JP2020153999A - 流量計のターンダウンを最大にする方法及び関連する装置 - Google Patents

流量計のターンダウンを最大にする方法及び関連する装置 Download PDF

Info

Publication number
JP2020153999A
JP2020153999A JP2020102136A JP2020102136A JP2020153999A JP 2020153999 A JP2020153999 A JP 2020153999A JP 2020102136 A JP2020102136 A JP 2020102136A JP 2020102136 A JP2020102136 A JP 2020102136A JP 2020153999 A JP2020153999 A JP 2020153999A
Authority
JP
Japan
Prior art keywords
conduit
flow
conduits
small conduits
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020102136A
Other languages
English (en)
Inventor
アッシャー ジェイムズ クリンガー,
James Clinger Asher
アッシャー ジェイムズ クリンガー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Priority to JP2020102136A priority Critical patent/JP2020153999A/ja
Publication of JP2020153999A publication Critical patent/JP2020153999A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】メータ電子機器に接続されたセンサ組立体を有する流量計を提供する。【解決手段】センサ組立体10は、、少なくとも1つのドライバ104と少なくとも1つのピックオフ105と導管アレイを備える。導管アレイはその中に複数の小さな導管を有し、複数の小さな導管はプロセス流体を受け入れるように構成され、更に流量計5のベータ比を選択的に調整するように構成されている。導管アレイは3つから30個の小さな導管を備えている。あるいは30個から300個、または30個から3000個の小さな導管を備えている。【選択図】図1

