline value Ns calculated by the baseline calculation unit 73f to the division result as the extraction threshold value The. That is, the extraction threshold value The is set according to the equation (8). As the margin ⁇ , for example, any one of a predetermined constant and a value calculated according to the division value S / M may be used. Further, the margin ⁇ may be omitted, and the extraction threshold value The may be set according to the equation (9).
  • The S / M + ⁇ + Ns (8)
  • The S / M + Ns (9)
  • the extraction threshold value The set in this way may be used.
  • the characteristic setting unit 7f is provided after the light receiving integration unit 6, and it is not necessary to calculate each time the light receiving information is integrated, and only the calculation for the integrated light receiving information needs to be performed. Has a reduction effect.
  • the threshold value setting unit 75f may set the extraction threshold value The according to the equation (10) or (11). ..
  • The S / M + ⁇ (10)
  • The S / M (11) [7. Seventh Embodiment] [7-1. Differences from the first embodiment] Since the basic configuration of the seventh embodiment is the same as that of the first embodiment, the differences will be described below. The same reference numerals as those in the first embodiment indicate the same configurations, and the preceding description will be referred to.
  • the configurations of the characteristic setting unit 7g and the distance calculation unit 8e in the processing unit 5g are different from those in the first embodiment.
  • the distance calculation unit 8e is the same as that described in the fifth embodiment.
  • the characteristic setting unit 7g includes a baseline calculation unit 73g, a peak calculation unit 74, and a threshold value setting unit 75g.
  • the baseline calculation unit 73g calculates the individual baseline value N m for each of the M light receiving information and also calculates the integrated baseline value Ns.
  • the baseline calculation unit 73g further calculates the variation of the individual baseline value N m.
  • the standard deviation may be used as a parameter representing the variation.
  • the threshold value setting unit 75g includes a maximum extraction unit 751, a variation calculation unit 753, and a threshold value selection unit 754.
  • the maximum extraction unit 751 is the same as that described in the fifth embodiment, and calculates the maximum relative peak value Smax.
  • the variation calculation unit 753 sets the value obtained by multiplying the average value of the standard deviations of the individual baseline values calculated for each of M light receiving information by the baseline calculation unit 73g by the square root of M as the variation ⁇ , and is G times ⁇ . Is calculated as the allowable variation value. G is a positive real number. G is appropriately set depending on the probability that noise is erroneously detected as an object.
  • the standard deviation of the integrated baseline value calculated from may be used.
  • the threshold selection unit 754 compares the value obtained by adding the margin ⁇ to the maximum peak relative value Smax, the permissible variation value G ⁇ ⁇ , and the preset fixed value D.
  • the fixed value D is set so that an appropriate extraction threshold value The can be obtained even when the variation ⁇ is extremely small, for example, in a closed space. Then, if Smax + ⁇ is the maximum, the extraction threshold value The is set by the equation (12). If G ⁇ ⁇ is the maximum, the extraction threshold value The is set by the equation (13). If D is the maximum, the extraction threshold value The is set by the equation (14).
  • The Smax + ⁇ + Ns (12)
  • The G ⁇ ⁇ + Ns (13)
  • The D + Ns (14)
  • the formula (12) is the extraction threshold value The calculated by using the formulas (4) to (7), or the extraction threshold value The calculated by adding the margin ⁇ to the right side of the formulas (5) to (7). May be replaced with.
  • the extraction threshold value The is switched based on the comparison between the permissible variation value G ⁇ ⁇ calculated from the variation ⁇ of the baseline value, the maximum peak value Smax + ⁇ , and the fixed value D.
  • An appropriate extraction threshold The is set.
  • the threshold value setting unit 75g integrates from the right side of the equations (12) to (14).
  • the extraction threshold The which is calculated by using the formula excluding the baseline value Ns, may be used.
  • the configurations of the characteristic setting unit 7h and the distance calculation unit 8h in the processing unit 5h are different from those in the first embodiment.
  • the characteristic setting unit 7h includes a first setting unit 91 and a second setting unit 92.
  • the first setting unit 91 has the same configuration as any of the characteristic setting units 7, 7a, 7d described in the first to fourth embodiments, and sets an effective range in which the reflected light waveform can exist.
  • the second setting unit 92 has the same configuration as any of the characteristic setting units 7e to 7g described in the fifth to seventh embodiments, and sets the extraction threshold value The. However, when the characteristic setting unit 7f of the sixth embodiment is adopted as the second setting unit 92, the output of the light receiving integration unit 6 becomes the input of the second setting unit 92.
  • the distance calculation unit 8h includes two distance measuring units 81 and 81e, a filtering unit 82, and a switching unit 83.
  • the distance measuring unit 81 and the filtering unit 82 operate in the same manner as the distance calculating unit 8 described in the first embodiment.
  • the distance measuring unit 81 corresponds to the first distance measuring unit, and the distance measuring unit 81 and the filtering unit 82 correspond to the first processing unit.
  • the distance measuring unit 81e operates in the same manner as the distance calculating unit 8e described in the fifth embodiment.
  • the ranging unit 81e corresponds to the second ranging unit and the second processing unit.
  • the switching unit 83 outputs either the first distance measuring result output from the filtering unit 82 or the second distance measuring result output from the distance measuring unit 81e according to preset switching conditions.
  • the switching condition for example, the setting of the changeover switch provided separately may be used, and one of the distance measurement results may be output in a fixed manner according to the setting.
  • a distance threshold value may be used as the switching condition, and the second distance measurement result may be output for a short distance range closer to the distance threshold value, and the first distance measurement result may be output for a long distance range equal to or larger than the distance threshold value.
  • the distance measuring unit 81 may be input with the integrated light receiving information in the time range corresponding to the long distance range, and the distance measuring unit 81e may be input with the integrated light receiving information in the time range corresponding to the short distance range.
  • the configurations of the characteristic setting unit 7h and the distance calculation unit 8i in the processing unit 5i are different from those in the first embodiment.
  • the characteristic setting unit 7h has the same configuration as that described in the seventh embodiment.
  • the distance calculation unit 8i includes a filtering unit 82b, two distance measuring units 81 and 81e, and a switching unit 83.
  • the filtering unit 82b and the distance measuring unit 81 operate in the same manner as the distance calculation unit 8b described in the third embodiment.
  • the filtering unit 82b and the ranging unit 81 correspond to the first processing unit.
  • the distance measuring unit 81e operates in the same manner as the distance calculating unit 8e described in the fifth embodiment.
  • the ranging unit 81e corresponds to the second processing unit.
  • the switching unit 83 operates in the same manner as that described in the eighth embodiment.
  • the configurations of the characteristic setting unit 7j and the distance calculation unit 8j in the processing unit 5j are different from those in the first embodiment.
  • the characteristic setting unit 7j includes a baseline calculation unit 73, a peak calculation unit 74, and a threshold value setting unit 75j.
  • the baseline calculation unit 73 and the peak calculation unit 74 are the same as those described in the fifth embodiment. That is, the baseline calculation unit 73 calculates the individual baseline value N m for each light reception information, calculates the integrated baseline value Ns, and the peak calculation unit 74 calculates the maximum light intensity S m for each light reception information. To do.
  • the threshold value setting unit 75j includes a primary threshold value setting unit 755 and a secondary threshold value setting unit 756.
  • the primary threshold value setting unit 755 calculates the permissible variation G ⁇ ⁇ of the baseline value in the same manner as the variation calculation unit 753 described in the seventh embodiment. Further, the primary threshold value setting unit 755 outputs a value obtained by adding the integrated baseline value Ns to the calculated allowable variation G ⁇ ⁇ as the primary threshold value TH1. It should be noted that a preset fixed value may be set as D, and the primary threshold value TH1 may be the larger of G ⁇ ⁇ + Ns and D + Ns.
  • the secondary threshold value setting unit 756 calculates the maximum relative peak value Smax in the same manner as the maximum extraction unit 751 described in the fifth embodiment. Further, the secondary threshold value setting unit 756 outputs a value obtained by adding the margin ⁇ and the integrated baseline value Ns to the calculated maximum relative peak value Smax as the secondary threshold value TH2.
  • the primary threshold TH1 is set using either equation (15) or (16), and the secondary threshold TH2 is set using (17).
  • the relationship between the primary threshold TH1 and the secondary threshold TH2 is generally TH1 ⁇ TH2 as shown in FIG. 26, but the baseline variation is large and the peak values of reflected light and interference light are large. If it is small, TH1 ⁇ TH2 may be satisfied.
  • the distance calculation unit 8j includes a distance measuring unit 81j and a filtering unit 82j.
  • the ranging unit 81j extracts a pulse waveform having a peak value larger than the primary threshold value TH1 from the integrated light receiving information, and calculates the distance R to the object from each reception timing of the extracted pulse waveform. Then, the distance measuring unit 81j generates the echo information EC in which the distance R and the peak value P are associated with each other.
  • the peak value of the echo information EC is referred to as an echo peak value.
  • the ranging unit 81j may sort the generated echo information EC in descending order of echo peak value P.
  • the number of echo information ECs generated by the ranging unit 81j is defined as the number of detected echoes K.
  • K is an integer greater than or equal to 0.
  • the echo information having the k-th largest echo peak value P is expressed as EC (k)
  • the echo peak value is expressed as P (k)
  • the distance is expressed as R (k).
  • This process is started every time the distance measuring process for the integrated light receiving information is executed by the distance measuring unit 81j from the integrated light receiving information generated by the light receiving integrating unit 6.
  • the filtering unit 82j determines whether or not the detected echo number K is 1 or more, shifts the process to S120 if K ⁇ 1, and ends the process if K ⁇ 1.
  • the filtering unit 82j has a count value Cnt indicating the number of effective echo information based on the reflected wave from the object among the echo information EC detected by the ranging unit 81j, and an index k used for identifying the echo information EC. To initialize. Specifically, the count value Cnt is initialized to 0, and the index k is initialized to 1. Echo information other than valid echo information, that is, echo information based on interference waves and the like is referred to as invalid echo information.
  • the filtering unit 82j determines whether or not the echo peak value P (k) of the echo information EC (k) is larger than the secondary threshold value TH2, and if P (k) ⁇ TH2, the process is set to S140. If P (k)> TH2, the process is shifted to S150.
  • the filtering unit 82j sets a value False indicating that the echo information EC (k) is invalid echo information in the flag Flg (k) indicating whether the echo information EC (k) is valid echo information or invalid echo information. , The process proceeds to S170.
  • the filtering unit 82j increments the count value Cnt by 1.
  • the filtering unit 82j sets the value True indicating that it is valid echo information in the flag Flg (k), and proceeds to the process in S170.
  • the filtering unit 82j increments the index k by 1.
  • the filtering unit 82j determines whether or not the index k is equal to or less than the number of detected echoes K, returns the process to S130 if k ⁇ K, and ends the process if k> K. ..
  • the echo information EC is generated from the integrated received light information in two stages using the two thresholds TH1 and TH2, and the effective echo information is further extracted. That is, it is possible to obtain the same effect as that of the fifth embodiment in which the effective echo information is extracted by using the larger threshold value of TH1 (that is, G ⁇ ⁇ + Ns or D + Ns) and TH2 (that is, Smax + ⁇ + Ns). ..
  • the degree of freedom in device configuration can be improved by using the two threshold values TH1 and TH2. That is, for example, when an IC that generates only TH1 or an IC that generates only TH2 already exists individually, the device can be flexibly configured by using these ICs.
  • the secondary threshold value setting unit 756 uses the equations (1) to (3) instead of the equation (17).
  • the value calculated using the right side may be set as the secondary threshold value TH2.
  • the secondary threshold value setting unit 756 is used instead of the equation (17).
  • the value calculated using the right side of the equations (4) to (7) may be set as the secondary threshold value TH2.
  • the configuration of the distance calculation unit 8k in the processing unit 5k is different from that in the tenth embodiment.
  • the distance calculation unit 8k includes a distance measuring unit 81j, a filtering unit 82j, and a detection determination unit 85.
  • the distance measuring unit 81j and the filtering unit 82j are the same as those described in the tenth embodiment.
  • the detection determination unit 85 determines whether or not the effective echo information is properly extracted according to the detection echo number K obtained by the ranging unit 81j and the effective echo number Cnt obtained by the filtering unit 82j.
  • This process is started every time the process is executed by the filtering unit 82j.
  • the detection determination unit 85 determines whether or not the detection echo number K is larger than 0 and the effective echo number Cnt is 0. If a positive determination is made, the process shifts to S220 and a negative determination is made. If so, the process shifts to S230.
  • the detection determination unit 85 detects the detection status E_ST using the primary threshold value TH1, but there is a possibility that the valid echoes are not included in the K echoes invalidated by the secondary threshold value TH2. Set to "Not detected” to indicate that there is, and end the process.
  • the detection determination unit 85 sets the detection status E_ST to "detection” indicating that the effective echo is properly detected, and ends the process.
  • the echo based on the reflected wave from the object when the echo based on the reflected wave from the object (hereinafter, reflected echo) has a larger peak value than the echo based on the interference wave (hereinafter, interference echo), it is secondary according to the peak value of the reflected echo.
  • the threshold TH2 is set.
  • the peak value of the reflected echo becomes larger than the secondary threshold TH2 as a result of the integration by the light receiving integrating unit 6, so that the echo information of the reflected echo is extracted as effective echo information.
  • the peak value of the interference echo does not change even when integrated by the light receiving integration unit 6 and remains smaller than the secondary threshold value TH2, the echo information of the interference echo is extracted as invalid echo information.
  • the secondary threshold TH2 is set according to the peak value of the interference echo.
  • the echo information of the reflected echo may be extracted as invalid echo information. "Undetected" in the detection status E_ST represents such a situation.
  • the detection determination unit 85 may execute the detection determination process shown in FIG. 44 instead of the detection determination process shown in FIG. 29.
  • the detection determination unit 85 determines whether or not the detection echo number K is larger than 0 and the effective echo number Cnt is 0. If a positive determination is made, the process shifts to S250 and a negative determination is made. If so, the process shifts to S270.
  • the detection determination unit 85 detects the detection status E_ST using the primary threshold value TH1, but the K echoes invalidated by the secondary threshold value TH2 include echoes based on the interference wave and are removed. Set to "Interfering" to indicate that it is not possible.
  • the detection determination unit 85 sets the flags Flg (1) to Flg (K) of the K echo information EC (1) to EC (K) to True indicating that all of them are valid echo information. Return and end the process.
  • the detection determination unit 85 sets the detection status E_ST to "no interference” indicating that there is no influence of interference, and ends the process.
  • interference echo may be detected, but it is possible to suppress the reflection echo from being undetected.
  • the configuration of the distance calculation unit 8l in the processing unit 5l is different from that in the tenth embodiment.
  • the distance calculation unit 8l includes a distance measuring unit 81j, a filtering unit 82j, and an effective echo extraction unit 86.
  • the distance measuring unit 81j and the filtering unit 82j are the same as those described in the tenth embodiment.
  • the effective echo extraction unit 86 extracts the invalidated echo information as valid echo information when there is a possibility that the echo information EC of the reflected echo is determined to be invalid echo information by the filtering unit 82j.
  • This process is started every time the process is executed by the filtering unit 82j.
  • the effective echo extraction unit 86 determines whether or not the detected echo number K is larger than 1 and the effective echo number Cnt is 0. If the effective echo extraction unit 86 makes an affirmative determination, it is considered that the effective echo information may not be properly extracted, and the process shifts to S320. If it makes a negative determination, the effective echo information is properly extracted. If so, end the process.
  • the effective echo extraction unit 86 sets the index k used for identifying the echo information EC to 2.
  • the count value (that is, the number of effective echoes) Cnt at this point is 0, and is set to a value False indicating that the flags Flg of all echo information ECs are invalid.
  • the effective echo extraction unit 86 increases the count value Cnt by 1.
  • the effective echo extraction unit 86 sets the flag Flg (k) indicating whether or not the echo information EC (k) is effective echo information to the value True indicating that the echo information EC (k) is valid.
