JP2019002700A - ガスセンサ素子に備わる電極の検査方法 - Google Patents

ガスセンサ素子に備わる電極の検査方法 Download PDF

Info

Publication number
JP2019002700A
JP2019002700A JP2017115093A JP2017115093A JP2019002700A JP 2019002700 A JP2019002700 A JP 2019002700A JP 2017115093 A JP2017115093 A JP 2017115093A JP 2017115093 A JP2017115093 A JP 2017115093A JP 2019002700 A JP2019002700 A JP 2019002700A
Authority
JP
Japan
Prior art keywords
sensor element
electrode
concentration
inspection
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017115093A
Other languages
English (en)
Other versions
JP6783706B2 (ja
Inventor
拓 岡本
Taku Okamoto
拓 岡本
裕葵 中山
Yuki Nakayama
裕葵 中山
宗一郎 吉田
Soichiro Yoshida
宗一郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2017115093A priority Critical patent/JP6783706B2/ja
Priority to US15/996,560 priority patent/US10557817B2/en
Priority to CN201810578486.5A priority patent/CN109030606B/zh
Priority to DE102018004596.0A priority patent/DE102018004596B4/de
Publication of JP2019002700A publication Critical patent/JP2019002700A/ja
Application granted granted Critical
Publication of JP6783706B2 publication Critical patent/JP6783706B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • G01D5/06Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means acting through a wall or enclosure, e.g. by bellows, by magnetic coupling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • G01D5/165Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4076Reference electrodes or reference mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】ガスセンサ素子に備わる検知電極の貴金属粒子表面におけるAu濃化度を、簡便な手法にて検査することができる方法を提供する。【解決手段】ガスセンサ素子に備わる電極の検査方法が、検査対象電極を対象とするXPSあるいはAES分析の結果から算出される、貴金属粒子表面におけるAuが露出している部分の面積の比率に基づいて定義されるAu濃化度と、Au濃化度と相関を有しかつヒータにて所定の温度に加熱したガスセンサ素子から非破壊で取得される所定の代替濃化度指標との関係を示す検量線を、あらかじめ作成しておく工程と、検査対象であるガスセンサ素子を上記温度に加熱した状態で当該ガスセンサ素子の検査対象電極についての代替濃化度指標の値を検査値として取得する工程と、作成した検量線と取得された検査値とに基づいて検査対象電極におけるAu濃化度が所定の規格を満たしている否かを判定する工程と、を備えるようにした。【選択図】図7