Description

本発明は、流量計に関し、特にターンダウン(下降量)を最大化するように構成された流量計及び関連する方法に関する。
例えば、振動式デンシトメータ及びコリオリ式流量計の如き振動式センサが、一般的
に知られており、流量計の導管を流れる物質の質量流量及び他の情報を測定するために用いられている。コリオリ式流量計の代表例が、J.E.スミスらに発行されている米国特許第4,109,524号、米国特許第4,491,025号及び再発行特許第31,450号に開示されている。これらの流量計は、直線構造または曲線構造を有している1つ以上の導管を備えている。コリオリ式質量流量計の各導管構造は、単純曲げモード、ねじれモードまたは結合タイプでありうる一組の固有振動モードを有している。各導管を好ましいモードで振動させることができる。
流量計の入口側にて接続されたパイプラインから流量計内への物質流れは、導管を通って向けられ、流量計の出口側を通って流量計を出る。振動システムの固有振動モードは部分的に、導管の質量及び導管内を流れる物質の組合わせ質量によって規定される。
流量計に何も流れていないとき、振動力が導管に加えられると、導管に沿った全ての部位が、同一位相で振動するか、または、小さな「ゼロオフセット」で振動し、該ゼロオフセットはゼロ流量で測定される時間遅れである。流量計に物質が流れ始めると、コリオリの力により、導管に沿った各部位が異なる位相を有する。例えば、流量計の入口端部での位相は中央のドライバの位置の位相より遅れ、然るに流出口での位相は中央のドライバの位置の位相よりも進んでいる。導管上のピックオフセンサは導管の運動を表す正弦波信号を発生する。ピックオフから出力される信号は処理されてピックオフ間の時間遅れを決定する。2つ以上のピックオフ間の時間遅れは、導管を流れる物質の質量流量に比例する。
ドライバに接続されているメータ電子機器は、ドライブ信号を出力してドライバを動作させ、ピックオフから受信する信号から物質の質量流量及び他の特性を決定する。ドライバは、複数の周知の構成のうちの1つの構成を有しうる。しかし、流量計の産業界において、磁石及びそれに対向するドライブコイルは非常に成功している。交流が、駆動コイルに流され、所望の流れチューブの振幅及び振動数で導管を振動させる。また当該技術分野において、ドライバの構成と極めて同じようにマグネットとコイルとが配置されたピックオフを提供することが知られている。しかし、ドライバが動作を誘発する電流を受け取り、ピックオフがドライバにより提供される運動を用いて電圧を誘発させることができる。ピックオフにより測定される時間遅れの大きさは非常に小さく、ナノセカンド単位で測られることが多い。従って、トランスデューサの出力が非常に正確であることが必要となる。
従来技術の流量計において、コリオリの力は速度の二乗に伴って変化するので、コリオリの力が小さくなるにつれて、正確な測定値を得ることがより困難になり、誤差が生じる。 別の結果は、比較的小さな速度のターンダウンを有する流量計である。
従って、当該技術分野で流量計のターンダウンを最大化する方法及び関連する装置に対するニーズがある。本実施形態は、流量計のターンダウンを最大にする方法及び関連する装置を提供することによって、これらおよび他の問題を克服する。特に、流量計が被るプロセス流体の流れに基づいて流路を最適化する流量計及び関連する方法が提供される。流
量が減少すると、流れチューブの配置が変化してコリオリの力が最適に増加し、より大きなターンダウンが可能になり、当該技術分野での進歩が達成される。
一実施形態に従って、メータ電子機器に接続されたセンサ組立体を有する流量計が提供される。センサ組立体は少なくとも1つのドライバと少なくとも1つのピックオフと更に導管アレイを備え、導管アレイはその中にプロセス流体を受け入れるように構成され、更に流量計のベータ比を選択的に調整するように構成されたた複数の小さな導管を備える。
一実施形態に従って、流量計を形成する方法が提供される。導管と少なくとも1つのドライバと導管に取り付けられた少なくとも1つのピックオフを備えるセンサ組立体が提供される。導管は導管アレイであり、該導管アレイはその中にプロセス流体を受け入れるように構成され、更に流量計のベータ比を選択的に調整するように構成された複数の小さな導管を備える。
態様
一態様に従って、メータ電子機器に接続され、少なくとも1つのドライバと少なくとも1つのピックオフを備えるセンサ組立体を有する流量計は、その中に複数の小さな導管を有する導管アレイを備え、該複数の小さな導管はその中にプロセス流体を受け入れるように構成され、更に流量計のベータ比を選択的に調整するように構成されている。
好ましくは、導管アレイは3つから30個の小さな導管を備える。
好ましくは、導管アレイは30個から300個の小さな導管を備える。
好ましくは、導管アレイは30個から3000個の小さな導管を備える。
好ましくは、導管アレイはプロセス流体流れが利用し得る小さな導管の総面積を調整するように構成されている。
好ましくは、複数の小さな導管の各々は、その中を通る流れを付与するように選択可能である。
好ましくは、小さな導管の中を通るプロセス流体を受け入れるべく、複数の小さな導管の一部に流体を行き来させるように構成されたバルブが配備されている。
