JP2018523091A - 流体試験セル用ライトガイド - Google Patents

流体試験セル用ライトガイド Download PDF

Info

Publication number
JP2018523091A
JP2018523091A JP2017556961A JP2017556961A JP2018523091A JP 2018523091 A JP2018523091 A JP 2018523091A JP 2017556961 A JP2017556961 A JP 2017556961A JP 2017556961 A JP2017556961 A JP 2017556961A JP 2018523091 A JP2018523091 A JP 2018523091A
Authority
JP
Japan
Prior art keywords
fluid
slot
cassette
test
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017556961A
Other languages
English (en)
Other versions
JP6466598B2 (ja
Inventor
ウェーバー,ティモシー・エル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2018523091A publication Critical patent/JP2018523091A/ja
Application granted granted Critical
Publication of JP6466598B2 publication Critical patent/JP6466598B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/11Filling or emptying of cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0325Cells for testing reactions, e.g. containing reagents
    • G01N2021/0328Arrangement of two or more cells having different functions for the measurement of reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7783Transmission, loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/024Modular construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0873Using optically integrated constructions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一例においては、複数の試験セルがスロットの長さに沿って配置される。各試験セルは、スロットから延びるマイクロ流体チャネルと、スロットからチャネルに流体を移送するためのポンプと、流体が通過してチャネルから出る排出ノズルと、ノズルを介してチャネルから流体を排出する流体排出装置とフォトセンサとを備える。ライトガイドは、外部光源から光を受光して、その光を試験セルのマイクロ流体チャネルのすべてに順次透過させるように設けられる。
【選択図】図1