  • the effective echo extraction unit 86 increments the index k by 1.
  • the effective echo extraction unit 86 determines whether or not the index k is equal to or less than the number of detected echoes K, returns the process to S330 if k ⁇ K, and ends the process if k> K. ..
  • the echo information EC detected by the ranging unit 81j is sorted in descending order of the echo peak value P. Therefore, as a result of this processing, all the other echo information ECs (2) to EC (K) except the echo information EC (1) satisfying the invalid condition are provided on the condition that the echo peak value is the maximum. Extracted as valid echo information.
  • Echo information EC (1) is excluded as the interference echo information, so that the echo information EC (1) is other than the echo information EC (1).
  • Echo information EC (2) to EC (K) can be extracted as effective echo information.
  • the constant C may be a fixed threshold value that can be freely set by the developer.
  • the configuration of the distance calculation unit 8m in the processing unit 5m is different from that in the tenth embodiment.
  • the distance calculation unit 8m includes a distance measuring unit 81j, a filtering unit 82j, an effective echo extraction unit 86, and a detection determination unit 85.
  • the ranging unit 81j and the filtering unit 82j are the same as those described in the tenth embodiment
  • the detection determination unit 85 is the same as the description in the eleventh embodiment
  • the effective echo extraction unit 86 is the twelfth implementation. It is the same as the explanation in the form.
  • the detection determination unit 85 executes the determination using the effective echo number Cnt obtained as the processing result of the effective echo extraction unit 86.
  • the configurations of the characteristic setting unit 7n and the distance calculation unit 8n in the processing unit 5n are different from those in the 13th embodiment.
  • the characteristic setting unit 7n includes a baseline calculation unit 73, a peak calculation unit 74, a threshold value setting unit 75j, and a peak variation calculation unit 76. Except for the peak variation calculation unit 76, the same as the description in the tenth embodiment is used.
  • the peak variation calculation unit 76 uses the maximum light receiving timing t m , which is the timing at which the maximum light receiving light amount is detected in the light receiving information obtained in the mth measurement among the M light receiving information to be integrated. Calculate the degree of variation.
  • the variation calculation unit 76 initializes the variation count value V_Cnt indicating the degree of variation and the index m used for identifying the M light receiving information to be integrated. Specifically, V_Cnt is set to 0 and m is set to 2.
  • the variation calculation unit 76 determines the absolute value of the difference between the maximum light reception timings t m and t m-1 in each light reception information obtained in the mth and m-1th measurements (hereinafter, timing difference)
  • the variation calculation unit 76 shifts the process to S430 if
  • is set to, for example, the maximum value of the permissible variation that can be regarded as the same object, in consideration of the temporal variation in the timing at which the peak of the reflected echo from the same object is detected based on the measurement cycle and the like.
  • the variation calculation unit 76 increases the variation count value V_Cnt by 1, and advances the processing to S440.
  • the variation calculation unit 76 increases the index m by 1.
  • the variation calculation unit 76 determines whether or not the index m is the integrated number M or less, returns the process to S420 if m ⁇ M, and ends the process if m> M.
  • the raw peak values based on the reflected light from the same object are all detected at substantially the same timing in the M light receiving information to be integrated.
  • the raw peak value based on the interference light is detected sporadically at a timing different from the raw peak value based on the reflected light.
  • the maximum light reception timing is different from other light reception information only in the light reception information in which the interference light is detected.
  • the distance calculation unit 8n has a different configuration of the detection determination unit 85n as compared with the distance calculation unit 8m described in the twelfth embodiment.
  • the effective echo extraction unit 86 removes the process shown in the flowchart of FIG. 32, that is, the echo information EC (1) as invalid echo information, and sets the echo information other than the echo information EC (1) as the valid echo information. Execute the process to be performed.
  • the flowchart of FIG. 38 is different from the flowchart of FIG. 29 in that S215 is added between S210 and S220.
  • the detection determination unit 85n determines whether or not the variation count value V_Cnt is equal to or less than the preset variation threshold THv. If V_Cnt> THv, the process shifts to S220, and V_Cnt ⁇ THv. If so, the process shifts to S230.
  • the variation threshold THv is set to, for example, 2.
  • the processing in S215 is whether or not the number of peaks based on the interference wave (that is, interference echo) is 1 or less among the peaks having the maximum received light amount detected in each received light information. Corresponds to determining.
  • the echo information of the interference echo is regarded as invalid echo information by the effective echo extraction unit 86, and echoes other than the echo information of the interference echo are used.
  • the information is extracted as valid echo information. Therefore, the value of the detection status E_ST is set to "detection”. If there are two or more interference echoes, the effective echo extraction unit 86 may not correctly extract the effective echo information. Therefore, the value of the detection status E_ST is set to "not detected”.
  • the degree to which the received light information includes the interference echo having a raw peak value larger than the reflected echo is determined from the variation of the maximum light receiving timing, and if the degree is large, the detection status E_ST is set. "Undetected". Therefore, it is possible to suppress the provision of erroneous echo information affected by the interference echo to the subsequent stage.
  • the variation count value V_Cnt is used for processing by the detection determination unit 85n, but is used for processing by the effective echo extraction unit 86 as shown by the dotted line arrow in FIG. 35. May be good.
  • the step may be inserted immediately before or after S310, and if V_Cnt> 2, the process may be terminated without executing the rewriting of the flag Flg.
  • the configurations of the characteristic setting unit 7o and the distance calculation unit 8o in the processing unit 5o are different from those in the tenth embodiment.
  • the characteristic setting unit 7o includes a baseline calculation unit 73, a peak calculation unit 74, and a threshold value setting unit 75o.
  • the baseline calculation unit 73 and the peak calculation unit 74 are the same as those described in the tenth embodiment.
  • the threshold value setting unit 75o includes a primary threshold value setting unit 755 and a secondary threshold value setting unit 756o.
  • the primary threshold value setting unit 755 is the same as the description in the tenth embodiment.
  • Secondary threshold setting unit 756o the maximum quantity of received light (i.e., raw peak value) calculated for each of the light-reception information W (1) ⁇ W (M) at a peak calculator 74 A 1 ⁇ A M, the value Sort in descending order. Then, supplies the maximum quantity of received light A m large m-th, as is denoted by TH2 (m), to generate the M secondary threshold TH2 (1) ⁇ TH2 (M ), the distance calculation unit 8o .
  • the distance calculation unit 8o includes a distance measuring unit 81j, a filtering unit 82o, and a detection determination unit 85.
  • the distance measuring unit 81j is the same as the description in the tenth embodiment.
  • the detection determination unit 85 is the same as the description in the eleventh embodiment.
  • the K echo information ECs (1) to EC (K) supplied from the ranging unit 81j are arranged in descending order of the echo peak value P (k), which is the maximum value of the received light amount in the corresponding pulsed waveform. It is assumed that they are sorted and that K ⁇ M.
  • This process differs from the flowchart of FIG. 27 in that S135 is executed instead of S130.
  • the filtering unit 82o determines whether or not the echo peak value P (k) of the echo information EC (k) having the k-th largest peak value is larger than the secondary threshold TH2 (k) having the k-th largest value. judge. If P (k) ⁇ TH2 (k), the filtering unit 82o shifts the process to S140, and if P (k)> TH2 (k), the filtering shifts the process to S150.
  • the echo of one or a plurality of interference echoes having an echo peak value P larger than the reflected echo after integration by the above-mentioned processing Any information can be removed as invalid echo information.
  • the echo information EC is sorted in descending order of echo peak value P, but may be sorted in ascending order of echo peak value P and compared with the secondary threshold TH2 sorted in ascending order. ..
  • the interference light is the irradiation light from the flash type rider.
  • the flash type rider repeatedly transmits light in a short cycle.
  • the intensity of light per unit area is weaker than that of other types of riders. Therefore, not only a plurality of interference lights are detected in each received light information, but also the timing at which the plurality of interference lights are detected varies depending on the received information. As a result, as shown in FIG.
  • the waveform of the interference light in the integrated light reception information has a peak value lower than the value obtained by simply summing the peak values of the interference echoes detected in each light reception information, and , Has a wide pulse width that covers the entire time range in which the interfering light is present.
  • the interference echo integrated in this way may have a value larger than the second threshold value TH2 and may be detected as signal light.
  • the noise floor is omitted in order to make the drawing easier to see.
  • the interference echo even if the interference echo cannot be removed in such a situation, it is possible to suppress the occurrence of a situation in which the reflected echo is not detected due to the influence of the interference echo.
  • the configurations of the characteristic setting unit 7p and the distance calculation unit 8p in the processing unit 5p are different from those in the 10th embodiment.
  • the characteristic setting unit 7p includes a baseline calculation unit 73, a peak calculation unit 74, a threshold value setting unit 75j, and a comparison value setting unit 77. That is, the characteristic setting unit 7p has a configuration in which the comparison value setting unit 77 is added to the characteristic setting unit 7j in the tenth embodiment.
  • the comparison value setting unit 77 calculates the comparison value D used for determining the presence or absence of interference and supplies it to the distance calculation unit 8p. Comparative value D, (18) as shown in the expression, the total value Ssum the relative peak value S 1 ⁇ S M calculated for each of the plurality of light-reception information at a peak calculator 74, the baseline calculation unit 73 It is calculated by adding the calculated integrated baseline value Ns.
  • the distance calculation unit 8p includes a distance measuring unit 81j and a filtering unit 82p.
  • the filtering unit 82p executes the processing of the filtering unit 82j described in the tenth embodiment.
  • P (1) is the peak value of the echo information EC (1), and is the maximum peak value among the K echoes extracted by the ranging unit 81j.
  • THp is the interference threshold.
  • the interference threshold THp is, for example, the magnitude of the difference between the total of the relative peak values detected in each light receiving information based on the same target and the relative peak value detected in the integrated light receiving information for that target. It is set based on the result of experimentally calculating the pod variation. Further, the interference threshold THp may be set by multiplying the maximum relative peak value Smax by a coefficient.
  • the echo information EC (1) can be determined to be a reflected echo. Note that FIG. 47 shows the case where the interference light does not exist, and FIG. 48 shows the case where the interference light is smaller than the signal light.
  • the relative peak value S 1 ⁇ S M extracted from the M light-reception information if it contains a relative peak values based on the interference echo comparison value D and the peak value There is a high possibility that the value will be different from P (1). Therefore, if the equation (19) is not satisfied, it can be determined that the interference echo is included in the echo information EC (1) to EC (K) extracted by the ranging unit 81j.
  • FIG. 49 shows a case where the relative peak value based on the interference echo is detected in all the received light receiving information
  • FIG. 50 shows a case where the relative peak value based on the interference echo is detected only in one received light receiving information. ..
  • the light receiving integration unit 6 integrates a plurality of light receiving information using the non-zero baseline sequential integration method
  • the secondary threshold setting unit 756 sets the maximum raw peak value Amax to two according to the equation (7).
  • the variation in the disturbance light as shown in FIG. 51 there are cases where individual baseline value N m is greater than the raw peak value A m of the signal light and the interference light.
  • the integrated received light information becomes equal to the result of integrating the second to Mth received light information.
  • the determination unit 722 described in the present disclosure extracts a range larger than the determination threshold value as an effective range, but the extraction method of the effective range is not limited to this.
  • another judgment threshold value for extracting the interference range in which the interference light waveform is presumed to exist is set, the interference range extracted using this other judgment threshold value is set as the invalid range, and the range other than the invalid range is the effective range. It may be extracted as.
  • the distance calculation units 8, 8b, 8e, 8h, and 8i are calculated results based on a pulsed waveform due to interference light. Although it is configured to exclude, it is not always necessary to exclude this calculation result. For example, instead of excluding the distance calculated based on the pulsed waveform existing in the invalid range (ie, the specified range), this calculated distance may be flagged to be based on interfering light. Good. In this case, the subsequent processing using the calculation result of the distance or the user may perform a treatment for removing the influence of the interference light according to the flag.
  • the light receiving unit 3 described in the present disclosure has described the case where SPAD is used as the light receiving element, but the light receiving element is not limited to SPAD. Any light receiving element may be used as long as the time change of the light receiving intensity can be detected.
  • the binarization unit 71 described in the present disclosure uses a plurality of light receiving information to be integrated as the binarization information to be binarized, but the binarization information is , Not limited to this.
  • the binarization unit 71 integrates the first light receiving information and the first and second light receiving information as shown in FIGS. 23 and 24.
  • the information obtained by integrating the first to third light receiving information may be binarized information. That is, the received binary information may be generated by binarizing the received light waveform indicated by the information sequentially generated in the process of integrating the received light information using the preset binarization threshold THb.
  • the integrated binary waveform indicated by the integrated binary information generated by the binar integration unit 721 shown in the first embodiment is, as shown in FIG. 23, interference light.
  • the value in the time range in which the waveform is detected is 2, unlike the case of the first embodiment shown in FIG.
  • the waveform indicated by the logical product information generated by the logical operation unit 723 shown in the second embodiment is the same as in the case of the second embodiment.
  • the output cycles of the light emitting trigger signal T1, T2, T3, ... are randomly changed within a certain range, but the output circumference of the light emitting trigger signal is set. It is not limited to this.
  • a plurality of light emitting units 2 that irradiate light in different irradiation directions may be provided.
  • the output cycle may be randomly changed in each of the plurality of light emitting units 2.
  • each light emitting unit 2 may have its own output cycle set to a constant value, and each light emitting unit 2 may have a different constant value of the output cycle.
  • the output cycle is changed for each irradiation direction. May be good.
  • the processing units 5, 5a to 5p and methods thereof described in the present disclosure are configured by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by the provided dedicated computer. Alternatively, the processing units 5, 5a to 5p described in the present disclosure and the method thereof may be realized by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the processing units 5, 5a to 5p described in the present disclosure and the method thereof are composed of a processor and a memory programmed to execute one or a plurality of functions and one or more hardware logic circuits. It may be realized by one or more dedicated computers configured in combination with a processor.
  • the computer program may also be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the method of realizing the functions of each part included in the processing units 5, 5a to 5p does not necessarily include software, and all the functions are realized by using one or more hardware. May be good.
  • a plurality of functions possessed by one component in the above embodiment may be realized by a plurality of components, or one function possessed by one component may be realized by a plurality of components. .. Further, a plurality of functions possessed by the plurality of components may be realized by one component, or one function realized by the plurality of components may be realized by one component. Further, a part of the configuration of the above embodiment may be omitted. In addition, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other above embodiment.
  • the method for calculating integrated light receiving information according to claims 13 to 14 may be applied to claims 20 and later.
  • the extraction threshold setting method according to claims 15 to 18 may be applied to claims 21 and subsequent claims.
  • the "extraction threshold value” shall be read as the "secondary threshold value”.
  • a system including the distance measuring device 1 as a component, a program for operating a computer as a processing unit 5, 5a to 5p of the distance measuring device 1 or a part thereof.
  • the present disclosure can also be realized in various forms such as a non-transitional substantive recording medium such as a semiconductor memory in which this program is recorded, a distance measuring method, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