一態様に従って、流量計を形成する方法は、導管と少なくとも1つのドライバと導管に取り付けられた少なくとも1つのピックオフを備えたセンサ組立体を付与するステップを備え、導管はその中にプロセス流体を受け入れるように構成され、更に流量計のベータ比を選択的に調整するように構成された複数の小さな導管を備えた導管アレイである。
好ましくは、導管アレイは3つから30個の小さな導管を備える。
好ましくは、導管アレイは30個から300個の小さな導管を備える。
好ましくは、導管アレイは30個から3000個の小さな導管を備える。
好ましくは、プロセス流体流れにとって利用可能な小さな導管の総面積を調整するステップを備えている。
好ましくは、複数の小さな導管の各々は、その中を通る流れを付与するように選択可能である。
好ましくは、方法は小さな導管の中を通るプロセス流体を受け入れるべく、複数の小さな導管の一部に流体を行き来させるように構成されたバルブを配備するステップを備える。
図1は、一実施形態に従った流量計のセンサ組立体を示す。 図2は、一実施形態に従ったメータ電子機器を示す。 図3は、従来技術の導管と一実施形態に従った導管アレイを比較した断面図である。 図4は、一実施形態に従った導管アレイの断面図を示す。 図5は、従来技術の流れ導管と一実施形態に従った導管アレイを比較したグラフである。 図6は、一実施形態に従ったセンサ組立体の一部を示す図である。 図7は、図6のセンサ組立体の断面図である。 図8は、図3の断面図の詳細図である。 図9は、一実施形態に従ったセンサ組立体の一部を示す図である。 図10は、図9のセンサ組立体の導管の断面図を示す。
図1-図10及び下記の記載には、本発明の最良のモードを作成及び利用する方法を当
業者に教示するための具体的な実施形態が示されている。本発明の原理を教示するために、従来技術の一部が単純化または省略されている。当業者は、これらの実施形態の変形例もまた本発明の技術範囲内に含まれることを理解するだろう。当業者は、下記の記載の構成要素をさまざまな方法で組み合わせて本発明の複数の変形例を形成することもできることを理解するだろう。従って、本発明は、下記に記載の特定の実施形態に限定されるものではなく、特許請求の範囲及びその他の均等物によってのみ限定される。
図1には、センサ組立体10と1つ以上のメータ電子機器20とを備えるコリオリ式流量計の形態をとる流量計5の一例が示されている。1つ以上のメータ電子機器20は、センサ組立体10に接続され、例えば密度、質量流量、体積流量、総合質量流量、温度及び他の情報の如き流動物質の特性を測定する。
センサ組立体10は、1対のフランジ101、101’と、1対のマニホールド102、102’と、1対の導管103A、103Bとを有している。マニホールド102、102’は、導管103A、103Bの両端に固定されている。本実施形態にかかるフランジ101、101’はマニホールド102、102’に固定されている。また、本実施形態にかかるマニホールド102、102’はスペーサ106の両端に固定されている。本実施形態ではスペーサ106は、マニホールド102とマニホールド102’との間の間隔を維持して導管103A、103Bの不要な振動を回避するようになっている。導管103A
、103Bは、マニホールドから外側に向けてほぼ並列に延出している。流れ物質を運ぶ
パイプラインシステム(図示せず)の中にセンサ組立体10が挿入されると、物質がフランジ101を通ってセンサ組立体10の中へ流入し、流入口マニホールド102を通り、ここで物質の全量が導管103A及び103Bに入るように向けられ、導管103A及び1
03Bを流れ、流出口マニホールド102’へ戻り、ここでフランジ101’を通ってセ
ンサ組立体10の外へと流出する。
センサ組立体10はドライバ104を有していてもよい。ドライバ104は、当該ドライバ104が導管103A、103Bをドライブモードで振動させることができる位置で導管103A、103Bに固定されている。更に具体的にいえば、ドライバ104は、導管103Aに固定される第1のドライブコンポーネント(図示せず)と、導管103Bに固定される第2のドライブコンポーネント(図示せず)とを有している。ドライバ104は、マグネットが導管103Aに取り付けられかつその反対側にあるコイルが導管103Bに取り付けられる構成のような複数の周知の構成のうちの1つの構成を有していてもよい。
本実施形態では、ドライブモードは第1の逆位相(不一致位相)曲げモードである。導管103A、103Bは、それぞれ、曲げ軸線W−W及びW’−W’に対して実質的に同一の質量分布、慣性モーメント及び弾性モジュールを有するバランスの取れたシステムを提供
するように、選択され、流入口マニホールド102及び流出口マニホールド102’に適切に取り付けられることが好ましい。ドライブモードが第1の逆位相曲げモードである本実施形態では、導管103A及び導管103Bは、それぞれの対応する曲げ軸線W−W及び曲げ軸線W’−W’を中心として、互に逆方向に向けてドライバ104によって駆動される。交流の形態を有するドライブ信号が、例えばリード110を介して1つ以上のメータ電子機器20によって付与され、コイルを通り抜けて両方の導管103A、103Bの振動を引き起こす。
