JP2018536863A - 非対称の流量計及び関連する方法 - Google Patents

非対称の流量計及び関連する方法 Download PDF

Info

Publication number
JP2018536863A
JP2018536863A JP2018529962A JP2018529962A JP2018536863A JP 2018536863 A JP2018536863 A JP 2018536863A JP 2018529962 A JP2018529962 A JP 2018529962A JP 2018529962 A JP2018529962 A JP 2018529962A JP 2018536863 A JP2018536863 A JP 2018536863A
Authority
JP
Japan
Prior art keywords
flow
flow path
manifold
flow meter
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018529962A
Other languages
English (en)
Inventor
デイヴィッド スキンクル,
デイヴィッド スキンクル,
Original Assignee
マイクロ モーション インコーポレイテッド
マイクロ モーション インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロ モーション インコーポレイテッド, マイクロ モーション インコーポレイテッド filed Critical マイクロ モーション インコーポレイテッド
Publication of JP2018536863A publication Critical patent/JP2018536863A/ja
Priority to JP2020109686A priority Critical patent/JP6924879B2/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8404Coriolis or gyroscopic mass flowmeters details of flowmeter manufacturing methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Volume Flow (AREA)

Abstract

非対称の流量計のマニホールド(202、202’)を生成する方法が提供される。方法は、少なくとも1つの流量計(5)の用途パラメータを規定するステップを備える。方法はまた、少なくとも第1の流路(402)と第2の流路(402’)の領域を決定するステップと、決定された流路の領域を用いて非対称のマニホールドを形成するステップを備える。
【選択図】図2