Description

本発明は、ガスセンサ素子に備わる電極の検査方法に関し、特に、Au濃化度の非破壊検査に関する。
被測定ガス中の所定ガス成分を検知してその濃度を求めるガスセンサには、半導体型、接触燃焼型、酸素濃度差検知型、限界電流型、混成電位型など、種々の方式のものがある。そのなかには、ジルコニアなどの固体電解質たるセラミックスを主たる構成材料としたセンサ素子を用いるものがある。
このうち、炭化水素ガスやアンモニアガスを検知対象成分とする混成電位型のガスセンサであって、センサ素子の表面に設ける検知電極を、貴金属(具体的にはPtおよびAu)と酸素イオン伝導性を有する固体電解質とのサーメットにて設け、かつ、該検知電極を構成する貴金属粒子の表面においてAuを濃化させることによって(貴金属粒子の表面におけるAu存在比を高めることによって)検出感度を確保したものが、すでに公知である(例えば、特許文献1および特許文献2参照)。
特開2016−33510号公報 特許第5918434号公報
特許文献1および特許文献2においては、センサ素子に備わる検知電極の表面におけるAu存在比を、検知電極を構成する貴金属粒子の表面のうち、Ptが露出している部分に対する、Auが被覆している部分の面積比率を意味するものとし、係るAu存在比の評価を、該検知電極のXPS(X線光電子分光法)分析またはAES(オージェ電子分光法)分析の結果に基づいて行う態様が示されている。
この場合において、表面保護層にて覆われている検知電極を対象にAu存在比の評価を行うには、検知電極を露出させる必要がある。これは例えば、表面保護層を剥離するか、センサ素子を検知電極のところで破断し、検知電極の破断面を分析対象とすることなどによって実現可能である。ただし、検知電極の膜厚が小さい場合や、電極面積が小さい場合には、検知電極を良好に露出させて分析することが難しい場合がある。
当然ながら、表面保護層を剥離したりセンサ素子を破断してのAu存在比の評価は、センサ素子を量産する際の全数検査には利用することができない。
本発明は、上記課題に鑑みてなされたものであり、ガスセンサのセンサ素子に備わる検知電極の、貴金属粒子表面におけるAuの濃化度合いを、簡便な手法にて検査することができる方法を、提供することを目的とする。
上記課題を解決するため、本発明の第1の態様は、酸素イオン伝導性の固体電解質からなるガスセンサ素子に備わる検査対象電極の貴金属粒子表面におけるAu濃化度を検査する方法であって、前記検査対象電極は、貴金属成分としてPtおよびAuを含むものであり、前記ガスセンサ素子は、内部にヒータを備えており、前記Au濃化度は、前記検査対象電極を対象とするXPS分析あるいはAES分析の結果から算出される、前記貴金属粒子表面におけるAuが露出している部分の面積の比率に基づいて定義される値であり、前記Au濃化度と、前記Au濃化度と相関を有しかつ前記ヒータにて所定の温度に加熱した前記ガスセンサ素子から非破壊で取得される所定の代替濃化度指標との関係を示す検量線を、あらかじめ作成しておく準備工程と、検査対象である前記ガスセンサ素子を前記所定の温度に加熱した状態で当該ガスセンサ素子の前記検査対象電極についての前記代替濃化度指標の値を検査値として取得する検査値取得工程と、前記準備工程で作成した前記検量線と前記検査値取得工程において取得された前記検査値とに基づいて前記検査対象電極におけるAu濃化度が所定の規格を満たしている否かを判定する判定工程と、を備えることを特徴とする。
本発明の第2の態様は、第1の態様に係る検査方法であって、インピーダンス測定によって求まる前記検査対象電極と前記ガスセンサ素子に備わる所定の基準電極との間の反応抵抗を前記代替濃化度指標とする、ことを特徴とする。
本発明の第3の態様は、第1の態様に係る検査方法であって、前記検査対象電極と前記ガスセンサ素子に備わる所定の基準電極との間に所定の直流電圧を印加したときの前記検査対象電極と前記基準電極との間の直流抵抗値を前記代替濃化度指標とする、ことを特徴とする。
本発明の第4の態様は、第1の態様に係る検査方法であって、前記検査対象電極と前記ガスセンサ素子に備わる所定の基準電極との間に所定の直流電圧を印加したときに前記検査対象電極と前記基準電極との間に流れる直流電流値を前記代替濃化度指標とする、ことを特徴とする。
本発明の第5の態様は、第1ないし第4の態様のいずれかに係る検査方法であって、前記Au濃化度が、前記貴金属粒子表面の全体の面積に対する前記Auが露出している部分の面積の比率であるAu表面濃度によって規定される、ことを特徴とする。
本発明の第6の態様は、第1ないし第4の態様のいずれかに係る検査方法であって、前記Au濃化度が、前記貴金属粒子表面におけるPtが露出している部分の面積に対する前記Auが露出している部分の面積の比率であるAu存在比によって規定される、ことを特徴とする。
本発明の第7の態様は、第1ないし第6の態様のいずれかに係る検査方法であって、前記所定の温度が640℃〜850℃である、ことを特徴とする。
本発明の第8の態様は、第1ないし第7の態様のいずれかに係る検査方法であって、前記ガスセンサ素子が、混成電位型のガスセンサ素子であり、前記検査対象電極が、PtおよびAuとジルコニアとのサーメットからなり、被測定ガス中の測定対象ガス成分を検知する検知電極であり、前記基準電極が、Ptとジルコニアとのサーメットからなる電極である、ことを特徴とする。
本発明の第1ないし第8の態様によれば、センサ素子を破壊することなく、かつ、XPS分析やAES分析を行う場合に比して迅速に、検査対象電極のAu濃化度を検査することができる。
特に、第3および第4の態様によれば、インピーダンス測定を行う場合に比してより迅速に、検査対象電極のAu濃化度を検査することができる。
ガスセンサ100Aの構成を概略的に示す断面模式図である。 センサ素子101Aを作製する際の処理の流れを示す図である。 センサ素子101Aの反応抵抗の導出について説明するための、模式的なナイキスト線図である。 検知電極10におけるAu濃化度が異なる5つのセンサ素子101Aについて、反応抵抗を求めるために行った、センサ駆動温度が640℃の場合の2端子インピーダンス測定の結果を示すナイキスト線図である。 検知電極10におけるAu濃化度が異なる5つのセンサ素子101Aについて、反応抵抗を求めるために行った、センサ駆動温度が750℃の場合の2端子インピーダンス測定の結果を示すナイキスト線図である。 検知電極10におけるAu濃化度が異なる5つのセンサ素子101Aについて、反応抵抗を求めるために行った、センサ駆動温度が850℃の場合の2端子インピーダンス測定の結果を示すナイキスト線図である。 検知電極10の単位面積あたりの反応抵抗値を、Au表面濃度に対してプロットした図である。 検知電極10におけるAuの濃化度合いが異なる5つのセンサ素子101Aにおいて、センサ駆動温度を640℃とした状態で検知電極10と基準電極20の間に電圧値を違えつつ直流電圧を印加したときの、VIプロファイルを示す図である。 検知電極10の単位面積あたりの直流抵抗値を、Au表面濃度に対してプロットした図である。
<ガスセンサの構成例>
図1は、本実施の形態に係る検査方法における検査対象の一例としてのガスセンサ100Aの構成を概略的に示す断面模式図である。図1(a)は、ガスセンサ100Aの主たる構成要素であるセンサ素子101Aの長手方向に沿った垂直断面図である。また、図1(b)は、図1(a)のA−A’位置におけるセンサ素子101Aの長手方向に垂直な断面を含む図である。本実施の形態に係る検査方法とは、概略、ガスセンサ100Aの製造プロセスにおいて、センサ素子101Aの表面に設けた検知電極10を対象に行う検査に関するものである。
ガスセンサ100Aは、いわゆる混成電位型のガスセンサである。ガスセンサ100Aは、概略的にいえば、ジルコニア(ZrO)等の酸素イオン伝導性固体電解質たるセラミックスを主たる構成材料とするセンサ素子101Aの表面に設けた検知電極10と、該センサ素子101Aの内部に設けた基準電極20との間に、混成電位の原理に基づいて両電極近傍における測定対象たるガス成分の濃度の相違に起因して電位差が生じることを利用して、被測定ガス中の当該ガス成分の濃度を求めるものである。
より具体的には、ガスセンサ100Aは、ディーゼルエンジンやガソリンエンジンなどの内燃機関の排気管内に存在する排ガスを被測定ガスとし、該被測定ガス中の所定ガス成分の濃度を、好適に求めるためのものである。測定対象たるガス成分には、C、C、n−C8などの炭化水素ガスや、一酸化炭素(CO)や、アンモニア(NH)や、水蒸気(HO)や、一酸化窒素(NO)や、二酸化窒素(NO)などが含まれる。ただし、本明細書においては、一酸化炭素(CO)についても炭化水素ガスに含めて説明することがある。
被測定ガス中に複数種類のガス成分が存在する場合は、原理上、検知電極10と基準電極20の間に生じる電位差はそれら複数種類のガス成分の全てが寄与した値となり得るが、含まれるガス成分の組み合わせによっては、センサ素子101Aの駆動温度を好適に設定したり、後述する表面保護層50の性状(気孔率、気孔径など)を工夫したりすることで、個々のガス種についての濃度値を個別に求めることが可能である。あるいは、炭化水素ガスの場合であれば、複数種類の炭化水素ガスの濃度をそのまま求められる場合もある。もちろん、ガスセンサ100Aが被測定ガスに含まれるガス成分があらかじめ特定のものに限定された状態で使用されることで、当該ガス成分についての濃度が求められる態様であってもよい。