Description

例えば血液などの流体の様々な異なる属性を感知するための感知デバイスとしては、現在、様々なデバイスが入手可能である。しかしながら、そのような感知デバイスの多くは、大型で複雑かつ高価である。
例示的な流体試験デバイスの模式図である。 図1の流体試験デバイスを用いた流体サンプルの例示的な試験方法のフロー図である。 他の例示的な流体試験デバイスの模式図である。 他の例示的な流体試験デバイスの模式図である。 他の例示的な流体試験デバイスの模式図である。 例示的な流体試験システムの模式図である。 例示的なカセットの斜視図である。 図8Aは、図7のカセットの外装を変更して得られるカセットの断面図である。図8Bは、図8Aのカセットの斜視図であり、一部を省略し、一部を透過的に示している。図8Cは、図8Aのカセットの上面図であり、一部を省略し、一部を透過的に示している。 図9Aは、例示的なマイクロ流体カセット及び漏斗を支持する例示的なカセット基板の上面図である。図9Bは、図9Aのカセット基板の底面図である。 図9Aのカセット基板の一部を示す部分断面図である。 図7及び図8Aのカセットのマイクロ流体チップの他の例の上面図である。 図11のマイクロ流体チップの例示的な感知領域を示す拡大部分上面図である。
図1は、例示的な流体試験デバイス20の模式図である。後述するように、流体試験デバイス20は別個の試験セルを複数備える。複数の試験セルは、単一の供給源から複数の流体サンプルを受け入れ、精度の向上のために各サンプルに対して複数の計測を行うことや、各サンプルに対して複数の異なる計測を行うことを支援するものである。流体試験デバイス20は、本体22と、スロット26と、試験セル30A,30B(まとめて試験セル30と呼ぶ)と、ライトガイド40とを備える。本体22は、内部にスロット26が形成された構造を有する。一実施態様では、本体22はシリコンなどの基板を有する回路チップを備えており、回路チップの上に、スロット26と、電子コンポーネントと、導電体又は電気トレースとが設けられている。一実施態様では、本体22は、直接的又は間接的にコンピューティングデバイスに着脱可能に接続されるカセットの一部として構成されている。このコンピューティングデバイスは、セル30の動作の制御及びセル30からのデータの分析を行うものである。
スロット26は、各セル30の入口に接続されている流路で構成される。スロット26は流体サンプル投入口に接続されており、試験対象又は分析対象の流体は流体サンプル投入口からスロット26に供給され、スロット26によって流体サンプルの少なくとも一部がセル30に供給される。本開示の目的上、「流体」という用語は、細胞、粒子又は他の生体物質などの分析対象物を含む流体、又はそのような分析物を担持する流体を指す。
各セル30は、スロット26の長さに沿って配置される互いに別体のユニットである。尚、ここでの長さは、スロット26の主要寸法に沿った長さである。スロット26から流体サンプルが供給されると、セル30はそれぞれ別個の計測または試験を実施する。図では、デバイス20が2つのセル30を備えるように示されているが、他の実施態様においては、デバイス20は、スロット26の一側面に沿って2つ以上のセル30を備えることができる。又、図では、デバイス20が、スロット26の一側面上にセル30を備えるように示されているが、他の実施態様においては、スロット26の他方の側面上にも追加のセル30を配置することができる。
図1に示すように、各セル30は、マイクロ流体チャネル44と、ポンプ46と、排出通路48と、流体排出装置50と、フォトセンサ52とを備える。マイクロ流体チャネル44は、スロット26から延びるかあるいは分岐している流路で構成される。一実施態様では、複数のセル30間でマイクロ流体チャネル44のサイズはほぼ同じである。別の実施態様においては、複数のセル30間でマイクロ流体チャネル44のサイズは異なっており、異なる断面積や異なるサイズの狭窄部を有する。このような実施態様においては、チャネル44のサイズが小さくなると、大き過ぎる細胞又は粒子がスロット26から流入するのが抑止されるため、小さいサイズのチャネルが、そのチャネルに対応する特定の試験セル30が感知する細胞又は分子の種類又はサイズを規定するフィルタとして機能する。
ポンプ46は、マイクロ流体チャネル44内に配置されるか、あるいはマイクロ流体チャネル44に沿って配置され、スロット26からチャネル44に流体を圧送又は移送するデバイスで構成される。一実施態様では、ポンプ46は、バブルジェット型慣性ポンプ(bubble jet inertial pump)で構成される。このような実施態様においては、バブルジェット型慣性ポンプは、初期膨張する気泡を生成して、隣接する流体を気泡から引き離すか又は吹き飛ばす。バブルジェットポンプの一例としては、サーマルインクジェット(TIJ)ポンプなどのマイクロヒータが挙げられる。TIJポンプは、電流が流れる少なくとも1つの電気抵抗を利用することができる。電流が少なくとも1つの抵抗を流れることにより発生した熱によって、同抵抗に近接する流体の気化又は核生成が引き起されて気泡が発生する。この気泡は、初期に発生、膨張するものであり、初期の段階で隣接する流体を気泡から吹き飛ばすことができる。バブルジェット型慣性ポンプは、スロット26に近接し且つ排出通路48から離れた位置でチャネル44に沿って配置することができる。換言すれば、スロット26と排出通路48の間又はスロット26と他の流体相互作用コンポーネントの間の総流路長の半分未満の距離だけ、慣性ポンプはスロット26から離間している。慣性ポンプは、2つの貯留槽を接続し且つこれらの貯留槽に比べて狭いチャネル44内の慣性や惰性を利用して、流体流を生成することができる。本開示の目的上、「慣性ポンプ」という用語は、貯留槽を接続し且つこれらの貯留槽に比べて狭いチャネル内において、初期の段階で流体を両方向に送り出すポンプデバイスを指しているが、このポンプデバイスが2つの貯留槽間において非対称な位置に配置されているため、流体は遠い方の貯留槽に向かって一方向に送り出される。
別の実施態様では、ポンプ46を他のポンプデバイスで構成してもよい。例えば、別の実施態様では、ポンプ46を、印加電流に応じて変形又は振動してダイアフラムを動かし、これにより隣接する流体をスロット26からマイクロ流体チャネル44に移送するピエゾ抵抗型慣性ポンプで構成してもよい。さらに別の実施態様では、ポンプ46を、マイクロ流体チャネル44及び排出通路48と流体連通する他のマイクロ流体ポンプデバイスで構成してもよい。
排出通路48は流体導管で構成され、この流体導管を通って流体サンプルはチャネル44から排出される。一実施態様では、排出通路48によって流体は廃棄貯留槽に誘導又は案内されるか、あるいはスロット26以外のその他の行先に誘導又は案内される。さらに別の実施態様では、排出通路48によって流体は他のマイクロ流体チャネル又はさらなる別の試験デバイスの通路に誘導又は案内される。さらに他の実施態様では、排出通路48によって流体はトレイ又は仕切られた容器の中に誘導又は案内されるか、あるいは受け取った流体と反応してその流体の特徴を示す試験ストリップ上に誘導又は案内される。一実施態様では、排出通路48は、流体をチャネル44から一方向に放出するノズルを備える。別の実施態様では、排出通路48は、流体を選択的に案内又は放出するバルブを備える。
流体排出装置50は、排出通路48を介してチャネル44から流体サンプルを選択的に移送、排出するデバイスで構成される。一実施態様では、流体排出装置50は、流体の核生成を引き起こして気泡を生成することによって排出通路48から流体を強制的に吐出又は放出するサーマルインクジェット抵抗などのドロップオンデマンド型の流体放出デバイスで構成される。別の実施態様では、流体排出装置50は、印加電流に応じて変形又は振動してダイアフラムを動かし、これにより隣接する流体を排出通路48から放出するピエゾ抵抗型のデバイスなどのドロップオンデマンド型の流体放出デバイスで構成される。さらに他の実施態様では、流体排出装置50を、排出通路48から流体を選択的且つ強制的に放出する他のデバイスで構成することもできる。
フォトセンサ52は、マイクロ流体チャネル44内に配置されるか、あるいはマイクロ流体チャネル44に沿って配置される光学センサで構成される。フォトセンサ52は、チャネル44内の分析対象物、分析対象物を含有する溶液、又はその両方と光との相互作用を感知する。分析対象物又は溶液と光との相互作用を感知すると、フォトセンサ52はこの相互作用に応じて変化する電気信号を出力する。電気信号は分析されて、光と相互作用した流体サンプルの特徴を示す。図示しないが、ポンプ46、流体排出装置50及びフォトセンサ52はいずれもそれぞれ、本体22と一体形成されるか又は本体22に支持された導電トレースを介して、電気信号の送信、受信、又は送受信を行う。
ライトガイド40は、外部光源から光を受光して、光又は電磁放射線を各試験セル30のマイクロ流体チャネルに順次透過させて、透過光がセルを次々に通過するようにするための光案内誘導構造を備える。図示の例では、ライトガイド40がそのようなマイクロ流体チャネル44のすべてを横切って延在するように、各試験セル30は十分に相互整列されており、これにより、光又は電磁放射線を各セル30に供給して各セル30に収容された流体と相互作用させて、フォトセンサ52によって検出させるようにしている。1つのライトガイド40で複数のセル30のすべてに対して電磁放射線又は光を供給しているため、チップ又は他の構造本体22上の領域の使用面積が抑えられ、デバイス20をより小型化することができる。さらに、単一のライトガイド40を用いて別個の試験セル30のすべてに光を供給することによって、デバイス20の複雑性やコストも低減することができる。
図示の例では、ライトガイド40は、各試験セル30のマイクロ流体チャネル44を横切って直線的に延在する導波パイプ又は光パイプで構成される。これにより、デバイス20はより小型化される。他の実施態様においては、ライトガイド40は、流体試験セル30を次々に通過するように延在していれば、蛇行形状に延びていても、あるいは屈曲形状又は弓形状に延びていてもよい。
図2は、流体試験デバイス20の例示的な使用方法100のフロー図である。ブロック102に示すように、まず、細胞や粒子などの試験対象の分析対象物を含有する流体サンプルが、本体22のスロット26に入れられる。すると、ブロック104に示すように、スロット26内の流体サンプルは、各試験セル30のポンプ46によってそれぞれのセル30のマイクロ流体チャネル44に圧送される。次に、ブロック106に示すように、ライトガイド40によって、外部光源からの光が各セル30のチャネル44を順次横断して透過する。そして、ブロック108に示すように、フォトセンサ52が、各マイクロ流体チャネル44内の流体サンプルと透過光との相互作用を感知する。フォトセンサ52は感知した相互作用に応じて変化する電気信号を出力する。この電気信号は、各セル30のチャネル44内の流体サンプルの特徴を特定するために分析される。その後、ブロック110に示すように、流体排出装置50は、感知・分析を終えた流体サンプルを、各マイクロ流体チャネル44から排出通路48を介して放出する。一実施態様では、流体はスロット26以外の行先に放出される。