Description

本発明は、流量計に関し、特に非対称の流量計及び関連する方法に関する。
例えば、振動型デンシトメータ及びコリオリ流量計のような振動型センサが一般的に公知であり、流量計内の導管を流れる材料に関する質量流量及び他の情報を測定するのに用いられる。代表的な流量計は、全てJ.E Smithらに与えられた米国特許第4,109,524号、米国特許第4,491,025号、再発行特許31,450号に開示されている。これらの流量計は、直線形状または湾曲形状の1つまたは複数の導管を有する。例えば、コリオリ質量流量計の各導管構成は、単純な曲げ、ねじり、または結合タイプであってもよい一連の固有振動モードを有する。各導管は好ましいモードで振動するように駆動することができる。
材料は、流量計の入口側に接続されたパイプラインから流量計に流入し、導管を通って導かれ、流量計の出口側を通って流量計から出る。振動システムの固有振動モードは、導管と導管内を流れる材料の複合質量によって部分的に画定される。
物質が流量計を通って流れ始めると、コリオリ力により、導管に沿った各点が異なる位相を有する。例えば、流量計の入口端の位相は、中央のドライバ位置の位相より遅れ、出口の位相は、中央のドライバ位置の位相より先行する。導管上のピックオフは、導管の動きを表す正弦波信号を生成する。ピックオフからの信号出力は、ピックオフ間の時間遅延を決定するために処理される。2つ以上のピックオフ間の時間遅延は、導管を流れる物質の質量流量に比例する。
ドライバに接続されたメータ電子機器は、ドライバを動作させるための駆動信号を生成し、ピックオフから受信した信号から物質の質量流量及び他の特性を決定する。ドライバは、多くの周知の構成の1つを含むことができる。しかし、磁石及び対向する駆動コイルは、流量計の業界において大きな成功を収めている。所望の流れチューブの振幅及び周波数で導管を振動させるために、交流が駆動コイルに送られる。ピックオフを、ドライバ装置の構成に非常に類似した磁石及びコイルの構成として提供することも、当該技術分野において知られている。しかし、ドライバが運動を誘発する電流を受信している間、ピックオフはドライバによって与えられた運動を使用して電圧を誘起することができる。ピックオフによって測定される時間遅延の大きさは非常に小さい。しばしばナノ秒単位で測定される。従って、トランスデューサの出力を非常に正確にする必要がある。
二重チューブのコリオリセンサは、通常、流路及びセンサの構造的構成要素に対して対称的な特徴を有するように構成される。このアプローチは、適合した弾性及び慣性負荷によりバランスのとれたセンサに帰結する。チューブが釣り合わない流量を有する場合、コリオリの力の不均衡が起こる可能性があり、流量の精度が低下し、外部負荷及び振動の影響を受けやすくなる(susceptibility)可能性がある。
対称的な流路設計の制約により、特定の統合要件に最も適合すべく、センサのコンパクトさ、マニホールドの製造アプローチ、及びセンサレイアウトの柔軟性が制限される。チューブの平行度が要求されるため、永久鋳型(permanent mold)によって金属またはプラスチックの部品で製造されることが多い一体型のマニホールドを備えた二重チューブセンサは構成されていない。その結果、コスト削減と潜在的な製造アプローチに大きな制限がある。
従って、当該技術分野では、流量計を通る非対称な流れを可能にし、しかも正確な流量計の示度を提供する装置及び関連する方法が必要とされている。更に、非対称的なマニホールドの構成により、よりコンパクトで効果的な流量計の構成が可能になる。
本発明により、上記の困難性及び他の問題が克服され、当該技術分野における進歩が達成される。
実施形態に従って、非対称の流量計マニホールドを生成する方法が提供される。方法は、少なくとも1つの流量計の用途パラメータを規定するステップと、少なくとも第1の流路と第2の流路の領域を決定するステップと、決定された流路の領域を用いて非対称のマニホールドを形成するステップを備える。
実施形態に従って、その中のプロセス流体の特性を測定するように構成された流量計が提供される。流量計は、処理システムと格納システムを備えたメータ電子機器と通信するセンサアセンブリを備える。複数のピックオフが導管に固定される。少なくとも1つの非対称のマニホールドが導管に流体が行き来可能に繋がり、少なくとも1つの非対称のマニホールドは、少なくとも第1の流路と第2の流路を備えている。
態様
一態様に従って、非対称の流量計のマニホールドを生成する方法は、少なくとも1つの流量計の用途パラメータを規定するステップと、少なくとも第1の流路と第2の流路の領域を決定するステップと、決定された流路の領域を用いて非対称のマニホールドを形成するステップを備える。
好ましくは、用途パラメータは、少なくとも流体粘度の範囲及び流量の範囲を含む。
好ましくは、第1の流路の領域は、第2の流路の領域よりも大きい。
好ましくは、少なくとも1つの流路は円形の断面を有する。
好ましくは、少なくとも1つの流路は非円形の断面を有する。
好ましくは、方法は第1のポートを形成するステップを備え、第1の流路及び第2の流路は第1のポートに対して大凡90度に配置されている。
好ましくは、マニホールドを形成するステップは、材料の一体型のマニホールドを形成するステップを含む。