また、センサ素子101Aには、上述した検知電極10および基準電極20に加えて、基準ガス導入層30と、基準ガス導入空間40と、表面保護層50とが主に設けられてなる。
なお、センサ素子101Aは、それぞれが酸素イオン伝導性固体電解質からなる第1固体電解質層1と、第2固体電解質層2と、第3固体電解質層3と、第4固体電解質層4と、第5固体電解質層5と、第6固体電解質層6との6つの層を、図面視で下側からこの順に積層した構造を有し、かつ、主としてそれらの層間あるいは素子外周面に他の構成要素を設けてなるものとする。なお、それら6つの層を形成する固体電解質は緻密な気密のものである。
ただし、ガスセンサ100Aがセンサ素子101Aをこのような6つの層の積層体として備えることは必須の態様ではない。センサ素子101Aは、より多数あるいは少数の層の積層体として構成されていてもよいし、あるいは積層構造を有していなくともよい。
以下の説明においては、便宜上、図面視で第6固体電解質層6の上側に位置する面をセンサ素子101Aの表面Saと称し、第1固体電解質層1の下側に位置する面をセンサ素子101Aの裏面Sbと称する。また、ガスセンサ100Aを使用して被測定ガス中の所定ガス成分の濃度を求める際には、センサ素子101Aの一方端部である先端部E1から少なくとも検知電極10を含む所定の範囲が、被測定ガス雰囲気中に配置され、他方端部である基端部E2を含むその他の部分は、被測定ガス雰囲気と接触しないように配置されるものとする。
検知電極10は、被測定ガスを検知するための電極である。検知電極10は、Auを所定の比率で含むPt、つまりはPt−Au合金と、ジルコニアとの多孔質サーメット電極として形成されてなる。係る検知電極10は、センサ素子101Aの表面Saであって、長手方向の一方端部たる先端部E1寄りの位置に平面視略矩形状に設けられてなる。なお、ガスセンサ100Aが使用される際には、センサ素子101Aのうち、少なくとも係る検知電極10が設けられている部分までが、被測定ガス中に露出する態様にて配置される。
また、検知電極10は、その構成材料たるPt−Au合金の組成を好適に定めることによって、所定の濃度範囲について、被測定ガス中の測定ガス成分に対する触媒活性が不能化されてなる。つまりは、検知電極10での測定対象ガス成分の燃焼反応を抑制させられてなる。これにより、ガスセンサ100Aにおいては、検知電極10の電位が、電気化学反応によって測定対象ガス成分に対して選択的に、その濃度に応じて変動する(相関を有する)ようになっている。換言すれば、検知電極10は、測定対象ガス成分に対してはその所定の濃度範囲において電位の濃度依存性が高い一方で、被測定ガス中の他の成分に対しては電位の濃度依存性が小さいという特性を有するように、設けられてなる。
より詳細には、本実施の形態に係るガスセンサ100Aのセンサ素子101Aにおいては、検知電極10を構成するPt−Au合金粒子の表面にAuを濃化させてなる。換言すれば、検知電極10を構成する貴金属(Pt−Au合金)粒子の表面における、Ptが露出している部分に対する、Auが被覆している部分の面積比率を意味するAu存在比が、高められてなる。これにより、検知電極10の電位が所定の濃度範囲において測定対象ガス成分の濃度に対し顕著な依存性を示すようになっている。
Au存在比は、特許文献1に記載されているように、XPS(X線光電子分光法)により得られるAuとPtとについての検出ピークのピーク強度から、相対感度係数法を用いて算出可能であるほか、特許文献2に記載されているように、貴金属粒子の表面に対しAES(オージェ電子分光法)分析を行うことでより得られるオージェスペクトルにおけるAuとPtとについての検出値を用いても算出が可能である。
Au存在比は、検知電極10の貴金属粒子の表面におけるAuの濃化の度合い(Au濃化度)が大きいほど、大きな値となる。
なお、検知電極10におけるAu濃化度が大きいということは、検知電極10の貴金属粒子表面におけるAu濃度(Au表面濃度)が高いということでもある。また、Au存在比は貴金属粒子表面におけるPtが露出している部分の面積に対するAuによって被覆されている部分の面積の比率を表すのに対し、Au表面濃度は、貴金属粒子表面全体の面積に対するAuが露出している部分の面積の比率に相当する値である。上述したAu存在比の算出のためのXPS(X線光電子分光法)分析あるいはAES(オージェ電子分光法)分析の結果を用いれば、Au存在比の算出に代えて、あるいはAu存在比の算出ともども、Au表面濃度が算出できる。あるいはさらに、Au存在比とAu表面濃度とが互いに変換可能な関係にあることも明らかである。貴金属粒子表面におけるAu、Ptの露出部分の面積をそれぞれSAu、SPtとすると、Au存在比はSAu/SPtであり、Au表面濃度(%)は100×SAu/(SAu+SPt)であるからである。
例えば、Ptが露出している部分の面積と、Auによって被覆されてなる部分の面積が等しいとき、つまりはSAu=SPtのとき、Au存在比は1となり、Au表面濃度は50%になる。
それゆえ、閾値さえ適切に定めれば、Au存在比に代えてAu表面濃度をAu濃化度の指標に用いることも可能である。
基準電極20は、センサ素子101Aの内部に設けられた、被測定ガスの濃度を求める際に基準となる平面視略矩形状の電極である。基準電極20は、Ptとジルコニアとの多孔質サーメット電極として形成されてなる。
なお、基準電極20は、気孔率が10%以上30%以下であり、厚みが5μm以上15μm以下であるように形成されればよい。また、基準電極20の平面サイズは、図1に例示するように検知電極10に比して小さくてもよいし、検知電極10と同程度でもよい。
基準ガス導入層30は、センサ素子101Aの内部において基準電極20を覆うように設けられた、多孔質のアルミナからなる層であり、基準ガス導入空間40は、センサ素子101Aの基端部E2側に設けられた内部空間である。基準ガス導入空間40には、検査対象ガス成分の濃度を求める際の基準ガスとしての大気(酸素)が外部より導入される。
これら基準ガス導入空間40と基準ガス導入層30は互いに連通しているので、ガスセンサ100Aが使用される際には基準ガス導入空間40および基準ガス導入層30を通じて基準電極20の周囲が絶えず大気(酸素)で満たされるようになっている。それゆえ、ガスセンサ100Aの使用時、基準電極20は、常に一定の電位を有してなる。
なお、基準ガス導入空間40および基準ガス導入層30は周囲の固体電解質によって被測定ガスと接触しないようになっているので、検知電極10が被測定ガスに曝されている状態であっても、基準電極20が被測定ガスと接触することはない。
図1に例示する場合であれば、センサ素子101Aの基端部E2の側において第5固体電解質層5の一部が外部と連通する空間とされる態様にて基準ガス導入空間40が設けられてなる。また、第5固体電解質層5と第6固体電解質層6との間においてセンサ素子101Aの長手方向に延在させる態様にて基準ガス導入層30が設けられてなる。そして、検知電極10の重心の図面視下方の位置に、基準電極20が設けられてなる。
表面保護層50は、センサ素子101Aの表面Saにおいて少なくとも検知電極10を被覆する態様にて設けられた、アルミナからなる多孔質層である。表面保護層50は、ガスセンサ100Aの使用時に被測定ガスに連続的に曝されることによる検知電極10の劣化を抑制する電極保護層として設けられてなる。図1に例示する場合においては、表面保護層50は、検知電極10のみならず、センサ素子101Aの表面Saのうち先端部E1から所定の範囲を除くほぼ全ての部分を覆う態様にて設けられてなる。
また、図1(b)に示すように、ガスセンサ100Aにおいては、検知電極10と基準電極20との間の電位差を測定可能な電位差計60が備わっている。なお、図1(b)においては検知電極10および基準電極20と電位差計60との間の配線を簡略化して示しているが、実際のセンサ素子101Aにおいては、基端部E2側の表面Saもしくは裏面Sbに図示しない接続端子がそれぞれの電極に対応させて設けられてなるとともに、それぞれの電極と対応する接続端子とを結ぶ図示しない配線パターンが表面Saおよび素子内部に形成されてなる。そして、検知電極10および基準電極20と電位差計60とは配線パターンおよび接続端子を通じて電気的に接続されてなる。以降、電位差計60で測定される検知電極10と基準電極20との間の電位差をセンサ出力とも称する。
さらに、センサ素子101Aは、固体電解質の酸素イオン伝導性を高めるために、センサ素子101Aを加熱して保温する温度調整の役割を担うヒータ部70を備えている。ヒータ部70は、ヒータ電極71と、ヒータ72と、スルーホール73と、ヒータ絶縁層74、圧力放散孔75とを備えている。