図3は、流体試験デバイス20の例示的な実施態様である流体試験デバイス220の模式図である。流体試験セル30A,30Bが、流体タグ付け器254A,254B(まとめて流体タグ付け器254と呼ぶ)をさらに備える点を除けば、流体試験デバイス220は流体試験デバイス20と同様である。デバイス220において、デバイス20のコンポーネント又は要素と対応する他のコンポーネント又は要素には同一の番号を付している。
流体タグ付け器254は、マイクロ流体チャネル44に沿って配置され、対象となる特定の細胞又は分子にマーカーを付けるためにタグ付けするデバイスで構成することができる。図示の例では、タグ付け器254は、フォトセンサ52の上流、すなわちスロット26に隣接するマイクロ流体チャネル44の入口とフォトセンサ52の間に配置される。一実施態様では、流体タグ付け器254は、対象の分子を蛍光粉末でタグ付けする。このようにタグ付けすることによって、フォトセンサ52の測定を支援することができる。すなわち、ライトガイド40によって透過させる光によって蛍光粉末すなわちタグを励起させて、フォトセンサ52が容易に検出できるようにする。一実施態様では、各タグ付け器254は、異なる分子、粒子又は細胞に異なる蛍光マーカーで異なるタグを付けることにより、スロット26に供給される同一の初期サンプルに対して同時に複数の異なる試験を実施することを支援する。別の実施態様では、タグ付け器254は同一の蛍光マーカーでタグ付けする。一実施態様では、マイクロ流体チャネル44内の流体サンプルを放出前にポンプ46で濃縮して、タグ付けされた分子を感知や分析に十分な量又は十分な数だけ収集することを支援する。
図4は、流体試験デバイス20の他の実施態様である流体試験デバイス320の模式図である。セル30が、検出器256A,256B(まとめて検出器256と呼ぶ)をさらに備える点を除けば、流体試験デバイス320は流体試験デバイス220と同様である。検出器256は、ポンプ46と排出通路48の間の位置であって、マイクロ流体チャネル44内あるいはマイクロ流体チャネル44に沿った位置に配置されるデバイスで構成される。図示の例では、検出器256は、ポンプ46とフォトセンサ52の間に配置されている。一実施態様では、検出器256は、細胞、分子又は粒子の数を計測するデバイスで構成される。別の実施態様では、検出器256は、そのような細胞、分子又は粒子のサイズを感知又は検出するデバイスで構成される。一実施態様では、検出器256をインピーダンスセンサで構成してもよい。インピーダンスセンサは、流体サンプルが、マイクロ流体チャネル44内の電界領域を通過又は横断して流れることで引き起こされる電気インピーダンスの変化を感知することによって、マイクロ流体チャネル44内の細胞、分子又は粒子の数を計測するか又はサイズを特定するものである。
図5は、流体試験デバイス20の他の実施態様である流体試験デバイス420の模式図である。流体試験デバイス420が、カセットインターフェース423に取り外し可能に接続されるかあるいは取り付けられる札又はカセットの一部として設けられる点を除けば、流体試験デバイス420は流体試験デバイス320と同様である。図示の例では、デバイス420は、電気コネクタ427と、光入力429とをさらに備える。電気コネクタ427は、カセットインターフェース423と電気的に接触している。電気コネクタ427は、デバイス420に電力供給したり、デバイス420とインターフェース423の間で電気的データ信号を送受信したりするための電気的な接続を提供するものである。図示の例では、電気コネクタ427は、インターフェース423の対応ポート431内にそれぞれ受容されるピンで構成される。ピン427がポート431と嵌まり合うことにより、光入力429とカセットインターフェース423の光出力433の位置が揃えられる。光出力433は、ライトガイド40に光を供給して、各セル30を透過させるものである。
デバイス420は、ポート431に差し込まれる電気コネクタ427を利用して光出力433と光入力429の位置を揃えるように図示されているが、他の実施態様においては、他の整合メカニズムを利用して光出力433とデバイス420の光入力429の位置を揃えることができる。例えば、他の実施態様においては、カセットインターフェース423は、デバイス420の対応する戻り止め部又はポートに着脱可能に受容されるか又は着脱可能に差し込まれる部分を備えてもよい。一実施態様では、カセットインターフェース423は、コンピューティングデバイスにそれ自体が固定的又は取り外し可能に接続されるドングルで構成される。別の実施態様では、カセットインターフェース423はコンピューティングデバイスの一部として設けられる。
図6は、例示的なマイクロ流体診断/試験システム1000を示す図である。システム1000は、携帯型の電子デバイスによって駆動されて血液サンプルなどの流体サンプルを分析するインピーダンスベースのシステムで構成される。流体のインピーダンスと記載する場合には、その流体のインピーダンス、その流体中の任意の分析対象物のインピーダンス、又はその両方を指す。システム1000は、マイクロ流体カセット1010と、カセットインターフェース1320と、モバイル分析器1330と、リモート分析器1350とを備えており、図では、システム1000の一部を模式的に示している。マイクロ流体カセット1010は、全体としては、流体サンプルを受け取って、流体サンプルの特徴を感知し、これに基づく信号を出力するものである。インターフェース1320は、モバイル分析器1330とカセット1010の間を仲介する。図示の例では、インターフェース1320は、ケーブル1322によってモバイル分析器1330に取り外し可能に接続されるドングルで構成される。ケーブル1322は、ポート1324でインターフェース1320に取り外し可能又は着脱可能に接続され、ポート1325でモバイル分析器1330に取り外し可能に接続される。インターフェース1320は、カセット1010に着脱可能に接続して、モバイル分析器1330からカセット1010への送電によってカセット1010上のポンプ及びセンサを動作させることを支援するものである。さらにインターフェース1320は、モバイル分析器1330による、カセット1010上のポンプ、流体排出装置、タグ付け器、検出器、センサの制御を支援するものでもある。
モバイル分析器1330は、インターフェース1320を介してカセット1010の動作を制御し、カセット1010が生成する、試験対象の流体サンプルに関するデータを受信する。モバイル分析器1330は、データを分析して出力を生成する。モバイル分析器1330は又、より詳細な分析や処理のために、処理後のデータを有線又は無線のネットワーク1353を介してリモート分析器1350にさらに送信する。図示の例では、モバイル分析器1330は、スマートフォン、ラップトップ型コンピュータ、ノート型コンピュータ、タブレット型コンピュータなどの携帯型電子デバイスで構成される。これにより、システム1000は、血液サンプルなどの流体サンプルを試験するための携帯型の診断プラットフォームとなる。
図7〜12は、マイクロ流体カセット1010の詳細図である。図7〜9Bに示すように、カセット1010は、カセット基板1012と、カセット本体1014と、膜1015と、マイクロ流体チップ1030とを備える。図9A及び9Bに示すカセット基板1012は、流体チップ1030が内部又は上部に取り付けられるパネル又はプラットフォームで構成される。カセット基板1012は、マイクロ流体チップ1030の電気コネクタからカセット基板1012の端部の電気コネクタ1016まで延在する導電線又は導電トレース1015を備える。図7に示すように、電気コネクタ1016は、外装のカセット本体1014から露出している。図6に示すように、露出した電気コネクタ1016は、インターフェース1320に挿入されてインターフェース1320内の対応する電気コネクタと電気的に接触するように位置合わせされることにより、マイクロ流体チップ1030とカセットインターフェース1320の間の電気的な接続を提供するものである。
カセット本体1014は、カセット基板1012及びマイクロ流体チップ1030を覆って保護するために、カセット基板1012の一部を囲っている。カセット本体1014は、カセット1010を手で取り扱い易くするものであり、カセット1010をインターフェース1320との取り外し可能な相互接続状態の位置に手で合わせるのを支援する。さらにカセット本体1014は、流体サンプル又は血液サンプルの採取中、受け取った流体サンプルをマイクロ流体チップ1030に送る間、ヒトの指との密封性を保ちながらヒトの指を正しい位置にセットさせるものでもある。
図示の例では、カセット本体1014は、つまみ部1017と、サンプル受入口1018と、滞留通路1020と、サンプル保持チャンバ1021と、チップ漏斗1022と、通気孔1023と、排出貯留槽1024とを備える。つまみ部1017は、カセット1010の電気コネクタ1016が配置されている側の端部とは反対側に位置する、本体1014の薄肉部で構成される。つまみ部1017は、カセット1010をカセットインターフェース1320(図6に示す)の受容ポート1204に接続又は挿入する際の、カセット1010の把持を容易にするものである。図示の例では、つまみ部1017は、2インチ以下の幅Wと、2インチ以下の長さLと、0.5インチ以下の厚さを有する。
サンプル受入口1018は、血液サンプルなどの流体サンプルを受ける開口で構成することができる。図示の例では、サンプル受入口1018は口部1025を有しており、口部1025は、つまみ部1017とカセット基板1012の露出部の間に延在する隆起プラットフォーム又はマウンド1026の上面1027に形成されている。マウンド1026は、サンプル受入口1018の位置を明確に示して、カセット1010の直感的な使用に寄与するものである。一実施態様では、上面1027はヒトの指の下側の凸面にフィットまたはほぼフィットする曲面形状又は凹面形状を有し、サンプルを採取するヒトの指の下側の面に対して高い密封性を持つ密封部を成している。毛細管現象によって指からサンプルとなる血液が吸い上げられる。一実施態様では、血液サンプルは5〜10μLである。他の実施態様においては、例えば、図8Aに示すように、入口1018を別の位置に配置してもよく、マウンド1026を省略してもよい。図8Aに示すカセット1010においては、図8Aに示すカセット本体1014でマウンド1026が省略されており、カセット本体1014の外形が図7に示す本体1014とは若干異なっているが、図7及び8Aに示す残りの要素又はコンポーネントは、いずれも図7に示すカセット本体と図8Aに示すカセット本体の両方に含まれている。