図示されているセンサ組立体10は、導管103A、103Bに固定されている一対のピックオフ105、105’を有している。特に、第1のピックオフ要素(図示せず)が導管103A上に位置し、第2のピックオフ要素(図示せず)が導管103B上に位置している。図示されている実施形態では、ピックオフ105、105’は電磁検出器、例えば導管103A、103Bの速度及び位置を表わすピックオフ信号を生成するピックオフ磁石とピックオフコイルとであってもよい。例えば、ピックオフ105、105’は、経路111、111’を通じて1つ以上のメータ電子機器へピックオフ信号を送信するようになっていてもよい。当業者は、導管103A、103Bの動きは、流動物質のなんらかの特性、例えば導管103A、103Bを流れる物質の質量流量及び密度に比例していることを理解するだろう。
図1に示されている実施形態では、1つ以上のメータ電子機器20は、ピックオフ105、105’からピックオフ信号を受信する。経路26は、1つ以上の電子機器20がオペレータと通信することを可能とする入力手段及び出力手段を提供する。1つ以上のメータ電子機器20は、例えば位相差、周波数、時間遅延、密度、質量流量、体積流量、総合質量流量、温度、メーター検証、圧力及び他の情報の如き流動物質の特性を測定する。さらに具体的にいえば、1つ以上のメータ電子機器20は、例えばピックオフ105、105’及び1つ以上の抵抗型温度素子(RTD)の如き1以上の温度センサ107から1つ以上の信号を受け取り、この情報を用いて流動物質の特性を測定する。
図2は、本発明の実施形態に従ったメータ電子機器20を示す。メータ電子機器20は、インターフェイス201と処理システム203を含む。処理システム203は、格納システム204を含むことができる。格納システム204は、内部メモリを含むことができ、及び/又は外部メモリを含むことができる。メータ電子機器20は、駆動信号211を
生成し、該駆動信号211を経路110を介してドライバ104に供給する。更に、メータ電子機器20は、ピックオフ/速度センサ信号、ひずみ信号、光学的信号、温度信号ま
たは当該技術分野で知られている他の信号であるピックオフ105、105'からのセン
サ信号210を受信することができる。メータ電子機器20は、デンシトメータとして動作することができ、またはコリオリ流量計として動作することを含む質量流量計として動作することができる。メータ電子機器20は、他のタイプの振動センサ組立体としても動作してもよく、付与された特定の例は、本発明の範囲を限定するものではないことは理解されるべきである。メータ電子機器20は、流れ導管103A、103Bを流れる材料の流量特性を得るためにセンサ信号210を処理する。いくつかの実施形態では、メータ電子機器20は、例えば、1つまたは複数の抵抗温度検出器(RTD)センサまたは他の温度センサ107から温度信号212を受信する。
インターフェイス201は、夫々経路110、111、111'を介してドライバ10
4又はピックオフ105、105'からセンサ信号を受信することができる。インターフ
ェイス201は、任意のフォーマット、増幅、バッファリングなどの任意の必要な又は所望の信号調整を行うことができる。或いは、信号調整の一部又は全部を処理システム203で実行することができる。更にインターフェイス201はメータ電子機器20と外部デバイスとの間の通信を可能にする。インターフェイス201は、任意の形式の電子的、光
学的、または無線通信が可能である。
一実施形態にて、インターフェイス201は、デジタイザ202を含み、センサ信号はアナログセンサ信号である。デジタイザ202は、アナログセンサ信号をサンプリングしてデジタル化し、デジタル化されたセンサ信号を発生させることができる。デジタイザ202はまた、いかなる必要なデシメーションを実行することもでき、デジタルセンサ信号は、間引き(decimated)されて、必要とされる信号処理量を減らして処理時間を短縮する
処理システム203は、メータ電子機器20の動作を実行することができ、また、センサ組立体10からの流れ測定値を処理することができる。処理システム203は、これらには限定されないが、作動ルーチン(operating routine)213、密度ルーチン214、質量流量ルーチン215、流路調整ルーチン216の如き1つ以上の処理ルーチンを実行することができ、それによって流量測定値を処理して、流量計5を動作させ、所望の機能を実行し、そして任意の他の関連する計算を行うために最終的に使用される1つ以上の流
量測定値を生成する。
処理システム203は、汎用コンピュータ、マイクロプロセッシングシステム、論理回路、またはその他の汎用またはカスタマイズされた処理デバイスを含むことができる。処理システム203は、複数の処理デバイスに分散させることができる。処理システム203は、格納システム204のような任意の方式の一体型または独立した電子格納媒体を含むことができる。
処理システム203は、とりわけ、駆動信号211を生成するためにセンサ信号210を処理する。駆動信号211は、例えば図1の導管103のような関連する導管を振動させるためにドライバ104に供給される。
メータ電子機器20は当該技術分野で一般的に公知である他の種々の要素及び機能を含み得ることは理解されるべきである。これらの更なる特徴は、説明を簡潔にするために記載及び図面から省略されている。従って、本発明は、示され説明された特定の実施形態に限定されるべきではない。