ヒータ電極71は、センサ素子101Aの裏面Sb(図1においては第1固体電解質層1の下面)に接する態様にて形成されてなる電極である。ヒータ電極71を図示しない外部電源と接続することによって、外部からヒータ部70へ給電することができるようになっている。
ヒータ72は、センサ素子101Aの内部に設けられた電気抵抗体である。ヒータ72は、スルーホール73を介してヒータ電極71と接続されており、該ヒータ電極71を通して外部より給電されることにより発熱し、センサ素子101Aを形成する固体電解質の加熱と保温を行う。
図1に例示する場合であれば、ヒータ72は第2固体電解質層2と第3固体電解質層3とに上下から挟まれた態様にて、かつ、基端部E2から先端部E1近傍の検知電極10の下方の位置に渡って埋設されてなる。これにより、センサ素子101A全体を固体電解質が活性化する温度に調整することが可能となっている。
ヒータ絶縁層74は、ヒータ72の上下面に、アルミナ等の絶縁体によって形成されてなる絶縁層である。ヒータ絶縁層74は、第2固体電解質層2とヒータ72との間の電気的絶縁性、および、第3固体電解質層3とヒータ72との間の電気的絶縁性を得る目的で形成されている。
圧力放散孔75は、第3固体電解質層3および第4固体電解質層4を貫通し、基準ガス導入空間40に連通するように設けられてなる部位であり、ヒータ絶縁層74内の温度上昇に伴う内圧上昇を緩和する目的で形成されてなる。
以上のような構成を有するガスセンサ100Aを用いて被測定ガスに含まれる対象ガス成分の濃度を求める際には、上述したように、センサ素子101Aのうち先端部E1から少なくとも検知電極10を含む所定の範囲のみを、被測定ガスが存在する空間に配置する一方で、基端部E2の側は当該空間とは隔絶させて配置し、基準ガス導入空間40に対し大気(酸素)を供給する。また、ヒータ72によりセンサ素子101Aを適宜の温度400℃〜800℃に、好ましくは500℃〜700℃、より好ましくは500℃〜600℃に加熱する。なお、ヒータ72によるセンサ素子101Aの加熱温度をセンサ駆動温度とも称する。
係る状態においては、被測定ガスに曝されてなる検知電極10と大気中に配置されてなる基準電極20との間に電位差が生じる。ただし、上述のように、大気(酸素濃度一定)雰囲気下に配置されてなる基準電極20の電位は一定に保たれている一方で、検知電極10の電位は、被測定ガス中の検査対象ガス成分に対して選択的に濃度依存性を有するものとなっているので、その電位差(センサ出力)は実質的に、検知電極10の周囲に存在する被測定ガスの組成に応じた値となる。それゆえ、検査対象ガス成分の濃度と、センサ出力との間には一定の関数関係(これを感度特性と称する)が成り立つ。以降の説明においては、係る感度特性につき、検知電極10についての感度特性などと称することがある。
実際に検査対象ガス成分の濃度を求めるにあたっては、あらかじめ、それぞれの検査対象ガス成分の濃度が既知である相異なる複数の混合ガスを被測定ガスとしてセンサ出力を測定することで、感度特性を実験的に特定しておく。これにより、ガスセンサ100Aを実使用する際には、被測定ガス中の検査対象ガス成分の濃度に応じて時々刻々変化するセンサ出力を、図示しない演算処理部において感度特性に基づき検査対象ガス成分の濃度に換算することによって、被測定ガス中の検査対象ガス成分の濃度をほぼリアルタイムで求めることができる。
<センサ素子の製造プロセス>
図1に例示するような層構造を有するセンサ素子101Aは、例えば、特許文献1および特許文献2に開示されているような製造プロセスによる製造可能である。
概略的にいえば、上述のような構成を有するセンサ素子101Aは、それぞれが酸素イオン伝導性固体電解質(例えば、イットリウム部分安定化ジルコニア(YSZ)など)をセラミックス成分として含んでなる、各固体電解質層に対応する複数枚のセラミックスグリーンシートに、所定の加工および電極その他の回路パターンの印刷などを行った後、それらを所定の順序で積層し、得られた積層体を素子単位に切り出すことで得られる複数の素子体を、同時に焼成してそれぞれの素子体毎に一体化させることにより、複数個が同時に製造される。
図2は、確認的に示す、センサ素子101Aを作製する際の処理の流れを示す図である。センサ素子101Aを作製する場合、まず、パターンが形成されていないグリーンシートであるブランクシート(図示せず)を用意する(ステップS1)。具体的には第1固体電解質層1〜第6固体電解質層6に対応する6枚のブランクシートが用意される。ブランクシートには、印刷時や積層時の位置決めに用いる複数のシート穴が設けられている。係るシート穴は、パンチング装置による打ち抜き処理などで、あらかじめ形成されている。なお、対応する層が内部空間を構成するグリーンシートの場合、該内部空間に対応する貫通部も、同様の打ち抜き処理などによってあらかじめ設けられる。また、センサ素子101Aの各層に対応するそれぞれのブランクシートの厚みは、全て同じである必要はない。
各層に対応したブランクシートが用意できると、それぞれのブランクシートに対して種々のパターンを形成するパターン印刷・乾燥処理を行う(ステップS2)。具体的には、各電極のパターンや、ヒータ72のパターンや、図示を省略している内部配線などが形成される。さらには、表面保護層50のパターンが印刷されてもよい。
各々のパターンの印刷は、それぞれの形成対象に要求される特性に応じて用意したパターン形成用ペーストを、公知のスクリーン印刷技術を利用してブランクシートに塗布することにより行う。印刷後の乾燥処理についても、公知の乾燥手段を利用可能である。
パターン印刷が終わると、各層に対応するグリーンシート同士を積層・接着するための接着用ペーストの印刷・乾燥処理を行う(ステップS3)。接着用ペーストの印刷には、公知のスクリーン印刷技術を利用可能であり、印刷後の乾燥処理についても、公知の乾燥手段を利用可能である。
続いて、接着剤が塗布されたグリーンシートを所定の順序に積み重ねて、所定の温度・圧力条件を与えることで圧着させ、一の積層体とする圧着処理を行う(ステップS4)。具体的には、図示しない所定の積層治具に積層対象となるグリーンシートをシート穴により位置決めしつつ積み重ねて保持し、公知の油圧プレス機などの積層機によって積層治具ごと加熱・加圧することによって行う。加熱・加圧を行う圧力・温度・時間については、用いる積層機にも依存するものであるが、良好な積層が実現できるよう、適宜の条件が定められればよい。なお、係る態様にて得られた積層体に対して表面保護層50が形成される態様であってもよい。
上述のようにして積層体が得られると、続いて、係る積層体の複数個所を切断して複数の素子体に切り出す(ステップS5)。切り出された素子体を、所定の条件下で焼成することにより、上述のようなセンサ素子101Aが生成される(ステップS6)。すなわち、センサ素子101は、固体電解質層と電極との一体焼成(共焼成)によって生成されるものである。その際の焼成温度は、1200℃以上1500℃以下(例えば1400℃)が好適である。なお、係る態様にて一体焼成がなされることで、センサ素子101Aにおいては、各電極が十分な密着強度を有するものとなっている。これはセンサ素子101Aの耐久性の向上に資するものである。
このようにして得られたセンサ素子101Aは、特性検査、外観検査、強度検査等の種々の検査工程に供され、全ての検査工程に合格したセンサ素子101Aのみが、所定のハウジングに収容され、ガスセンサ100Aの本体(図示せず)に組み込まれる。
なお、検知電極10の形成に用いるパターン形成用ペースト(導電性ペースト)は、Auの出発原料としてAuイオン含有液体を用い、該Auイオン含有液体を、Pt粉末と、ジルコニア粉末と、バインダーとを混合することによって作製することができる。なお、バインダーとしては、他の原料を印刷可能な程度に分散させることができ、焼成によりすべて焼失するものを適宜選べばよい。
Auイオン含有液体とは、Auイオンを含む塩もしくは有機金属錯体を、溶媒へ溶解させたものである。Auイオンを含む塩としては、例えばテトラクロロ金(III)酸(HAuCl)、塩化金(III)ナトリウム(NaAuCl)、二シアノ金(I)カリウム(KAu(CN))などを用いることができる。Auイオンを含む有機金属錯体としては、ジエチレンジアミン金(III)塩化物([Au(en)]Cl)、ジクロロ(1,10-フェナントロリン)金(III)塩化物([Au(phen)Cl]Cl)、ジメチル(トリフルオロアセチルアセトナト)金あるいはジメチル(ヘキサフルオロアセチルアセトナト)金などを用いることができる。なお、NaやKなどの不純物が電極中に残留しない、取り扱いが容易である、あるいは溶媒へ溶解しやすい、などの観点からは、テトラクロロ金(III)酸やジエチレンジアミン金(III)塩化物([Au(en)]Cl)を用いることが好ましい。また、溶媒としては、メタノール、エタノール、プロパノールなどのアルコール類の他、アセトン、アセトニトリル、ホルムアミドなどを用いることができる。