図8A〜8Cに示すように、滞留通路1020は、サンプル投入口1018とサンプル保持チャンバ1021の間に延在する流体チャネル、流体導管、流体チューブ又は他の流体通路で構成される。サンプル投入口1018から投入され受け取ったサンプルが滞留通路1020を通過又は流過してチップ1030に到達するまでの時間を長くするため、滞留通路1020は、サンプル投入口1018とサンプル保持チャンバ1021の間を蛇行形状すなわち曲がりくねった間接的又は非直線的な形状で延びている。滞留通路1020は、試験中の流体サンプルと流体試薬がチップ1030に到達する前に混ざり合うだけの体積を有している。図示の例では、滞留通路1020は、カセット本体1014の投入口1018とチップ1030の間の空間内で巻き回された円形状又は螺旋状の通路で構成された回り道形状を有している。別の実施態様では、滞留通路1020は、サンプル投入口1018とチップ1030の間の空間内において、ねじれて曲がったり、ジグザグに進んだり、くねったり、蛇行したり、及び/又はジグザグ状に曲がりくねったりしている。
図示の例では、滞留通路1020は、まずマイクロ流体チップ1030に向かって下方向(重力方向)に延び、続いてマイクロ流体チップ1030から離れる上方向(重力方向とは反対の方向)に延びる。例えば、図8A及び8Bに示すように、滞留通路1020の上流部1028は、サンプル保持チャンバ1021に隣接し直結する下流端部1029より鉛直下側に延在する。投入口1018からの流体は、端部1029の前に上流部でまず受けるが、物理的には端部1029の方が鉛直方向で投入口1018により近い位置にある。これにより、上流部から流れてきた流体は、重力に逆らって下流すなわち端部1029に向かって流れる。後述するように、いくつかの実施態様においては、滞留通路1020には、試験中の流体サンプル又は血液サンプルと反応する試薬1025が収容されているが、状況によっては、この反応によって残渣又は副産物が生成される場合がある。例えば、血液などの流体サンプルが溶解されると溶解細胞又は溶解物が生じる。しかしながら、滞留通路1020の端部1029が滞留通路1020の上流部1028よりも上に延在しているため、流体サンプルと試薬1025との反応の結果生じたそのような残渣又は副産物は、沈殿して上流部1028内に捕捉されるか又は滞留する。換言すれば、そのような残渣又は副産物のうち滞留通路1020を通ってマイクロ流体チップ1030まで到達する量が低減される。他の実施態様においては、滞留通路1020は、サンプル保持チャンバ1021に至るその全経路にわたって下方向に延びている。
サンプル保持チャンバ1021は、試験中の流体サンプル又は血液サンプルをチップ1030より上側で回収するだけのチャンバすなわち容積を備える。チップ漏斗1022は、より面積の大きいチャンバ1021の領域から、より面積の小さいチップ1030の流体受入領域に向かって漏斗状になるようにチップ1030に向かってすぼまった漏斗デバイスで構成される。図示の例では、サンプル投入口1018と、滞留通路1020と、サンプル保持チャンバ1021と、チップ漏斗1022とで内部流体調製ゾーンが形成される。流体サンプル又は血液サンプルは、チップ1030に流入する前に内部流体調製ゾーン内において試薬と混合することができる。一実施態様では、流体調製ゾーンの総容積は20〜250μLである。他の実施態様においては、このような内部空洞によって形成される流体調製ゾーンが他の容積を有していてもよい。
図8Aにおいて斑点模様で示すように、一実施態様では、試験対象のサンプル流体を入口1018に投入する前のカセット1010は予め流体試薬1025で満たされている。流体試薬1025は、試験対象の流体と反応する組成物を含有することができ、マイクロ流体チップ1030の持つ、試験対象の流体の選択された特徴又は選択された複数の特徴からなる群を分析する性能を強化するものである。一実施態様では、流体試薬1025は、試験中の流体を希釈するための組成物を含有する。一実施態様では、流体試薬1025は、試験中の流体又は血液を溶解する組成物を含有する。さらに他の実施態様においては、流体試薬1025は、試験中の流体において選択された部分のタグ付けを支援する組成物を含有する。例えば、一実施態様では、流体試薬1025は、磁気ビーズ、金ビーズ又はラテックスビーズを含有する。他の実施態様においては、流体試薬1025は、マイクロ流体チップ1030がサンプル流体を受け取って処理や分析を行う前に、サンプル投入口1018に入れたサンプル流体に相互作用又は変化を及ぼす、試験対象のサンプル流体とは異なる他の液体組成物、固体組成物又は液体を含有する。
複数の通気孔1023は、サンプル保持チャンバ1021とカセット本体1014の外部の間を連通する通路で構成することができる。図7に示す例では、通気孔1023は、マウンド1026の側面を貫通して延在する。通気孔1023のサイズは、毛細管現象によってサンプル保持チャンバ1021内に流体を保持できる程度に小さく、且つ保持チャンバ1021を流体で満たしていくに従って保持チャンバ1021内の空気を逃がすことができる程度に大きい。一実施態様では、各通気孔は、50〜200μmの開口すなわち直径を有する。
排出貯留槽1024は、チップ1030から排出された流体を受けるように配置された、本体1014内の空洞又はチャンバで構成することができる。排出貯留槽1024は、チップ1030を通過させて処理や試験を終えた流体を収容するためのものである。同じ流体に対して試験を複数回行うことがないよう、処理や試験を終えた流体は排出貯留槽1024で受けることができる。図示の例では、排出貯留槽1024は、本体1014内のチップ1030より下側に形成される。すなわち、チップ漏斗1022と排出貯留槽1024の間にチップ1030を挟むように、排出貯留槽1024は、チップ漏斗1022及びサンプル保持チャンバ1021の側とは反対側のチップ1030の側面に面して形成される。一実施態様では、排出貯留槽1024は本体1014内に完全に収容されて、(本体1014を切断する、穿孔する、あるいは他の方法で恒久的に破壊するなどして本体1014を破壊又は破損しない限り)アクセスできない状態とされる。これにより、処理又は試験を終えた流体を保管したり、後でカセット1010を廃棄することによって衛生的に廃棄処分したりするために、本体1014内に閉じ込めておくことができる。さらに他の実施態様においては、排出貯留槽1024はドア又はセプタムからアクセス可能とされる。この場合、処理又は試験を終えた流体を貯留槽1024から引き出して、試験を終えた流体をさらに詳細に分析したり、試験を終えた流体を別の容器で保管したり、カセット1010の連続使用を容易にするべく貯留槽1024を空にしたりすることができる。
いくつかの実施態様においては、排出貯留槽1024が省略される。そのような実施態様においては、流体サンプル又は血液サンプルのうちマイクロ流体チップ1030による試験や処理を終えた分は、マイクロ流体チップ1030の入口側又は入口部に還流される。例えば、一実施態様では、マイクロ流体チップ1030はマイクロ流体貯留槽を備える。マイクロ流体貯留槽は、マイクロ流体チップ1030が備える1つ以上のセンサの入力側でチップ漏斗1022から流体を受ける。流体サンプル又は血液サンプルのうち試験を終えた分は、マイクロ流体チップ1030の1つ以上のセンサの入力側にあるマイクロ流体貯留槽に還流される。
膜1015は、液体を透過しない無孔質のパネル、フィルム又は他の材料層で構成することができ、入口1018の口部1025を完全に横切るように延在して口部1025を完全に覆うように、接着又はその他の方法で所定の位置に固定される。一実施態様では、膜1015は不正開封の痕跡を示すものとして機能し、カセット1010の内部容積やその所期の内容物が汚されたり、いたずらされたりしていないかを明らかにする。カセット1010のサンプル調製ゾーンを予め上述の試薬1025などの試薬で満たしている実施態様においては、膜1015は、流体調製ゾーンの内部、すなわち入口1018から滞留通路1020、流体保持チャンバ1021、チップ漏斗1022までの内部に、流体試薬1025を封じ込めている。いくつかの実施態様においては、膜1015はさらに通気孔1023も横切って延在する。いくつかの実施態様においては、膜1015はさらに気体又は空気に対しても不透過性を有する。
図示の例では、少なくともサンプル投入口1018に流体サンプルを入れようとする時までは、流体試薬1025は膜1015によってカセット1010内に封じ込められるかあるいは閉じ込められる。この時、流体サンプルを投入口1018から投入できるように、膜1015は剥がされるか、破かれるか、又は穴を開けられるかする。他の実施態様においては、膜1015はセプタムを備えることができ、この場合、ニードルをセプタムに差し込んで投入口1018から流体サンプル又は血液サンプルが入れられる。膜1015によって、カセット1010の一部として流体試薬1025を予め同梱しておくことが容易になり、これにより後で試験対象の流体サンプルを入れた時に流体試薬1025をすぐに使える状態にしておくことができる。例えば、第1の流体試薬1025を収容する第1のカセット1010が、第1の流体サンプルの第1の特徴の試験用に予め設計すなわち指定され、第1の流体試薬1025とは異なる第2の流体試薬1025を収容する第2のカセット1010が、第2の流体サンプルの第2の特徴の試験用に予め設計すなわち指定されている。換言すれば、内部に収容する流体試薬1025の種類や量を変化させることにより、異なる特徴の試験に特化した異なるカセット1010を設計することができる。
図9A,9B及び10は、マイクロ流体チップ1030を示す図である。図9Aは、カセット基板1012、チップ漏斗1022及びマイクロ流体チップ1030の上側を示している。図9Aでは、マイクロ流体チップ1030はチップ漏斗1022とカセット基板1012の間に挟まれている。図9Bは、カセット基板1012及びマイクロ流体チップ1030の下側を示している。図10は、チップ漏斗1022の下方におけるマイクロ流体チップ1030の断面図である。図11に示すように、マイクロ流体チップ1030は、シリコンなどの材料を含んでいるか、あるいは、そのような材料を原料に形成される基板1032を備える。マイクロ流体チップ1030は、マイクロ流体貯留槽1034を備える。マイクロ流体貯留槽1034は、流体サンプル(一部の試験では試薬を添加した流体サンプル)をチップ1030で受けるために、チップ漏斗1022の下方に延在するように基板1032内に形成されている。図示の例では、マイクロ流体貯留槽は、1mm未満、公称0.5mmの幅Wを有する口部すなわち上部開口を有する。また、貯留槽1034は、0.5mm〜1mm、公称0.7mmの深さDを有する。後述するように、マイクロ流体チップ1030は、領域1033において、チップ1030の底部に沿って、ポンプ及びセンサを備える。