好ましくは、材料の一体型のマニホールドを形成するステップは、金型鋳造法である。
好ましくは、材料の一体型のマニホールドを形成するステップは、射出成形法である。
好ましくは、第1の流路を通って流れる流体の流量と、第2の流路を通って流れる流体の流量とは大凡等しい。
一態様に従って、その中のプロセス流体の特性を測定するように構成された流量計は、処理システムと格納システムを備えたメータ電子機器と通信するセンサアセンブリと、導管に固定された複数のピックオフと、流量計の導管に固定されたドライバと、導管に流体が行き来可能に繋がった少なくとも1つの非対称のマニホールドとを備え、少なくとも1つの非対称のマニホールドは、少なくとも第1の流路と第2の流路を備えている。
好ましくは、流量計はコリオリ質量流量計である。
好ましくは、第1の流路の領域は、第2の流路の領域よりも大きい。
好ましくは、少なくとも1つの流路は円形の断面を有する。
好ましくは、少なくとも1つの流路は非円形の断面を有する。
好ましくは、流量計は第1のポートを備え、第1の流路及び第2の流路は第1のポートに対して大凡90度に配置されている。
好ましくは、少なくとも1つの非対称のマニホールドは、材料の一体型のマニホールドを備える。
好ましくは、少なくとも1つの非対称のマニホールドは、金型鋳造で形成される。
好ましくは、少なくとも1つの非対称のマニホールドは、射出成形で形成される。
好ましくは、第1の流路を通って流れる流体の流量と、第2の流路を通って流れる流体の流量とは大凡等しい。
好ましくは、流量計は、対称的なマニホールドを備える。
図1は実施形態に従った従来技術の振動センサアセンブリを示す。 図2は本発明の実施形態に従ったセンサアセンブリを示す。 図3は本発明の他の実施形態に従ったセンサアセンブリを示す。 図4は実施形態に従ったメータ電子機器を示す。 図5Aは実施形態に従った非対称の流量計マニホールドを示す。 図5Bは実施形態に従った非対称の流量計マニホールドを示す。 図6は実施形態に従ったマニホールドを生成する工程を示すフローチャートである。
図1〜図6及び以下の説明は、当業者に、本出願の最良の形態を作成及び使用する方法を教示するための特定の例を示す。本発明の原理を教示する目的で、いくつかの従来の態様は単純化または省略されている。当業者であれば、これらの例から、本出願の範囲内に入る変形形態を諒解しよう。当業者であれば、下記に記載されている特徴を様々な方法で組み合わせて、本出願の複数の変形例を形成することができることを諒解しよう。結果として、本出願は、下記に記載されている特定の例には限定されず、特許請求の範囲及びその均等物によってのみ限定される。
図1は、コリオリ流量計の形態である従来技術の流量計5の例を示し、センサアセンブリ10と1以上のメータ電子機器20を備える。1つ以上のメータ電子機器20は、例えば、密度、圧力、質量流量、体積流量、積算質量流量、温度、及び他の情報などの流れ材料の特性を測定するためにセンサアセンブリ10に接続される。
センサアセンブリ10は、一対のフランジ101及び101'と、マニホールド102及び102'と、導管103A及び103Bとを含む。マニホールド102,102'は、導管103A,103Bの対向する端部に固定されている。マニホールド102,102'は、多数片のアセンブリである。本実施例のフランジ101及び101'は、マニホールド102及び102'に取り付けられている。本実施例のマニホールド102,102'は、スペーサ106の両端に固定されている。スペーサ106は、本実施例においてマニホールド102及び102'の間の間隔を維持して、導管103A及び103B内の望ましくない振動を防止する。導管103A及び103Bは、マニホールド102及び102'から平行に外向きに延びている。センサアセンブリ10が流れ材料を運ぶパイプラインシステム(図示せず)に挿入されると、材料はフランジ101を通ってセンサアセンブリ10に入り、入口マニホールド102を通過し、そこで材料の総量が導管103A及び103Bに入るように向けられ、導管103A及び103Bを通って流れて、出口マニホールド102'に戻り、そこでフランジ101'を通ってセンサアセンブリ10を出る。
センサアセンブリ10は、ドライバ104を含む。ドライバ104は、ドライバ104が駆動モードで導管103A、103Bを振動させることができる位置にて、導管103A及び103Bに取り付けられている。特にドライバ104は、導管103Aに取り付けられた第1のドライバ構成要素(図示せず)と、導管103Bに取り付けられた第2のドライバ構成要素(図示せず)とを含む。ドライバ104は、導管103Aに取り付けられたマグネットや、導管103Bに取り付けられた対向したコイルなど、多くの周知の構成のうちの1つを含むことができる。
本例において、駆動モードは、第1の位相外曲げモードであり、夫々曲げ軸W-W及びW’-W’の周りに実質的に同じ質量分布、慣性モーメント及び弾性係数を有する平衡システムを提供するように、導管103A及び103Bが選択され、入口マニホールド102及び出口マニホールド102'に適切に取り付けられる。本例において、駆動モードが第1の位相外曲げモードでは、導管103A及び103Bは、ドライバ104によって、夫々曲げ軸W-W及びW‘-W’を中心として反対方向に駆動される。交流の形態の駆動信号が例えばリード110を介して1つ以上のメータ電子機器20によって供給され、コイルを通過して両方の導管103A、103Bを振動させることができる。