一実施形態に従って、メータ電子機器20は、質量流量ルーチン215の一部として流量計5を通る流れを測定するように構成することができる。一実施形態に従って、メータ電子機器20はまた、温度信号212を測定し、測定された温度に基づいて計算された流量を調整することができる。
コリオリの力は、以下に例示の式によって計算される。
Figure 2020153999
この式は周波数(ω)で振動するシステムにて速度
Figure 2020153999
で動く質量(m)がコリオリの力(F)を生成することを示す。この式は演算の為に一定の質量を用いる。流量計5において、流量計を通って流れる質量は、典型的には、プロセス流体の安定した流れである。この流体の流れを所定の時間に単一の質量として考えるために、計算の目的用に、以下の式を使用することができる。
Figure 2020153999
ここで、ρはプロセス流体の密度、Aは流路の面積、dtは時間差である。いくつかの実施形態では、時間差は所定の時間量であってもよいことに留意されたい。以前の2つの方程式を組み合わせると、次の式が形成される。
Figure 2020153999
流体流れが振動に直交していると仮定すると、式は以下の如く簡略化される。
Figure 2020153999
流量計5について、上述の式による流量計の構成によって変更可能な唯一のパラメータは、流れ導管103の断面積(A)であることは、当業者には明らかであろう。以下により十分に記載するように、流路調整ルーチン216の一例として、導管103の数及び/又
は面積、あるいは導管103内または導管103なしの構造が調整されて、センサ組立体10内の流体の流れを調整する。要するに、一実施形態では、メータ電子機器20は、センサ組立体10の流れ領域の変調を仲介するのを手助けすることができる。以下により十分に記載するように、これは特定数の流れ導管が特定の時間に動的になることを可能にするだけで達成される。これにより、低流量の流体を正確に測定できるが、圧力損失が大きくなくても高い流量を処理できるため、ターンダウンを最大にする。動的な導管の流路領域/数を調整するのと併せて、流れ領域決定ルーチン218は、質量流量、密度流れ、及
び他の流量計5の値を計算するために利用され得る動的な導管103の決定された領域を格納する。
従来技術の流量計では、コリオリの力は、プロセス流体の速度の二乗で変化する。コリオリの力が小さくなるにつれて、流量を正確に決定することがより困難になり、最終的には特定の流量計の最大ターンダウンの流量を決定する。
図3に戻り、実施形態に従って、質量流量が減少するにつれて感度を増加させるべく、流れ導管103の断面積は、導管アレイ300に示すように、単一の大きな管の代わりに複数の小さな導管に変更される。導管アレイ300は複数の小さな導管302を提供する。プロセス流体がそこを通過できるようにする動的な小さな導管302の数は調整可能である。
質量流量が減少すると、個々の小さな導管302は、導管アレイ300の総断面積を減少させるためにブロックされ、このようにして、流体速度を増加させる。図3は、4つの小さな導管302を有する導管アレイ300を示す。これは単なる一例に過ぎず、小さな導管302の数は、図4に示すように、3つと少なくても良く、且つ数百または数千もの大きさであり得る。導管アレイ300は図4のように円筒形でも、図3のように矩形であってもよい。また、正方形、三角形、多角形、楕円形、湾曲、または当該技術分野で知られている他の任意の形状であるアレイが考えられる。同様に、小さな導管302は、円形、正方形、多角形、および当技術分野で知られている他の任意の形状であってもよい。
数百又は数千の小さな導管302を備える実施形態にて、流量計5は極めて断面積の範
囲が広く、極めて高いターンダウンを可能にする。
図3を続けて参照すると、これは、導管アレイ300の小さな導管302の面積の合計が、図示の標準的な流れ導管103と同じ流れ面積を有する例を示す。4本のみの小さな導管302があるので、各々の小さな導管302は、標準的な流れ導管103の流れ面積の25%を有する。質量流量が標準的な流れ導管103を有する従来技術の流量計を通って減少すると、質量流量をもはや確実に決定することができなくなるであろう。対照的に、流量計5の実施形態にて付与された個々の小さな導管302は、導管アレイ300の断面積を減少させるために、適切な所定の流量で閉じられる。これは、コリオリの力を増加させ、より高いターンダウン能力を可能にする。
再び、コリオリの力がプロセス流体の流速の二乗に比例して変化することに注目すると、任意のユニットを使用した例は、本実施形態による従来技術に対する改善を強調する。これは図5のグラフに示される。8ユニットの高い質量流量では、標準的な流れ導管103内のコリオリの力は、64ユニットに等しくなるように直接二乗される。同じ64個のユニットは、全ての4つの小さな導管302を通って流体が流れるようにする結果である、何故なら標準的な流れ導管103の面積は、結合された4つの小さな導管302の全ての面積と同じであるからである。しかし、質量流量が2ユニットに低下した場合、標準的な流れ導管103内のコリオリの力は4ユニットに過ぎない。導管アレイ300は調整可能であるので、4つの小さな導管302のうちの1つのみを流体の流れに開放することに