なお、混合は、滴下などの公知の手段を用いて行うことができる。また、得られた導電性ペースト中においては、Auはイオン(もしくは錯イオン)の状態で存在しているが、上述した作製プロセスを経て得られたセンサ素子101Aに備わる検知電極10においては、Auは主として単体あるいはPtとの合金の状態で存在している。
あるいは、検知電極10用の導電性ペーストは、Ptの粉末にAuをコーティングしたコーティング粉末をAuの出発原料として作製するようにしてもよい。係る場合、当該コーティング粉末と、ジルコニア粉末と、バインダーとを混合することによって、検知電極用の導電性ペーストを作製する。ここで、コーティング粉末としては、Pt粉末の粒子表面をAu膜にて被覆してなる態様のものを用いるようにしてもよいし、Pt粉末粒子にAu粒子を付着させてなる態様のものを用いるようにしてもよい。
<検知電極のAu濃化度の検査>
次に、上述した製造プロセスを経て製造されたガスセンサ100Aを対象に、上述した種々の検査工程の1つとして行う、センサ素子101Aの表面に設けた検知電極10におけるAu濃化度の検査について説明する。
上述のように、センサ素子101Aは、一の積層体から複数の素子体が切り出され、それら同時に焼成されることで、複数個が同時に製造される。それゆえ、一の積層体から得られる複数のセンサ素子101Aは、あるいはさらに、同一の製造条件で作成される複数の積層体から得られる複数の素子体を同じ条件にて焼成することで得られる複数のセンサ素子101Aは、理想的には同一の特性を有することが求められる。あるいは、特性にばらつきがあるとしても、所定の規格(検査規格)の範囲内に収まっていることが求められる。
これは、センサ素子101Aの感度特性に大きな影響を与える検知電極10のAu濃化度についても同様である。それゆえ、センサ素子101Aを工業的に量産する場合、個々のセンサ素子101Aの検知電極10におけるAu濃化度は、所定の規格(検査規格)の範囲内に収まっていることが求められる。
上述のように、Au濃化度の評価は、直接的には、XPSやAESによる分析結果に基づいて算出されるAu存在比あるいはAu表面濃度に基づいて行う必要がある。しかしながら、量産工程ではセンサ素子101Aを破壊しての検査は当然に行い得ない。一方で、非破壊で検査を行うとすればセンサ素子101Aが表面保護層50を有さない場合あるいは検査後に表面保護層50を形成する場合に限定されてしまい、必ずしも汎用性がある手法とはいえない。
本実施の形態に係る検査方法においては、XPS測定あるいはAES測定の結果に基づき検知電極10におけるAu濃化度を直接的に評価することに代えて、係るAu濃化度と相関のある物性値をAu濃化度の代替的な評価指標(代替濃化度指標)として用いることで、Au濃化度を評価する。具体的には、代替濃化度指標として実際に使用する物性値の違いにより、以下に示す2通りの態様が例示される。
(第1の態様:反応抵抗に基づく評価)
本態様では、Au存在比あるいはAu表面濃度と相関のある、検知電極10と基準電極20との間の反応抵抗(電極反応抵抗)を、センサ素子101Aの製造プロセス(量産プロセス)において代替濃化度指標として用いる。以下、センサ素子101Aにおける検知電極10と基準電極20との間の反応抵抗を単に、センサ素子101Aの反応抵抗とも称する。
センサ素子101Aの反応抵抗は、検知電極10と基準電極20との間に周波数を違えつつ交流電圧を印加して2端子インピーダンス測定を行い、その結果を、実軸(Z'軸、単位:Ω)を横軸とし虚軸(Z''軸、単位:Ω)を縦軸に取ったナイキスト線図にプロットした結果から得られる。図3は、センサ素子101Aの反応抵抗の導出について説明するための、模式的なナイキスト線図である。
上述した2端子インピーダンス測定によって得られる実測データをプロットすると、理想的には、図3(a)に示すように実軸上の点(Z'、Z'')=(R1、0)を一方の起点とする半円状の曲線C1となる。そして、該曲線C1の(Z'、Z'')の反対側の端点をR1+R2と表すと、係るR'座標値のR1からの増分値R2が、反応抵抗となる。なお、値R1はIR抵抗(絶縁抵抗)であり、ガスセンサ100Aのような混成電位型のガスセンサにおいては、例えばセンサ素子を構成する固体電解質の材料抵抗がこれに該当する。従って、固体電解質に異常が生じた場合には、R2ではなくR1の値が変動することになる。
ただし、2端子インピーダンス測定の実測データをプロットした結果は必ずしも図3(a)に示す曲線C1のような半円とはならない。例えば、図3(b)に示す半円状の曲線C2のように、(Z'、Z'')=(R1、0)を起点としつつも他方の端点が実軸Z'まで到達せずに途中の点P1で途切れたプロット結果が得られることや、あるいはさらに、図3(c)に示す曲線C3のように、プロット結果が半円状ではなく弧状となり、かつ、途中の点P1で途切れてしまうような場合もある。
これらの場合、点P1から実軸Z'に外挿したときの外挿点のZ'座標値を用いて反応抵抗R2を求めればよい。
また、図3(d)に示す曲線C4のように、点P2を境に2つの弧が形成されるようなプロット結果が得られることもある。このような場合、点P2よりもZ'軸座標値が大きな範囲に形成される弧は、センサ素子101Aにおける拡散抵抗を反映したものであり、反応抵抗を求めるには、図3(b)、(c)の場合と同様に点P2を外挿すればよい。
図4、図5、および図6は、検知電極10におけるAu濃化度が異なる5つのセンサ素子101Aについて、反応抵抗を求めるために行った、2端子インピーダンス測定の結果を示すナイキスト線図(Cole-Coleプロット)である。
より詳細には、センサ駆動温度は640℃、750℃、850℃の3水準に違えた。図4、図5、および図6は、それぞれ、センサ駆動温度が640℃、750℃、850℃の場合の結果を示している。また、5つのセンサ素子101Aはいずれも、XPS測定に基づくAu濃化度の評価を可能とするべく表面保護層50の形成を省略したものであり、係るXPS測定の後に、各センサ駆動温度についての2端子インピーダンス測定を行っている。測定は、インピーダンス測定装置Versastat4(AMETEK社)を用い、検知電極10にWE/SE線を接続し、基準電極20にCE/RE線を接続し、大気雰囲気下で行っている。交流電圧の周波数は1MHz〜0.1Hzとし、DCバイアス電圧は0Vとし、交流振幅は20mVとしている。
5つのセンサ素子101Aについての、XPS測定結果に基づいて算出したAu表面濃度(単位:%)と、各センサ駆動温度における反応抵抗(単位:Ω)とを表1に示す。
Figure 2019002700
また、図7は、各センサ駆動温度について、表1に示した反応抵抗の値を検知電極の面積にて規格化することで得られる、検知電極10の単位面積あたりの反応抵抗値である「反応抵抗/電極面積」なる値(単位:Ω/mm)を、Au表面濃度に対してプロットした図である。
図7には、各センサ駆動温度におけるプロット結果について、Au表面濃度をxとし、「反応抵抗/電極面積」をyとして、最小自乗法により求めた近似直線を、併せて示している。それぞれの近似直線を表す関数と、相関係数Rの自乗値である決定係数Rは、以下のとおりである。なお、検知電極10の面積は0.4mmとしている。
640℃:y=1806.3x+17729、R=0.9859;
750℃:y=250.69x+1803、R=0.9684;
850℃:y=77.271x+218.5、R=0.9522。
図7および上記の決定係数Rの値からわかるように、640℃、750℃、および850℃のいずれの場合も、(規格化された)反応抵抗とAu表面濃度との間には、線型関係(強い正の相関)がある。少なくとも640℃〜850℃という温度範囲内においては、他のセンサ駆動温度についても同様の結果を得ることが可能である。なお、反応抵抗と反応抵抗とAu表面濃度との間に線型の関係がある場合には当然ながら、反応抵抗とAu存在比との間にも線型関係があることになる。また、上記においては反応抵抗の値を検知電極10の面積で規格化しているが、通常、同じ条件で製造されるセンサ素子101Aにおける検知電極10の面積は同じであるから、規格化をせず、反応抵抗とAu表面濃度またはAu存在比との間の線型関係から検量線を作成するようにしてもよい。
本態様においては、反応抵抗と検知電極10におけるAu濃化度との間にこのような線型関係が成立することを利用して、センサ素子101Aの製造プロセスにおける検査工程において、反応抵抗を代替濃化度指標としてセンサ素子101Aの検知電極10におけるAu濃化度を検査する。
そのためには、まず事前の準備として、所定の製造条件で製造されるセンサ素子101Aについてあらかじめ、図7に示すような反応抵抗とAu表面濃度またはAu存在比との間の線型関係を、例えば640℃〜850℃の範囲から選ばれる所定のセンサ駆動温度について特定し、これを検量線として記録しておく。係る検量線の作成は、Au濃化度のみを違えた他は当該製造条件をみたす複数のセンサ素子101Aを作製し、それらについて所定のセンサ駆動温度にてインピーダンス測定を行って反応抵抗を測定したうえで、XPS測定またはAES測定を行ってAu表面濃度またはAu存在比を求めることにより、行うことができる。なお、表面保護層50が備わる場合には、表面保護層50の剥離や素子の破断により検知電極10を露出させたうえでXPS測定もしくはAES測定を行うようにすればよい。