示されるセンサアセンブリ10は、導管103A、103Bに固定される一対のピックオフ105、105’を含む。特に、第1のピックオフ要素(示されない)は導管103Aの上に位置し、第2のピックオフ要素(示されない)は導管103Bの上に位置する。記載された実施形態にて、ピックオフ105、105’は、導管103A、103Bの速度及び位置を表すピックオフ信号を生成する電磁検出器、例えばピックオフ磁石及びピックオフコイルとすることができる。例えば、ピックオフ105、105'は、経路111,111'を介して1つ以上のメータ電子機器にピックオフ信号を供給することができる。当業者であれば、導管103A、103Bの動きは、流れ材料の特定の特性、例えば、導管103A、103Bを流れる材料の質量流量及び密度に比例することを理解するであろう。
図1に示された従来例において、1以上のメータ電子機器20は、ピックオフ105、105’からピックオフ信号を受信する。経路26は、1つ以上のメータ電子機器20がオペレータとインターフェイスすることを可能にする入力及び出力手段を提供する。1つ以上のメータ電子機器20は、例えば、位相差、周波数、時間遅れ、密度、質量流量、体積流量、積算質量流量、温度、メータ検証、圧力及び他の情報のような流れ材料の特性を測定する。特に、1以上のメータ電子機器20は、例えば、ピックオフ105,105'及び抵抗温度検出器(RTD)などの1以上の温度センサ107から1以上の信号を受信し、この情報を使用して、流れ材料の特性を測定する。
図2は、実施形態に従った流量計5用のセンサアセンブリ200の例を示す。センサアセンブリ200は、一対の非対称マニホールド202及び202'と、一対の導管203A及び203Bとを含む。非対称のマニホールド202、202'は、導管203A、203Bの反対側端部に固定されている。マニホールド202、202'は、一体型として構成することができる。一実施形態では、非対称のマニホールド202及び202'をスペーサ206の両側端部に取り付けることができる。スペーサ206は、マニホールド202と202'との間の間隔を維持し、導管203A及び203Bにおける望ましくない振動を防止するのを手助けする。導管203A及び203Bは、非対称のマニホールド202及び202'から大凡平行に延びる。センサアセンブリ200が、流れるプロセス材料を運ぶパイプラインシステム(図示せず)に挿入されると、材料は、第1開口部202Aを通ってセンサアセンブリ200に入り、入口マニホールド202を通過し、そこで材料の総量が導管203A及び203Bに入るように導かれ、導管203A及び203Bを通って出口マニホールド202'に戻り、そこで第2の開口部202Bを通ってセンサアセンブリ200を出る。
センサアセンブリ200はドライバ204を含む。ドライバ204は、ドライバ204が駆動モードで導管203A、203Bを振動させることができる位置にて、導管203A及び203Bに取り付けられている。特に、幾つかの実施形態において、ドライバ204は、導管203Aに取り付けられた第1のドライバ構成要素204Aと、導管203Bに取り付けられた第2のドライバ構成要素204Bとを含む。ドライバ204は、例えば導管203Aに取り付けられた磁石及び導管203Bに取り付けられた対向コイルなど、多くの周知の構成のうちの1つを含むことができるが、これらに限定されない。
一実施形態にて、駆動モードは、第1の位相外曲げモードであり、導管203A及び203Bは平衡システムを付与するように選択され、入口マニホールド202及び出口マニホールド202'に適切に取り付けられるのが好ましい。しかし、従来技術とは違って、非対称のマニホールド202、202'は、その名称で示されているように、非対称であるが、依然として導管203A、203Bへの均衡の取れた流れを提供する。一実施形態において、導管203A及び203Bは、夫々の曲げ軸の周りにて、実質的に同じ質量分布、慣性モーメント及び弾性率を有する。他の実施形態では、、導管203A及び203Bは、夫々の曲げ軸の周りにて、実質的に同じ質量分布、慣性モーメント及び弾性率を有さずに、非対称流れを補償する。一例において、駆動モードが第1の位相外曲げモードである場合、導管203A及び203Bは、夫々の曲げ軸の周りで反対方向にドライバ204によって駆動される。交流の形態の駆動信号が例えばリード210を介して1つ以上のメータ電子機器20によって供給され、コイルを通過して両方の導管103A、103Bを振動させることができる。当業者は、他のタイプのドライバ及び駆動モードが本発明の範囲内で使用され得ることを理解するだろう。