特性設定部(7)は、受光部(3)で取得される受光光量の時間変化を受光情報とし、一つ以上の受光情報から、発光部(2)から照射された光である照射光以外のパルス光の受光光量範囲、及び受光時間範囲の少なくとも一方を指定範囲として抽出する。受光積算部(6)は、受光情報から得られる情報の少なくとも一部を複数回の発光にわたり発光タイミングを一致させた時間軸上で積算した積算受光情報を生成する。距離算出部(8)は、特性設定部で抽出した指定範囲をもとに照射光以外のパルス光により生じる距離ノイズを除外又は特定し、照射光を反射した物体までの距離を算出する。

Description

測距装置 関連出願の相互参照
 本国際出願は、2019年9月6日に日本国特許庁に出願された日本国特許出願第2019-163207号、2019年9月27日に日本国特許庁に出願された日本国特許出願第2019-177385号、2020年1月30日に日本国特許庁に出願された日本国特許出願第2020-013600号、及び2020年7月22日に日本国特許庁に出願された日本国特許出願第2020-125653号に基づく優先権を主張するものであり、日本国特許出願第2019-163207号、日本国特許出願第2019-177385号、日本国特許出願第2020-013600号、及び日本国特許出願第2020-125653号の全内容を本国際出願に参照により援用する。
 本開示は、光を用いて光を反射した物体との距離を測定する技術に関する。
 光を照射し、物体からの反射光を受光することで、照射から受光までの光の飛翔時間(以下、TOF)を計測し、その計測されたTOFから光を反射した物体までの距離を求める測距装置が知られている。TOFは、Time Of Flightの略である。
 下記特許文献1には、光検知器として、複数のSPADを配列したSPADアレイを用いる測距装置が記載されている。なお、SPADは、Single Photon Avalanche Diodeの略であり、ガイガーモードで動作する高感度なアバランシェフォトダイオードである。
 SPADアレイを用いた光検知器では、個々のSPADから出力されるパルス信号の数(以下、応答数)をカウントし、そのカウント値の時系列によって表される波形を受光波形として検出する。また、計測を繰り返し実施し、受光波形を積算することで、SPADアレイに入射する外乱光等の影響を抑制することも行われている。
特許第5644294号公報
 しかしながら、発明者の詳細な検討の結果、特許文献1に記載の従来技術では、以下の課題が見出された。
 すなわち、例えば、測距装置が車両に搭載されている場合、他の車両に搭載された測距装置からの照射光を物体からの反射光として誤検出する可能性があった。すなわち、TOFでは、受光波形中に表れるパルス状の波形から受光タイミングを求めるため、他の測距装置からの照射光の受光タイミングでパルス状の波形が表れる。このようなパルス状の波形は、検出が単発的であったとしても、受光強度が強いため、通常のノイズとは異なり積算による抑制効果が充分に得られず、ターゲットからの反射であると誤認識される場合があった。なお、車両に搭載されていない他の測距装置からの照射光、いわゆる干渉光を受光した場合にも、同様の問題が生じる。
 本開示の1つの局面は、パルス状の干渉光による誤検出を抑制する技術を提供することにある。
 本開示の一態様は、測距装置であって、発光部と、受光部と、特性設定部と、受光積算部と、距離算出部と、を備える。
 発光部は、物体に光を照射する。受光部は、物体から反射された光を受光する。特性設定部は、受光部で取得される受光光量の時間変化を受光情報とし、一つ以上の受光情報から、発光部から照射された光である照射光以外のパルス光の受光光量範囲、及び受光時間範囲のうち少なくとも一つを指定範囲として抽出する。
 受光積算部は、受光情報から得られる情報の少なくとも一部を複数回の発光にわたり発光タイミングを一致させた時間軸上で積算した積算受光情報を生成する。距離算出部は、特性設定部で抽出した指定範囲をもとに照射光以外のパルス光により生じる距離ノイズを除外又は特定し、照射光を反射した物体までの距離を算出する。
 このような構成によれば、複数の受光情報を積算した積算受光情報を用いて物体までの距離が算出されるため、積算受光情報によって表される受光波形において照射光以外のパルス光により生じるパルス状の波形の受光光量が抑制される。
 しかも、積算の対象となる複数の受光情報から抽出される指定範囲を用いて、距離ノイズが除外又は特定される。従って、距離ノイズに基づく誤検出、すなわち物体が存在しないにも関わらず距離が検出されることを抑制できる。
測距装置の構成を示すブロック図である。 発光タイミングと受光波形との関係を示す説明図である。 受光波形を二値化する処理、受光波形を積算する処理、及び二値化波形を積算する処理の概要を示す説明図である。 ターゲットの存在と受光波形との関係を示す説明図である。 他の測距装置から照射光を受光した場合の受光波形を示す説明図である。 二値化波形の積算値とフィルタ特性との関係を示す説明図である。 距離算出部での処理の概要を示す説明図である。 第2実施形態における測距装置の構成を示すブロック図である。 受光波形を二値化する処理、受光波形を積算する処理、及び二値化波形の論理積を演算する処理の概要を示す説明図である。 第3実施形態における測距装置の構成を示すブロック図である。 第3実施形態における距離算出部での処理の概要を示す説明図である。 第3実施形態の変形例を示すブロック図である。 第4実施形態における測距装置の構成を示すブロック図である。 二値化波形を正規化する処理の概要を示す説明図である。 第4実施形態における距離算出部での処理の概要を示す説明図である。 第5実施形態における測距装置の構成を示すブロック図である。 第5実施形態における閾値設定部での処理の概要を示す説明図である。 第6実施形態における測距装置の構成を示すブロック図である。 第7実施形態における測距装置の構成を示すブロック図である。 第7実施形態における閾値設定部での処理の概要を示す説明図である。 第8実施形態の測距装置の構成を示すブロック図である。 第9実施形態の測距装置の構成を示すブロック図である。 受光波形を二値化する処理の変形例、受光波形を積算する処理、及び二値化波形を積算する処理の概要を示す説明図である。 受光波形を二値化する処理の変形例、受光波形を積算する処理、及び二値化波形の論理積を演算する処理の概要を示す説明図である。 第10実施形態における測距装置の構成を示すブロック図である。 第10実施形態における測距部での処理の概要を示す説明図である。 第10実施形態における閾値フィルタリング部での処理を示すフローチャートである。 第11実施形態における測距装置の構成を示すブロック図である。 第11実施形態における検知判定部での処理を示すフローチャートである。 第11実施形態における検知判定部での処理の概要を示す説明図である。 第12実施形態における測距装置の構成を示すブロック図である。 第12実施形態における有効エコー抽出部での処理を示すフローチャートである。 第12実施形態における有効エコー抽出部での処理の変形例を示すフローチャートである。 第13実施形態における測距装置の構成を示すブロック図である。 第14実施形態における測距装置の構成を示すブロック図である。 第14実施形態におけるピークばらつき算出部での処理を示すフローチャートである。 第14実施形態におけるピークばらつき算出部での処理の概要を示す説明図である。 第14実施形態における検知判定部での処理を示すフローチャートである。 第15実施形態における測距装置の構成を示すブロック図である。 第15実施形態におけるフィルタリング部での処理を示すフローチャートである。 減算後積算方法により積算受光情報を算出する手順の概要を示す説明図である。 積算後減算方法により積算受光情報を算出する手順の概要を示す説明図である。 順次積算方法により積算受光情報を算出する手順の概要を示す説明図である。 第11実施形態の変形例における検知判定部での処理を示すフローチャートである。 第16実施形態において想定する状況についての説明図である。 第16実施形態における測距装置の構成を示すブロック図である。 干渉光ピークが含まれない場合における各受光情報及び積算受光情報を示す説明図である。 各受光情報に含まれる干渉光ピークがいずれも反射光ピークより小さい場合における各受光情報及び積算受光情報を示す説明図である。 各受光情報に含まれる干渉光ピークがいずれも反射光ピークより大きい場合における各受光情報及び積算受光情報を示す説明図である。 受光情報に含まれる干渉光ピークが反射光ピークより大きい場合における各受光情報及び積算受光情報を示す説明図である。 第16実施形態の変形例における各受光情報、中間積算情報、及び積算受光情報を示す説明図である。 測距装置が複数の発光部を備え、各発光部が異なる方向に光を照射することを示す説明図である。 二つの発光部のそれぞれにおいて出力周期をランダムに変化させたときの発光タイミングを示す説明図である。 二つの発光部のそれぞれにおいて一定の出力周期で発光させ、発光部毎に出力周期を異ならせたときの発光タイミングを示す説明図である。 距離算出部の変形例の構成を示すブロック図である。 図55に示す距離算出部での処理の概要を示す説明図である。 距離算出部の変形例の構成を示すブロック図である。 図57に示す距離算出部での処理の概要を示す説明図である。
 以下、図面を参照しながら、本開示の実施形態を説明する。
 [1.第1実施形態]
 [1-1.構成]
 図1に示す測距装置1は、車両に搭載して使用され、光を照射し、照射した光を反射する物体からの反射光を受光することで、計測される物体までの光の往復時間から距離を計測する、いわゆるライダー装置である。ライダーはLIDARとも表記される。LIDARは、Light Detection and Rangingの略語である。
 測距装置1は、図1に示すように、発光部2と、受光部3と、タイミング制御部4と、処理部5とを備える。
 発光部2は、一つ以上の発光素子を有し、タイミング制御部4からの発光トリガ信号に従って、パルス状のレーザ光を繰り返し照射する。発光素子としては、例えば、レーザダイオードが用いられる。
 受光部3は、2次元的に配列された複数のSPADと光検出器とを備える。SPADは、Single Photon Avalanche Diodeの略である。SPADは、ガイガーモードで動作するアバランシェフォトダイオード(以下、APD)である。ガイガーモードは、APDに、ブレイクダウン電圧よりも高い逆バイアス電圧を印加して動作させる動作モードである。SPADはフォトンの入射によりブレイクダウンする。光検出器は、SPADがブレイクダウンしたときの電圧変化を検出して、所定パルス幅のデジタルパルスを出力し、予め設定された単位時間毎に検出されるパルス数を集計する。この集計結果に基づき、発光タイミングを開始時刻とした一定期間の受光光量をサンプリングした、時間と光量の関係を表す受光情報を生成する。なお、受光情報によって表される波形を受光波形という。
 タイミング制御部4は、図2に示すように、発光トリガ信号を繰り返し出力する。但し、発光トリガ信号の出力周期T1,T2,T3,…は、一定ではなく、一定の範囲内でランダムに変化させる。一定の範囲とは、当該測距装置1の最大検知距離を光が往復するのに要する時間Tmaxをより長く設定され、かつ、後述する積算の対象となる複数の受光情報が、同じ位置にある物体について計測されたと見なせる範囲で設定される。図2では、予め設定された基準時間をTf、Tmax<5Tfとして、基準時間Tf単位で周期を変化させている。以下では、発光トリガ信号が出力されるタイミングを、発光タイミングという。
 図1に戻り、処理部5は、受光積算部6と、特性設定部7と、距離算出部8とを備える。
 受光積算部6は、受光部3から供給される連続するM回の発光タイミングのそれぞれで、得られたM個の受光情報を、図3に示すように、発光タイミングを起点とする時間合わせを行って積算する。図3は、M=3の場合を示す。受光積算部6にて積算の対象となるM個の受光情報を対象情報群という。受光積算部6にて積算された結果を積算受光情報、積算受光情報によって表される波形を積算受光波形という。積算受光情報は、距離算出部8に供給される。
 なお、図3及び図4に示すように、実際に物体が存在する場合、M個の受光情報にて示される受光波形のすべてに、同じ物体からの反射光に基づくパルス状の波形(以下、反射光波形)が、発光タイミングを起点とする時間軸上の略同じ時間範囲で検出される。なお、物体からの反射光が非干渉光に相当する。
 また、図3及び図5に示すように、物体の存在に加えて、当該測距装置1の発光タイミングで発光された照射光とは無関係に外部から到来するパルス状の干渉光が受光される場合、反射光波形以外にパルス状の波形(以下、干渉光波形)が検出される。なお、パルス状の干渉光には、他の測距装置からの照射光が含まれる。干渉光波形は、M個の受光情報の全てに発生するわけではなく単発的に表れる。なお、干渉光の発生源が他の車両等に搭載された他の測距装置1、又は本開示における測距装置1と同様の原理で発光及び受光を繰り返す他の測距装置である場合、干渉光波形がM個の受光情報毎に発生する可能性はある。しかし、測距装置1毎に発光タイミングがランダムに変化するため、干渉光波形は発光タイミングを起点とする時間軸上の反射光波形とは異なる時間範囲で検出されることになる。図3では、3回中2回目だけで干渉光波形が検出された場合を示す。
 受光積算部6による受光情報の積算により、毎回略同じ位置で検出される反射光波形の振幅は増大し、単発的に検出される干渉光波形の振幅は抑制される。
 図1に戻り、特性設定部7は、二値化部71と、フィルタ生成部72とを備える。
 二値化部71は、図3に示すように、受光積算部6にて積算されるM個の受光情報のそれぞれについて、その受光情報によって示される受光波形を予め設定された二値化閾値THbを用いて二値化することで受光二値情報を生成する。この受光二値情報によって示される二値化波形は、受光情報が示す受光波形において信号強度が二値化閾値THbより大きい時間範囲では値(すなわち波形の振幅)が1.0となり、信号強度が二値化閾値THb以下となる時間範囲では値が0となる。二値化閾値THbは、例えば、干渉光の受光光量範囲の下限値に設定される。また、二値化閾値THbは、予め設定された固定値に限定されるものではなく、例えば、受光情報に応じて算出される可変値を用いてもよい。
 フィルタ生成部72は、二値積算部721と、判定部722とを備える。
 二値積算部721は、二値化部71で生成されたM個の受光二値情報を、発光タイミングを一致させた時間軸上で積算する。積算した結果である積算二値情報が示す積算二値波形は、反射光波形が検出される時間範囲での値(すなわち波形の振幅)がMとなり、干渉光波形が検出される時間範囲での値がMより小さくなり、図3では1となる。
 判定部722は、図6に示すように、二値積算部721で生成された積算二値情報に基づき、積算二値情報が示す積算二値波形を、Mより小さい値に設定された判定閾値THjで二値化する。判定部722は、二値化した結果から、反射光波形が検出されると推定される有効範囲を抽出して、距離算出部8に供給する。なお、干渉光の受光時間範囲は、有効範囲以外の範囲である無効範囲に含まれる。つまり、無効範囲が指定範囲に相当する。判定閾値THjは、上述のように積算数Mに応じて設定される値の他、予め設定された固定閾値を用いてもよい。
 図1に戻り、距離算出部8は、測距部81と、フィルタリング部82とを備える。
 測距部81は、図7に示すように、積算受光情報に基づき、検出対象とすべき最低強度以上に設定される抽出閾値THeより大きいピーク値を有するパルス状の波形のそれぞれについて受光タイミングを算出する。抽出閾値THeは、検出対象とすべき最低強度以上に設定される。抽出閾値THeは、例えば、二値化閾値THb以上、判定閾値THj以下の値に設定されるが、この設定に限定されない。
 更に、測距部81は、発光タイミングから受光タイミングまでの時間差から照射光を反射した物体までの距離を算出する。なお、受光タイミングは、実際にピークが得られるタイミングであってもよいし、信号レベルがある閾値以上となる範囲の真ん中となるタイミングであってもよい。また、発光タイミングは、離散的に得られる信号レベルから補間的な手法を用いて推定されるピークのタイミングであってもよい。また、測距部81にて算出される距離は、1個に限定されない。測距部81での処理の結果、反射光波形に基づく距離だけでなく、干渉光波形に基づく距離も算出される。以下、測距部81にて抽出閾値THeを用いて検出されたピークに関する情報を、エコー情報ECとよび、距離が近い順番にEC(1),EC(2),…と表記する。エコー情報EC(i)には、距離に加えて積算受光波形でのピーク値が含まれてもよい。
 フィルタリング部82は、判定部722にて抽出された時間軸上の有効範囲を、距離軸上の有効範囲(以下、有効距離範囲)に変換する。この変換は、判定部722にて行われてもよい。また、フィルタリング部82は、積算受光情報から抽出閾値THeを用いて、該抽出閾値THeより大きいピーク値を有するエコー情報ECを抽出する。フィルタリング部82は、抽出したエコー情報EC毎に、測距部81にて算出される算出距離のそれぞれについて、該算出距離が有効距離範囲に含まれるか否かを判定する。そして、フィルタリング部82は、算出距離が有効距離範囲に含まれないと判定した場合は、当該算出距離を破棄し、算出距離が有効範囲に内包されると判定した場合は、当該算出距離を、実在する物体までの距離として出力する。このフィルタリング部82での処理をフィルタ処理という。つまり、フィルタの特性が、判定部722にて抽出される有効範囲によって設定される。
 [1-2.効果]
 以上詳述した第1実施形態によれば、以下の効果を奏する。
 (1a)本実施形態では、M個の受光情報を積算した積算受光情報を用いて照射光を反射した物体までの距離を算出する。従って、受光情報においてランダムに発生するノイズを抑制でき、ノイズによる誤検出を抑制できる。
 (1b)本実施形態では、M個の受光情報のそれぞれを、二値化閾値THbを用いて二値化することで二値情報を生成する。更に、生成されたM個の二値情報を積算した積算二値情報を、判定閾値THjを用いて二値化することで、反射光波形が存在すると推定される有効範囲を抽出する。そして、測距部81にてパルス状の波形毎に算出される距離のうち、有効範囲に内包される距離を、物体までの距離として出力する。つまり、有効範囲以外の無効範囲(すなわち、指定範囲)に内包される距離は破棄される。従って、本実施形態によれば、干渉光波形に基づく誤検出、すなわち物体が存在しないにも関わらず距離が検出されることを抑制できる。
 つまり、積算受光情報では、単発的にしか検出されない干渉光波形であっても、その1回の信号レベルが大きければ、反射光波形と同等以上のピーク値が得られる。このため、積算受光情報において、反射光波形と干渉光波形とを識別することが困難である場合がある。これに対して、積算二値情報は、受光情報が示す波形の信号レベルによらず、積算数に応じた振幅が得られるため、反射光波形と干渉光波形との識別が可能となる。
 (1c)本実施形態では、発光タイミングをランダムに変化させて測定したM個の受光情報を用いて物体との距離を算出する。従って、他車両等に搭載された他の測距装置からの発光など、パルス状の波形を有する干渉光波形が、積算対象となるM個の受光情報において反射光波形と異なる時間で検出されることで、積算二値情報による有効範囲の検出精度を向上させることができる。
 [2.第2実施形態]
 [2-1.第1実施形態との相違点]
 第2実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第2実施形態では、処理部5aにおける特性設定部7aの構成が、第1実施形態とは相違する。具体的には、特性設定部7aのうち、フィルタ生成部72aの構成が異なる。フィルタ生成部72aは、図8に示すように、二値積算部721及び判定部722の代わりに論理演算部723を備える。
 論理演算部723は、図9に示すように、二値化部71で生成されるM個の二値化情報の論理積を演算することで、有効範囲を抽出する。この論理積演算により、M個の二値情報のすべてで信号が検出される範囲が有効範囲として抽出される。
 [2-2.効果]
 以上詳述した第2実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果(2a)~(2c)を奏する。
 (2a)本実施形態では、第1実施形態と同様の有効範囲が抽出されるため、干渉光波形に基づく誤検出、すなわち物体が存在しないにも関わらず距離が検出されることを抑制できる。