実際の検査工程においては、当該製造条件と同じ条件で作成されたセンサ素子101Aについて、検量線を作成したときと同じセンサ駆動温度にて駆動した状態で反応抵抗を測定し、得られた測定値を検査値として取得する。そして、係る検査値をあらかじめ記録しておいた検量線にあてはめることで、そのAu表面濃度またはAu存在比を求める。Au表面濃度またはAu存在比があらかじめ定めた検査規格をみたす値であれば、検査対象とされたセンサ素子101Aは当該検査に合格したものと判定される。
なお、Au表面濃度またはAu存在比についての具体的な検査規格は、検査対象とされるセンサ素子101Aの測定対象ガス成分や測定対象濃度範囲(高感度の測定が望まれる範囲)などに基づいて種々に定められればよい。ガス種によっては、Au濃化度によって高感度での測定が可能となる濃度範囲が異なる場合があるからである。
あるいは、図7に示すような反応抵抗とAu表面濃度またはAu存在比との間の線型関係に基づき、Au表面濃度またはAu存在比があらかじめ定めた検査規格をみたす場合の反応抵抗の範囲をあらかじめ特定しておき、反応抵抗の測定値(検査値)が当該範囲に属する場合に、検査対象とされたセンサ素子101Aについて合格と判定するようにしてもよい。
(第2の態様:直流抵抗に基づく評価)
上述した第1の態様による検査は、反応抵抗を求めるために周波数を違えたインピーダンス測定を行う必要があることから、検査に時間を要する。本態様では、検知電極10におけるAu濃化度の検査を、第1の態様よりも簡易にかつ短時間で行うべく、検知電極10と基準電極20との間の直流抵抗を、Au濃化度を評価する際の代替濃化度指標として用いる。
図8は、第1の態様において反応抵抗を求めるために用いた、検知電極10におけるAuの濃化度合いが異なる(Au表面濃度が異なる)5つのセンサ素子101Aにおいて、センサ駆動温度を640℃とした状態で検知電極10と基準電極20の間に電圧値を違えつつ直流電圧を印加したときの、両電極間を流れる電流の測定値の印加電圧値に対する変化(VIプロファイル)を、示す図である。測定は、第1の態様におけるインピーダンス測定と同じインピーダンス測定装置Versastat4(AMETEK社)を用い、検知電極10にWE/SE線を接続し、基準電極20にCE/RE線を接続し、大気雰囲気下で行っている。印加電圧値は、0Vから−1Vの間で違えた。
図8からわかるように、検知電極10におけるAuの濃化度合いに応じてVIプロファイルは異なっている。概略、印加電圧が同じであれば、Au濃化度が小さいセンサ素子101Aほど、電流値が大きいという傾向がある。
また、それら5つのセンサ素子101Aについての、Au表面濃度(単位:%)と、印加電圧値が−1Vのときの(直流)電流値(単位:A)と、(直流)抵抗値(単位:Ω)とを、表2に示す。抵抗値は、印加電圧値(−1V)をそれぞれの電流値で除した値である。
Figure 2019002700
また、図9は、表2に示した抵抗値を検知電極の面積にて規格化することで得られる、検知電極10の単位面積あたりの直流抵抗値である「抵抗/電極面積」なる値(単位:Ω/mm)を、Au表面濃度に対してプロットした図である。
図9には、係るプロット結果について、Au表面濃度をxとし、「反応抵抗/電極面積」をyとして、最小自乗法により求めた近似直線を、併せて示している。近似直線を表す関数と、相関係数Rの自乗値である決定係数Rは、以下のとおりである。なお、検知電極10の面積は0.4mmとしている。
y=2842.5x+17464、R=0.974。
図9および上記の決定係数Rの値からわかるように、(規格化された)直流抵抗値とAu表面濃度との間には、線型関係(強い正の相関)がある。少なくとも640℃〜850℃という温度範囲内においては、他のセンサ駆動温度についても同様の結果を得ることが可能である。なお、反応抵抗とAu表面濃度との間に線型の関係がある場合には当然ながら、反応抵抗とAu存在比との間にも線型関係があることになる。また、上記においては反応抵抗の値を検知電極10の面積で規格化しているが、通常、同じ条件で製造されるセンサ素子101Aにおける検知電極10の面積は同じであるから、規格化をせず、反応抵抗とAu表面濃度またはAu存在比との間の線型関係から検量線を作成するようにしてもよい。
従って、係る線型関係が成立することを利用し、検知電極10と基準電極20の間の直流抵抗値を代替濃化度指標としてセンサ素子101Aの検知電極10におけるAu濃化度を検査することが可能である。
そのためには、まず事前の準備として、所定の製造条件で製造されるセンサ素子101Aについてあらかじめ、図9に示すような検知電極10と基準電極20の間の直流抵抗値とAu表面濃度またはAu存在比との間の線型関係を、例えば640℃〜850℃の範囲から選ばれる所定のセンサ駆動温度および所定の直流電圧値について特定し、これを検量線として記録しておく。具体的には、検量線の作成は、Au濃化度のみを違えた他は当該製造条件をみたす複数のセンサ素子101Aを作製し、それらについて所定のセンサ駆動温度で駆動した状態で検知電極10と基準電極20の間に所定の電圧値(例えば−1V)の直流電圧を印加して直流電流値を測定し、直流抵抗値を求めたうえで、XPS測定またはAES測定を行ってAu表面濃度またはAu存在比を求めることにより、行うことができる。本態様においても、表面保護層50が備わる場合には、表面保護層50の剥離や素子の破断により検知電極10を露出させたうえでXPS測定もしくはAES測定を行うようにすればよい。
実際の検査工程においては、当該製造条件と同じ条件で作成されたセンサ素子101Aについて、検量線を作成したときと同じセンサ駆動温度および同じ直流電圧値のもとで検知電極10と基準電極20の間の直流電流値を測定し、得られた測定値から算出される直流抵抗値を検査値として取得する。そして、係る検査値をあらかじめ記録しておいた検量線にあてはめることで、そのAu表面濃度またはAu存在比を求める。Au表面濃度またはAu存在比があらかじめ定めた検査規格をみたす値であれば、検査対象とされたセンサ素子101Aは当該検査に合格したものと判定される。
係る第2の態様の場合、検査工程において個々の検査対象たるセンサ素子101Aを対象に行う測定は、所定の直流電圧値(例えば−1V)を印加することによる一度の電流測定のみであることから、反応抵抗値を求めるために交流電圧の周波数を違えて測定を繰り返す必要のある第1の態様に比べて、検査を迅速に行うことができる。
あるいは、図9に示すような直流抵抗値とAu表面濃度またはAu存在比との間の線型関係が、印加電圧値が一定の条件下で求められることに基づき、Au表面濃度またはAu存在比があらかじめ定めた検査規格をみたす場合の電流値の範囲をあらかじめ特定しておき、測定された電流値が当該範囲に属する場合に、検査対象とされたセンサ素子101Aについて合格と判定するようにしてもよい。係る場合、電流値そのものが検査値に該当する。
以上説明した、第1または第2の態様による検査方法のいずれも、Au濃化度を表すAu存在比またはAu表面濃度と相関のある代替濃化度指標を用いることで、検量線の作成に使用するものを除き、センサ素子101Aを破壊することなく検知電極10のAu濃化度を検査することができる。当然ながら、XPS分析やAES分析を行って直接にAu濃化度を求める場合に比して迅速に、検知電極10のAu濃化度が所定の検査規格を充足しているか否かを判断することができる。本実施の形態によれば、センサ素子101Aの製造プロセス(量産プロセス)において、検知電極10のAu濃化度につき、全数検査を行うことが可能となる。
<変形例>
上述の実施の形態でセンサ駆動温度として採用している640℃および850℃という温度を上下限値とする、640℃〜850℃という温度範囲は、上述したような混成電位型のガスセンサのセンサ素子のみならず、電気化学的ポンプセルを使用するような限界電流型のガスセンサに備わるセンサ素子など、他の種類のガスセンサにおいて用いられる、固体電解質体を用いた種々のセンサ素子についてのセンサ駆動温度をも含んでいる。例えば、電界電流型のNOxセンサのセンサ駆動温度は、800℃〜850℃程度に設定される。それゆえ、上述の実施の形態に係る検査方法は、混成電位型のガスセンサに備わるセンサ素子のみならず、固体電解質体を主構成材料とするセンサ素子であって、貴金属粒子の表面においてAuを濃化させたPt−Au合金を用いて形成された電極を備えるものについての、当該電極におけるAuの濃化度合いの評価に、適用が可能である。
1〜6 第1〜第6固体電解質層
10 検知電極
20 基準電極
30 基準ガス導入層
40 基準ガス導入空間
50 表面保護層
60 電位差計
70 ヒータ部
71 ヒータ電極
72 ヒータ
73 スルーホール
74 ヒータ絶縁層
75 圧力放散孔
100A ガスセンサ
101A センサ素子
E1 (センサ素子の)先端部
E2 (センサ素子の)基端部
Sa (センサ素子の)表面
Sb (センサ素子の)裏面