図11及び図12は、マイクロ流体チップ1030の例示的な実施態様であるマイクロ流体チップ1130の拡大図である。マイクロ流体チップ1130は、流体圧送機能やインピーダンス感知機能を低電力プラットフォーム上に統合している。図11に示すように、マイクロ流体チップ1130は、スロット1126を内部に形成した基板1032を備える。さらに、マイクロ流体チップ1130は複数の感知領域1135を備え、各感知領域が、1つのポンプを共有する一対の試験セル1230A,1230B(まとめて試験セル1230と呼ぶ)を提供する。図11及び12に示すように、複数の感知領域1135のすべての試験セル1230に対して、単一のライトガイド1240から光が供給されている。
図12は、図11に示すチップ1130の複数の感知領域1135の1つを示す拡大図である。図12に示すように、感知領域1135は、マイクロ流体チャネル1144、ポンプ1146、分岐チャネル1246A,1246B、排出通路1248A,1248B、流体排出装置1250A,1250B、フォトセンサ1252A,1252B、タグ付け器1254A,1254B、及び検出器1256A,1256Bを備える。マイクロ流体チャネル1144は、基板1032内に延在するか又は基板1032内に形成された、スロット1126からの流体サンプルを流すための通路で構成される。
ポンプ1146は上述のポンプ46と同様である。ポンプ1146は、スロット1126からの流体を各分岐チャネル1246に圧送又は移送する。一実施態様では、ポンプ1146はバブルジェット型慣性ポンプで構成される。他の実施態様においては、ポンプ1146を他のマイクロ流体ポンプデバイスで構成してもよい。
分岐チャネル1246A、排出通路1248A、流体排出装置1250A、フォトセンサ1252A、タグ付け器1254A及び検出器1256Aによって、第1の試験セル1230Aが形成される。同様に、分岐チャネル1246B、排出通路1248B、流体排出装置1250B、フォトセンサ1252B、タグ付け器1254B及び検出器1256Bによって、第2の試験セル1230Bが形成される。
分岐チャネル1246A,1246Bは、マイクロ流体チャネル1144からそれぞれ流体排出通路1248A,1248Bまで延びている。各分岐チャネル1246A,1246Bは、狭小部、喉部又は狭窄部1260を備え、流体はこの狭窄部1260を流れる。本開示の目的上、「狭窄部(constriction)」は、少なくとも1つの寸法における何らかの狭小を意味する。1つの「狭窄部」は、(A)チャネルの反対側に向かって突出する突出部を有するチャネルの一側面、(B)チャネルの反対側に向かって突出する少なくとも1つの突出部を有するチャネルの両側面(これら複数の突出部は、チャネルに沿って相互に整列して配置されてよく、ずらして配置されてもよい)、又は(C)チャネルの両壁の間に突出して、チャネル内を流れることができるものとできないものを区別するための少なくとも1つの柱状部(column or pillar)のいずれかである。他の実施態様においては、狭窄部1260を省略することもできる。
一実施態様では、分岐チャネル1246は互いに類似している。別の実施態様では、分岐チャネル1246の形状及び寸法は互いに異なっており、これにより異なる流体流特性を持たせている。例えば、両チャネル1246において狭窄部1260又は他の領域のサイズを互いに異ならせることによって、一方のチャネル1246の方が他方のチャネル1246よりも第1のサイズの粒子又は細胞が若干でもより流れやすくなるようにすることができる。これらの2つのチャネル1246は、それぞれチャネル1144の両側から分岐しているため、チャネル1144から直接流体を受け取っており、その手前で流体が他の何らかの部分に吸い上げられることはない。
排出通路1248は流体導管で構成することができ、この流体導管を通って流体又は流体サンプルは各分岐チャネル1246から排出される。一実施態様では、排出通路1248によって流体は排出貯留槽1024(図8Aに示す)に誘導又は案内される。さらに別の実施態様では、排出通路1248によって流体は他のマイクロ流体チャネル又はさらなる別の試験デバイスの通路に誘導又は案内される。さらに他の実施態様では、排出通路1248によって流体はトレイ又は仕切られた容器の中、又は試験ストリップ上に誘導又は案内される。一実施態様では、各排出通路1248は、流体を対応するチャネル1246からそれぞれ一方向に放出するノズルを備える。別の実施態様では、各排出通路1248は、流体を選択的に案内又は放出するバルブを備える。
流体排出装置1250は、排出通路1248を介してそれぞれのチャネル1246から流体を選択的に移送、排出するデバイスで構成することができる。一実施態様では、流体排出装置1250は、流体の核生成を引き起こして気泡を生成することによって排出通路1248から流体を強制的に吐出又は放出するサーマルインクジェット抵抗などのドロップオンデマンド型の流体放出デバイスで構成される。別の実施態様では、流体排出装置1250は、印加電流に応じて変形又は振動してダイアフラムを動かし、これにより隣接する流体を排出通路1248から放出するピエゾ抵抗型のデバイスなどのドロップオンデマンド型の流体放出デバイスで構成される。さらに他の実施態様では、流体排出装置1250は、排出通路1248から流体を選択的且つ強制的に放出する他のデバイスで構成することもできる。
フォトセンサ1252は、関連付けられた分岐チャネル1246内に配置されるか、あるいは関連付けられた分岐チャネル1246に沿って配置される光学センサで構成される。各フォトセンサ1252は、各チャネル1246内の分析対象物、分析対象物を含有する溶液、又はその両方と光との相互作用を感知する。分析対象物又は溶液と光との相互作用を感知すると、フォトセンサ1252はこの相互作用に応じて変化する電気信号を出力することができる。電気信号は分析されて、光と相互作用した流体サンプルの特徴を示す。
流体タグ付け器1254は、分岐チャネル1246に沿って配置され、対象となる特定の細胞又は分子にマーカーを付けるためにタグ付けするデバイスで構成することができる。図示の例では、タグ付け器1254は、フォトセンサ1252の上流、すなわち各分岐チャネル1246の入口とフォトセンサ1252の間に配置される。一実施態様では、流体タグ付け器1254は、対象の分子を蛍光粉末でタグ付けする。このようにタグ付けすることによって、フォトセンサ1252の測定を支援することができる。すなわち、ライトガイド1240によって透過させる光によって蛍光粉末すなわちタグを励起させて、フォトセンサ1252が容易に検出できるようにする。一実施態様では、各タグ付け器1254は、異なる分子、粒子又は細胞に異なる蛍光マーカーで異なるタグを付けることにより、スロット1126に供給される同一の初期サンプルに対して同時に複数の試験を実施することを支援する。別の実施態様では、タグ付け器1254は同一の蛍光マーカーでタグ付けする。一実施態様では、分岐チャネル1246内の流体サンプルを放出前にポンプ1246で濃縮して、タグ付けされた分子を感知や分析に十分な量又は十分な数だけ収集することを支援する。いくつかの実施態様においては、タグ付け器1254を省略することもできる。
各検出器1256は、狭窄部1260内の基板1032上に形成される微細加工デバイスで構成することができる。一実施態様では、各検出器1256は、狭窄部1260を通過する流体、そのような流体内の細胞や粒子、又はその両方の特性、パラメータ又は特徴を示す電気信号を出力するかあるいはそのような電気信号を変化させるように設計されている微細デバイスで構成される。一実施態様では、各検出器1256は、検出器1256を通過する流体が含有する細胞又は粒子の特性、数又はその両方を検出する細胞/粒子センサで構成される。例えば、一実施態様では、検出器1256は、異なるサイズの粒子又は細胞が狭窄部1260を流れて狭窄部1260内の電場あるいは狭窄部1260を横断する電場のインピーダンスに影響を与えることによって引き起こされる電気インピーダンスの変化に基づいた信号を出力する電気センサで構成される。一実施態様では、センサ(検出器1256)は、狭窄部1260内のチャネル1246の表面内部に形成されるか、あるいは同表面内に一体形成されて帯電する高電位側電極と低電位側電極とを備える。一実施態様では、低電位側電極は電気的に接地されている。別の実施態様では、低電位側電極は低電位側浮遊電極で構成される。本開示の目的上、低電位側「浮遊」電極という用語は、接続アドミタンスがいずれもゼロである電極を指す。換言すれば、浮遊電極は非接続状態に有り、他の回路に接続されることも接地されることもない。いくつかの実施態様においては、検出器1256を省略することもできる。
ライトガイド1240は、インターフェース1320から光を受光して、光又は電磁放射線を各試験セル1230のマイクロ流体チャネルに順次透過させるための光案内誘導構造を備える。図示の例では、カセット1010をインターフェース1320のポート1204に挿入すると、インターフェース1320の光源がカセット1010の各ライトガイド1240と位置合わせされる。図示の例では、ライトガイド1240がそのような分岐チャネル1246のすべてを横切って延在するように、各試験セル1230は十分に相互整列されており、これにより、光又は電磁放射線を各セル1230に供給して各セル1230に収容された流体と相互作用させて、フォトセンサ1252によって検出させるようにしている。1つのライトガイド1240で複数のセル1230のすべてに対して電磁放射線又は光を供給しているため、チップ1130上の領域の使用面積が抑えられ、チップ1130及びカセット1010をより小型化することができる。さらに、単一のライトガイド1240を用いて別個の試験セル1230のすべてに光を供給することによって、カセット1010の複雑性やコストも低減することができる。
図示の例では、ライトガイド1240は、各試験セル1230の関連付けられた分岐チャネル1246を横切って直線的に延在する導波パイプ又は光パイプで構成される。他の実施態様においては、ライトガイド1240は、流体試験セル1230を次々に通過するように延在していれば、蛇行形状に延びていても、あるいは屈曲形状又は弓形状に延びていてもよい。
以上、例示的な実施態様を参照して本開示を説明したが、当業者であれば、特許請求している趣旨及び範囲から逸脱することなく形態や細部を改変できることを理解するであろう。例えば、それぞれが1つ以上の利益をもたらす1つ以上の特徴を含むものとして異なる例示的な実施態様を記載している場合があるが、上述の例示的な実施態様あるいは他の代替的な実施態様において、上述の特徴を相互に入れ換えたりあるいは異なる組み合わせとしたりすることができることが企図されている。本開示の技術は比較的複雑であるため、本技術の改変のすべてを予見することはできない。例示的な実施態様を参照して説明しかつ添付の特許請求の範囲に示す本開示は、可能な限り広義に取るべきことが明白に意図されている。例えば、特に明記しない限り、特定の要素を単数形で記載する請求項は、同特定要素の複数形も包含するものである。