 (2b)本実施形態では、発光タイミングをランダムに変化させて計測したM個の受光情報を用いて物体との距離を算出する。従って、他の測距装置からの発光など、パルス状の波形を有する干渉光波形が、論理積演算の対象となるM個の受光情報において反射光波形とは異なる時間で検出されることで、論理演算部723による有効範囲の検出精度を向上させることができる。
 (2c)本実施形態では、第1実施形態と比較して簡易な処理によって、第1実施形態と同様の有効範囲を抽出できるため、処理部5aにおける処理負荷を軽減できる。
 [3.第3実施形態]
 [3-1.第1実施形態との相違点]
 第3実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第3実施形態では、処理部5bにおける距離算出部8bの構成が、第1実施形態とは相違する。具体的には、第1実施形態では、測距部81での測距処理の結果に対してフィルタリング部82によるフィルタ処理を実施する。これに対し、第2実施形態では、図10に示すように、受光積算部6からの積算受光情報に対してフィルタリング部82bによるフィルタ処理を実施し、フィルタ処理の結果に対して、測距部81での測距処理を実施する。
 つまり、図11に示すように、フィルタリング部82bでは、積算受光波形に対して時間軸上でフィルタ処理を施すことにより、有効期間に対応する時間範囲の信号波形が抽出され、有効期間以外の期間である無効期間に対応する時間範囲の信号波形が除去される。そして、測距部81は、フィルタ処理によって抽出されるパルス状の波形、すなわち反射光波形に対してだけ、測距処理を実行して、物体までの距離を含んだエコー情報ECを生成する。
 [3-2.効果]
 以上詳述した第3実施形態によれば、前述した第1実施形態の効果(1a)~(1c)を奏し、さらに、以下の効果を奏する。
 (3a)本実施形態によれば、測距部81での処理の前に、干渉光波形が除去されるため、測距部81での処理負荷を軽減できる。
 [3-3.変形例]
 第3実施形態では、処理部5bとして、第1実施形態で説明した特性設定部7と距離算出部8bとを組み合わせた構成が示されているが、図12に示す処理部5cのように、第2実施形態で説明した特性設定部7aと距離算出部8bとを組み合わせた構成でもよい。
 [4.第4実施形態]
 [4-1.第1実施形態との相違点]
 第4実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第4実施形態では、処理部5dにおける特性設定部7d及び距離算出部8bの構成が、第1実施形態とは相違する。具体的には、特性設定部7dのうち、フィルタ生成部72dの構成が異なる。フィルタ生成部72dは、図13に示すように、第1実施形態のフィルタ生成部72と比較して、判定部722が省略され、代わりに正規化部724を備える。更に、第4実施形態では、距離算出部8の代わりに、第3実施形態で説明した距離算出部8bを備える。
 正規化部724は、図14に示すように、二値積算部721で得られた積算二値情報が表す積算値を、受光積算部6にて積算の対象となった受光情報の数である積算数Mで除算することで正規化情報を生成する。つまり、積算されるすべての受光情報で信号が検出される範囲では、正規化情報での信号レベルは1.0となり、一つの受光情報でのみ信号が検出される範囲では、正規化情報での信号レベルは1/Mとなる。
 フィルタリング部82bでは、図15に示すように、正規化情報が示す信号レベルをゲインとして、積算受光情報に乗じる。積算受光情報にゲインが乗じられることにより、単発的にパルス状の波形が検出される範囲では、波形のピーク値がより抑制され、抽出閾値THeより小さくなる可能性が高くなる。その結果、測距部81にて、ゲインが低い範囲に属するパルス状の波形に対して測距処理が実施される可能性が低下する。
 [4-2.効果]
 以上詳述した第4実施形態によれば、前述した第1実施形態の効果(1a)を奏し、さらに、以下の効果(4a)~(4c)を奏する。
 (4a)本実施形態では、第1実施形態と同様の有効範囲に加えて、ゲインが1より小さい有効範囲が抽出される。このため、干渉光波形に基づく誤検出、すなわち物体が存在しないにも関わらず距離が検出されることを抑制できるだけでなく、毎回ではないが、高い頻度で同じ範囲で検出されるパルス波形についても距離を算出できる。
 (4b)本実施形態では、発光タイミングをランダムに変化させて測定したM個の受光情報を用いて距離を算出する。従って、他の測距装置からの発光など、パルス状の波形を有する干渉光波形が、M個の受光情報において反射光波形と異なる時間で検出されることで、干渉光波形が検出される範囲における正規化情報のゲインを充分に抑制できる。
 (4c)本実施形態によれば、測距部81での処理の前のフィルタ処理によって、干渉光波形が除去される可能性が高くなるため、測距部81での処理負荷を軽減できる。
 [4-3.変形例]
 上記第1から第4実施形態では、フィルタリング部82は、測距部81で算出された物体までの距離に対して、フィルタ処理を行い、フィルタリング部82bは、受光積算部6で算出された時間軸上の積算受光波形に対して、フィルタ処理を行っている。
 測距部81が、受光タイミングを算出する際に、半値幅の算出に必要なデータや、ピーク付近の複数の離散的な信号レベル等の中間データを用いる場合、図55~図58に示すように、中間データに対してフィルタ処理を行ってもよい。
 例えば、図55に示す距離算出部8qは、前置測距部81qと、フィルタリング部82と、後置測距部83qとを備える。
 前置測距部81qは、中間データの算出に必要なタイミングを時間軸上で抽出して、抽出したタイミングを距離データに変換する。図56では、半値幅の算出に必要となるピークの1/2レベルが得られるタイミングから算出される距離データである半値幅距離を抽出する場合を示す。
 フィルタリング部82は、距離軸上でフィルタ処理を行って、エコー情報ECの生成対象となるピークに関する半値幅距離を抽出する。
 後置測距部83qは、フィルタリング部82で抽出された半値幅距離を用いて、照射光を反射した物体までの距離を算出する。
 また、図57に示す距離算出部8rは、前置測距部81rと、フィルタリング部82bと、後置測距部83rとを備える。
 前置測距部81rは、中間データの算出に必要なタイミングを時間軸上で抽出する。図58では、半値幅の算出に必要となるピークの1/2レベルが得られるタイミングである半値幅時間を抽出する場合を示す。
 フィルタリング部82bは、前置測距部81rで抽出された半値幅時間に対して時間軸上でフィルタ処理を行って、エコー情報ECの生成対象となるピークに関する半値幅時間を抽出する。
 後置測距部83rは、フィルタリング部82bで抽出された半値幅時間を、距離データに変換して、変換された距離データを用いて、照射光を反射した物体までの距離を算出する。
 図56及び図58では、中間データとして半値幅を用いる場合を例示したが、中間データは、半値幅に限定されるものではなく、パルスのピーク時間など、抽出閾値THe以上のパルスから抽出される時間データ又は距離データであればよい。
 [5.第5実施形態]
 [5-1.第1実施形態との相違点]
 第5実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第5実施形態では、処理部5eにおける特性設定部7e及び距離算出部8eの構成が、第1実施形態とは相違する。
 図16に示すように、特性設定部7eは、ベースライン算出部73と、ピーク算出部74と、閾値設定部75とを備える。
 ベースライン算出部73は、受光積算部6にて積算の対象となる複数の受光情報毎に、ベースラインの値を表す個別ベースライン値を算出する。なお、ベースラインは、照射光に基づく反射光の影響、他のライダー装置等からの干渉光の影響、及びクラッタの影響を除いたオフセットとして受光される光量のことをいう。クラッタは、放射光が、当該測距装置1の筐体に反射して受光されることでゼロ距離付近に発生する受光ノイズである。ベースラインの値は、例えば、反射光、干渉光、及びクラッタの影響を受ける時間範囲を除去した時間範囲で検出される受光光量の平均値又は中央値を用いてもよい。ベースラインは、ノイズフロアレベルともいう。以下では、m番目の受光情報における個別ベースライン値をNで表す。m=1,2,…,Mである。
 ベースライン算出部73は、積算受光情報におけるベースラインの値を表す積算ベースライン値を算出する。積算ベースライン値Nsは、積算受光情報に基づいて個別ベースライン値と同様に算出してもよいし、個別ベースライン値を合算すること(すなわち、Ns=N+N+…+N)で算出してもよい。
 ピーク算出部74は、受光情報毎に、最大受光光量を取得する。ここでは、図17に示すように、受光波形であるか干渉光波形であるかに関わらず選択される。なお、最大受光光量は、受光情報で示される全時間範囲内から取得してもよいし、例えば、クラッタが検出される時間範囲を除外した時間範囲内から取得してもよい。以下、m番目の受光情報における最大受光光量を生ピーク値Aという。ピーク算出部74は、更に、M個の受光情報のそれぞれについて、生ピーク値Aから個別ベースライン値Nを減算することで、受光波形の相対ピーク値Sを算出する。なお、相対ピーク値Sの算出において、個別ベースライン値Nの代わりに、積算ベースライン値Nsを積算数Mで除算した値を用いてもよい。
 閾値設定部75は、最大抽出部751を備える。
 最大抽出部751は、ピーク算出部74にて算出されたM個の相対ピーク値S~Sのうちの最大値である最大相対ピーク値Smax=MAX(S,S,…,S)を抽出する。更に、最大抽出部751は、最大ピーク相対値Smaxにマージンαと、積算ベースライン値Nsを加えた値を、抽出閾値THeとして設定する。マージンαは省略されてもよい。
 距離算出部8eは、測距部81eを備える。測距部81eは、積算受光情報を用いて、閾値設定部75で設定された抽出閾値THeより大きなピーク値を有するパルス波形を抽出し、抽出したパルス波形のそれぞれの受信タイミングから、物体までの距離を算出する。つまり、測距部81eは、抽出閾値THeの設定を変更できる点が、測距部81とは異なる。そして、算出された距離とピーク値とを対応づけたエコー情報ECを生成して出力する。
 [5-2.効果]
 以上詳述した第5実施形態によれば、前述した第1実施形態の効果(1a)を奏し、更に、以下の効果(5a)を奏する。
 (5a)本実施形態では、M個の受光情報から抽出される最大相対ピーク値Smaxに基づいて、測距処理の対象となるパルス波形の抽出に用いる抽出閾値THeを設定する。従って、本実施形態によれば、干渉光波形に基づく誤検出、すなわち物体が存在しないにも関わらず距離が検出されることを抑制できると共に、干渉光波形に対して測距処理が行われることが抑制されるため、測距部81eでの処理負荷を軽減できる。また、第1~4実施例では時間範囲分のフィルタ用のメモリが必要なのに対して、最大相対ピーク値Smax分のメモリだけで済むため、実装に必要なメモリ量を削減する効果を有する。
 つまり、図17に示すように、干渉光波形のピーク値が、反射光波形のピーク値より大きい場合でも、干渉光波形が複数の受光情報W(1)~W(M)にて同一タイミングで検出されない限り、積算受光情報における干渉光波形のピーク値は、抽出閾値THeを超えない。従って、抽出閾値THeによって干渉光波形を除去した上で測距処理を行うことができる。
 [5-3.変形例]
 本実施形態では、受光積算部6は、複数の受光情報W(1)~W(M)を単純に加算することで積算受光情報を算出し、個別ベースライン値N~Nの合計が積算ベースライン値Nsとなるようにしているが、受光情報の積算方法は、単純加算に限定されるものではない。例えば、受光積算部6は、積算ベースライン値Nsがゼロとなるように、複数の受光情報W(1)~W(M)を積算するように構成されてもよい。以下では、Ns=0となるように積算された積算受光情報をゼロベース積算受光情報、Ns≠0となるように積算された積算受光情報を非ゼロベース積算受光情報という。
 具体的には、図41に示すように、受光積算部6は、受光情報W(1)~W(M)毎に個別ベースライン値N~Nを算出する。更に、受光積算部6は、受光情報W(m)のそれぞれから、個別ベースライン値Nを減算した結果(W(m)-N)を加算することでゼロベース積算受光情報を算出する。以下、この手法を、減算後積算方法という。
 図42に示すように、受光積算部6は、受光情報W(1)~W(M)を単純に加算した結果ΣW(m)から個別ベースライン値N~Nの合計値Nsumを減算することでゼロベース積算受光情報を算出する。減算に用いる値は、Nsumの代わりに、ΣW(m)から抽出されるベースライン値を用いてもよい。以下、この手法を、積算後減算方法という。
 図43に示すように、受光積算部6は、以下の手順で、ゼロベース積算受光情報を算出してもよい。すなわち、1番目の受光情報を1番目の中間積算情報とする。i=2~Mとして、i-1番目の受光情報から抽出される個別ベースライン値Ni-1を、i-1番目の中間積算情報から減算した結果に、i番目の受光情報を加算することでi番目の中間積算情報を順次算出する。そして、M番目の受光情報から抽出される個別ベースライン値Nを、M番目の中間積算情報から減算することで、ゼロベース積算受光情報を算出する。以下、この手法を、ゼロベース順次積算方法という。
 なお、上記説明では、i-1番目の中間積算情報から個別ベースライン値Ni-1を減算後に、i番目の受光情報を加算しているが、演算の順番はこれに限定されるものではない。例えば、i-1番目の中間積算情報とi番目の受光情報とを加算した結果から、個別ベースライン値Ni-1を減算する等してもよい。
 また、M番目の中間積算情報を積算受光情報とし、M番目の受光情報から抽出される個別ベースライン値Nを積算ベースライン値Nsとする手法を、非ゼロベース順次積算方法という。
 受光積算部6が、Ns=0となる積算受光情報、即ちゼロベース積算受光情報を算出するように構成されている場合、抽出閾値THeは、以下の(1)~(3)式に示すいずれかの方法で設定されてもよい。
  THe=Smax       (1)
  THe=Amax-Nx    (2)
  THe=Amax-Nave  (3)
 但し、Amaxは、M個の生ピーク値A~Aのうちの最大値MAX(A,A,…,A)であり、最大生ピーク値という。Nxは、最大生ピーク値Amaxの抽出元となった受光情報における個別ベースライン値である。Naveは、M個の個別ベースライン値N~Nの平均値AVE(N,N,…,N)である。なお、(1)~(3)式において、抽出閾値THeには、マージンαを加えてもよい。また、(2)のNx及び(3)式のNaveがオフセット値に相当する。
 受光積算部6が、非ゼロベース順次積算方法を用いて、Ns=Nとなる積算受光情報、即ち非ゼロベース積算受光情報を算出するように構成されている場合、抽出閾値THeは、以下の(4)~(7)式に示すいずれかの方法で設定されてもよい。
  THe=Smax+N        (4)
  THe=Amax-Nx+N      (5)
  THe=Amax-Nave+N   (6)
  THe=Amax           (7)
 (4)~(6)式は、(1)~(3)式に、積算ベースライン値NsとなるM番目の受光情報の個別ベースライン値Nを加えた式である。(7)式は、(5)式においてNx=Nと仮定することで得られる近似式であり、閾値THeの算出を簡略化できる。なお、(4)~(7)式においても、抽出閾値THeにマージンαを加えてもよい。
 ここでは、M番目の受光情報の個別ベースライン値Nが非ゼロベース積算受光情報の積算ベースライン値Nsとなるように、受光情報を積算する場合について説明したが、受光情報の積算の仕方は、これに限定されるものではない。例えば、任意に選択される一つの受光情報の個別ベースライン値が、積算ベースライン値Nsとなるように構成されてもよい。また、任意に選択される任意個の受光情報の個別ベースライン値の合計値が、積算ベースライン値となるように構成されてもよい。
 なお、図41~図43を用いて説明した受光積算部6の処理は、第6実施形態以降だけでなく第1~第4実施形態における受光積算部6にも適用可能である。
 [6.第6実施形態]
 [6-1.第1実施形態との相違点]
 第6実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第6実施形態では、処理部5fにおける特性設定部7f及び距離算出部8eの構成が、第1実施形態とは相違する。但し、距離算出部8eは、第5実施形態で説明したものと同様である。
 図18に示すように、特性設定部7fは、受光積算部6から供給される積算受光情報に基づいて抽出閾値THeを生成する。特性設定部7fは、ベースライン算出部73fと、ピーク算出部74fと、閾値設定部75fとを備える。
 ベースライン算出部73fは、受光積算部6より算出された積算受光情報のベースラインの値を表す積算ベースライン値Nsを算出する。なお、積算ベースライン値Nsは、積算受光情報から抽出される値を用いてもよいし、受光積算部6での積算対象となった複数の受光情報のそれぞれから抽出される個別ベースライン値N~Nの合計値Nsumを用いてもよい。ピーク算出部74fは、積算受光情報から最大値を抽出し、抽出した最大値からベースライン算出部73fにて算出された積算ベースライン値Nsを減算することで、積算受光情報の相対ピーク値Sを算出する。
 閾値設定部75fは除算部752を備える。
 除算部752は、ピーク算出部74fにて算出された積算受光情報の相対ピーク値Sを受光積算部6での積算対象となる受光情報の数である積算数Mで除算する。更に、除算部752は、その除算結果に、マージンαと、ベースライン算出部73fにて算出された積算ベースライン値Nsとを加算した値を、抽出閾値THeとして設定する。すなわち、(8)式に従って、抽出閾値THeを設定する。マージンαは、例えば、予め指定された定数及び除算値S/Mに応じて算出される値のうち、いずれか一つを用いてもよい。また、マージンαを省略し、(9)式に従って、抽出閾値THeを設定してもよい。
  THe=S/M+α+Ns    (8)
  THe=S/M+Ns      (9)
 個々の受光情報において、干渉光波形のピーク値が反射光波形のピークを超えることがないことが明らかな状況では、このように設定された抽出閾値THeを用いてもよい。
 [6-2.効果]
 以上詳述した第6実施形態によれば、前述した第1実施形態の効果(1a)を奏し、更に、以下の効果(6a)を奏する。
 (6a)本実施形態では、特性設定部7fを受光積算部6の後段に設けられ、受光情報の積算毎に演算する必要が無く、積算受光情報に対する演算だけを実施すればよいため、演算量の削減効果を有する。
 [6-3.変形例]
 受光積算部6が、Ns=0となる積算受光情報を算出するように構成されている場合、閾値設定部75fは、(10)又は(11)式に従って、抽出閾値THeを設定してもよい。
  THe=S/M+α    (10)
  THe=S/M      (11)
 [7.第7実施形態]
 [7-1.第1実施形態との相違点]
 第7実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第7実施形態では、処理部5gにおける特性設定部7g及び距離算出部8eの構成が、第1実施形態とは相違する。但し、距離算出部8eは、第5実施形態で説明したものと同様である。
 図19に示すように、特性設定部7gは、ベースライン算出部73gと、ピーク算出部74と、閾値設定部75gとを備える。
 ベースライン算出部73gは、ベースライン算出部73と同様に、M個の受光情報のそれぞれについて個別ベースライン値Nを算出すると共に、積算ベースライン値Nsを算出する。ベースライン算出部73gは、更に、個別ベースライン値Nのばらつきを算出する。ばらつきを表すパラメータとして、例えば、標準偏差を用いてもよい。
 閾値設定部75gは、最大抽出部751と、ばらつき算出部753と、閾値選択部754とを備える。
 最大抽出部751は、第5実施形態で説明したものと同様であり、最大相対ピーク値Smaxを算出する。
 ばらつき算出部753は、ベースライン算出部73gにてM個の受光情報毎に算出される個別ベースライン値の標準偏差の平均値にMの平方根を乗算した値をばらつきσとし、σのG倍を許容ばらつき値として算出する。Gは正の実数である。Gは、ノイズが物体として誤検出される確率をどの程度とするかによって、適宜設定される。ここでは、ばらつきσを、M個の受光情報のそれぞれについて算出される個別ベースライン値N~Nの標準偏差の平均値にMの平方根を乗算した値を用いているが、受光積算情報から算出される積算ベースライン値の標準偏差を用いてもよい。