Claims (8)

  1. 酸素イオン伝導性の固体電解質からなるガスセンサ素子に備わる検査対象電極の貴金属粒子表面におけるAu濃化度を検査する方法であって、
    前記検査対象電極は、貴金属成分としてPtおよびAuを含むものであり、
    前記ガスセンサ素子は、内部にヒータを備えており、
    前記Au濃化度は、前記検査対象電極を対象とするXPS分析あるいはAES分析の結果から算出される、前記貴金属粒子表面におけるAuが露出している部分の面積の比率に基づいて定義される値であり、
    前記Au濃化度と、前記Au濃化度と相関を有しかつ前記ヒータにて所定の温度に加熱した前記ガスセンサ素子から非破壊で取得される所定の代替濃化度指標との関係を示す検量線を、あらかじめ作成しておく準備工程と、
    検査対象である前記ガスセンサ素子を前記所定の温度に加熱した状態で当該ガスセンサ素子の前記検査対象電極についての前記代替濃化度指標の値を検査値として取得する検査値取得工程と、
    前記準備工程で作成した前記検量線と前記検査値取得工程において取得された前記検査値とに基づいて前記検査対象電極におけるAu濃化度が所定の規格を満たしている否かを判定する判定工程と、
    を備えることを特徴とする、ガスセンサ素子に備わる電極の検査方法。
  2. 請求項1に記載の検査方法であって、
    インピーダンス測定によって求まる前記検査対象電極と前記ガスセンサ素子に備わる所定の基準電極との間の反応抵抗を前記代替濃化度指標とする、
    ことを特徴とする、ガスセンサ素子に備わる電極の検査方法。
  3. 請求項1に記載の検査方法であって、
    前記検査対象電極と前記ガスセンサ素子に備わる所定の基準電極との間に所定の直流電圧を印加したときの前記検査対象電極と前記基準電極との間の直流抵抗値を前記代替濃化度指標とする、
    ことを特徴とする、ガスセンサ素子に備わる電極の検査方法。
  4. 請求項1に記載の検査方法であって、
    前記検査対象電極と前記ガスセンサ素子に備わる所定の基準電極との間に所定の直流電圧を印加したときに前記検査対象電極と前記基準電極との間に流れる直流電流値を前記代替濃化度指標とする、
    ことを特徴とする、ガスセンサ素子に備わる電極の検査方法。
  5. 請求項1ないし請求項4のいずれかに記載の検査方法であって、
    前記Au濃化度が、前記貴金属粒子表面の全体の面積に対する前記Auが露出している部分の面積の比率であるAu表面濃度によって規定される、
    ことを特徴とする、ガスセンサ素子に備わる電極の検査方法。
  6. 請求項1ないし請求項4のいずれかに記載の検査方法であって、
    前記Au濃化度が、前記貴金属粒子表面におけるPtが露出している部分の面積に対する前記Auが露出している部分の面積の比率であるAu存在比によって規定される、
    ことを特徴とする、ガスセンサ素子に備わる電極の検査方法。
  7. 請求項1ないし請求項6のいずれかに記載の検査方法であって、
    前記所定の温度が640℃〜850℃である、
    ことを特徴とする、ガスセンサ素子に備わる電極の検査方法。
  8. 請求項1ないし請求項7のいずれかに記載の検査方法であって、
    前記ガスセンサ素子が、混成電位型のガスセンサ素子であり、
    前記検査対象電極が、PtおよびAuとジルコニアとのサーメットからなり、被測定ガス中の測定対象ガス成分を検知する検知電極であり、
    前記基準電極が、Ptとジルコニアとのサーメットからなる電極である、
    ことを特徴とする、ガスセンサ素子に備わる電極の検査方法。
JP2017115093A 2017-06-12 2017-06-12 ガスセンサ素子に備わる電極の検査方法 Active JP6783706B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017115093A JP6783706B2 (ja) 2017-06-12 2017-06-12 ガスセンサ素子に備わる電極の検査方法
US15/996,560 US10557817B2 (en) 2017-06-12 2018-06-04 Method of inspecting electrode provided in gas sensor element
CN201810578486.5A CN109030606B (zh) 2017-06-12 2018-06-07 气体传感器元件中具备的电极的检查方法
DE102018004596.0A DE102018004596B4 (de) 2017-06-12 2018-06-08 Verfahren zur Untersuchung einer in einem Gassensorelement bereitgestellten Elektrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017115093A JP6783706B2 (ja) 2017-06-12 2017-06-12 ガスセンサ素子に備わる電極の検査方法