示されるセンサアセンブリ200は、導管103A、103Bに固定される一対のピックオフ205、205’を含む。特に、第1のピックオフ要素205A、205’Aは導管203Aの上に位置し、第2のピックオフ要素205B、205’Bは導管203Bの上に位置する。記載された実施形態において、ピックオフ205、205'は、導管203A、203Bの速度及び位置を表すピックオフ信号を生成するピックオフ磁石及びピックオフコイルなどの電磁検出器であってもよい。例えば、ピックオフ205、205'は、経路211、211'を介して1つ以上のメータ電子機器にピックオフ信号を供給することができる。当業者であれば、導管203A、203Bの動きは、流れ材料の特定の特性、例えば、導管203A、203Bを流れる材料の質量流量及び密度に比例することを理解するであろう。
上述したセンサアセンブリ200は、湾曲した構成を有する流れ導管203A、203Bを備えるが、本発明は、直線状の流れ導管の構成を備える流量計で実施することができることは理解されるだろう。従って、上述したセンサアセンブリ200の特定の実施形態は単なる一例に過ぎず、決して本発明の範囲を限定すべきではない。
図3は、実施形態に従った流量計5のセンサアセンブリ200の例を示す。この実施形態は図2に示した実施形態と近似しているが、1つだけの非対称マニホールド202、202’だけが存在する。反対側のマニホールドは、対称性のマニホールド207である。該実施形態にて、対称性のマニホールド207は入口マニホールドであり、一方、非対称のマニホールド202は出口マニホールドである。別の実施形態では、対称性のマニホールド207は出口マニホールドであり、非対称マニホールド202は入口マニホールドである。対称マニホールド207は、ポート207aがセンサアセンブリ200に対して下方を指している状態で示されている。これは、考えられる1つの構成であり、開口部は任意の数の方向に突出していてもよい。ポート202aについても同様である。
図4は、一実施形態に従ったメータ電子機器220を示す。メータ電子機器220は、インターフェイス301と処理システム303を含み得る。処理システム303は、格納システム304を含むことができる。格納システム304は、内部メモリを含むことができ、及び/又は外部メモリを含むことができる。メータ電子機器220は、駆動信号311を生成し、駆動信号311をドライバ204に供給することができる。更に、メータ電子機器220は、ピックオフ205,205'から、ピックオフ/速度センサ信号、ひずみ信号、光信号、または当該技術分野で公知の任意の他の信号などの、センサ信号310を受信することができる。いくつかの実施形態では、センサ信号310は、ドライバ204から受信することができる。メータ電子機器220は、デンシトメータとして動作することができ、またはコリオリ流量計として動作することを含む質量流量計として動作することができる。メータ電子機器220は、他のタイプの振動センサアセンブリとしても動作することができ、提供される特定の例は、本発明の範囲を限定するものではないことは理解されるべきである。メータ電子機器220は、センサ信号310を処理して、流れ導管203A、203Bを通って流れる材料の流れ特性を得ることができる。いくつかの実施形態では、メータ電子機器220は、例えば、1つ以上の抵抗温度検出器(RTD)センサ又は他の温度センサ(図示せず)から温度信号312を受信することができる。
インターフェイス301は、リード210、211、211’を介して、ドライバ204又はピックオフ205、205'からセンサ信号310を受信することができる。インターフェイス301は、フォーマット、増幅、バッファリングなどの任意の必要な、または所望の信号調整を行うことができる。或いは、幾つか又は全ての信号調整が処理システム303で実行され得る。更に、インターフェイス301はメータ電子機器220と外部デバイスとの間の通信を可能にする。インターフェイス301はあらゆる方法の電子的、光学的又は無線通信であり得る。
一実施形態のインターフェイス301はデジタイザ302を含み、センサ信号はアナログセンサ信号を含む。デジタイザ302は、アナログセンサ信号をサンプリングしてデジタル化し、デジタルセンサ信号を生成することができる。デジタイザ302はまた、必要な信号処理の量を低減し、処理時間を短縮するために、デジタルセンサ信号を間引く(decimate)任意の必要なデシメーションを行うことができる。
処理システム303は、メータ電子機器220の動作を行い、センサアセンブリ200からの流量測定値を処理することができる。処理システム303は、一般的な動作ルーチン314のような1つ以上の処理ルーチンを実行することができる。
処理システム303は、汎用コンピュータ、マイクロプロセッシングシステム、論理回路、またはその他の汎用またはカスタマイズされた処理装置を含むことができる。処理システム303は、複数の処理装置に分散することができる。処理システム303は、格納システム304のような任意の方法の一体型または独立した電子記憶媒体を含むことができる。処理システム303は、とりわけ、駆動信号311を生成するためにセンサ信号310を処理する。駆動信号311は、導管203A、203Bのような関連する流れチューブを振動させるためにリード210を介してドライバ204に供給される。
メータ電子機器220は、当該技術分野で一般に知られている様々な他の構成要素及び機能を含み得ることは理解されるべきである。これらの更なる特徴は簡潔さの目的から記載及び図面から省略されている。従って、本発明は示され記載された特定の実施形態に限定されるべきではない。