Claims (15)

  1. スロットを形成した本体と、
    前記スロットの長さに沿って配置される複数の試験セルであって、各試験セルが
    前記スロットから延びるマイクロ流体チャネルと、
    前記スロットから前記チャネルに流体を移送するためのポンプと、
    流体が通過して前記チャネルから出る排出通路と、
    前記排出通路を介して前記チャネルから流体を排出する流体排出装置と、
    フォトセンサとを備える試験セルと、
    外部光源から光を受光して、その光を前記試験セルの前記マイクロ流体チャネルのすべてに順次透過させるためのライトガイドと
    を備える装置。
  2. 前記ライトガイドが前記マイクロ流体チャネルを横切って延在している、請求項1に記載の装置。
  3. 前記試験セルが前記スロットの一側面上に配置されている、請求項1に記載の装置。
  4. 前記ポンプがサーマルインクジェット抵抗型慣性ポンプで構成される、請求項1に記載の装置。
  5. 前記流体排出装置がサーマルインクジェット抵抗を備える、請求項1に記載の装置。
  6. 前記セルのそれぞれが流体タグ付け器をさらに備える、請求項1に記載の装置。
  7. 前記流体タグ付け器のそれぞれが異なるタグ材でタグ付けを行う、請求項6に記載の装置。
  8. カセットインターフェースに着脱可能に接続するためのプラグ部を有する本体と、
    試験中の流体を受けるための前記本体内のスロットと、
    前記スロットの長さに沿って配置される複数の試験セルであって、各試験セルが
    前記スロットから延びるマイクロ流体チャネルと、
    前記スロットから前記チャネルに流体を移送するためのポンプと、
    流体が通過して前記チャネルから出る排出ノズルと、
    前記ノズルを介して前記チャネルから流体を排出する流体排出装置と
    フォトセンサとを備える試験セルと、
    前記プラグ部に接し且つ前記プラグ部から延在するライトガイドであって、前記カセットインターフェースから光を受光して、その光を前記試験セルの前記マイクロ流体チャネルのすべてに順次透過させるためのライトガイドと
    を備える流体試験カセット。
  9. 流体試験カセットを前記カセットインターフェースに電気的に接続するための複数の電気接点を前記プラグ部上にさらに備える、請求項8に記載の流体試験カセット。
  10. 前記プラグ部が前記カセットインターフェースのポートに着脱可能に受容される、請求項8に記載の流体試験カセット。
  11. 前記ライトガイドが、前記カセットインターフェースからの光を前記試験セルのそれぞれの前記マイクロ流体チャネルに順次透過させる、請求項8に記載の流体試験カセット。
  12. 前記ポンプがサーマルインクジェット抵抗型慣性ポンプで構成される、請求項8に記載の流体試験カセット。
  13. 前記流体排出装置がサーマルインクジェット抵抗を備える、請求項8に記載の流体試験カセット。
  14. 流体サンプルを本体のスロットに入れることと、
    前記スロットの長さに沿って配置される複数の試験セルの複数のチャネルのそれぞれに前記スロット内の前記流体サンプルの一部を圧送することと、
    外部光源からの光を前記複数のチャネルのすべてを順次横切るように透過させることと、
    前記複数のチャネルのそれぞれの内部にある前記流体サンプルの前記一部と前記透過光との相互作用を感知することと、
    前記流体サンプルの前記一部を前記複数のチャネルのそれぞれから放出することと
    を含む方法。
  15. 前記複数のチャネルのそれぞれの内部にある前記流体サンプルの前記一部に含まれる細胞の数を特定することと、
    前記複数のチャネルのそれぞれの内部にある前記流体サンプルの前記一部に含まれる細胞の前記特定した数に基づいて、前記スロットから前記流体サンプルの追加流体を前記複数のチャネルのそれぞれに圧送することと
    をさらに含む請求項14に記載の方法。
JP2017556961A 2015-07-24 2015-07-24 流体試験セル用ライトガイド Expired - Fee Related JP6466598B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/041896 WO2017018977A1 (en) 2015-07-24 2015-07-24 Light guide for fluid testing cells