Publications (2)

Publication Number Publication Date
JP2019002700A true JP2019002700A (ja) 2019-01-10
JP6783706B2 JP6783706B2 (ja) 2020-11-11

Family

ID=64333187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115093A Active JP6783706B2 (ja) 2017-06-12 2017-06-12 ガスセンサ素子に備わる電極の検査方法

Country Status (4)

Country Link
US (1) US10557817B2 (ja)
JP (1) JP6783706B2 (ja)
CN (1) CN109030606B (ja)
DE (1) DE102018004596B4 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179964B (zh) * 2020-11-11 2021-05-07 华东师范大学 一种基于聚苯乙烯/金传感材料的自校准电极阵列及应用
CN112595737B (zh) * 2020-12-09 2022-04-12 中国科学院地球化学研究所 一种卡林型金矿中金的赋存状态的表征方法
US11988630B2 (en) 2021-10-25 2024-05-21 Robert Bosch Gmbh Method to use artificial intelligence to enhance visual inspection of oxygen sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256344A (ja) * 2009-03-30 2010-11-11 Ngk Insulators Ltd ガスセンサのポンプ電極、導電性ペーストの製造方法、およびガスセンサ
US20130139570A1 (en) * 2011-11-21 2013-06-06 Micronas Gmbh Semiconductor gas sensor and method for measuring a residual gas proportion with a semiconductor gas sensor
JP2017110967A (ja) * 2015-12-15 2017-06-22 日本碍子株式会社 ガスセンサの診断方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225343A1 (de) 1982-07-07 1984-01-12 Fa. Carl Zeiss, 7920 Heidenheim Verfahren und vorrichtung zur pruefung von linsen
EP2105731B1 (en) * 2008-03-28 2019-10-30 NGK Insulators, Ltd. Laminated solid electrolyte gas sensor
US8646306B2 (en) * 2009-12-14 2014-02-11 Ngk Insulators, Ltd. Method for manufacturing sensor element for gas sensor
JP5438053B2 (ja) * 2011-03-14 2014-03-12 日本特殊陶業株式会社 センサ制御装置、センサ制御システムおよびセンサ制御方法
JP5653955B2 (ja) * 2012-03-29 2015-01-14 日本碍子株式会社 ガスセンサ用のセンサ素子の製造方法、電気的特性検査方法、および前処理方法
JP6321968B2 (ja) * 2014-01-17 2018-05-09 株式会社Soken ガスセンサ素子
JP5883976B2 (ja) 2014-07-29 2016-03-15 日本碍子株式会社 ガスセンサの検知電極、導電性ペーストの製造方法、および、ガスセンサ
US10101294B2 (en) * 2015-08-27 2018-10-16 Ngk Insulators, Ltd. Method of recovering process for gas sensor
JP6523144B2 (ja) 2015-11-17 2019-05-29 日本碍子株式会社 ガスセンサ
JP5992123B1 (ja) 2015-11-17 2016-09-14 日本碍子株式会社 ガスセンサの検知電極、導電性ペーストの製造方法、ガスセンサ、および、ガスセンサの製造方法
JP5918434B1 (ja) 2015-12-24 2016-05-18 日本碍子株式会社 アンモニアガスセンサ、導電性ペーストの製造方法、および、ガスセンサの製造方法
US10876993B2 (en) 2015-12-24 2020-12-29 Ngk Insulators, Ltd. Ammonia gas sensor and method for measuring concentration of ammonia gas
US10078033B2 (en) 2016-01-20 2018-09-18 Ford Global Technologies, Llc Oxygen sensor element blackening detection
JP6571037B2 (ja) * 2016-03-31 2019-09-04 日本碍子株式会社 ガスセンサの検査装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256344A (ja) * 2009-03-30 2010-11-11 Ngk Insulators Ltd ガスセンサのポンプ電極、導電性ペーストの製造方法、およびガスセンサ
US20130139570A1 (en) * 2011-11-21 2013-06-06 Micronas Gmbh Semiconductor gas sensor and method for measuring a residual gas proportion with a semiconductor gas sensor
JP2017110967A (ja) * 2015-12-15 2017-06-22 日本碍子株式会社 ガスセンサの診断方法

Also Published As

Publication number Publication date
JP6783706B2 (ja) 2020-11-11
US10557817B2 (en) 2020-02-11
CN109030606B (zh) 2022-07-15
DE102018004596A1 (de) 2018-12-13
US20180356364A1 (en) 2018-12-13
CN109030606A (zh) 2018-12-18
DE102018004596B4 (de) 2023-12-28

Similar Documents

Publication Publication Date Title
JP5883976B2 (ja) ガスセンサの検知電極、導電性ペーストの製造方法、および、ガスセンサ
CN104838259B (zh) 气体传感器用的电极及使用了该电极的气体传感器元件
CN109283237B (zh) 气体传感器的校准方法
US10876993B2 (en) Ammonia gas sensor and method for measuring concentration of ammonia gas
JP5992123B1 (ja) ガスセンサの検知電極、導電性ペーストの製造方法、ガスセンサ、および、ガスセンサの製造方法
US9494548B2 (en) Gas sensor
JP5918434B1 (ja) アンモニアガスセンサ、導電性ペーストの製造方法、および、ガスセンサの製造方法
JP2017090405A (ja) ガスセンサの検知電極、ガスセンサ、および、ガスセンサの製造方法
CN109030606B (zh) 气体传感器元件中具备的电极的检查方法
CN110261462B (zh) 气体传感器
US10514355B2 (en) Gas sensor
JP5965564B1 (ja) アンモニアガスセンサおよびアンモニアガスの濃度測定方法
JP6867921B2 (ja) アンモニア濃度測定装置,アンモニア濃度測定システム,排ガス処理システム,及びアンモニア濃度測定方法
US10416111B2 (en) Gas sensor
CN110261463B (zh) 气体传感器
JP2018004652A (ja) ガスセンサ
JP2603373B2 (ja) 電気化学的素子
JP5115247B2 (ja) ガスセンサ素子
JP6655515B2 (ja) ガスセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200122

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R150 Certificate of patent or registration of utility model

Ref document number: 6783706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150