 閾値選択部754は、図20に示すように、最大ピーク相対値Smaxにマージンαを加えた値と、許容ばらつき値G×σと、あらかじめ設定された固定値Dとを比較する。固定値Dは、例えば、閉空間内など、ばらつきσが極端に小さい場合でも、適度な抽出閾値THeが得られるように設定される。そして、Smax+αが最大であれば、(12)式により抽出閾値THeを設定する。G×σが最大であれば、(13)式により抽出閾値THeを設定する。Dが最大であれば(14)式により抽出閾値THeを設定する。
  THe=Smax+α+Ns  (12)
  THe=G×σ+Ns     (13)
  THe=D+Ns       (14)
 なお、(12)式は、(4)~(7)式を用いて算出される抽出閾値THe、又は(5)~(7)式の右辺にマージンαを加えることで算出される抽出閾値THeに置き換えてもよい。
 [7-2.効果]
 以上詳述した第7実施形態によれば、前述した第1実施形態の効果(1a)及び第5実施形態の効果(5a)を奏し、更に、以下の効果(7a)を奏する。
 (7a)本実施形態では、ベースライン値のばらつきσから算出される許容ばらつき値G×σと、最大ピーク値Smax+αと、固定値Dとの比較に基づいて抽出閾値THeを切り替える。抽出閾値THeを切り替えることにより、干渉光波形がノイズに埋もれるような場合でも、ノイズが反射光波形として誤検出されることを抑制できるだけでなく、ベースライン値のばらつきσが極端に小さい場合でも、適切な抽出閾値THeが設定される。
 [7-3.変形例]
 受光積算部6が、積算ベースライン値Nsがゼロとなるように複数の受光情報を積算するように構成されている場合、閾値設定部75gは、(12)~(14)式の右辺から積算ベースライン値Nsを除いた式を用いて算出される抽出閾値THeを用いてもよい。
 [8.第8実施形態]
 [8-1.第1実施形態との相違点]
 第8実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第8実施形態では、図21に示すように、処理部5hにおける特性設定部7h及び距離算出部8hの構成が、第1実施形態とは相違する。
 特性設定部7hは、第1設定部91と第2設定部92とを備える。
 第1設定部91は、第1~第4実施形態で説明した特性設定部7,7a,7dのいずれかと同様の構成を有し、反射光波形が存在しうる有効範囲を設定する。
 第2設定部92は、第5~第7実施形態で説明した特性設定部7e~7gのいずれかと同様の構成を有し、抽出閾値THeを設定する。但し、第2設定部92として第6実施形態の特性設定部7fを採用した場合は、受光積算部6の出力が第2設定部92の入力となる。
 距離算出部8hは、二つの測距部81,81eと、フィルタリング部82と、切替部83とを備える。
 測距部81及びフィルタリング部82は、第1実施形態で説明した距離算出部8と同様に動作する。なお、測距部81が第1測距部に相当し、測距部81及びフィルタリング部82は、第1処理部に相当する。
 測距部81eは、第5実施形態で説明した距離算出部8eと同様に動作する。測距部81eは、第2測距部及び第2処理部に相当する。
 切替部83は、フィルタリング部82から出力される第1測距結果と、測距部81eから出力される第2測距結果とのうちいずれかを、予め設定された切替条件に従って出力する。
 切替条件として、例えば、別途設けられた切替スイッチの設定を用い、設定に従って、いずれかの測距結果を固定的に出力してもよい。また、切替条件として、距離閾値を用い、距離閾値より近い近距離範囲については、第2測距結果を出力し、距離閾値以上の遠距離範囲については第1測距結果を出力してもよい。この場合、測距部81には遠距離範囲に対応した時間範囲の積算受光情報が入力され、測距部81eには近距離範囲に対応した時間範囲の積算受光情報が入力されてもよい。
 [8-2.効果]
 以上詳述した第8実施形態によれば、第1設定部91及び第2設定部92の構成に応じて、第1~第7実施形態の効果を奏し、更に、以下の効果(8a)を奏する。
 (8a)本実施形態では、干渉波の発生状況等に応じて距離算出部8hでの処理方法を切り替えることができるため、必要となるメモリ数を削減するとともに、干渉波の除去性能を向上させることができる。
 [9.第9実施形態]
 [9-1.第1実施形態との相違点]
 第8実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第9実施形態では、図22に示すように、処理部5iにおける特性設定部7h及び距離算出部8iの構成が、第1実施形態とは相違する。但し、特性設定部7hは、第7実施形態にて説明したものと同様の構成を有する。
 距離算出部8iは、フィルタリング部82bと、二つの測距部81,81eと、切替部83とを備える。
 フィルタリング部82b及び測距部81は、第3実施形態で説明した距離算出部8bと同様に動作する。フィルタリング部82b及び測距部81は、第1処理部に相当する。
 測距部81eは、第5実施形態で説明した距離算出部8eと同様に動作する。測距部81eは、第2処理部に相当する。
 切替部83は、第8実施形態で説明したものと同様に動作する。
 [9-2.効果]
 以上詳述した第9実施形態によれば、第8実施形態と同様の効果を得ることができる。
 [10.第10実施形態]
 [10-1.第1実施形態との相違点]
 第10実施形態は、基本的な構成は第1実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第10実施形態では、処理部5jにおける特性設定部7j及び距離算出部8jの構成が、第1実施形態とは相違する。
 図25に示すように、特性設定部7jは、ベースライン算出部73と、ピーク算出部74と、閾値設定部75jとを備える。
 ベースライン算出部73及びピーク算出部74は、第5実施形態での説明と同様である。つまり、ベースライン算出部73は、受光情報毎に個別ベースライン値Nを算出すると共に、積算ベースライン値Nsを算出し、ピーク算出部74は、受光情報毎に最大受光光量Sを算出する。
 閾値設定部75jは、一次閾値設定部755と、二次閾値設定部756とを備える。
 一次閾値設定部755は、第7実施形態で説明したばらつき算出部753と同様に、ベースライン値の許容ばらつきG×σを算出する。更に、一次閾値設定部755は、算出された許容ばらつきG×σに、積算ベースライン値Nsを加えた値を一次閾値TH1として出力する。なお、予め設定された固定値をDとして、一次閾値TH1は、G×σ+Ns及びD+Nsのうち、いずれか大きい方の値を用いてもよい。
 二次閾値設定部756は、第5実施形態で説明した最大抽出部751と同様に、最大相対ピーク値Smaxを算出する。更に、二次閾値設定部756は、算出された最大相対ピーク値Smaxに、マージンαと積算ベースライン値Nsとを加えた値を二次閾値TH2として出力する。
 つまり、一次閾値TH1は、(15)又は(16)式のいずれかを用いて設定され、二次閾値TH2は、(17)を用いて設定される。
  TH1=G×σ+Ns     (15)
  TH1=D+Ns       (16)
  TH2=Smax+α+Ns  (17)
 なお、一次閾値TH1と二次閾値TH2との関係は、一般的には、図26に示すように、TH1<TH2となるが、ベースラインのばらつきが大きく且つ反射光及び干渉光のピーク値が小さい場合には、TH1≧TH2となる場合もある。
 距離算出部8jは、測距部81jと、フィルタリング部82jとを備える。
 測距部81jは、積算受光情報から、一次閾値TH1より大きなピーク値を有するパルス波形を抽出し、抽出したパルス波形のそれぞれの受信タイミングから、物体までの距離Rを算出する。そして、測距部81jは、距離Rとピーク値Pとを対応付けたエコー情報ECを生成する。以下では、エコー情報ECのピーク値をエコーピーク値という。測距部81jは、生成したエコー情報ECを、エコーピーク値Pが大きい順にソートしてもよい。
 以下では、測距部81jにより生成されるエコー情報ECの数を検出エコー数Kとする。Kは0以上の整数である。生成されたエコー情報ECの中でエコーピーク値Pがk番目に大きいエコー情報をEC(k)、そのエコーピーク値をP(k)、距離をR(k)と表記する。
 次に、フィルタリング部82jでの処理の詳細を、図27に示すフローチャートを用いて説明する。
 本処理は、受光積算部6にて生成された積算受光情報から、測距部81jにて積算受光情報に対する測距処理が実行される毎に起動する。
 S110では、フィルタリング部82jは、検出エコー数Kが1以上であるか否かを判定し、K≧1であれば処理をS120に移行し、K<1であれば処理を終了する。
 S120では、フィルタリング部82jは、測距部81jで検出されたエコー情報ECのうち、物体からの反射波に基づく有効エコー情報の数を表すカウント値Cnt、及びエコー情報ECの識別に用いるインデックスkを初期化する。具体的には、カウント値Cntは0に初期化され、インデックスkは1に初期化される。なお、有効エコー情報以外のエコー情報、すなわち、干渉波等に基づくエコー情報を無効エコー情報という。
 S130では、フィルタリング部82jは、エコー情報EC(k)のエコーピーク値P(k)が二次閾値TH2より大きいか否かを判定し、P(k)≦TH2であれば、処理をS140に移行し、P(k)>TH2であれば、処理をS150に移行する。
 S140では、フィルタリング部82jは、エコー情報EC(k)が有効エコー情報であるか無効エコー情報であるかを示すフラグFlg(k)に、無効エコー情報であることを示す値Falseを設定して、処理をS170に進める。
 S150では、フィルタリング部82jは、カウント値Cntを1増加させる。
 続くS160では、フィルタリング部82jは、フラグFlg(k)に、有効エコー情報であることを示す値Trueを設定して、処理をS170に進める。
 S170では、フィルタリング部82jは、インデックスkを1増加させる。
 S180では、フィルタリング部82jは、インデックスkが、検出エコー数K以下であるか否かを判定し、k≦Kであれば、処理をS130に戻し、k>Kであれば、処理を終了する。
 なお、本処理の結果として得られるカウント値Cntを、有効エコー数ともいう。また、エコー情報EC(k)にフラグFlg(k)=Trueを付与することが、エコー情報EC(k)を有効化することに相当し、エコー情報EC(k)にフラグFlg(k)=Falseを付与することが、エコー情報EC(k)を無効化することに相当する。無効化されたエコー情報EC(k)は、除去されてもよいし、有効化されたエコー情報EC(k)と共に後段の処理に提供されてもよい。
 [10-2.効果]
 以上詳述した第10実施形態によれば、前述した第1実施形態の効果(1a)を奏し、更に以下の効果(10a)(10b)を奏する。
 (10a)本実施形態では、二つの閾値TH1,TH2を用いて、2段階に分けて積算受光情報からエコー情報ECを生成し、更に、有効エコー情報を抽出する。つまり、TH1(すなわち、G×σ+Ns又はD+Ns)とTH2(すなわち、Smax+α+Ns)のうち、いずれか大きい方の閾値を用いて有効エコー情報を抽出する第5実施形態と同様な効果を得ることができる。
 (10b)本実施形態では、二つの閾値TH1,TH2を用いることにより、装置構成の自由度を向上させることができる。つまり、例えば、TH1だけを生成するIC、又は、TH2だけを生成するICが個別に既に存在する場合に、これらのICを用いて、柔軟に装置を構成できる。
 [10-3.変形例]
 受光積算部6が、Ns=0となる積算受光情報を算出するように構成されている場合、二次閾値設定部756は、(17)式の代わりに、(1)~(3)式の右辺を用いて算出される値を二次閾値TH2としてもよい。また、受光積算部6が、非ゼロベースライン順次積算方法を用いて複数の受光情報を積算するように構成されている場合、二次閾値設定部756は、(17)式の代わりに。(4)~(7)式の右辺を用いて算出される値を二次閾値TH2としてもよい。
 [11.第11実施形態]
 [11-1.第10実施形態との相違点]
 第11実施形態は、基本的な構成は第10実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第11実施形態では、処理部5kにおける距離算出部8kの構成が、第10実施形態とは相違する。
 図28に示すように、距離算出部8kは、測距部81jと、フィルタリング部82jと、検知判定部85とを備える。測距部81j及びフィルタリング部82jは、第10実施形態での説明と同様である。
 検知判定部85は、測距部81jで得られる検出エコー数Kと、フィルタリング部82jで得られる有効エコー数Cntに従って、適正に有効エコー情報が抽出されているか否かを判定する。
 検知判定部85での処理の詳細を、図29に示すフローチャートを用いて説明する。
 本処理は、フィルタリング部82jにて処理が実行される毎に起動する。
 S210では、検知判定部85は、検出エコー数Kが0より大きく、かつ、有効エコー数Cntが0であるか否かを判定し、肯定判定した場合は、処理をS220に移行し、否定判定した場合は、処理をS230に移行する。
 S220では、検知判定部85は、検知ステータスE_STを、一次閾値TH1を用いて検出されたが、二次閾値TH2により無効とされたK個のエコーの中に、有効エコーが含まれない可能性があることを示す「未検知」に設定して処理を終了する。
 S230では、検知判定部85は、検知ステータスE_STを、有効エコーが適正に検知されたことを示す「検知」に設定して処理を終了する。
 つまり、受光情報において、物体からの反射波に基づくエコー(以下、反射エコー)の方が、干渉波に基づくエコー(以下、干渉エコー)よりピーク値が大きい場合、反射エコーのピーク値に従って二次閾値TH2が設定される。この場合、反射エコーのピーク値は、受光積算部6での積算の結果、二次閾値TH2より大きくなるため、反射エコーのエコー情報は有効エコー情報として抽出される。また、干渉エコーのピーク値は、受光積算部6にて積算されても値に変化がなく、二次閾値TH2より小さいままであるため、干渉エコーのエコー情報は無効エコー情報として抽出される。
 これに対して、図30に示すように、受光情報において、干渉エコーの方が反射エコーよりピーク値が大きい場合には、干渉エコーのピーク値に従って二次閾値TH2が設定される。この場合、二次閾値TH2は、積算後の反射エコーのピーク値より大きい場合があるため、反射エコーのエコー情報が無効エコー情報として抽出される可能性がある。検知ステータスE_STの「未検知」は、このような状況を表している。
 [11-2.効果]
 以上詳述した第11実施形態によれば、前述した第1実施形態及び第10実施形態の効果(1a)(10a)(10b)を奏し、更に以下の効果(11a)を奏する。
 (11a)本実施形態では、干渉エコーの存在によって、反射エコーのエコー情報ECが無効エコー情報とされている可能性を、後段の処理に知らせることができる。
 [11-3.変形例]
 検知判定部85は、図29に示す検知判定処理の代わりに、図44に示す検知判定処理を実行してもよい。
 S240では、検知判定部85は、検出エコー数Kが0より大きく、かつ、有効エコー数Cntが0であるか否かを判定し、肯定判定した場合は、処理をS250に移行し、否定判定した場合は、処理をS270に移行する。
 S250では、検知判定部85は、検知ステータスE_STを、一次閾値TH1を用いて検出されたが、二次閾値TH2により無効とされたK個のエコーには、干渉波に基づくエコーが含まれ除去不能であることを示す「干渉あり」に設定する。
 続くS260では、検知判定部85は、K個のエコー情報EC(1)~EC(K)のフラグFlg(1)~Flg(K)を、いずれも、有効エコー情報であることを示すTrueに戻して処理を終了する。
 S270では、検知判定部85は、検知ステータスE_STを、干渉の影響がないことを示す「干渉なし」に設定して処理を終了する。
 この場合、干渉エコーが検出される可能性があるが、反射エコーが非検出となることを抑制できる。
 [12.第12実施形態]
 [12-1.第10実施形態との相違点]
 第12実施形態は、基本的な構成は第10実施形態と同様であるため、相違点について以下に説明する。なお、第10実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第12実施形態では、処理部5lにおける距離算出部8lの構成が、第10実施形態とは相違する。
 図31に示すように、距離算出部8lは、測距部81jと、フィルタリング部82jと、有効エコー抽出部86とを備える。測距部81j及びフィルタリング部82jは、第10実施形態での説明と同様である。
 有効エコー抽出部86は、反射エコーのエコー情報ECがフィルタリング部82jによって無効エコー情報であると判定されている可能性がある場合に、この無効化されたエコー情報を有効エコー情報として抽出する。
 有効エコー抽出部86での処理の詳細を、図32に示すフローチャートを用いて説明する。
 本処理は、フィルタリング部82jにて処理が実行される毎に起動する。
 S310では、有効エコー抽出部86は、検出エコー数Kが1より大きく、かつ、有効エコー数Cntが0であるか否かを判定する。有効エコー抽出部86は、肯定判定した場合は、有効エコー情報が適正に抽出されていない可能性があるとして、処理をS320に移行し、否定判定した場合は、有効エコー情報は適正に抽出されているとして、処理を終了する。
 S320では、有効エコー抽出部86は、エコー情報ECの識別に用いるインデックスkを2に設定する。なお、この時点でのカウント値(すなわち、有効エコー数)Cntは0であり、また、全てのエコー情報ECのフラグFlgが無効であることを示す値Falseに設定されている。
 続くS330では、有効エコー抽出部86は、カウント値Cntを1増加させる。
 続くS340では、有効エコー抽出部86は、エコー情報EC(k)が有効エコー情報であるか否かを示すフラグFlg(k)を、有効であることを示す値Trueに設定する。
 続くS350では、有効エコー抽出部86は、インデックスkを1増加させる。
 続くS360では、有効エコー抽出部86は、インデックスkが検出エコー数K以下であるか否かを判定し、k≦Kであれば処理をS330に戻し、k>Kであれば処理を終了する。
 なお、測距部81jで検出されるエコー情報ECはエコーピーク値Pが大きい順にソートされている。このため、本処理の結果、エコーピーク値が最大であることを無効条件として、無効条件を満たすエコー情報EC(1)を除く、他の全てのエコー情報EC(2)~EC(K)が有効エコー情報として抽出される。
 [12-2.効果]
 以上詳述した第12実施形態によれば、前述した第1実施形態及び第10実施形態の効果(1a)(10a)(10b)を奏し、更に以下の効果(12a)を奏する。
 (12a)本実施形態では、フィルタリング部82jにて全てのエコー情報ECが無効エコー情報とされた場合、エコー情報EC(1)を干渉エコー情報として排除することで、エコー情報EC(1)以外のエコー情報EC(2)~EC(K)を、有効エコー情報として抽出できる。
 [12-3.変形例]
 有効エコー抽出部86での処理の変形例を、図33のフローチャートを用いて説明する。変形例の処理では、図32のフローチャートと比較して、S330の前にS325が挿入されている点、及びS360にて肯定判定された場合に、処理をS325に移行させる点で第12実施形態とは相違する。
 S325では、エコー情報EC(k)のエコーピーク値P(k)が、二次閾値TH2に定数Cを乗じた値より小さいか否かを判定し、P(k)<TH2×Cであれば処理をS330に移行し、P(k)≧TH2×Cであれば、処理をS350に移行する。
 定数Cは、例えば、積算ベースライン値Nsに対して±Bの範囲でベースライン値がばらつくものとして、TH2×C=TH2-Bとなるような値に設定される。つまりTH2×Cが無効閾値に相当する。但し、定数Cは、開発者が自由に設定できる固定閾値としてもよい。
 この変形例の処理によれば、干渉エコーのエコー情報EC(1)のエコーピーク値P(1)と同程度のピーク値を有する他のエコー情報も無効エコー情報として排除されるため、干渉エコーが複数存在する場合でも、有効エコー情報を適正に抽出できる。
 [13.第13実施形態]
 [13-1.第10実施形態との相違点]
 第13実施形態は、基本的な構成は第10実施形態と同様であるため、相違点について以下に説明する。なお、第10実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第13実施形態では、処理部5mにおける距離算出部8mの構成が、第10実施形態とは相違する。