例えば、コリオリ流量計又はデンシトメータなどの振動センサアセンブリが流れ材料の特性を測定する技術は十分に理解されている。従って、この記載を簡潔にするために、詳細な説明は省略する
図5A及び図5Bを参照して、非対称のマニホールド202、202’が示される。図5Bは、図5Aに示すマニホールドの部分破断図である。非対称マニホールド202、202'は、複数のランナー401、401'を画定する本体400を有し、これはさらに、流路402、402'を画定する。第1のポート404及びプレナムチャンバ406は、本体400によって画定される。第1のポート404は、流路402、402'と同様に、プレナムチャンバ406と流体連通している。一実施形態では、フランジ408、408'は、各ランナポート410、410'に近接して配置され、導管203A、203Bへの取り付け手段を提供することができる。第1のポート404に導入された流体は、プレナムチャンバ406を通って流れ、ランナポート410、410'を介してマニホールド202、202'から出る。これは、流体が流量計5内に移動する場合に当てはまる。逆に、ランナポート410、410'に導入された流体は、プレナムチャンバ406を通って進み、第1のポート404を介してマニホールド202、202'から出る。これは、流体が流量計5から外に移動する場合に当てはまる。流路402、402'は、夫々領域A及びA'を規定する。非対称的な構成の結果、一方の管に大きな流れが生じる。一実施形態において、領域Aは領域A'よりも大きい。一実施形態において、領域Aは領域A'よりも小さい。これは、流路402、402'の夫々の直径を変更することによって達成することができる。一実施形態では、流路402、402'は、非円形断面を含む。非円形断面の形状を変更することにより、流路402、402'の夫々の領域A、A'のサイズを変更することができる。
2つの流路402、402'のうちの1つの領域の変更は、各導管203A、203Bの流れを等しくするように行うことができる。このアプローチによる流れの均一性は、一定の流量及び粘度で最適になるように構成することができる。従って、流量及び粘度の範囲は、流路402,402'の間の面積比に基づいて微調整することができる。例えば、流量計がガソリン計量のためだけに使用される場合、流体は既知であるため、用途に基づいて、流量範囲と同様に密度範囲が考慮される。これは用途の単なる例であり、特許請求の範囲を限定すべきではない。
更に特定の用途について、流路402、402'は、様々な計測システムで遭遇する可能性がある入口流れ条件、センサアセンブリ200内の重力方向、及び入口/出口条件を更に補償するように、本明細書に記載されるように変更することができる。全体的に、上述したように用途及び更なる変数に基づいて、領域A、A'は、流量計5の流体測定が正確であるように、各導管203A、203Bを通る流れが均等に分配されるように調整される。
上記の如く、非対称のマニホールド202、202'は、材料の一体型のマニホールドから構成することができる。非対称性及び隆起した直角により、非対称性のマニホールド202、202'が、例えば、限定されないが、永久鋳型鋳造を介して、成形されることができる。一実施形態において、永久鋳型成形プロセスは、直角流路を形成するためにコアを利用する。これは、単なる一例であり、本明細書に記載されているような一体型マニホールドを形成するための当該技術分野において知られている任意のプロセスと同様に、他の成形、射出成形、鋳造、成形及び機械加工プロセスが考慮される。
図6は、非対称のマニホールド202、202'を形成する方法を示す。ステップ500にて、流量計の用途及び関連するパラメータが決定される。このステップは、非対称のマニホールド202、202'の形態(morphology)を決定するための制約を提供する。流体密度範囲、流量範囲、温度範囲、流量計のサイズ、及び他の関連する設計制約が決定される。ステップ502にて、流路402、402'の領域は、ステップ500で定義されたパラメータに基づいて計算される。ステップ504にて、異なる第1及び第2の流路402,402'を有する非対称のマニホールド202,202'が形成される。従って、導管203A、203Bを通る流量は、所定の動作条件の範囲を考慮すると、等しくなる。
上述の様々な実施形態は、流量計、特にコリオリ流量計を指向しているが、本発明は、コリオリ流量計に限定されるべきではなく、本明細書で説明される方法は、他のタイプの流量計、またはコリオリ流量計の測定能力の一部を欠く他の振動センサについて利用され得ることを理解されたい。
上記の実施形態の詳細な説明は、本出願の範囲内にあるべき、本発明者らによって企図されているすべての実施形態の包括的でない説明である。事実、当業者であれば、上述した実施形態の特定の要素は、さらなる実施形態を作成するために様々に組み合わせ、または、なくすことができ、そのようなさらなる実施形態が本出願の範囲及び教示の中に入ることは認識されよう。上述した実施形態は、本発明の範囲及び教示内の追加の実施形態を作成するために全体的にまたは部分的に組み合わせることができることも、当業者には諒解されよう。従って、本発明の範囲は、添付の特許請求の範囲から決定されるべきである。