よって、流れ面積は標準的な流れ導管103のわずか25%であるので、流速は比較的高いままである。標準的な導管103の導管アレイ300における流れの割合は、グラフ400の上部に示されている。従って、小さな導管302のうちの1つだけを開いた導管アレイ300のこの例におけるコリオリの力は、16ユニットとなり、これは従来技術の流量計で生じるより400%大きい。
実施形態について考える別の方法は、ベータ比に関する。ベータ比は流量計の有効直径とパイプライン直径の比である。従来技術の流量計は、一般的には約0.8のベータ比を
有する。これは、精度、感度、圧力降下、及び流量の間の良好な妥協であることが判明している。このベータ比βは以下のように決定される。
β=d/D (5)
ここで、
β=ベータ比
D=入口パイプの直径、
d=導管の直径
である。
実施形態に従った流量計5は、本質的には、理想的な流量計の直径を維持することを可能にするベータ比が可変の流量計であり、更にベータ比が低くなることを可能にし、流量及び圧力低下が減少するにつれ、より敏感で正確な測定値を提供する。所与の最大流量の場合、導管の所定の最小断面積が、最適な流量計の性能のために必要とされ、これは更なる小さな導管302を開くことによって提供される。
一実施形態では、小さな導管302が開閉されると、流れ較正係数(FCF)が調整される
。従って、メータ電子機器20は、用いられる小さな導管302の数に基づいて適切なFCFを適用する。
図6-図8は、一実施形態に従ったセンサ組立体10の一部を示す。図6は、バルブ組
立体600を示す。バルブ組立体600はゲートバルブとして示されているが、小さな導管302を通る流体の制御を可能にする任意のタイプのバルブが考えられる。図7は図6の断面を示し、図8は流れ導管103A、103Bの断面の詳細図を示す。本実施形態において、各流れ導管103A、103Bは、図4に示されるものと同様の断面を有する導管ア
レイ300を備える。バルブ組立体600が開くと、プロセス流体にアクセス可能な小さな導管302の数が増加し、上述したようにより大きな流量に対応することができる。
図9及び図10は、一実施形態に従ったセンサ組立体10の一部を示す。バルブ組立体600は、ゲートバルブとして示されているが、導管103a、103b、103a '、1
03b'、103a "、103b"、103a "'、103b" "を通る流体の制御を可能にする
任意のタイプのバルブが考えられる。図10は、図9の導管103a、103b、103a '、103b'、103a "、103b"、103a ""および103b ""の断面を示す。この実施形態において、複数の流れ導管103a、103b、103a '、103b'、103a ''
、103b ''、103a ''、103b '' 'が存在する。一実施形態に従って、質量流量が減少する際に感度を増加させるために、1つまたは2つの大きな導管の代わりに複数の小さな導管の組み合わせを選択することによって、流れ導管103の断面積を変えることができる。図9及び図10に示す複数の導管103は、異なるサイズの断面の8本の導管を示す。流体が通過することが出来る動的な導管103の数は調節可能であり、バルブ組立体600によって制御される。質量流量が減少すると、個々の導管103は遮断されて、動的な導管103の総断面積を減少させて流体速度を増加させる。図9及び図10は、8本の導管103a、103b、103a '、103b'、103a "、103b"、103a ""および103b "を有する導管アレイ300を示す。これは一例に過ぎず、導管の数は、3
つだけでもよく、図4に示すように、数百または数千にも及ぶこともある。更に、図示されているように、導管は同じ断面積を有してもよく、または異なっていてもよい。
上述の本発明は、可変に調整された流れ導管に関連する様々なシステム及び方法を提供する。上述の様々な実施形態は、流量計、特にコリオリ流量計を指向しているが、本発明は、コリオリ流量計に限定されるべきではなく、本明細書で説明される方法は、コリオリ流量計の測定能力の一部を欠いている他のタイプの流量計または他の振動センサと共に利用され得ることを理解されたい。
上述の実施形態の詳細な記載は、本発明の技術範囲内に含まれるものとして本発明者が考えているすべての実施形態を完全に網羅するものではない。実際、当業者にとって明らかなように、上述の実施形態のうちの一部の構成要素をさまざまに組み合わせてまたは除去してさらなる実施形態を作成してもよいし、また、このようなさらなる実施形態も本発明の技術範囲内、教示範囲内に含まれる。また、当業者にとって明らかなように、本発明の技術、教示の範囲に含まれるさらなる実施形態を作成するために、上述の実施形態を全体的にまたは部分的に組み合わせてもよい。
発明の特定の実施形態が説明の目的のためにここに記述されているが、当業者が認識するように、様々な等価な修正は現在の記述の範囲内で可能である。ここに提供される開示は、他の振動式センサに適用可能であり、上記に記載され添付の図面に示された実施形態だけではない。従って、上記の実施形態の範囲は、添付の特許請求の範囲から決定されるべきである。