 図34に示すように、距離算出部8mは、測距部81jと、フィルタリング部82jと、有効エコー抽出部86と、検知判定部85とを備える。測距部81j及びフィルタリング部82jは、第10実施形態での説明と同様であり、検知判定部85は、第11実施形態での説明と同様であり、有効エコー抽出部86は、第12実施形態での説明と同様である。但し、検知判定部85では、有効エコー抽出部86での処理結果として得られる有効エコー数Cntを用いて判定を実行する。
 [13-2.効果]
 以上詳述した第13実施形態によれば、前述した第1実施形態及び第10~第12実施形態の効果(1a)(10a)(10b)(11a)(12a)を奏する。
 [14.第14実施形態]
 [14-1.第13実施形態との相違点]
 第14実施形態は、基本的な構成は第13実施形態と同様であるため、相違点について以下に説明する。なお、第13実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第14実施形態では、処理部5nにおける特性設定部7n及び距離算出部8nの構成が、第13実施形態とは相違する。
 図35に示すように、特性設定部7nは、ベースライン算出部73と、ピーク算出部74と、閾値設定部75jと、ピークばらつき算出部76とを備える。ピークばらつき算出部76以外は、第10実施形態での説明と同様である。
 ピークばらつき算出部76は、積算の対象となるM個の受光情報のうち、m回目の計測で得られた受光情報において、最大受光光量が検出されたタイミングである最大受光タイミングtを用いてばらつき度合いを算出する。
 ピークばらつき算出部76が実行する処理の詳細を、図36のフローチャートを用いて説明する。
 S410では、ばらつき算出部76は、ばらつきの度合いを表すばらつきカウント値V_Cnt及び積算の対象となるM個の受光情報の識別に用いるインデックスmを初期化する。具体的には、V_Cntは0に設定され、mは2に設定される。
 続くS420では、ばらつき算出部76は、m回目及びm-1回目の計測で得られた各受光情報における最大受光タイミングt,tm-1の差の絶対値(以下、タイミング差)|t-tm-1|が、予め設定された閾値βより大きいか否かを判定する。ばらつき算出部76は、|t-tm-1|>βであれば、処理をS430に移行し、|t-tm-1|≦βであれば、処理をS440に移行する。βは、計測周期等に基づき、同一物体からの反射エコーのピークが検出されるタイミングの時間的なばらつきを考慮して、例えば、同一物体であるとみなせる許容ばらつきの最大値に設定する。
 S430では、ばらつき算出部76は、ばらつきカウント値V_Cntを1増加させて、処理をS440に進める。
 S440では、ばらつき算出部76は、インデックスmを1増加させる。
 続くS450では、ばらつき算出部76は、インデックスmが積算数M以下であるか否かを判定し、m≦Mであれば処理をS420に戻し、m>Mであれば処理を終了する。
 つまり、図37に示すように、同一物体からの反射光に基づく生ピーク値は、積算の対象となるM個の受光情報において、いずれも略同じタイミングで検出される。これに対して、干渉光に基づく生ピーク値は、反射光に基づく生ピーク値とは異なるタイミングで単発的に検出される。そして、反射光に基づく生ピーク値より、干渉光に基づく生ピーク値の方が大きい場合、最大受光タイミングは、干渉光が検出される受光情報だけ、他の受光情報とは異なる。その結果、例えば、図36では、干渉光が検出される受光情報の最大受光タイミングt2を使用して算出される二つのタイミング差|t2-t1|及び|t3-t2|が閾値βより大きくなり、ばらつきカウント値V_Cntがカウントアップされる。
 距離算出部8nは、第12実施形態で説明した距離算出部8mと比較して、検知判定部85nの構成が異なる。但し、有効エコー抽出部86は、図32のフローチャートに示した処理、即ち、エコー情報EC(1)を、無効エコー情報として除去し、エコー情報EC(1)以外のエコー情報を有効エコー情報とする処理を実行する。
 検知判定部85nでの処理の詳細を、図38のフローチャートを用いて説明する。
 図38のフローチャートは、図29のフローチャートと比較して、S210とS220との間にS215が追加されている点で相違する。
 S215では、検知判定部85nは、バラツキカウント値V_Cntが予め設定されたバラツキ閾値THv以下であるか否かを判定し、V_Cnt>THvであれば、S220に処理を移行し、V_Cnt≦THvであれば、処理をS230に移行する。
 ばらつき閾値THvは、例えば2に設定される。THv=2の場合、S215での処理は、各受光情報で検出される最大受光光量を有するピークの中で、干渉波に基づくピーク(すなわち、干渉エコー)の数が1以下であるか否かを判定することに相当する。
 つまり、最大受光光量を有するピークとして検出される干渉エコーが一つ以下である場合は、有効エコー抽出部86で、干渉エコーのエコー情報は無効エコー情報とされ、干渉エコーのエコー情報以外のエコー情報が有効エコー情報として抽出される。従って、検知ステータスE_STの値は「検知」に設定される。干渉エコーが二つ以上である場合は、有効エコー抽出部86で、有効エコー情報が正しく抽出されない可能性がある。従って、検知ステータスE_STの値は「未検知」に設定される。
 [14-2.効果]
 以上詳述した第14実施形態によれば、前述した第13実施形態と同様に、第1実施形態及び第10~第12実施形態の効果(1a)(10a)(10b)(11a)(12a)を奏し、更に以下の効果(14a)を奏する。
 (14a)本実施形態では、受光情報において反射エコーより大きい生ピーク値を有する干渉エコーが含まれている程度を、最大受光タイミングのばらつきから判定し、程度が大きい場合には、検知ステータスE_STを「未検知」とする。このため、干渉エコーの影響を受けた誤ったエコー情報が、後段に提供されることを抑制できる。
 [14-3.変形例]
 上記第14実施形態では、ばらつきカウント値V_Cntを、検知判定部85nでの処理に利用しているが、図35中の点線矢印で示すように、有効エコー抽出部86での処理に利用してもよい。この場合、図32のフローチャートにおいて、S310の直前又は直後にステップを挿入し、V_Cnt>2の場合は、フラグFlgの書き換えを実行することなく処理を終了してもよい。
 [15.第15実施形態]
 [15-1.第10実施形態との相違点]
 第15実施形態は、基本的な構成は第10実施形態と同様であるため、相違点について以下に説明する。なお、第10実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第15実施形態では、処理部5oにおける特性設定部7o及び距離算出部8oの構成が、第10実施形態とは相違する。
 図39に示すように、特性設定部7oは、ベースライン算出部73と、ピーク算出部74と、閾値設定部75oとを備える。ベースライン算出部73及びピーク算出部74は、第10実施形態での説明と同様である。
 閾値設定部75oは、一次閾値設定部755と、二次閾値設定部756oとを備える。一次閾値設定部755は、第10実施形態での説明と同様である。
 二次閾値設定部756oは、ピーク算出部74にて受光情報W(1)~W(M)のそれぞれについて算出される最大受光光量(即ち、生ピーク値)A~Aを、値が大きい順にソートする。そして、m番目に大きい最大受光光量Aを、TH2(m)と表記するものとして、M個の二次閾値TH2(1)~TH2(M)を生成して、距離算出部8oに供給する。
 距離算出部8oは、測距部81jと、フィルタリング部82oと、検知判定部85とを備える。測距部81jは、第10実施形態での説明と同様である。検知判定部85は、第11実施形態での説明と同様である。
 フィルタリング部82oでの処理の詳細を、図40に示すフローチャートを用いて説明する。
 本処理は、受光積算部6にて生成された積算受光情報について、測距部81jによる測距処理の結果が出力される毎に起動する。なお、測距部81jから供給されるK個のエコー情報EC(1)~EC(K)は、対応するパルス状の波形における受光量の最大値であるエコーピーク値P(k)が大きい順にソートされていること、また、K≦Mであることを前提とする。
 本処理は、図27のフローチャートと比較して、S130の代わりにS135を実行する点で相違する。
 S135では、フィルタリング部82oは、ピーク値がk番目に大きいエコー情報EC(k)のエコーピーク値P(k)が、値がk番目に大きい二次閾値TH2(k)より大きいか否かを判定する。フィルタリング部82oは、P(k)≦TH2(k)であれば、処理をS140に移行し、P(k)>TH2(k)であれば、処理をS150に移行する。
 ここで、一つの干渉エコーは、複数の受光情報のいずれかでのみ検出されるとすると、前述の処理によって、積算後の反射エコーより大きいエコーピーク値Pを有する1又は複数の干渉エコーのエコー情報をいずれも無効エコー情報として除去することができる。
 [15-2.効果]
 以上詳述した第15実施形態によれば、前述した第1実施形態及び第10実施形態の効果(1a)(10a)(10b)を奏し、更に以下の効果(15a)を奏する。
 (15a)本実施形態によれば、積算後の反射エコーのエコーピーク値Pより大きいピーク値を有する1又は複数の干渉エコーのエコー情報を、すべて除去できるため、最終的に抽出される有効エコー情報に基づく物体検出の信頼性を向上させることができる。
 なお、本実施形態では、エコー情報ECを、エコーピーク値Pが大きい順にソートしたが、エコーピーク値Pの小さい順にソートし、同様に小さい順にソートされた二次閾値TH2と比較してもよい。
 [16.第16実施形態]
 [16-1.想定する状況]
 第16実施形態の構成を説明する前に、本実施形態において、想定する干渉光の態様について説明する。
 本実施形態では、干渉光がフラッシュ型ライダーからの照射光である場合を想定する。フラッシュ型ライダーは、光を短い周期で繰り返し送信する。また、フラッシュ型ライダーは、投光時に拡散させて光を放射するため、他のタイプのライダーより、単位面積当たりの光の強度が弱くなる。このため、個々の受光情報において複数の干渉光が検出されるだけでなく、受光情報毎に、その複数の干渉光が検出されるタイミングもばらつく。その結果、図45に示すように、積算受光情報においる干渉光の波形は、各受光情報にて検出される干渉エコーのピーク値を単純に合計した値より低いピーク値を有し、且つ、干渉光が存在する時間範囲の全体を覆うような広いパルス幅を有する。このように積算された干渉エコーは、第2閾値TH2より大きな値となって、信号光として検出されてしまう場合がある。なお、図45では、図面を見易くするために、ノイズフロアを省略して示す。
 本実施形態では、このような状況において、干渉エコーを除去できないとしても、干渉エコーの影響で、反射エコーが未検出となる事態が発生することを抑制する。
 [16-2.第10実施形態との相違点]
 第16実施形態は、基本的な構成は第10実施形態と同様であるため、相違点について以下に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
 第16実施形態では、処理部5pにおける特性設定部7p及び距離算出部8pの構成が、第10実施形態とは相違する。
 図46に示すように、特性設定部7pは、ベースライン算出部73と、ピーク算出部74と、閾値設定部75jと、比較値設定部77とを備える。つまり、特性設定部7pは、第10実施形態における特性設定部7jに、比較値設定部77を追加した構成を有する。
 比較値設定部77は、干渉の有無の判定に用いる比較値Dを算出して、距離算出部8pに供給する。比較値Dは、(18)式に示すように、ピーク算出部74にて複数の受光情報のそれぞれについて算出される相対ピーク値S~Sの合計値Ssumに、ベースライン算出部73で算出される積算ベースライン値Nsを加算することで算出される。
  D=Ssum+Ns          (18)
 距離算出部8pは、測距部81jと、フィルタリング部82pとを備える。
 フィルタリング部82pは、(19)式を満たす場合に、第10実施形態にて説明したフィルタリング部82jの処理を実行する。
  |D-P(1)|<THp       (19)
 P(1)は、エコー情報EC(1)のピーク値であり、測距部81jで抽出されるK個のエコーの中で最大のピーク値である。THpは、干渉閾値である。干渉閾値THpは、例えば、同一物標に基づいて各受光情報で検出される相対ピーク値の合計と、その物標について積算受光情報で検出される相対ピーク値との差分について、その差分の大きさやばらつきを実験的に算出した結果に基づいて設定される。また、干渉閾値THpは、最大相対ピーク値Smaxに、係数を乗じることで設定されてもよい。
 つまり、図47及び図48に示すように、M個の受光情報から抽出される相対ピーク値S~Sに、干渉エコーに基づく相対ピーク値が含まれていない場合、比較値Dとピーク値P(1)は、ほぼ同じ値となる。このため、(19)式を充足していれば、エコー情報EC(1)は、反射エコーであると判定できる。なお、図47は、干渉光が存在しない場合、図48は、干渉光が信号光より小さい場合である。
 図49及び図50に示すように、M個の受光情報から抽出される相対ピーク値S~Sに、干渉エコーに基づく相対ピーク値が含まれている場合は、比較値Dとピーク値P(1)とは異なった値になる可能性が高い。このため、(19)式を非充足であれば、測距部81jで抽出されたエコー情報EC(1)~EC(K)の中に干渉エコーが含まれると判定できる。なお、図49は、干渉エコーに基づく相対ピーク値が全ての受光情報において検出される場合であり、図50は、干渉エコーに基づく相対ピーク値が一つの受光情報でのみ検出される場合である。
 [16-3.効果]
 以上詳述した第15実施形態によれば、前述した第1実施形態及び第10実施形態の効果(1a)(10a)(10b)を奏し、更に以下の効果(16a)を奏する。
 (16a)本実施形態では、フラッシュ型ライダーからの照射光を干渉光として受光した場合に、干渉光の影響で、反射光が非検出となることを抑制できる。
 [16-4.変形例]
 本実施形態において、受光積算部6が、非ゼロベースライン順次積算方法を用いて、複数の受光情報を積算し、二次閾値設定部756が(7)式に従って、最大生ピーク値Amaxを二次閾値TH2として設定するように構成されている場合、以下の問題点がある。すなわち、図51に示すように外乱光のばらつきにより、個別ベースライン値Nが信号光及び干渉光の生ピーク値Aより大きくなる場合がある。図51では、1番目の受光情報W(1)が該当する場合について示す。この場合、A=Nとして検出される。この結果、積算受光情報は、2~M番目の受光情報を積算した結果と等しくなる。このとき、Amax=Aであるため、二次閾値TH2=Aに設定される。その結果、積算受光情報で検出される全てのピークが、二次閾値TH2より小さくなり、干渉エコーだけでなく、反射エコーも非検出となる場合がある。
 そこで、フィルタリング部82pは、一次閾値TH1を用いて検出されるエコー情報EC(1)の振幅P(1)=S2+A3を用いて、(20)式を満たすか否かを判定する。
  P(1)<MAX(N,N,…N)  (20)
 (20)式を充足する場合は、二次閾値TH2の使用するフィルタリング部82pの処理を禁止する。例えば、いずれかの受光情報において、反射光が外乱光に埋もれる状況であった場合に、フィルタリング部82pの処理が禁止され、一次閾値TH1を用いて抽出される全てのエコー情報EC(1)~EC(K)が、後段の処理に提供される。後段の処理において、干渉エコーが反射エコーとして誤検出される可能性があるが、反射エコーが未検出となることを抑制できる。
 [17.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は前述の実施形態に限定されることなく、種々変形して実施することができる。
 (17a)本開示に記載の判定部722では、判定閾値より大きい範囲を有効範囲として抽出しているが、有効範囲の抽出方法は、これに限定されるものではない。例えば、干渉光波形が存在すると推定される干渉範囲を抽出するための別の判定閾値を設定し、この別の判定閾値を用いて抽出される干渉範囲を無効範囲とし、無効範囲以外を有効範囲として抽出する等してもよい。
 (17b)本開示では、特性設定部7,7a,7d~7hでの処理結果を用いて、距離算出部8,8b,8e,8h,8iは、干渉光によるパルス状の波形に基づく算出結果を除外するように構成されているが、この算出結果を必ずしも除外する必要はない。例えば、無効範囲(すなわち、指定範囲)に存在するパルス状の波形に基づいて算出された距離を除外する代わりに、この算出された距離に、干渉光に基づくことを示すフラグを付与してもよい。この場合、距離の算出結果を利用する後段の処理又はユーザが、フラグに従って干渉光の影響を除去する処置を行うようにしてもよい。
 (17c)本開示に記載の受光部3は、受光素子としてSPADを用いる場合について説明したが、受光素子は、SPADに限定されるものではない。受光強度の時間変化を検出できれば、どのような受光素子を用いてもよい。
 (17d)本開示に記載の二値化部71は、二値化の対象となる被二値化情報として、積算の対象となる複数の受光情報を用いているが、被二値化情報は、これに限定されるものではない。例えば、受光情報の積算数が3である場合、二値化部71は、図23及び図24に示すように、1回目の受光情報と、1回目及び2回目の受光情報を積算した情報と、1回目~3回目の受光情報を積算した情報とを、被二値化情報としてもよい。つまり、受光情報を積算する過程で逐次生成される情報によって示される受光波形を予め設定された二値化閾値THbを用いて二値化することで受光二値情報を生成してもよい。
 このような二値化部71を適用した場合、第1実施形態で示した二値積算部721によって生成される積算二値情報が示す積算二値波形は、図23に示すように、干渉光波形が検出される時間範囲での値が、図3に示した第1実施形態の場合とは異なり、2となる。また、第2実施形態で示した論理演算部723によって生成される論理積情報が示す波形は、図24に示すように、第2実施形態の場合と同様である。
 (17e)本開示では、一つの発光部2において、発光トリガ信号の出力周期T1,T2,T3,…一定の範囲内でランダムに変化させているが、発光トリガ信号の出力周の設定は、これに限定されるものではない。例えば、図52に示すように、異なる照射方向に光を照射する複数の発光部2を備えてもよい。複数の発光部2を備える場合、図53に示すように、複数の発光部2のそれぞれにおいて、出力周期をランダムに変化させてもよい。また、図54に示すように、各発光部2は、それぞれの出力周期を一定値とし、発光部2毎に、出力周期の一定値を異ならせてもよい。また、例えばスキャナーミラーを搭載するライダーのようにスキャナが動くことで1つの発光部2が異なる照射方向に光を照射するように構成されている場合に、照射方向毎に出力周期を変化させてもよい。
 (17f)本開示に記載の処理部5,5a~5p及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の処理部5,5a~5p及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の処理部5,5a~5p及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されてもよい。処理部5,5a~5pに含まれる各部の機能を実現する手法には、必ずしもソフトウェアが含まれている必要はなく、その全部の機能が、一つあるいは複数のハードウェアを用いて実現されてもよい。
 (17g)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。
 (17h)請求の範囲において、請求項20以降の請求項には、請求項13~14に記載した積算受光情報の算出方法を適用してもよい。請求項21以降の請求項には、請求項15~18に記載した抽出閾値の設定方法を適用してもよい。但し、この場合、「抽出閾値」は、「二次閾値」に読み替えるものとする。
 (17i)前述した測距装置1の他、当該測距装置1を構成要素とするシステム、当該測距装置1の処理部5,5a~5p又はその一部としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実体的記録媒体、測距方法など、種々の形態で本開示を実現することもできる。
 