Claims (21)

  1. 非対称の流量計のマニホールドを生成する方法であって、
    少なくとも1つの流量計の用途パラメータを規定するステップと、
    少なくとも第1の流路と第2の流路の領域を決定するステップと、
    決定された流路の領域を用いて非対称のマニホールドを形成するステップを備える、方法。
  2. 用途パラメータは、少なくとも流体粘度の範囲及び流量の範囲を含む、請求項1に記載の方法。
  3. 第1の流路の領域は、第2の流路の領域よりも大きい、請求項1又は2に記載の方法。
  4. 少なくとも1つの流路は円形の断面を有する、請求項1乃至3の何れかに記載の方法。
  5. 少なくとも1つの流路は非円形の断面を有する、請求項1乃至3の何れかに記載の方法。
  6. 第1のポートを形成するステップを備え、第1の流路及び第2の流路は第1のポートに対して大凡90度に配置された、請求項1乃至5の何れかに記載の方法。
  7. マニホールドを形成するステップは、材料の一体型のマニホールドを形成するステップを含む、請求項1乃至6の何れかに記載の方法。
  8. 材料の一体型のマニホールドを形成するステップは、金型鋳造法である、請求項7に記載の方法。
  9. 材料の一体型のマニホールドを形成するステップは、射出成形法である、請求項7に記載の方法。
  10. 第1の流路を通って流れる流体の流量と、第2の流路を通って流れる流体の流量とは大凡等しい、請求項3乃至9の何れかに記載の方法。
  11. その中のプロセス流体の特性を測定するように構成された流量計(5)であって、
    処理システム(303)と格納システム(304)を備えたメータ電子機器と通信するセンサアセンブリ(200)と、
    導管(203A、203B)に固定された複数のピックオフ(205、205’)と、
    流量計(5)の導管(203A、203B)に固定されたドライバ(204)と、
    導管(203A、203B)に流体が行き来可能に繋がった少なくとも1つの非対称のマニホールド(202、202’)とを備え、
    少なくとも1つの非対称のマニホールド(202、202’)は、少なくとも第1の流路(402)と第2の流路(402’)を備えている、流量計(5)。
  12. コリオリ質量流量計である、請求項11に記載の流量計(5)。
  13. 第1の流路(402)の領域は、第2の流路(402’)の領域よりも大きい、請求項11又は12に記載の流量計(5)。
  14. 少なくとも1つの流路(402、402’)は円形の断面を有する、請求項11乃至13の何れかに記載の流量計(5)。
  15. 少なくとも1つの流路(402、402’)は非円形の断面を有する、請求項11乃至13の何れかに記載の流量計(5)。
  16. 第1のポート(202A、202B)を備え、第1の流路及び第2の流路(402、402’)は第1のポート(202A)に対して大凡90度に配置された、請求項11乃至15の何れかに記載の流量計(5)。
  17. 少なくとも1つの非対称のマニホールド(202、202’)は、材料の一体型のマニホールドを備える、請求項11乃至16の何れかに記載の流量計(5)。
  18. 少なくとも1つの非対称のマニホールド(202、202’)は、金型鋳造で形成される、請求項17に記載の流量計(5)。
  19. 少なくとも1つの非対称のマニホールド(202、202’)は、射出成形で形成される、請求項17に記載の流量計(5)。
  20. 第1の流路(402)を通って流れる流体の流量と、第2の流路(402’)を通って流れる流体の流量とは大凡等しい、請求項11乃至18の何れかに記載の流量計(5)。
  21. 更に対称的なマニホールド(207)を備える、請求項11乃至20の何れかに記載の流量計(5)。
JP2018529962A 2015-12-11 2015-12-11 非対称の流量計及び関連する方法 Pending JP2018536863A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109686A JP6924879B2 (ja) 2015-12-11 2020-06-25 非対称の流量計及び関連する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/065356 WO2017099810A1 (en) 2015-12-11 2015-12-11 Asymmetric flowmeter and related method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020109686A Division JP6924879B2 (ja) 2015-12-11 2020-06-25 非対称の流量計及び関連する方法