Claims (14)

  1. メータ電子機器(20)に接続され、少なくとも1つのドライバ(104)と少なくとも1つのピックオフ(105)を備えるセンサ組立体(10)を有する流量計であって、
    その中に複数の小さな導管(302)を有する導管アレイ(300)を備え、
    該複数の小さな導管はその中にプロセス流体を受け入れるように構成され、更に流量計(5)のベータ比を選択的に調整するように構成された、流量計(5)。
  2. 導管アレイ(300)は、3つから30個の小さな導管(302)を備える、請求項1に記載の流量計(5)。
  3. 導管アレイ(300)は、30個から300個の小さな導管(302)を備える、請求項1に記載の流量計(5)。
  4. 導管アレイ(300)は、30個から3000個の小さな導管(302)を備える、請求項1に記載の流量計(5)。
  5. 導管アレイ(300)は、プロセス流体流れが利用し得る小さな導管(302)の総面積を調整するように構成されている、請求項1に記載の流量計(5)。
  6. 複数の小さな導管(302)の各々は、その中を通る流れを付与するように選択可能である、請求項1又は5に記載の流量計(5)。
  7. 小さな導管の中を通るプロセス流体を受け入れるべく、複数の小さな導管(302)の一部に流体を行き来させるように構成されたバルブが配備されている、請求項1に記載の流量計(5)。
  8. 流量計を形成する方法であって、
    導管と少なくとも1つのドライバと導管に取り付けられた少なくとも1つのピックオフを備えたセンサ組立体を付与するステップを備え、
    導管はその中にプロセス流体を受け入れるように構成され、更に流量計のベータ比を選択的に調整するように構成された複数の小さな導管を備えた導管アレイである、方法。
  9. 導管アレイは、3つから30個の小さな導管を備える、請求項8に記載の方法。
  10. 導管アレイは、30個から300個の小さな導管を備える、請求項8に記載の方法。
  11. 導管アレイは、30個から3000個の小さな導管を備える、請求項8に記載の方法。
  12. プロセス流体流れが利用し得る小さな導管の総面積を調整するステップを含む、請求項8に記載の方法。
  13. 複数の小さな導管の各々は、その中を通る流れを付与するように選択可能である、請求項8又は12に記載の方法。
  14. 小さな導管の中を通るプロセス流体を受け入れるべく、複数の小さな導管の一部に流体を行き来させるように構成されたバルブを配備するステップを含む、請求項8に記載の方法。
JP2020102136A 2020-06-12 2020-06-12 流量計のターンダウンを最大にする方法及び関連する装置 Pending JP2020153999A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102136A JP2020153999A (ja) 2020-06-12 2020-06-12 流量計のターンダウンを最大にする方法及び関連する装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102136A JP2020153999A (ja) 2020-06-12 2020-06-12 流量計のターンダウンを最大にする方法及び関連する装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018549844A Division JP6932137B2 (ja) 2016-03-25 2016-03-25 流量計のターンダウンを最大にする方法及び関連する装置