Publications (2)

Publication Number Publication Date
JP2018523091A true JP2018523091A (ja) 2018-08-16
JP6466598B2 JP6466598B2 (ja) 2019-02-06

Family

ID=57884934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017556961A Expired - Fee Related JP6466598B2 (ja) 2015-07-24 2015-07-24 流体試験セル用ライトガイド

Country Status (6)

Country Link
US (1) US10401280B2 (ja)
EP (1) EP3325944B1 (ja)
JP (1) JP6466598B2 (ja)
CN (1) CN107567582B (ja)
TW (1) TWI605793B (ja)
WO (1) WO2017018977A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018977A1 (en) * 2015-07-24 2017-02-02 Hewlett-Packard Development Company, L.P. Light guide for fluid testing cells
US11058312B2 (en) * 2016-12-02 2021-07-13 Sensor Electronic Technology, Inc. Fluorescent sensing for evaluating fluid flow
EP3655759A1 (en) 2017-07-19 2020-05-27 Fundació Institut de Ciències Fotòniques A hand-held microfluidic detection device
US11230692B2 (en) 2018-03-27 2022-01-25 Hewlett-Packard Development Company, L.P. Particle separation and analysis
JP7075500B2 (ja) * 2018-04-03 2022-05-25 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. 異なるサイズの細胞を移送するための微小流体チャネル
US20220081667A1 (en) * 2019-01-18 2022-03-17 Hewlett-Packard Development Company, L.P. Blood circulation for culture growth
EP3941632B1 (en) 2019-07-01 2024-02-28 Hewlett-Packard Development Company, L.P. Fluid ejection controllers to pivotally hold firing boards