Claims (35)

  1.  物体に光を照射する発光部(2)と、
     前記物体から反射された光を受光する受光部(3)と、
     前記受光部で取得される受光光量の時間変化を受光情報とし、一つ以上の前記受光情報から、前記発光部から照射された光である照射光以外のパルス光の受光光量範囲、及び受光時間範囲の少なくとも一つを指定範囲として抽出する特性設定部(7,7a,7d~7h,7n~7p)と、
     前記受光情報から得られる情報の少なくとも一部を複数回の発光にわたり発光タイミングを一致させた時間軸上で積算した積算受光情報を生成する受光積算部(6)と、
     前記特性設定部で抽出した指定範囲をもとに前記照射光以外のパルス光により生じる距離ノイズを除外又は特定し、前記照射光を反射した前記物体までの距離を算出する距離算出部(8,8b,8e,8h~8r)と、
     を備える測距装置。
  2.  請求項1に記載の測距装置であって、
     前記距離算出部は、
     前記積算受光情報を用いて、発光から受光までの時間差から前記物体までの距離を算出する測距部(81)と、
     フィルタを用いて、前記測距部にて処理される前記積算受光情報中の前記照射光以外のパルス光を除去、又は無効化、又は軽減するフィルタリング部(82,82b)と、
     を備え、
     前記特性設定部は、
     それぞれの前記受光情報及び前記受光積算部にて前記受光情報を積算する過程で逐次生成される情報のうちの少なくとも一つである被二値化情報に対して、予め設定された閾値及び前記被二値化情報から算出される閾値のいずれかである二値化閾値を用いて、時間と二値化された前記被二値化情報との関係を表す受光二値情報を生成する二値化部(71)と、
     前記受光二値情報を用いて前記積算受光情報の中で、前記照射光による前記物体からの反射光が存在しうる時間範囲、及び前記照射光以外のパルス光が存在しない時間範囲のうち少なくとも一つを表す有効範囲を抽出することで、前記フィルタリング部のフィルタ特性を設定するフィルタ生成部(72,72a,72d)と、
     を備える測距装置。
  3.  請求項2に記載の測距装置であって、
     前記フィルタ生成部は、
     前記二値化部で生成される複数の前記受光二値情報を、前記発光タイミングを一致させた時間軸上で積算する二値積算部(721)と、
     積算された前記受光二値情報を、予め設定された固定閾値及び前記受光二値情報の数である積算数に応じて算出される判定閾値のうちいずれかを用いて二値化することで前記有効範囲を抽出する判定部(722)と、
     を備える測距装置。
  4.  請求項2に記載の測距装置であって、
     前記フィルタ生成部は、
     前記二値化部で生成される複数の前記受光二値情報を、前記発光タイミングを一致させた時間軸上で論理積することで、前記有効範囲を抽出する論理演算部(723)を備える
     測距装置。
  5.  請求項2に記載の測距装置であって、
     前記フィルタ生成部は、
     前記二値化部で生成される複数の前記受光二値情報を、前記発光タイミングを一致させた時間軸上で積算する二値積算部(721)と、
     積算された前記受光二値情報を、前記二値積算部での積算数で除算し、正規化することで、前記有効範囲を抽出すると共に、前記有効範囲でのゲインを設定する正規化部(724)と、
     を備える測距装置。
  6.  請求項2から請求項5までのいずれか1項に記載の測距装置であって、
     前記特性設定部は、時間軸で設定された前記有効範囲を、距離軸の前記有効範囲に変換して前記フィルタを生成し、
     前記距離算出部では、前記測距部が前記積算受光情報中のパルス状の波形毎に距離を算出し、算出された距離に対して、前記フィルタリング部が前記フィルタを作用させて、前記フィルタの前記有効範囲に含まれる距離を抽出する
     測距装置。
  7.  請求項2から請求項5までのいずれか1項に記載の測距装置であって、
     前記特性設定部は、時間軸で設定された前記有効範囲により前記フィルタを生成し、
     前記距離算出部では、前記フィルタリング部が前記積算受光情報に前記フィルタを作用させて、前記有効範囲に含まれる時間範囲を抽出し、抽出された時間範囲に存在するパルス状の波形毎に、前記測距部が距離を算出する
     測距装置。
  8.  請求項2から請求項5までのいずれか1項に記載の測距装置であって、
     前記距離算出部では、前記測距部が前記積算受光情報中のパルス状の波形毎に距離の算出に必要な中間データを算出し、算出された前記中間データに対して、前記フィルタリング部が前記フィルタを作用させて、前記フィルタの前記有効範囲に含まれる前記中間データを抽出し、抽出された中間データを用いて前記物体までの距離を算出する
     測距装置。
  9.  請求項8に記載の測距装置であって、
     前記特性設定部は、時間軸で設定された前記有効範囲を、距離軸の前記有効範囲に変換して前記フィルタを生成し、
     前記距離算出部では、距離軸上のデータに変換された前記中間データに対して前記フィルタを作用させる
     測距装置。
  10.  請求項8に記載の測距装置であって、
     前記特性設定部は、時間軸で設定された前記有効範囲により前記フィルタを生成し、
     前記距離算出部では、時間軸上のデータである前記中間データに対して前記フィルタを作用させる
     測距装置。
  11.  請求項1に記載の測距装置であって、
     前記距離算出部は、
     前記積算受光情報から抽出閾値を用いて抽出されるそれぞれのパルス状の波形を検出対象として、発光から受光までの時間差から前記物体までの距離を算出する測距部(81e)を備え、
     前記特性設定部は、
     前記受光積算部での積算対象となった複数の前記受光情報を対象情報群として、前記対象情報群に属する前記受光情報のそれぞれのベースラインの値である個別ベースライン値、及び前記積算受光情報のベースラインの値である積算ベースライン値を算出するベースライン算出部(73,73g)と、
     前記対象情報群に属する前記受光情報のそれぞれについて、前記受光情報の少なくとも一部の時間範囲内での受光光量の最大値である生ピーク値、及び前記生ピーク値から前記個別ベースライン値を減算した相対ピーク値のうち少なくとも一つを算出するピーク算出部(74)と、
     前記個別ベースライン値及び前記積算ベースライン値のうち少なくとも一つ、並びに前記生ピーク値及び前記相対ピーク値のうち少なくとも一つを用いて前記抽出閾値を設定する閾値設定部(75,75g)と、
     を備える測距装置。
  12.  請求項1に記載の測距装置であって、
     前記距離算出部は、
     前記積算受光情報を用いて、前記物体までの距離を算出するように構成された第1測距部(81)、及びフィルタを用いて、前記第1測距部にて処理される前記積算受光情報に含まれる前記照射光以外のパルス光の影響を除去又は軽減するフィルタリング部(82,82b)を有する第1処理部と、
     前記積算受光情報から抽出閾値を用いて抽出されるそれぞれのパルス状の波形を検出対象として、前記物体までの距離を算出する第2測距部(81e)を有する第2処理部と、
     予め設定された切替条件に従って、前記第1処理部での処理結果及び前記第2処理部での処理結果のいずれかを出力する切替部(83)と、
     を備え、
     前記特性設定部は、
     前記フィルタリング部で使用される前記フィルタの特性を設定する第1特性設定部(91)と、 前記第2測距部で使用される前記抽出閾値を設定する第2特性設定部(92)と、
     を備え、
     前記第1特性設定部は、
     それぞれの前記受光情報及び前記受光積算部にて前記受光情報を積算する過程で逐次生成される情報のうちの少なくとも一つである被二値化情報に対して、予め設定された閾値、及び前記被二値化情報から算出される閾値のいずれかである二値化閾値を用いて、時間と二値化された前記被二値化情報との関係を表す受光二値情報を生成する二値化部(71)と、
     前記受光二値情報を用いて前記積算受光情報中で、前記物体からの反射光が存在しうる時間範囲、及び前記照射光以外のパルス光が存在しない時間範囲のうち少なくとも一つを表す有効範囲を抽出することで、前記フィルタリング部の前記フィルタの特性を設定するフィルタ生成部(72,72a~72d)と、
     を備え、
     前記第2特性設定部は、
     前記受光積算部での積算対象となった複数の前記受光情報を対象情報群として、前記対象情報群に属する前記受光情報のそれぞれのベースラインの値である個別ベースライン値及び前記積算受光情報のベースラインの値である積算ベースライン値を算出するベースライン算出部(73,73f,73g)と、
     前記対象情報群に属する前記受光情報のそれぞれについて、前記受光情報の少なくとも一部の時間範囲内での受光光量の最大値である生ピーク値、及び前記生ピーク値から前記個別ベースライン値を減算した相対ピーク値のうち少なくとも一つを算出するピーク算出部(74)と、
     前記個別ベースライン値及び前記積算ベースライン値のうち少なくとも一つ、並びに前記生ピーク値及び前記相対ピーク値のうち少なくとも一つを用いて前記抽出閾値を設定する閾値設定部(75,75f,75g)と、
     を備える測距装置。
  13.  請求項11又は請求項12に記載の測距装置であって、
     前記受光積算部は、前記積算ベースライン値がゼロとなるように前記積算受光情報を算出する
     測距装置。
  14.  請求項11又は請求項12に記載の測距装置であって、
     前記受光積算部は、前記積算ベースライン値が非ゼロとなるように前記積算受光情報を算出する
     測距装置。
  15.  請求項11から請求項14までのいずれか1項に記載の測距装置であって、
     前記ピーク算出部は、少なくとも前記相対ピーク値を算出し、
     前記閾値設定部は、
     前記対象情報群に属する前記受光情報のそれぞれについて算出された前記相対ピーク値の中での最大値にと、前記積算ベースライン値を加算した結果を前記抽出閾値として設定する最大抽出部(751)を備える、
     測距装置。
  16.  請求項11から請求項14までのいずれか1項に記載の測距装置であって、
     前記ピーク算出部は、少なくとも前記生ピーク値を算出し、
     前記閾値設定部は、
     前記対象情報群に属する前記受光情報のそれぞれについて算出される前記生ピーク値の中での最大値を最大生ピーク値とし、前記最大生ピーク値の抽出元となった前記受光情報の前記個別ベースライン値及び前記対象情報群に属する前記受光情報のそれぞれについて算出される前記個別ベースライン値の平均値のうちいずれか一つをオフセット値として、前記最大生ピーク値から前記オフセット値を減算し、更に、前記積算ベースライン値を加算した結果を、前記抽出閾値として設定する最大抽出部(751)を備える
     測距装置。
  17.  請求項14に記載の測距装置であって、
     前記ピーク算出部は、少なくとも前記生ピーク値を算出し、
     前記閾値設定部は、
     前記対象情報群に属する前記受光情報のそれぞれについて算出される前記生ピーク値の中での最大値である最大生ピーク値を、前記抽出閾値として設定する最大抽出部(751)を備える
     測距装置。
  18.  請求項15から請求項17までのいずれか1項に記載の測距装置であって、
     前記閾値設定部は、予め指定された定数、及び前記ベースライン算出部又は前記ピーク算出部での算出結果に応じて設定される値のうちいずれか一つであるマージンを加算した前記抽出閾値を設定する
     測距装置。
  19.  請求項15から請求項18までのいずれか1項に記載の測距装置であって、
     前記ベースライン算出部は、前記個別ベースライン値と前記積算ベースライン値とに加えて、該個別ベースライン値のばらつき又は該積算ベースライン値のばらつきのうちいずれか一つを用いて許容ばらつき値を算出し、
     前記閾値設定部は、
     前記許容ばらつき値と、前記積算ベースライン値とを加算するばらつき算出部(753)と、
     前記最大抽出部での演算結果と、前記ばらつき算出部での演算結果と、予め設定された固定値とのうち、最大値を選択して、前記抽出閾値として設定する閾値選択部(754)と、
     を更に備える、
     測距装置。
  20.  請求項1に記載の測距装置であって、
     前記距離算出部は、
     前記積算受光情報から抽出閾値を用いて抽出されるそれぞれのパルス状の波形を検出対象として、発光から受光までの時間差から前記物体までの距離を算出する測距部(81e)を備え、
     前記特性設定部は、
     前記受光積算部で生成される前記積算受光情報のベースラインの値を表す積算ベースライン値を算出するベースライン算出部(73f)と、
     前記積算受光情報の少なくとも一部の時間範囲内での最大値から前記積算ベースライン値を減算した相対ピーク値を算出するピーク算出部(74f)と、
     前記積算ベースライン値及び前記相対ピーク値を用いて前記抽出閾値を設定する閾値設定部(75f)と、
     を備え、
     前記閾値設定部は、
     前記受光積算部での積算対象となった複数の前記受光情報を対象情報群として、前記ピーク算出部にて算出された前記相対ピーク値を、前記対象情報群に属する前記受光情報の数である積算数で除算した除算値と、前記積算ベースライン値と、予め指定された定数及び前記除算値に応じて算出される値のうちいずれか一つと、を加算した結果を前記抽出閾値として設定する除算部(752)を備える、
     測距装置。
  21.  請求項1に記載の測距装置であって、
     前記特性設定部は、
     前記受光積算部での積算対象となった複数の前記受光情報を対象情報群として、前記対象情報群に属する前記受光情報のそれぞれのベースラインの値である個別ベースライン値、及び前記積算受光情報のベースラインの値である積算ベースライン値を算出し、さらに前記個別ベースライン値のばらつき又は前記積算ベースライン値のばらつきのうちいずれか一つを用いて許容ばらつき値を算出するベースライン算出部(73)と、
     前記対象情報群に属する前記受光情報のそれぞれについて、前記受光情報の少なくとも一部の時間範囲内での受光光量の最大値である生ピーク値、及び前記生ピーク値から前記個別ベースライン値を減算した相対ピーク値のうち少なくとも一つを算出するピーク算出部(74)と、
     前記積算ベースライン値、及び前記許容ばらつき値を用いて一次閾値を設定する一次閾値設定部(755)と
     前記個別ベースライン値及び前記積算ベースライン値のうち少なくとも一つ、並びに前記生ピーク値及び前記相対ピーク値のうち少なくとも一つを用いて二次閾値を設定する二次閾値設定部(756,756o)と、
     を備え、
     前記距離算出部は、
     前記積算受光情報から前記一次閾値を用いて抽出されるそれぞれのパルス状の波形を検出対象として、発光から受光までの時間差から前記物体までの距離である物体距離、及び該物体距離に対応する前記パルス状の波形における受光量のピーク値であるエコーピーク値を含んだエコー情報を生成する測距部(81j)と、
     前記測距部で生成された前記エコー情報を、前記二次閾値を用いて有効化又は無効化するフィルタリング部(82j,82o,82p)と、
     を備える測距装置。
  22.  請求項21に記載の測距装置であって、
     前記フィルタリング部は、前記二次閾値未満の前記エコーピーク値を有する前記エコー情報を、無効エコー情報として抽出又は除去することで無効化する
     測距装置。
  23.  請求項21に記載の測距装置であって、
     前記フィルタリング部は、前記二次閾値以上の前記エコーピーク値を有する前記エコー情報を、有効エコー情報として抽出することで有効化する
     測距装置。
  24.  請求項23に記載の測距装置であって、
     前記距離算出部は、
     前記測距部で生成された前記エコー情報の数である検出エコー数が0より大きく、且つ前記フィルタリング部で抽出された前記有効エコー情報の数である有効エコー数が0である場合に、前記エコー情報の中に干渉波に基づく情報が含まれていることを示す干渉ありとの判定、及び、前記有効エコー情報の数が1以上である場合に、前記有効エコー情報に、干渉波に基づく情報が含まれていないことを示す干渉なしとの判定のうち、少なくとも一つを行う検知判定部(85)
     を備える測距装置。
  25.  請求項23に記載の測距装置であって、
     前記距離算出部は、
     前記測距部で生成された前記エコー情報の数である検出エコー数が0より大きく、且つ前記フィルタリング部で抽出された前記有効エコー情報の数である有効エコー数が0である場合に、未検知の物体が存在する可能性があるとの判定、及び、前記有効エコー情報の数が1以上である場合に、物体が適切に検知されたとの判定のうち、少なくとも一つを行う検知判定部(85)
     を備える測距装置。
  26.  請求項25に記載の測距装置であって、
     前記特性設定部は、
     前記受光情報間で最大受光光量が得られるタイミング差を算出し、予め設定された固定値、及び前記積算ベースライン値に応じて設定される可変値のいずれか一つを判定閾値として、前記タイミング差が前記判定閾値よりも大きくなる回数であるピークばらつき回数を算出するばらつき算出部(76)を更に備え、
     前記検知判定部は、前記ピークばらつき回数が予め設定されたばらつき閾値以下である場合に、物体が適切に検知されたとの判定を行う
     測距装置。
  27.  請求項23から請求項25までのいずれか1項に記載の測距装置であって、
     前記距離算出部は、
     前記測距部で検出される前記エコー情報の数である検出エコー数が1より大きく、且つ前記フィルタリング部で抽出される前記有効エコー情報の数である有効エコー数が0である場合、前記エコーピーク値が予め設定された無効条件を充足する前記エコー情報以外の全ての前記エコー情報を前記有効エコー情報として抽出する有効エコー抽出部(86)
     を備える測距装置。
  28.  請求項27に記載の測距装置であって、
     前記無効条件として、前記エコーピーク値が最大であることを用いる
     測距装置。
  29.  請求項27に記載の測距装置であって、
     前記無効条件として、最大の前記エコーピーク値から、前記積算ベースライン値の許容ばらつき分を減じた値を無効閾値として、前記エコーピーク値が前記無効閾値以上であることを用いる
     測距装置。
  30.  請求項27から請求項29までのいずれか1項に記載の測距装置であって、
     前記特性設定部は、
     前記受光情報間で最大受光光量が得られるタイミング差を算出し、予め設定された固定値、及び前記積算ベースライン値に応じて設定される可変値のいずれか一つを判定閾値として、前記タイミング差が前記判定閾値よりも大きくなる回数であるピークばらつき回数を算出するばらつき算出部(76)を更に備え、
     前記有効エコー抽出部は、前記ピークばらつき回数が予め設定されたばらつき閾値以下である場合に、前記有効エコー情報の抽出を実行する
     測距装置。
  31.  請求項27から請求項29までのいずれか1項に記載の測距装置であって、
     前記二次閾値設定部は、前記受光情報毎に抽出される最大受光光量によって複数の前記二次閾値を設定し、
     前記フィルタリング部は、前記エコーピーク値と前記二次閾値とを値が大きい順、及び小さい順のどちらか一つに組み合わせて、それぞれの大小関係を比較することで、前記有効エコー情報を抽出する
     測距装置。
  32.  請求項21から請求項31までのいずれか1項に記載の測距装置であって、
     前記特性設定部は、
     前記対象情報群に属する前記受光情報のそれぞれについて算出される前記相対ピーク値の合計値に、前記積算ベースライン値を加算した比較値を設定する比較値設定部(77)を更に備え、
     前記フィルタリング部は、前記比較値と、前記エコーピーク値の中での最大値との差が予め設定された閾値より大きい場合、前記エコー情報を全て有効化する
     測距装置。
  33.  請求項21から請求項31までのいずれか1項に記載の測距装置であって、
     前記特性設定部は、 前記対象情報群に属する前記受光情報のそれぞれについて算出される前記個別ベースライン値の中での最大値を比較値として設定する比較値設定部(77)を更に備え、
     前記フィルタリング部は、前記エコー情報の中で前記エコーピーク値が最大となる最大エコーピーク値が前記比較値より小さい場合、前記エコー情報を全て有効化する
     測距装置。
  34.  請求項1から請求項33までのいずれか1項に記載の測距装置であって、
     前記発光部は、1又は複数回の照射毎に発光タイミングを変化させるように構成された
     測距装置。
  35.  請求項1から請求項34までのいずれか1項に記載の測距装置であって、
     前記発光部は、複数の照射方向に向けて発光し、且つ、前記照射方向毎に発光タイミングの間隔が異なるように構成された
     測距装置。
PCT/JP2020/033103 2019-09-06 2020-09-01 測距装置 WO2021045052A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080062536.XA CN114341665A (zh) 2019-09-06 2020-09-01 测距装置
US17/653,528 US20220187470A1 (en) 2019-09-06 2022-03-04 Ranging device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019163207 2019-09-06
JP2019-163207 2019-09-06
JP2019177385 2019-09-27
JP2019-177385 2019-09-27
JP2020-013600 2020-01-30
JP2020013600 2020-01-30
JP2020-125653 2020-07-22
JP2020125653A JP7294265B2 (ja) 2019-09-06 2020-07-22 測距装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/653,528 Continuation US20220187470A1 (en) 2019-09-06 2022-03-04 Ranging device

Publications (1)

Publication Number Publication Date
WO2021045052A1 true WO2021045052A1 (ja) 2021-03-11

Family

ID=74852972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033103 WO2021045052A1 (ja) 2019-09-06 2020-09-01 測距装置

Country Status (4)

Country Link
US (1) US20220187470A1 (ja)
JP (2) JP7435852B2 (ja)
CN (1) CN114341665A (ja)
WO (1) WO2021045052A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115856907A (zh) * 2023-01-18 2023-03-28 探维科技(北京)有限公司 减小脉冲式激光雷达测距盲区的方法、设备、介质及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772237A (ja) * 1993-06-28 1995-03-17 Nissan Motor Co Ltd レーダ装置
JPH10253760A (ja) * 1997-03-10 1998-09-25 Hamamatsu Photonics Kk 距離測定装置
JPH11160432A (ja) * 1997-11-28 1999-06-18 Koden Electron Co Ltd 光パルスレーダ装置及び光パルス受光装置
US20070255525A1 (en) * 2003-07-10 2007-11-01 Seok-Hwan Lee Laser Rangefinder and Method Thereof
JP2007327840A (ja) * 2006-06-07 2007-12-20 Denso Corp レーダ装置
JP2011505545A (ja) * 2007-09-27 2011-02-24 オムロン サイエンティフィック テクノロジーズ, インコーポレイテッド 能動的オブジェクト検出システムにおけるクラッタ除去
JP2017125682A (ja) * 2016-01-11 2017-07-20 株式会社デンソー レーザレーダ装置、周辺監視システム
JP2019002760A (ja) * 2017-06-14 2019-01-10 オムロンオートモーティブエレクトロニクス株式会社 距離計測装置
JP2019095353A (ja) * 2017-11-24 2019-06-20 パイオニア株式会社 測距装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741474B2 (ja) 2012-02-13 2015-07-01 株式会社デンソー レーダ装置
JP2019015522A (ja) 2017-07-03 2019-01-31 オムロンオートモーティブエレクトロニクス株式会社 距離計測装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772237A (ja) * 1993-06-28 1995-03-17 Nissan Motor Co Ltd レーダ装置
JPH10253760A (ja) * 1997-03-10 1998-09-25 Hamamatsu Photonics Kk 距離測定装置
JPH11160432A (ja) * 1997-11-28 1999-06-18 Koden Electron Co Ltd 光パルスレーダ装置及び光パルス受光装置
US20070255525A1 (en) * 2003-07-10 2007-11-01 Seok-Hwan Lee Laser Rangefinder and Method Thereof
JP2007327840A (ja) * 2006-06-07 2007-12-20 Denso Corp レーダ装置
JP2011505545A (ja) * 2007-09-27 2011-02-24 オムロン サイエンティフィック テクノロジーズ, インコーポレイテッド 能動的オブジェクト検出システムにおけるクラッタ除去
JP2017125682A (ja) * 2016-01-11 2017-07-20 株式会社デンソー レーザレーダ装置、周辺監視システム
JP2019002760A (ja) * 2017-06-14 2019-01-10 オムロンオートモーティブエレクトロニクス株式会社 距離計測装置
JP2019095353A (ja) * 2017-11-24 2019-06-20 パイオニア株式会社 測距装置

Also Published As

Publication number Publication date
JP2023055948A (ja) 2023-04-18
JP2023055947A (ja) 2023-04-18
CN114341665A (zh) 2022-04-12
US20220187470A1 (en) 2022-06-16
JP7435852B2 (ja) 2024-02-21
JP7435851B2 (ja) 2024-02-21

Similar Documents

Publication Publication Date Title
CN109100702B (zh) 用于测量到对象的距离的光电传感器和方法
US9798003B2 (en) Distance measuring sensor and method for the detection and distance determination of objects
JP6556688B2 (ja) 光電センサ及び距離測定方法
EP3457177B1 (en) Distance measurement apparatus
US20180253404A1 (en) Method and apparatus for processing a histogram output from a detector sensor
KR20200100099A (ko) 효율적인 다중-귀환 광 검출기들을 위한 시스템들 및 방법들
JP2020505585A (ja) ライダーを符号化および復号する方法およびシステム
WO2020201452A1 (en) Method of measuring optical crosstalk in a time of flight sensor and corresponding time of flight sensor
JP2011505545A (ja) 能動的オブジェクト検出システムにおけるクラッタ除去
JP2000121726A (ja) 距離測定装置
US5504570A (en) Distance measuring equipment
JP7435852B2 (ja) 測距装置
US11719824B2 (en) Distance measuring device, control method of distance measuring device, and control program of distance measuring device
CN112014824B (zh) 一种多脉冲抗干扰信号处理方法及装置
US5523835A (en) Distance measuring equipment
WO2020166609A1 (ja) 光学的測距装置
CN112083435B (zh) Lidar系统、用于lidar系统的方法以及用于lidar系统的接收器
US20180203121A1 (en) Digital passband processing of wideband modulated optical signals for enhanced imaging
JP7294265B2 (ja) 測距装置
JP2014137374A (ja) 距離測定光電センサおよび物体の距離測定方法
CN110895336B (zh) 基于雪崩二极管的物体检测装置
JP2008275379A (ja) レーザ測距装置およびレーザ測距方法
US6628374B2 (en) Distance measurement apparatus
CN106483546B (zh) 信号处理装置及放射线测定装置
CN114585942A (zh) 用于产生激光雷达系统的光脉冲的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859954

Country of ref document: EP

Kind code of ref document: A1