Publications (1)

Publication Number Publication Date
JP2020153999A true JP2020153999A (ja) 2020-09-24

Family

ID=72558776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102136A Pending JP2020153999A (ja) 2020-06-12 2020-06-12 流量計のターンダウンを最大にする方法及び関連する装置

Country Status (1)

Country Link
JP (1) JP2020153999A (ja)

Similar Documents

Publication Publication Date Title
JP5060557B2 (ja) 3つのピックオフ・センサを持つ流量計
US11085808B2 (en) Determining a zero offset of a vibratory meter at a process condition
KR101802380B1 (ko) 진동계를 통한 유체 정압을 결정 및 제어하기 위한 방법 및 장치
KR101277312B1 (ko) 복수 유동 도관 유량계
KR101018401B1 (ko) 강성 계수 또는 질량 계수 중 하나 이상을 결정하기 위한방법 및 계측 전자장치
KR102042009B1 (ko) 진동 유량계에서 가변 제로 알고리즘을 적용하기 위한 장치 및 관련된 방법
US10557735B2 (en) Compact flowmeter with novel flow tube configuration and related method
JP2020519882A (ja) 粘性効果について測定された流量の修正
JP6932137B2 (ja) 流量計のターンダウンを最大にする方法及び関連する装置
JP2020153999A (ja) 流量計のターンダウンを最大にする方法及び関連する装置
CN108603778B (zh) 用于振动流量计量器的压力补偿及相关方法
CN111263880B (zh) 紧凑的振动型流量计
US10627276B2 (en) Asymmetric flowmeter and related method
JP2017146313A (ja) 多重流れ導管流量計
JP6345150B2 (ja) 多重流れ導管流量計
WO2023239355A1 (en) Coriolis flowmeter with compensation for an external magnetic field
JP2020165990A (ja) 非対称の流量計及び関連する方法
WO2023239353A1 (en) Coriolis flowmeter with detection of an external magnetic field
KR20090051226A (ko) 복수 유동 도관 유량계
JP2013224967A (ja) 多重流れ導管流量計

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201