Publications (1)

Publication Number Publication Date
JP2018536863A true JP2018536863A (ja) 2018-12-13

Family

ID=55066846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529962A Pending JP2018536863A (ja) 2015-12-11 2015-12-11 非対称の流量計及び関連する方法

Country Status (6)

Country Link
US (1) US10627276B2 (ja)
EP (1) EP3387391B1 (ja)
JP (1) JP2018536863A (ja)
CN (1) CN108369121B (ja)
HK (1) HK1259108A1 (ja)
WO (1) WO2017099810A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200182675A1 (en) * 2017-08-08 2020-06-11 Micro Motion, Inc. Flowmeter false totalizing elimination devices and methods

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109524A (en) 1975-06-30 1978-08-29 S & F Associates Method and apparatus for mass flow rate measurement
USRE31450E (en) 1977-07-25 1983-11-29 Micro Motion, Inc. Method and structure for flow measurement
SU920384A1 (ru) * 1980-01-31 1982-04-15 Специальное Конструкторское Бюро Института Математики И Механики Ан Азсср Устройство дл измерени массового расхода сред
JPS58153121A (ja) * 1982-03-08 1983-09-12 Yokogawa Hokushin Electric Corp 質量流量計
US4491025A (en) 1982-11-03 1985-01-01 Micro Motion, Inc. Parallel path Coriolis mass flow rate meter
US4768385A (en) 1986-08-13 1988-09-06 Micro Motion, Inc. Parallel path Coriolis mass flow meter
US4782711A (en) * 1986-10-14 1988-11-08 K-Flow Division Of Kane Steel Co., Inc. Method and apparatus for measuring mass flow
US4840071A (en) * 1987-07-10 1989-06-20 Lew Hyok S Convective attenuation flowmeter
US5275061A (en) 1991-05-13 1994-01-04 Exac Corporation Coriolis mass flowmeter
US5546814A (en) * 1994-10-26 1996-08-20 The Foxboro Company Parallel-flow coriolis-type mass flowmeter with flow-dividing manifold
US5661232A (en) * 1996-03-06 1997-08-26 Micro Motion, Inc. Coriolis viscometer using parallel connected Coriolis mass flowmeters
US6450042B1 (en) * 2000-03-02 2002-09-17 Micro Motion, Inc. Apparatus for and a method of fabricating a coriolis flowmeter formed primarily of plastic
DE10137921A1 (de) * 2001-08-02 2003-02-13 Abb Research Ltd Verfahren und Vorrichtung zum Bestimmen des Massendurchflusses
KR100541347B1 (ko) * 2001-09-21 2006-01-11 가부시키가이샤 오바루 아치형 튜브 타입 코리올리 미터 및 그 형상 결정 방법
DE10257322A1 (de) * 2002-12-06 2004-06-24 Endress + Hauser Flowtec Ag, Reinach Prozeß-Meßgerät
DE102004035971A1 (de) * 2004-07-23 2006-02-16 Endress + Hauser Flowtec Ag Meßaufnehmer vom Vibrationstyp zum Messen von in zwei Mediumsleitungen strömenden Medien sowie In-Line-Meßgerät mit einem solchen Meßaufnehmer
DE102006034296A1 (de) * 2006-07-21 2008-01-24 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
US8826745B2 (en) * 2007-03-14 2014-09-09 Micro Motion, Inc. Vibratory flow meter and method for determining viscosity in a flow material
US8931353B2 (en) 2009-12-03 2015-01-13 Precim Ltd. Coriolis mass flow meter and components thereof
US20110138929A1 (en) 2009-12-10 2011-06-16 Malema Engineering Corporation Kinetic Flow Meter
CN201637449U (zh) * 2010-04-22 2010-11-17 成都安迪生测量有限公司 一种科里奥利质量流量计进出口组合式分流锥
CN203241091U (zh) * 2013-05-08 2013-10-16 瑞大集团有限公司 流线型质量流量计分流器
CN203587154U (zh) * 2013-11-20 2014-05-07 东京计装(上海)仪表有限公司 交叉形分合流器及其流量计

Also Published As

Publication number Publication date
WO2017099810A1 (en) 2017-06-15
CN108369121B (zh) 2021-08-03
HK1259108A1 (zh) 2019-11-22
US10627276B2 (en) 2020-04-21
EP3387391A1 (en) 2018-10-17
EP3387391B1 (en) 2022-01-26
CN108369121A (zh) 2018-08-03
US20190063974A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
KR101777154B1 (ko) 다중 미터 유체 유동 시스템의 차동 유동 특성을 결정하는 방법 및 장치
KR101018401B1 (ko) 강성 계수 또는 질량 계수 중 하나 이상을 결정하기 위한방법 및 계측 전자장치
CN106233099B (zh) 具有指引凸台的流量计量器歧管
US10557735B2 (en) Compact flowmeter with novel flow tube configuration and related method
JP6896156B2 (ja) マルチチャネル流通管を備えた振動式流量計
JP6804560B2 (ja) マルチチャネル流管
JP6173465B2 (ja) ワンピース型導管取付け具を備えた振動型センサアセンブリ
EP3387391B1 (en) Asymmetric flowmeter and related method
JP6924879B2 (ja) 非対称の流量計及び関連する方法
JP6080981B2 (ja) 振動式メーターのための方法および装置
JP7004810B2 (ja) コンパクトな振動式流量計
JP6921280B2 (ja) コンパクトな流量計及び関連する方法
JP6932137B2 (ja) 流量計のターンダウンを最大にする方法及び関連する装置
JP2017146313A (ja) 多重流れ導管流量計
JP2020153999A (ja) 流量計のターンダウンを最大にする方法及び関連する装置
JP6345150B2 (ja) 多重流れ導管流量計
JP2013224967A (ja) 多重流れ導管流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200625

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200708

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200714

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200807

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200818

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210126

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210406

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511