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136958A (en) * 1979-04-14 1980-10-25 Olympus Optical Co Ltd Automatic analyzer
WO2006004176A1 (ja) * 2004-07-01 2006-01-12 Tama-Tlo Corporation 検体分析素子
JP2007064742A (ja) * 2005-08-30 2007-03-15 Nec Corp 化学チップおよび接続装置
US20080213821A1 (en) * 2004-05-06 2008-09-04 Nanyang Technological University Microfluidic Cell Sorter System
WO2011044453A2 (en) * 2009-10-08 2011-04-14 Ge Healthcare Limited Multi-stream spectrophotometer module
JP2012063159A (ja) * 2010-09-14 2012-03-29 Arkray Inc 分析装置、分析方法および収容部材
US20120087618A1 (en) * 2010-10-12 2012-04-12 Butte Manish J Microfluidic waveguide detector
JP2013518278A (ja) * 2010-01-28 2013-05-20 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 光学フローセル検出器
JP2013217916A (ja) * 2012-03-16 2013-10-24 Toyo Univ 分析チップ、分析装置、分析チップの製造方法および分析チップの使用方法
JP2014521110A (ja) * 2011-07-22 2014-08-25 モレキュラー・ビジョン・リミテッド アッセイ実行用光学デバイス
US20140373606A1 (en) * 2012-02-03 2014-12-25 Agilent Technologies, Inc. Micromachined flow cell with freestanding fluidic tube
JP2016520823A (ja) * 2013-04-30 2016-07-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. マイクロ流体センシング装置及びシステム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818580A (en) 1996-03-12 1998-10-06 Rutgers, The State University Simultaneous multisample analysis and apparatus therefor
US7244622B2 (en) 1996-04-03 2007-07-17 Applera Corporation Device and method for multiple analyte detection
US6908770B1 (en) 1998-07-16 2005-06-21 Board Of Regents, The University Of Texas System Fluid based analysis of multiple analytes by a sensor array
US6283718B1 (en) 1999-01-28 2001-09-04 John Hopkins University Bubble based micropump
US6942771B1 (en) 1999-04-21 2005-09-13 Clinical Micro Sensors, Inc. Microfluidic systems in the electrochemical detection of target analytes
US8129179B2 (en) 2002-08-27 2012-03-06 Vanderbilt University Bioreactors with an array of chambers and a common feed line
WO2006098772A2 (en) 2004-10-13 2006-09-21 U.S. Genomics, Inc. Systems and methods for measurement optimization
AU2007324494B2 (en) 2006-11-22 2013-08-22 Clondiag Gmbh Methods for optically detecting multiple analytes in a liquid sample with a compressible microfluidic device
DE102007021544A1 (de) 2007-05-08 2008-11-13 Siemens Ag Messeinheit und Verfahren zur optischen Untersuchung einer Flüssigkeit auf eine Analytkonzentration
WO2009006456A1 (en) * 2007-06-29 2009-01-08 The Trustees Of Columbia University Microfluidic device for counting biological particles
WO2009032640A2 (en) * 2007-08-28 2009-03-12 Thermo Niton Analyzers Llc Contactless memory information storage for sample analysis and hand-holdable analyzer for use therewith
WO2010104497A1 (en) * 2009-03-07 2010-09-16 Hewlett-Packard Development Company, L.P. Analyzer and method for sensing using the same
US9551650B2 (en) * 2009-06-01 2017-01-24 Cornell University Integrated optofluidic system using microspheres
US8467061B2 (en) 2010-02-19 2013-06-18 Pacific Biosciences Of California, Inc. Integrated analytical system and method
TW201217783A (en) 2010-09-15 2012-05-01 Mbio Diagnostics Inc System and method for detecting multiple molecules in one assay
NL2007149C2 (nl) * 2011-07-20 2013-01-22 Lely Patent Nv Sensorsysteem, sensorinrichting daarmee, en melkdierbehandelingsinrichting daarmee.
WO2017018977A1 (en) * 2015-07-24 2017-02-02 Hewlett-Packard Development Company, L.P. Light guide for fluid testing cells

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136958A (en) * 1979-04-14 1980-10-25 Olympus Optical Co Ltd Automatic analyzer
US20080213821A1 (en) * 2004-05-06 2008-09-04 Nanyang Technological University Microfluidic Cell Sorter System
WO2006004176A1 (ja) * 2004-07-01 2006-01-12 Tama-Tlo Corporation 検体分析素子
JP2007064742A (ja) * 2005-08-30 2007-03-15 Nec Corp 化学チップおよび接続装置
WO2011044440A2 (en) * 2009-10-08 2011-04-14 Ge Healthcare Limited Multi-stream high-pressure liquid chromatography module
WO2011044474A1 (en) * 2009-10-08 2011-04-14 Ge Healthcare Limited Chromatography components
WO2011044453A2 (en) * 2009-10-08 2011-04-14 Ge Healthcare Limited Multi-stream spectrophotometer module
JP2013518278A (ja) * 2010-01-28 2013-05-20 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 光学フローセル検出器
JP2012063159A (ja) * 2010-09-14 2012-03-29 Arkray Inc 分析装置、分析方法および収容部材
US20120087618A1 (en) * 2010-10-12 2012-04-12 Butte Manish J Microfluidic waveguide detector
JP2014521110A (ja) * 2011-07-22 2014-08-25 モレキュラー・ビジョン・リミテッド アッセイ実行用光学デバイス
US20140373606A1 (en) * 2012-02-03 2014-12-25 Agilent Technologies, Inc. Micromachined flow cell with freestanding fluidic tube
JP2013217916A (ja) * 2012-03-16 2013-10-24 Toyo Univ 分析チップ、分析装置、分析チップの製造方法および分析チップの使用方法
JP2016520823A (ja) * 2013-04-30 2016-07-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. マイクロ流体センシング装置及びシステム

Also Published As

Publication number Publication date
WO2017018977A1 (en) 2017-02-02
US10401280B2 (en) 2019-09-03
TWI605793B (zh) 2017-11-21
CN107567582B (zh) 2020-10-13
JP6466598B2 (ja) 2019-02-06
CN107567582A (zh) 2018-01-09
TW201711636A (en) 2017-04-01
EP3325944B1 (en) 2019-12-11
EP3325944A4 (en) 2019-02-20
EP3325944A1 (en) 2018-05-30
US20180113068A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6466598B2 (ja) 流体試験セル用ライトガイド
CN105163661B (zh) 护理点传感器系统
JP5367019B2 (ja) アッセイカートリッジ及び同アッセイカートリッジを用いた方法
JP4249983B2 (ja) 分析装置
JP6460431B2 (ja) 流体試験チップ及びカセット
US10092900B2 (en) Plurality of reaction chambers in a test cartridge
US20100288941A1 (en) Fluorescence-based pipette instrument
WO2020177774A1 (zh) 一种多通道微流体凝血检测芯片
KR102651768B1 (ko) 분석을 실시하기 위한 유체 시스템
US9347909B2 (en) Sample-retainable biosensor test strip
WO2019118989A1 (en) Optical reader for analyte testing
CN110959117A (zh) 用于基于gmr的生物标志物检测的系统和方法
US20160103096A1 (en) Biochemical test chip and method for manufacturing the same
JP5432862B2 (ja) 体液分析器具
US20200030791A1 (en) Multimode microfluidic data routing
CN107209197A (zh) 诊断芯片
WO2018068377A1 (zh) 一种液体样本导流装置及含有该导流装置的检测设备
CN110100166A (zh) 用于测试样品的分析系统及方法
JP6986878B2 (ja) 流体分析カートリッジおよびこれを含む流体分析カートリッジアセンブリー
JP7412420B2 (ja) 試料装填カートリッジ
CN114008462A (zh) 试剂容器和使用方法
JP2012042424A (ja) 体液分析器具
JP2003130867A (ja) 血液のサンプリング方法およびこれを用いた血球計数方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190109

R150 Certificate of patent or registration of utility model

Ref document number: 6466598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees