JP2018204477A - 圧縮着火式エンジン - Google Patents

圧縮着火式エンジン Download PDF

Info

Publication number
JP2018204477A
JP2018204477A JP2017108788A JP2017108788A JP2018204477A JP 2018204477 A JP2018204477 A JP 2018204477A JP 2017108788 A JP2017108788 A JP 2017108788A JP 2017108788 A JP2017108788 A JP 2017108788A JP 2018204477 A JP2018204477 A JP 2018204477A
Authority
JP
Japan
Prior art keywords
fuel
air
combustion chamber
engine
compression ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017108788A
Other languages
English (en)
Other versions
JP6648734B2 (ja
Inventor
人見 光夫
Mitsuo Hitomi
光夫 人見
山本 博之
Hiroyuki Yamamoto
博之 山本
山本 寿英
Toshihide Yamamoto
寿英 山本
英史 藤本
Hidefumi Fujimoto
英史 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017108788A priority Critical patent/JP6648734B2/ja
Publication of JP2018204477A publication Critical patent/JP2018204477A/ja
Application granted granted Critical
Publication of JP6648734B2 publication Critical patent/JP6648734B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】エミッションの低減が可能で良好な運転が行える圧縮着火式エンジンを提供する。
【解決手段】ナフサを供給する第1燃料供給部19と、ディーゼル燃料を供給する第2燃料供給部18と、吸気弁21の開閉時期を調整する吸気動弁部71と、これらを制御する制御部10とを備える。負荷の低い低負荷領域では、少なくともナフサが供給され、かつ、空燃比が14.5〜15.0の範囲内となるように、吸気遅閉じ制御が行われる。
【選択図】図7

Description

ここに開示する技術は、圧縮着火式エンジンに関する。
特許文献1には、ディーゼルエンジンが記載されている。このディーゼルエンジンは、高コストな選択還元型触媒システムを省略することを目的として、三元触媒を用いた排気ガス浄化システムを備えている。三元触媒を用いて排気ガスを浄化するために、このディーゼルエンジンは、ディーゼル燃料を燃焼室内に噴射する噴射孔の大きさと噴射圧力とを調整する。これにより、燃焼室内の全体にディーゼル燃料を拡散させて理論空燃比の混合気を形成すると共に、その混合気を圧縮着火によって燃焼させる。
特許文献2には、二次燃料としてのガソリンを、気化器を通じて吸気通路に導入すると共に、燃焼室内にディーゼル燃料を噴射するディーゼルエンジンが記載されている。特許文献2には、ディーゼル燃料とガソリンとの割合として、総燃料量に対しディーゼル燃料を50%以上にすることが記載されている。
特許文献3には、気化したナフサを、吸気通路を通じて燃焼室内に供給すると共に、液体ナフサを、燃焼室内に噴射するディーゼルエンジンが記載されている。特許文献3には、吸気通路を通じて燃焼室内に供給するナフサの量は、総燃料量に対し50%を超えないようにすることが記載されている。
特許第5620715号公報 英国特許第714672号明細書 英国特許第821725号明細書
特許文献1に記載されたディーゼルエンジンは、燃焼室内の全体にディーゼル燃料を拡散することによって、理論空燃比の混合気の形成及び燃焼を行う。しかしながら、ディーゼル燃料は気化し難いため、特許文献1に記載されたディーゼルエンジンでは、燃焼室内に、燃料濃度が局所的に濃くなる部分が発生してしまうという問題がある。燃料濃度が局所的に濃くなると、燃焼室内において煤及び一酸化炭素(CO)が発生してしまう。
ここに開示する技術はかかる点に鑑みてなされたものであり、その目的とするところは、煤及びCOの発生等、エミッションの低減が可能で、良好な運転が実現できる圧縮着火式エンジンを提供することにある。
具体的に、ここに開示する技術は、圧縮着火式エンジンに係る。この圧縮着火式エンジンは、燃焼室を有するエンジン本体と、前記燃焼室に、第1燃料を供給するよう構成された第1燃料供給部と、圧縮着火に至る圧力及び温度の少なくとも一方が前記第1燃料よりも低くかつ、前記第1燃料よりも気化しにくい第2燃料を、前記燃焼室に供給するよう構成された第2燃料供給部と、前記燃焼室に連通する吸気ポートの開口を開閉する吸気弁、及び当該吸気弁の開閉時期を調整する吸気動弁部と、少なくとも前記第1燃料供給部、前記第2燃料供給部、及び前記吸気動弁部を制御する制御部と、を備える。
前記エンジン本体が運転する負荷の低い低負荷領域では、前記第1燃料及び前記第2燃料の各燃料のうち、少なくとも前記第1燃料が前記燃焼室に供給される。そして、前記低負荷領域では、空燃比が14.5〜15.0の範囲内となるように、前記吸気弁の開弁期間における吸気下死点から閉時期までの閉じ側期間が、前記エンジン本体の高負荷領域よりも長くされる。
ここでの「空燃比」は、燃焼室に充填される燃料量に対する空気量の比率、いわゆる「A/F」である。
この構成によると、圧縮着火式エンジンは、第1燃料供給部と第2燃料供給部とを備えている。燃焼室には、第1燃料と第2燃料との二種類の燃料が供給される。第2燃料は、圧縮着火に至る圧力及び温度の少なくとも一方が第1燃料よりも低くかつ、第1燃料よりも気化しにくい。前記第1燃料は、前記第2燃料に対して沸点が低い燃料である、としてもよい。
すなわち、第1燃料は、第2燃料よりも気化しやすいという燃料特性を有している。対して、第2燃料は、第1燃料よりも圧縮着火しやすいという燃料特性を有している。従って、燃料特性がこのように異なる燃料を組み合わせ、それぞれの特性を活かすことで、エンジンの運転領域の広い範囲において適切な燃焼が実現できる。
また、低負荷領域では、高負荷領域に比べると、燃焼に必要な空気量も少ない。そのため、吸気行程では、燃焼室に供給する空気量が少なくなるように調整される。空気量の調整は、スロットル弁の開度を絞ることでも可能であるが、低負荷領域では、ポンプ損失の影響が大きいという不利がある。
それに対し、この圧縮着火式エンジンでは、吸気弁を、吸気下死点よりも遅角側、つまり圧縮行程中に閉じるようにしている。そうすれば、スロットル弁を絞らなくても、燃焼室に供給する空気量を少なくする調整が可能であり、前述したような不利はない。吸気弁を圧縮行程中に閉じることで、有効圧縮比が小さくなるので、更にポンプ損失を低減できる。
更に、この圧縮着火式エンジンでは、吸気弁の開弁期間のうち、吸気下死点から閉時期までの閉じ側期間(圧縮行程に位置する期間)が、低負荷領域では相対的に長くされるので、更に有効圧縮比が小さくなり、ポンプ損失も、よりいっそう低減される。
なお、圧縮行程で吸気弁を長く開くことで、混合気の一部が燃焼室から吸気ポートに戻る場合があり得る。その場合、混合気が不均質であると、閉弁後の燃焼室内の混合気の濃度がばらついて、燃焼が不安定になるおそれがある。それに対し、圧縮行程で吸気弁を長く開いても、第1燃料は気化しやすく、燃焼室の中で均質な混合気を形成できるので、そのようなばらつきが抑制でき、安定した燃焼が行える。混合気の均質化により、煤やCOの発生等、エミッションの低減も図れる。
加えて、空燃比が、実用的な理論空燃比に相当する14.5〜15.0の範囲に調整すれば、三元触媒の利用によって排気ガスを効果的に浄化できるようになり、エミッションを効果的に低減できる。
前記燃焼室の中で着火可能に構成されると共に、前記制御部によって制御される着火アシスト装置、を更に備え、前記着火アシスト装置が前記低負荷領域で作動する、としてもよい。
低負荷領域は、燃焼エネルギーが小さいので、燃焼室内の温度が高くなりにくい。それに加え、有効圧縮比が小さくされるので、圧縮着火しにくくなり、燃焼が不安定になりやすい。従って、燃焼室の中で着火可能な着火アシスト装置を設け、そのような低負荷領域で、その着火アシスト装置を作動させて混合気を着火し、強制的に燃焼させることで、安定した燃焼が行える。
この場合、前記着火アシスト装置が作動する時には、前記第1燃料が前記燃焼室に供給されるようになっており、当該第1燃料と共に前記第2燃料が供給される場合には、当該第2燃料よりも当該第1燃料の方が多く供給される、としてもよい。
第1燃料は、第2燃料に比べて気化しやすいので、燃焼室内に、より均質な混合気を形成できる。均質な混合気に着火することで、容易に着火でき、均質な燃焼が行える。その結果、煤やCOの発生が抑制されるので、エミッションの低減が図れる。そのような第1燃料を第2燃料よりも多く供給することで、より安定した燃焼が行え、エミッションの低減を促進できる。
前記燃焼室から排出される排気ガスをEGRガスとして、当該燃焼室に還流するEGRガス還流部を更に備えると共に、前記エンジン本体の排気通路に三元触媒が配設され、前記制御部が、前記EGRガス還流部を制御して、排気空燃比が理論空燃比となるように前記エンジン本体に要求される負荷の増加に応じて、前記EGRガスの量を減少させる、としてもよい。
三元触媒によれば、排気ガスのCO、HC及びNOxを浄化することができる。従って、エミッション性能がさらに向上する。尚、14.5〜15.0の空燃比範囲は、三元触媒の浄化ウインドウに相当するが、排気ガスの空燃比を理論空燃比にすれば、三元触媒の浄化はより確実なものとなる。
前記制御部が、前記吸気動弁部を制御して、前記エンジン本体に要求される負荷の増加に応じて、前記吸気弁の開弁期間を前記吸気下死点の側に進角させる、としてもよい。
エンジン本体に要求される負荷が小さいと、ポンプ損失が相対的に大きくなって、燃費への影響が大きいが、エンジン本体に要求される負荷が増加すれば、ポンプ損失が相対的に小さくなって燃費への影響も小さくなる。従って、負荷が増大すれば、それに応じて圧縮行程中での吸気弁の開弁期間を短くし、有効圧縮比を大きくする。そうすることで、圧縮時における燃焼室の温度及び圧力の高まりによって圧縮着火がしやすくなり、圧縮着火による安定した燃焼が行えるようになる。
前記第1燃料はナフサを含み、前記第2燃料はディーゼル燃料を含む、としてもよい。
ナフサは、ディーゼル燃料と比較して気化しやすいため、燃焼室内に均質な混合気を形成する上で有利である。ディーゼル燃料は、ナフサと比較して着火しやすいため、混合気は、適切なタイミングで圧縮着火することができる。また、ナフサは、比較的安価であるため、ナフサの利用は、経済性に優れる。
前記第1燃料はガソリンを含み、前記第2燃料はディーゼル燃料を含む、としてもよい。
前記と同様に、燃焼室内に均質な混合気を形成することができると共に、混合気を、適切なタイミングで圧縮着火させることができる。なお、従来のディーゼルエンジンでは、過給能力を高めて燃焼時の空燃比をリーンとし、煤やCO、NOxの低減を図る必要があったものの、本構成では、第1燃料の供給により、混合気の空燃比を14.5〜15.0の範囲とすることができ、三元触媒との組み合わせによって、従来のように過給に頼らなくても、煤やCOの低減とともに、NOxの低減を図ることができる。よって、過給機を装着しない安価なエンジンを提供することもできる。
以上説明したように、前記の圧縮着火式エンジンによると、圧縮着火式エンジンのエミッション性能が向上すると共に、良好な運転が行える。
図1は、エンジンシステムの構成を例示する概略図である。 図2は、エンジンシステムの制御に関する構成を例示するブロック図である。 図3は、燃料噴射タイミングを例示する図である。 図4は、エンジンシステムの好適な運転領域を例示する図である。 図5は、吸気遅閉じ制御を説明する図である。 図6は、エンジンシステムの制御の具体例を示すフローチャートである。 図7は、エンジンシステムの主な諸元を示す図である。 図8は、実施例に係る、図示平均有効圧(IMEP)と、図示燃料消費率(gross ISFC)との関係を例示する図である。 図9は、実施例に係る、図示平均有効圧(IMEP)と、NOx排出量との関係を例示する図である。
以下、圧縮着火式エンジンの実施形態を図面に基づいて詳細に説明する。以下の説明は、圧縮着火式エンジンの一例である。
図1は、エンジンシステムの概略構成を示している。図2は、エンジンシステムの制御に係る構成を例示している。エンジンシステムは、四輪車両に搭載される。ここに開示するエンジンシステムは、例えば大型トラック等の大型車両に適している。但し、ここに開示するエンジンシステムは、車両の大きさに関わらず、様々な四輪車両に広く適用することが可能である。
エンジンシステムは、圧縮着火式エンジンとしてのディーゼルエンジン1を備えている。ディーゼルエンジン1が運転することによって、車両が進む。
このエンジンシステムは、ディーゼルエンジン1に、ディーゼル燃料(つまり、軽油又は軽油を主成分とした燃料)と、ディーゼル燃料とは特性が相違する異種燃料とを供給するよう構成されている。異種燃料は、圧縮着火に至る圧力及び温度の少なくとも一方がディーゼル燃料よりも高くかつ、沸点がディーゼル燃料よりも低い特性を有している。異種燃料は、ディーゼル燃料よりも気化しやすく、ディーゼル燃料よりも着火しにくい。異種燃料は、第1燃料に対応し、ディーゼル燃料は、第2燃料に対応する。異種燃料は、主にトルク生成用の燃料である。ディーゼル燃料は、主に着火用の燃料である。
異種燃料は、具体的にはナフサである。このエンジンシステムに使用可能なナフサは、軽質ナフサ、重質ナフサ、及び、ホールレンジナフサを含む。軽質ナフサ、重質ナフサ、及び、ホールレンジナフサは、沸点範囲が相違する。また、ナフサに、原油あるいは重油を少量混入した変成ナフサを、このエンジンシステムに使用してもよい。
前記の異種燃料は、ナフサ以外に、ガソリンとしてもよい。また、異種燃料は、一種類の燃料とは限らず、二種類以上の燃料を混合した燃料としてもよい。例えばナフサとガソリンとの混合燃料、ナフサと他の燃料との混合燃料、又は、ガソリンと他の燃料との混合燃料を、異種燃料として使用してもよい。
尚、以下においては、ディーゼル燃料とナフサとを、ディーゼルエンジン1に供給するとして、エンジンシステムの説明をする。
<エンジンシステムの構成>
ディーゼルエンジン1は、複数のシリンダ11a(図1においては、一つのみ図示)が設けられたシリンダブロック11と、このシリンダブロック11上に配設されたシリンダヘッド12と、シリンダブロック11の下側に配設され、潤滑油が貯溜されたオイルパン13とを有している。ディーゼルエンジン1の各シリンダ11a内には、ピストン14が、シリンダ中心軸に沿って往復動するよう嵌挿されている。ピストン14は、コンロッド14bを介してクランクシャフト15と連結されている。ピストン14の頂面にはリエントラント形の燃焼室14aを区画するキャビティが形成されている。ディーゼルエンジン1は、その幾何学的圧縮比が13以上18以下に構成されている。
シリンダヘッド12には、シリンダ11a毎に吸気ポート16及び排気ポート17が形成されている。吸気ポート16には、燃焼室14aの開口を開閉する吸気弁21が配設されている。排気ポート17には、燃焼室14aの開口を開閉する排気弁22が配設されている。
ディーゼルエンジン1は、吸気弁21を駆動する動弁機構として、バルブタイミングを可変にする吸気S-VT(Sequential-Valve Timing)71を備えている(図2参照)。吸気S-VT71は、液圧式又は電動式といった、公知の様々な構成を採用することができる。ディーゼルエンジン1は、運転状態に応じて、吸気弁21のバルブタイミングを変更する。吸気S-VT71は、「吸気動弁部」を構成する。
シリンダヘッド12には、第1燃料供給部としてのナフサ用インジェクタ19と、第2燃料供給部としてのディーゼル燃料用インジェクタ18とが取り付けられている。
ナフサ用インジェクタ19は、吸気ポート16の中に、ナフサを噴射するよう構成されている。つまり、ナフサ用インジェクタ19は、ナフサを噴射する噴孔が、各シリンダ11aの吸気ポート16の中に臨むように配設されている。ナフサ用インジェクタ19には、第1燃料タンク191に貯留しているナフサが、図示を省略するナフサ供給経路を通じて供給される。
ディーゼル燃料用インジェクタ18は、燃焼室14aの中に、ディーゼル燃料を直接噴射するよう構成されている。つまり、ディーゼル燃料用インジェクタ18は、ディーゼル燃料を噴射する噴孔が、シリンダヘッド12の底面からシリンダ11aの中に臨むように配設されている。尚、図例では、ディーゼル燃料用インジェクタ18を、シリンダ11aの中心軸上に配設しているが、ディーゼル燃料用インジェクタ18の配設位置は、適宜の位置にすることができる。ディーゼル燃料用インジェクタ18には、第2燃料タンク181に貯留しているディーゼル燃料が、図示を省略するディーゼル燃料供給経路を通じて供給される。
シリンダヘッド12にはまた、着火アシスト装置が取り付けられている。着火アシスト装置は、ディーゼルエンジン1が特定の運転状態にあるときに、混合気の着火をアシストする。着火アシスト装置は、具体的には、火花点火により混合気を着火する点火装置20である。点火装置20は、詳細な図示は省略するが、電極が、燃焼室14a内に臨んで配設されている。着火アシスト装置は、点火装置に代えて、シリンダ11a内の空気を暖めることによって燃料の着火性を高めるグロープラグとしてもよい。
ディーゼルエンジン1の一側面には、吸気通路30が接続されている。吸気通路30は、各シリンダ11aの吸気ポート16に連通している。吸気通路30は、各シリンダ11aに、空気及びEGRガスを導入する。ディーゼルエンジン1の他側面には、排気通路40が接続されている。排気通路40は、各シリンダ11aの排気ポート17に連通している。排気通路40は、各シリンダ11aから既燃ガスを排出する。これら吸気通路30及び排気通路40には、詳しくは後述するが、空気を過給するターボ過給機61が配設されている。
吸気通路30の上流端部には、空気を濾過するエアクリーナ31が配設されている。吸気通路30における下流端近傍には、サージタンク33が配設されている。このサージタンク33よりも下流側の吸気通路30は、シリンダ11a毎に分岐する独立通路を構成する。各独立通路の下流端が各シリンダ11aの吸気ポート16に接続されている。
吸気通路30におけるエアクリーナ31とサージタンク33との間には、ターボ過給機61のコンプレッサ61aと、コンプレッサ61aにより圧縮された空気を冷却するインタークーラ35と、空気量を調節するスロットル弁36とが配設されている。インタークーラ35は、空冷式又は水冷式に構成すればよい。スロットル弁36は、基本的には全開状態であるが、例えば大量のEGRガスを吸気通路30に還流するときには、吸気通路30に負圧を発生させるために絞られる。
排気通路40の上流側の部分は、排気マニホールドによって構成されている。排気マニホールドは、シリンダ11a毎に分岐して排気ポート17の外側端に接続された複数の独立通路と、複数の独立通路が集合する集合部と、を有している。
排気通路40における排気マニホールドよりも下流側には、上流側から順に、ターボ過給機61のタービン61bと、排気ガス中の有害成分を浄化する排気浄化装置41と、サイレンサ42とが配設されている。
排気浄化装置41は、三元触媒41aを有している。三元触媒41aは、排気ガス中の、炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOx)を同時に浄化する。三元触媒41aは、炭化水素を水と二酸化炭素とに酸化し、一酸化炭素を二酸化炭素に酸化し、窒素酸化物を窒素に還元する。三元触媒41aは、排気ガスの空燃比(空気と燃料との重量比)が、理論空燃比にあるときに十二分に排気ガスを浄化できるが、空燃比が14.5〜15.0の略理論空燃比の浄化ウインドウにあるときでも、排気ガスを浄化することが可能である。
尚、排気浄化装置41は、三元触媒41aに加えて、排気ガス中に含まれる煤等の微粒子を捕集するパティキュレートフィルタを有するようにしてもよい。
吸気通路30と排気通路40との間には、排気ガス還流通路51が介設している。排気ガス還流通路51は、排気ガスの一部を吸気通路30に還流する。排気ガス還流通路51の上流端は、排気通路40における排気マニホールドとタービン61bとの間の部分(つまりタービン61bよりも上流側部分)に接続されている。排気ガス還流通路51の下流端は、吸気通路30におけるサージタンク33とスロットル弁36との間の部分(つまり、コンプレッサ61aよりも下流側部分)に接続されている。排気ガス還流通路51には、排気ガスの吸気通路30への還流量を調整するためのEGR弁51a及び排気ガスをエンジン冷却水によって冷却するためのEGRクーラ52が配設されている。排気ガス還流通路51及びEGR弁51aは、「EGRガス還流部」を構成する。
ターボ過給機61は、吸気通路30に配設されたコンプレッサ61aと、排気通路40に配設されたタービン61bとを有している。コンプレッサ61aとタービン61bとは互いに連結されており、コンプレッサ61aとタービン61bとは一体に回転する。コンプレッサ61aは、吸気通路30におけるエアクリーナ31とインタークーラ35との間に配設されている。タービン61bは、排気通路40における排気マニホールドと排気浄化装置41との間に配設されている。タービン61bが排気ガス流により回転することによって、コンプレッサ61aが回転し、空気を圧縮する。
排気通路40には、タービン61bをバイパスする排気バイパス通路65が接続されている。排気バイパス通路65には、排気バイパス通路65を流れる排気量を調整するためのウエストゲート弁65aが配設されている。ウエストゲート弁65aは、無通電時には全開状態(ノーマルオープン)となるように構成されている。
<エンジンの制御装置の構成>
図1及び図2に示すように、ディーゼルエンジン1は、パワートレイン・コントロール・モジュール(以下、PCMという)10によって制御される。PCM10は、CPU、メモリ、カウンタタイマ群、インターフェース及びこれらのユニットを接続するパスを有するマイクロプロセッサで構成されている。このPCM10が制御装置(及び制御部)を構成する。PCM10には、図2に示すように、様々なセンサの検出信号が入力される。ここに含まれるセンサは、エンジン冷却水の温度を検出する水温センサSW1、サージタンク33に取り付けられて、燃焼室14aに供給される空気の圧力を検出する過給圧センサSW2、空気の温度を検出する吸気温度センサSW3、クランクシャフト15の回転角を検出するクランク角センサSW4、車両のアクセルペダル(図示省略)の操作量に対応したアクセル開度を検出するアクセル開度センサSW5、三元触媒41aの上流側と下流側の排気通路に取り付けられ、排気中の酸素濃度を検出するOセンサSW6、排気通路40におけるタービン61bよりも上流側における排気圧力を検出する排気圧力センサSW7、吸気通路30内に吸入される吸気流量を検出するエアフローセンサSW8、EGR弁51aの開度を検出するEGR弁開度センサSW9、吸気弁21の位相角を検出する吸気弁位相角センサSW10、及び、ウエストゲート弁65aの開度を検出するウエストゲート弁開度センサSW11である。
PCM10は、これらのセンサSW1〜SW11の検出信号に基づいて種々の演算を行うことにより、ディーゼルエンジン1や車両の状態を判定すると共に、ディーゼル燃料用インジェクタ18、ナフサ用インジェクタ19、点火装置20、吸気S-VT71、スロットル弁36、EGR弁51a、及び、ウエストゲート弁65aそれぞれのアクチュエータへ制御信号を出力する。
<エンジンの基本的な制御>
PCM10によるディーゼルエンジン1の基本的な制御は、主にアクセル開度に基づいて目標トルクを決定し、ディーゼル燃料用インジェクタ18及びナフサ用インジェクタ19に、目標トルクに対応する燃料の噴射を実行させることである。
PCM10はまた、ディーゼルエンジン1の運転状態に応じて、シリンダ11a内へ導入する空気量を調整する。具体的にPCM10は、スロットル弁36やEGR弁51aの開度の制御(つまり、EGR制御)、及び/又は、吸気S-VT71による吸気弁21のバルブタイミングの制御(つまり、吸気遅閉じ制御)を行うことにより、空気量を調整する。吸気弁21を、圧縮行程の中期(圧縮行程のクランク角180°を三等分した前期、中期、後期とした場合の中期)の、吸気下死点後60°〜120°の範囲内で閉弁(吸気弁21のリフト高さが0.4mmm時点を閉弁時期と定義)する遅閉じ制御を行うと、ポンプ損失を増やすことなく、シリンダ11a内へ導入する空気量を調整することができる。また、EGRガスを還流させると、シリンダ11a内へ導入する空気量を調整することができる他に、シリンダ11a内の温度を高めて、(吸気遅閉じ制御による有効圧縮比の低下に伴って、圧縮上死点付近でのシリンダ11a内の温度上昇が不足するものの、これを補完して)混合気の着火性を高めることができる。さらには、シリンダ11a内の温度が高くなる高負荷域において、EGRガスを還流させると、EGRクーラ52内を流通した低温の不活性ガスが燃焼室14aに還流されるため、混合気(ナフサ)の過早着火が抑えられ、高いエンジントルクが生成できる適正な着火時期で混合気を着火させることができる。
PCM10はさらに、OセンサSW6が検出した排気中の酸素濃度と、エアフローセンサSW8が検出した吸気流量とに基づいて、空気量及び燃料量の調整を行う空燃比フィードバック制御を行う。PCM10は、燃焼室14a内の混合気の空燃比(つまり、燃焼室14a内の空気(A)と燃料(F)との重量比(A/F))を略理論空燃比(14.5〜15.0)にし、燃焼室14aから排出する排気ガスの空燃比を理論空燃比にする。尚、ここでいう燃料量は、ディーゼル燃料及びナフサの両方を含む全燃料量である。また、A/F=14.5〜15.0は、三元触媒41aの浄化ウインドウに相当する空燃比である。このエンジンシステムは、ディーゼルエンジン1の運転領域の全域に亘って、空燃比フィードバック制御を行う。このことによってエンジンシステムは、ディーゼルエンジン1の運転領域の全域に亘って、三元触媒41aを利用した排気ガスの浄化を行う。
尚、燃焼室14aから排出する排気ガスの空燃比を、三元触媒41aの浄化ウインドウに相当する空燃比であるA/F=14.5〜15.0の範囲としても良い。
<燃料噴射制御>
次に、PCM10が実行する燃料噴射制御について説明をする。前述したように、このエンジンシステムは、主にトルク生成用のナフサと、主に着火用のディーゼル燃料とをディーゼルエンジン1に供給する。ナフサの供給重量と、ディーゼル燃料の供給重量とを比較したときに、ナフサの供給重量の方が、ディーゼル燃料の供給重量よりも多い。ディーゼル燃料は、燃焼室14aに供給する全燃料量に対して、重量比で10%以下にする。ディーゼル燃料は、例えば、全燃料重量に対して5%としてもよい。
ナフサは、ディーゼル燃料よりも沸点が低いため、燃焼室14a内において気化しやすい。そこで、ナフサによって燃焼室14a内に、均質かつ、理論空燃比に近い混合気を形成する。これによって、煤の発生を抑制すると共に、COの発生を抑制する。
一方で、ナフサは、圧縮着火に至る圧力及び温度の少なくとも一方がディーゼル燃料よりも高い。つまり、ナフサは、着火性が低い。前述したように、ディーゼルエンジン1は、幾何学的圧縮比が13以上18以下の低い圧縮比に構成されており、燃料の着火には不利である。
そこで、このエンジンシステムでは、着火性に優れたディーゼル燃料を、燃焼室14a内に供給する。ディーゼル燃料は、着火用燃料として機能するから、混合気は、所定のタイミングで確実に圧縮着火することができる。ナフサ及びディーゼル燃料を含む混合気が、燃焼する。
図3は、所定のエンジン回転数における、ナフサ及びディーゼル燃料の噴射タイミングを例示している。吸気ポート16に取り付けられたナフサ用インジェクタ19は、吸気弁21が開いている吸気行程期間に、吸気ポート16内にナフサを噴射する。ナフサの噴射タイミングは、吸気行程の中期から前期の期間内に設定すればよい。ここで、吸気行程の前期及び中期はそれぞれ、吸気行程を、前期、中期及び後期の三つの期間に三等分したときの、前期及び中期とすればよい。吸気行程の中期から前期の期間は、シリンダ11a内の吸気流動が高くなる。この期間にナフサを噴射することによって、吸気流動を利用して、ナフサを、燃焼室14a内の全体に拡散させることができると共に、混合気を均質化することが可能になる。
燃焼室14a内に臨んで取り付けられたディーゼル燃料用インジェクタ18は、圧縮行程期間に、燃焼室14a内にディーゼル燃料を噴射する。ディーゼル燃料の噴射タイミングは、圧縮上死点付近、具体的には、圧縮上死点前30〜10°CAの期間内に設定すればよい。こうすることで、圧縮上死点付近において混合気が圧縮着火し、燃焼を開始することができる。この燃焼の燃焼重心が、圧縮上死点後5〜10°CAとなるようにすれば、ディーゼルエンジン1の熱効率が高まる。尚、前述したように、ディーゼルエンジン1の幾何学的圧縮比が低いため、ディーゼル燃料を噴射する前に、ナフサを含む混合気が過早着火してしまうことを回避することができる。ディーゼル燃料の噴射タイミングを調整することによって、混合気が圧縮着火するタイミングを調整することができる。
<エンジンの運転領域>
図4に、ディーゼルエンジン1の好適な運転領域の一例を示す。縦軸はエンジン負荷(IMEP)を、横軸はエンジン回転数を、それぞれ表している。ディーゼルエンジン1の運転領域は、出力が要求される負荷の高低及び回転数の高低に対し、大略、冷間領域(CS領域)、低負荷領域(P領域)、中負荷領域(S1領域)、及び高負荷領域(S2)からなる4つの領域に分けられている。PCM10には、このような運転領域をデータ化したマップが実装されていて、PCM10は、そのマップに基づいて、これら領域に応じた制御を実行する。
(冷間領域:CS領域)
冷間領域は、ディーゼルエンジン1が出力する負荷及び回転数が最も低い領域である。例えば、強制始動時(搭乗者がキーやボタンを操作して、ディーゼルエンジン1を始動する時)や、寒冷地や極寒期等、ディーゼルエンジン1が始動はしても、ディーゼルエンジン1が暖まっていない状態、つまり冷機時の運転領域である。具体的には、水温センサSW1によって検出されるエンジン冷却水の温度が、予め設定された基準温度(例えば、80℃)以下である状態での運転領域に相当する。当然ながら、三元触媒41aも適正に機能する温度には達していない。
通常であれば、数十秒程度、ディーゼルエンジン1が運転されることで、回転数が安定し、エンジン冷却水の温度も基準温度に達する。回転数が安定すれば、PCM10は、三元触媒41aを早期に温め、かつ、空燃比が略理論空燃比に近づくように制御する。冷間領域では、安定した圧縮着火ができないので、PCM10は、燃料に安価なナフサのみを使用して燃料リッチな状態にし、点火装置20を用いてその混合気を強制的に着火させることにより、燃焼を行う。
すなわち、このディーゼルエンジン1は、負荷の高い領域でナフサが自着火して過早着火するのを防止するために、幾何学的圧縮比が低く設定されている。そのため、低負荷領域では、圧縮着火しにくい。それに加え、冷機時は、燃焼室14aの温度が低いため、ディーゼル燃料及びナフサのいずれであっても、安定して圧縮着火させることができない。したがって、PCM10は、冷間領域においては、点火装置20を用いて混合気を着火することで、強制的に燃焼させる。
着火による強制的な燃焼であれば、燃料特性は大きく影響しない。従って、その燃料には、ナフサ、ディーゼル燃料のいずれも利用できるが、このディーゼルエンジン1では、その燃料にナフサのみが使用される(ナフサが100%)。
その理由としては、まず、ナフサは、ディーゼル燃料よりも気化しやすい。更に、ディーゼル燃料は、燃焼室14aに直接噴射されるため、燃焼室14aで均質な混合気を形成しにくいのに対し、ナフサは吸気ポート16で噴射されるため、燃焼室14aでは均質な混合気を形成することができる。従って、ナフサは、ディーゼル燃料に比べて、均質な燃焼が行えるので、燃焼時に煤の発生を抑制できる利点がある。それにより、比較的多量のナフサを用い、燃料リッチな状態で燃焼させることができるので、高い燃焼熱を発生させることができる。その高い燃焼熱を利用することで、三元触媒41aの温度を速やかに適温まで上昇させることができる。
更に、ナフサはディーゼル燃料に比べると安価である。そのため、ディーゼル燃料よりもナフサの使用量を多くすれば、運転コストが削減でき、経済的にも有利である。ただし、ディーゼル燃料の使用を排除するものでない。強制的に点火するのであれば、ディーゼル燃料も使用できるため、燃料の一部にディーゼル燃料が含まれていてもよい。
このように、このディーゼルエンジン1では、冷機時には、比較的多量のナフサを燃焼室14aに供給し、燃料をリッチな状態とすることで(空燃比は15以下)、煤等、エミッションの低減を促進しながら、高い燃焼熱を発生させる。それにより、三元触媒41aを早期に適温まで昇温させる。なお、冷機時はEGRガスの温度が低いため、EGRガスを還流しても熱的には大きな効果は得られないが、空燃比の調整等の観点から、冷機時においても必要に応じてEGRガスを還流してもよい。また、冷機時での吸気弁21のバルブタイミングは、燃焼が効率的に行えるように、吸気行程中に吸気弁21が大きく開かれる、基準の設定となっている。
そうして、三元触媒41aが適正に作動する温度に達すれば、PCM10は、その後は、空燃比が略理論空燃比となるように調整する。それにより、排気ガスが浄化され、エミッションが効果的に低減される。トルクも高まり、エンジン性能も向上する。
(低負荷領域:P領域)
低負荷領域は、冷間領域よりも負荷又は回転数が高い領域である。低負荷領域では、エンジン冷却水の温度は基準温度に達し、三元触媒41aも適正に機能できる温度となっている(いわゆる温間時)。ただし、低負荷領域におけるエンジン出力の負荷及び回転数は、ディーゼルエンジン1が運転可能な全運転領域の中では、依然として低い。
例えば、低負荷領域は、ディーゼルエンジン1が出力可能な最高負荷を二等分した時の低負荷側の領域であり、又、ディーゼルエンジン1が出力可能な最高回転数を二等分した時の低回転側の領域である。ディーゼルエンジン1が出力可能な最高負荷を三等分した時の最も低負荷側の領域、又は、ディーゼルエンジン1が出力可能な最高回転数を三等分した時の最も低回転側の領域である場合もある。
低負荷領域では、三元触媒41aが適正に機能し得る状態となっているので、PCM10は、エミッションの排出を抑制するため、燃焼室14a内の混合気の空燃比が略理論空燃比(A/Fが14.5〜15.0)となるように制御する。それにより、三元触媒41aに導入される排気ガスの空燃比も略理論空燃比となるので、排気ガスが効果的に浄化できる。
低負荷領域では、エンジン出力が小さいので、燃焼室14aへの燃料の供給量は少なく制御される。そのため、低負荷領域での燃焼室14aの中は高温になりにくく、圧縮着火を安定して行うのが難しい。したがって、PCM10は、冷間領域と同様に、低負荷領域においても、使用する燃料の割合(重量比)を、ディーゼル燃料よりもナフサの方が高くなるようにし(本実施形態では、冷間領域と同じナフサ100%)、点火装置20を用いて、その燃料の混合気を着火することで、強制的に燃焼させる。
燃料の供給量が少ないと、空燃比を略理論空燃比に保持するのに必要な空気量も少なくなる。そこで、PCM10は、燃焼室14aに多量のEGRガスが導入されるように制御する。具体的には、EGR率(燃焼室14aの中に存在する混合気のガス全ての質量に対するEGRガスの質量の割合:%)が、高負荷領域よりも高い値(例えば、40%)となるように調整する。
スロットル弁36を絞ることによっても、空気量を少なく調整できるが、吸気の流動性悪化やポンプ損失などの不利がある。EGR率による調整では、そのような不利がなく、燃焼室14aの中に、ナフサの均質な混合気を形成することができる。しかも、EGRガスが持つ熱量によって燃焼室14aの温度を高めることができるので、燃焼室14a内の混合気が着火しやすくなる。従って、燃焼を安定して行える。
ナフサは、吸気ポート16に供給され、吸気に混合された状態で燃焼室14aに導入される。EGRガスは、その吸気ポート16よりも上流側に位置する吸気通路30の部位(還流部位)に還流されるようになっている。従って、温度の高いEGRガスが還流した吸気に、気化しやすいナフサが混合した状態で燃焼室14aに導入されることから、燃焼室14aの中には、より均質なナフサの混合気を形成することができる。
そうして、EGRガスの導入量を調整し、EGR率を高く設定することで、空燃比を略理論空燃比、つまり14.5〜15.0の範囲に精度高く調整することが可能になる。その結果、三元触媒41aを利用してエミッションを効果的に低減できるようになる。負荷が増加すると、それに伴って燃料の供給量も増加する。空燃比を略理論空燃比に保持するためには、空気量を増やす必要がある。従って、負荷の増大に応じて、PCM10は、空気量が増える分、EGRガスも増やすだけでなく、EGRガス量を相対的に減少させるように制御するのが好ましい(EGR率が低下)。
更に、低負荷領域では、空気量を少なく調整すると共に、ポンプ損失を低減するため、PCM10は、吸気弁21のバルブタイミングを遅くする制御(吸気遅閉じ制御)を行う。
低負荷領域では、点火装置20を用いた強制的な燃焼が行われて、圧縮着火が行われないので、燃焼室14aの圧力が比較的低くても安定した燃焼が行える。一方、低負荷領域では、ディーゼルエンジン1の出力が小さいので、ポンプ損失が相対的に大きくなり、燃費への影響が大きい。そこで、PCM10は、吸気S-VT71を制御し、吸気弁21の閉時期を遅くして、圧縮行程中での吸気弁21の開弁期間を長くする。
詳しくは、図5に実線で示すように、吸気弁21の開弁期間(吸気弁21が開いている期間、燃焼室14aに吸気が導入可能な期間)のうち、その圧縮行程に位置する期間である、吸気下死点から閉時期までの閉じ側の期間(閉じ側期間)が長くなるように、吸気S-VT71を制御し、吸気弁21のバルブタイミングを遅くする。なお、図5の仮想線は、基準となるバルブタイミングを示しており、本実施形態では、その閉時期は吸気下死点後30°CAである。それに対し、遅閉じ制御により変更したバルブタイミングでの閉時期は、吸気下死点後90°CAとなっている。尚、吸気弁21の閉弁時期は、吸気弁21のリフト量が0.4mmに低下した時点と定義する。
このように吸気遅閉じ制御を行うことで、有効圧縮比が小さくなり、ポンプ損失が低減される。従って、燃費の向上が図れる。また、燃焼室14aに導入する吸気量を少なく調整できるので、空気量が過剰気味の低負荷領域では有利である。
(中負荷領域:S1領域)
中負荷領域は、低負荷領域よりも、ディーゼルエンジン1から出力される負荷又は回転数が高い領域である。中負荷領域は、ディーゼルエンジン1の全運転領域の中では、中間に位置する運転領域であり、比較的燃焼に適した条件となっている。
例えば、中負荷領域は、ディーゼルエンジン1が出力可能な最高負荷を二等分した時の高負荷側の領域であり、又、ディーゼルエンジン1が出力可能な最高回転数を二等分した時の高回転側の領域である。ディーゼルエンジン1が出力可能な最高負荷を三等分した時の中間の領域、又は、ディーゼルエンジン1が出力可能な最高回転数を三等分した時の中間の領域である場合もある。
中負荷領域では、低負荷領域に比べてエンジン出力が高いため、その分、燃焼室14aにも多くの燃料が供給され、燃焼エネルギーも増加する。そのため、燃焼室14aの中は、このエンジンシステムの設計に基づく圧縮着火により、燃焼可能な状態となっている。
すなわち、このエンジンシステムでは、主たる燃料としてナフサを使用し、エンジンの運転状態に応じ、ディーゼル燃料を補助的に使用して着火を促進することで、圧縮着火が安定して行えるように設計されている。例えば、この実施形態のディーゼルエンジン1の中負荷領域では、重量割合で95%のナフサと5%のディーゼル燃料とが燃焼室14aに供給され、圧縮着火により燃焼を行う。
低負荷領域よりもエンジン出力が大きい中負荷領域では、ポンプ損失に基づく燃費への影響は小さいので、吸気弁21のバルブタイミングは、吸気下死点の側に移行するように進角制御されて、基準の設定に戻される。吸気遅閉じ制御は行われない。それにより、低負荷領域よりも燃焼室14aに導入される吸気量が増加し、効率的な燃焼が行える。有効圧縮比も大きくなって幾何学的圧縮比に近づくので、圧縮着火もしやすくなる。
中負荷領域での燃焼室14a内の混合気の空燃比は、低負荷領域と同様に、EGR率の調整によって略理論空燃比に保持される。それにより、効率的な燃焼が行えることから、エンジン出力も高まり、燃費の向上が図れる。三元触媒41aにより、排気ガスも効果的に浄化できる。なお、中負荷領域での吸気は、自然吸気でもよいし、ターボ過給機61で過給してもよい。
なお、負荷が増加すると燃料の供給量が増加し、空燃比を略理論空燃比に保持するために、空気量を増やす必要がある。従って、中負荷領域においても、低負荷領域と同様に、負荷の増大に応じて、EGRガスの量を相対的に減少させるとよい。
(高負荷領域:S2領域)
高負荷領域は、中負荷領域よりも更にエンジン出力が高い領域である。高負荷領域は、ディーゼルエンジン1の全運転領域の中では、最も高負荷側にある。すなわち、高負荷領域は、中負荷領域よりも更に高負荷側又は高回転側に位置する領域である。
高負荷領域では、中負荷領域に連続して、トルク発生用のナフサと、着火用のディーゼル燃料との組み合わせによる、圧縮着火が行われる。点火装置20による着火は行われない。高い出力を得るために、高負荷領域では、燃焼室14aに多量の燃料が供給される。空燃比を略理論空燃比に保持するため、その供給量に応じて空気も増量される。それに伴い、EGR率は、中負荷領域よりも低下する(例えば30%)。必要に応じて過給も行われる。吸気弁21のバルブタイミングは、基準の設定であり、吸気遅閉じ制御は行われない。
高負荷領域でも、燃焼室14a内の混合気の空燃比は略理論空燃比に保持されるので、高トルクが得られ、燃費の向上が図れるとともに、排気ガスを効果的に浄化できる。
<エンジンの具体的な制御>
図6に、ディーゼルエンジン1の具体的な制御の一例を示す。PCM10は、各センサSW1〜SW11の検知信号に基づいて、ディーゼルエンジン1の運転状態を判断する(ステップS1)。その判断結果と運転状態に関するマップとに基づき、PCM10は、ディーゼルエンジン1の運転状態が、冷間領域(CS領域)、低負荷領域(P領域)、中負荷領域(S1領域)、及び高負荷領域(S2)のいずれの運転領域にあるかを識別し、その識別結果に基づいて各運転領域に応じた燃焼制御を実行する。
その運転領域が冷間領域であると、PCM10が判断した場合(ステップS2でYes)、PCM10はウエストゲート弁65aを開く(ステップS3)。それにより、燃焼室14aから排出される高温の排気ガスは、タービン61bをバイパスし、そのまま三元触媒41aへと送られる。その結果、燃焼室14aで発生する燃焼熱を、三元触媒41aに効率的に作用させることができる。その結果、三元触媒41aは、早期に暖められる。
そうして、PCM10は、冷間領域に応じた燃焼条件に調整する(ステップS4)。具体的には、空燃比が理論空燃比以下(A/Fが15以下)、つまり燃料がリッチな状態で、燃料の総量がナフサのみとなるように制御する。
吸気弁21のバルブタイミングは、吸気行程で吸気弁21が大きく開かれる基準の設定とされており、吸気の流動の強いタイミングで、ナフサ用インジェクタ19を駆動し、ナフサを吸気ポート16の中に噴射する。それにより、燃焼室14aの中に、ナフサの均質でリッチな混合気を形成することができる。
PCM10は、点火装置20を作動させ、圧縮上死点近傍の所定のタイミングで着火する。そうすることで、混合気を強制的に燃焼させる(ステップS5)。このような燃焼により、冷間領域では、空燃比を略理論空燃比に近づけながら、三元触媒41aを早期に暖めることができる。
ディーゼルエンジン1の運転領域が低負荷領域であると判断された場合(ステップS6でYes)、PCM10は、その低負荷領域に応じた燃焼条件に調整する。
PCM10は、EGR弁の開度を制御し、EGR率を40%に調整する(ステップS7)。PCM10は、吸気S-VT71を制御し、吸気弁21の閉時期が所定の遅閉じタイミングとなるように、バルブタイミングを調整する(ステップS8)。そして、PCM10は、空燃比を略理論空燃比(A/Fが14.5〜15.0)に保持しながら、ナフサ用インジェクタ19を駆動する。PCM10はまた、燃料の総量がナフサのみとなるように制御し、吸気行程の流動の強いタイミングで、ナフサを吸気ポート16の中に噴射する(ステップS9)。
PCM10は、点火装置20を駆動して、圧縮上死点近傍の所定のタイミングで着火する。そうすることで、混合気を強制的に燃焼させる(ステップS10)。
ディーゼルエンジン1の運転領域が中負荷領域であると判断された場合(ステップS11でYes)、PCM10は、中負荷領域に応じた燃焼条件に調整する。
PCM10は、EGR弁51aの開度を制御し、EGR率を40%に調整する(ステップS12)。そして、PCM10は、空燃比を略理論空燃比に保持しながら、ナフサ用インジェクタ19を駆動する。その際、PCM10は、ナフサが燃料の総量の95%となるように制御し、吸気行程の流動の強いタイミングで、ナフサを吸気ポート16の中に噴射する(ステップS13)。
PCM10はまた、同様に空燃比を略理論空燃比に保持しながら、ディーゼル燃料用インジェクタ18を駆動し、ディーゼル燃料が燃料の総量の5%となるように制御し、圧縮行程後半の所定のタイミングで、ディーゼル燃料を燃焼室14aの中に直接噴射する(ステップS14)。
そうすることで、混合気は、圧縮上死点後の近傍で自着火して燃焼する。そのため、点火装置20による着火は行われない。
ディーゼルエンジン1の運転領域が高負荷領域であると判断された場合(ステップS11でNo)、PCM10は、高負荷領域に応じた燃焼条件に調整する。
PCM10は、EGR弁の開度を制御し、EGR率を30%〜0%の間で調整する(ステップS15)。負荷が高いほど、空気量が必要となるので、EGR率は低くなるように調整される。そして、PCM10は、空燃比を略理論空燃比に保持しながら、ナフサ用インジェクタ19を駆動する。その際、PCM10は、ナフサが燃料の総量の95%となるように制御し、吸気行程の流動の強いタイミングで、ナフサを吸気ポート16の中に噴射する(ステップS16)。
PCM10はまた、同様に空燃比を略理論空燃比に保持しながら、ディーゼル燃料用インジェクタ18を駆動し、ディーゼル燃料が燃料の総量の5%となるように制御し、圧縮行程後半の所定のタイミングで、ディーゼル燃料を燃焼室14aの中に直接噴射する(ステップS17)。
そうすることで、中負荷領域と同様に、高負荷領域においても、混合気は、圧縮上死点後の近傍で自着火して燃焼する。
以上説明したように、このエンジンシステムは、トルク生成用のナフサと、着火用のディーゼル燃料とをディーゼルエンジン1に供給する。気化性能に優れたナフサによって、燃焼室14a内の全体に、均質かつ理論空燃比に近い混合気を形成することによって、煤及びCOの発生を抑制することができる。また、燃焼室14a内の混合気について、ナフサ及びディーゼル燃料の両方を含む燃料と空気との重量比(A/F)を、略理論空燃比にすると共に、燃焼室14aから排出される排気ガスの空燃比を、理論空燃比にすることによって、排気通路40に設けた三元触媒41aを利用して、排気ガスを浄化することができる。従来のディーゼルエンジンにおいて必要であったNOx浄化用の後処理システムを省略することができ、エンジンシステムの簡略化、及び、低コスト化が実現する。また、リーン運転をしていた従来のディーゼルエンジンに対し、前記のエンジンシステムは、混合気の空燃比を略理論空燃比にしているため、エンジントルクを向上させることができる。
<諸元例、検証結果>
図7に、低負荷領域(P領域)、中負荷領域(S1領域)、及び高負荷領域(S2)での燃焼制御に関する主な諸元の一例を示す。なお、ここで示す数値は、例示であり、仕様に応じて変更可能である。また、各数値は、基準値を示しており、実用上は多少のばらつきを含み得る。
その低負荷領域では、EGR率が40%とされ、比較的多量のEGRガスが燃焼室14aに導入される。吸気弁21の閉時期(IVC)は、吸気遅閉じ制御が行われ、吸気下死点後の90°CAとされている。吸気遅閉じ制御による有効圧縮比の低下も加わって、安定した圧縮着火が困難なことから、点火装置20による強制的な着火が行われ、燃料には、安価であることに加え、均質な混合気が形成でき、エミッションの低減に有利なナフサのみが用いられる。
その中負荷領域では、EGR率は、低負荷領域と同じ40%とされ、比較的多量のEGRガスが燃焼室14aに導入される。吸気弁21の閉時期(IVC)は、基準の設定に戻され、吸気下死点後の30°CAとされている。安定した圧縮着火が可能なことから、点火装置20は使用せず、圧縮着火によって燃焼が行わる。主燃料であるナフサに、5%のディーゼル燃料を加えることで、安定した圧縮着火が行えるようにしている。そして、EGRクーラ52により冷却された比較的低温の不活性ガス(EGRガス)が燃焼室14aに導入されるため、混合気着火後の急峻な燃焼の立ち上がりが抑制され、燃焼騒音の増大や、熱負荷の増大が抑制される。
そして、その高負荷領域では、EGR率は30%とされ、効率的な燃焼を実現するため、空気量を相対的に増加させている。吸気弁21の閉時期(IVC)は、中負荷領域と同様に、吸気下死点後の30°CAとされ、安定した圧縮着火が可能なことから、圧縮着火によって燃焼が行われる。燃料には、中負荷領域と同様に、5%のディーゼル燃料と95%のナフサが用いられる。そして、EGRクーラ52により冷却された比較的低温の不活性ガス(EGRガス)が燃焼室14aに導入されるため、混合気(ナフサ)の過早着火が抑制され、高いエンジントルクが生成できる着火時期とすることができる。
また、エンジン高速域でも、EGR率は30%とされ、効率的な燃焼を実現するため、空気量を相対的に増加させている。吸気弁21の閉時期(IVC)は、高速域で吸気充填量が多くできるタイミングとされており、吸気下死点後の45°CA程度とされている。高速域では、吸気行程から圧縮行程までのクランク角経過時間が低速域に対して短くなるため、クランク角で見た場合の、吸気ポート16を介してのナフサ供給期間が長くなる一方、ナフサ供給終了時点から圧縮上死点付近までの時間間隔は格段に短くなり、ナフサの均質混合気の形成が低下するものの、EGRガスの還流によるナフサの気化促進によって均質化の悪化が抑制され、煤の発生が無くなってエンジントルクを高めることができる。なお、高速域においても5%のディーゼル燃料と95%のナフサが用いられるが、エンジン速度とナフサの供給から圧縮上死点付近までの時間間隔との兼ね合いから、最適な着火時期が得られない場合は、100%のナフサを供給して、着火アシスト装置による強制的な着火を行っても良い。
このように、高速域でEGRガスを還流した場合は、主体燃料がディーゼル燃料の場合は煤が増大するためEGRガスの還流が不可能であったものの、ナフサ主体の燃料供給においては、EGRガスの還流が効果的である。

図8及び図9に、検証結果を示す。これら検証結果では、ここに開示するエンジンシステムに係る実施例と、従来のディーゼルエンジンシステムに係る従来例とを比較している。図8は、所定のエンジン回転数における、図示平均有効圧(IMEP)と、図示燃料消費率(gross ISFC)との関係を例示している。図8に示すように、実施例は、混合気の空燃比を略理論空燃比にしているため、低負荷、中負荷及び高負荷のそれぞれにおいて、リーン運転である従来例よりも図示燃料消費率が低下している。ここに開示するエンジンシステムは、従来のディーゼルエンジンシステムよりも、エンジントルクの向上、及び、燃費性能の向上を図ることができる。
また、図9は、所定のエンジン回転数における、図示平均有効圧(IMEP)と、NOx排出量との関係を例示している。従来例は、エンジン負荷が高くなると、燃焼室からのNOx排出量が増えている。これに対し、実施例は、三元触媒41aよりも下流の、テールパイプにおける排出量を示しているが、燃焼室14aから排出される排気ガスの空燃比を理論空燃比にすると共に、三元触媒41aによってNOxを浄化しているため、NOxの排出量は、実質的にゼロである。従って、ここに開示するエンジンシステムは、エミッション性能が、従来のディーゼルエンジンシステムよりも向上している。
また、ナフサは、ディーゼル燃料やガソリンと比較して製造コストが低く安価であるため、ナフサを利用する本エンジンシステムは、経済性に優れている。
尚、ここに開示する技術は、前記の構成に限定されない。前記の構成においては、ディーゼルエンジン1の運転領域の全域に亘って、混合気の空燃比を略理論空燃比としているが、例えば燃料の総噴射量が少ない低負荷領域や軽負荷領域においては、混合気の空燃比を、理論空燃比よりも大幅に燃料リーン(例えばA/F=30〜45)にしてもよい。空燃比を30〜45程度にすれば、燃焼室14a内においてNOxが生成することを抑制することができる。
また、ディーゼルエンジン1が、特定の運転状態にあるときには、ナフサのみをディーゼルエンジン1に供給してもよい。この場合、混合気の着火性が低下するため、点火装置20によって混合気を強制着火してもよい。
さらに、前述の構成においては、ターボ過給機61を装着しているが、必ずしもターボ過給機を装着しなくてもよい。すなわち、従来のディーゼルエンジンでは、過給機を装着して燃焼時の空燃比をリーンとし、煤やCOを低減するとともに、高コストな選択還元型触媒を用いてNOxの低減を図る必要があったものの、あるいは、複数の過給機を装着して格段に過給圧を高め、燃焼時の空燃比を大幅にリーンとしつつ、エンジン本体の圧縮比も下げて燃焼温度を下げ、煤やCO、NOxの低減を図る必要があったものの、本発明においては、第1燃料の供給により、混合気の空燃比を14.5〜15.0の範囲とすることができるため、三元触媒41aとの組み合わせにより、過給に頼らなくても、煤やCOの低減とともに、NOxも十二分に浄化できるため、過給機を装着しない安価なエンジンを提供することもできる。
1 ディーゼルエンジン(エンジン本体)
10 PCM(制御部)
14a 燃焼室
16 吸気ポート
18 ディーゼル燃料用インジェクタ(第2燃料供給部)
19 ナフサ用インジェクタ(第1燃料供給部)
21 吸気弁
40 排気通路
41a 三元触媒
51 排気ガス還流通路(EGRガス還流部)
51a EGR弁(EGRガス還流部)
71 吸気S-VT(吸気動弁部)

Claims (8)

  1. 燃焼室を有するエンジン本体と、
    前記燃焼室に、第1燃料を供給するよう構成された第1燃料供給部と、
    圧縮着火に至る圧力及び温度の少なくとも一方が前記第1燃料よりも低くかつ、前記第1燃料よりも気化しにくい第2燃料を、前記燃焼室に供給するよう構成された第2燃料供給部と、
    前記燃焼室に連通する吸気ポートの開口を開閉する吸気弁、及び当該吸気弁の開閉時期を調整する吸気動弁部と、
    少なくとも前記第1燃料供給部、前記第2燃料供給部、及び前記吸気動弁部を制御する制御部と、
    を備え
    前記エンジン本体が運転する負荷の低い低負荷領域では、
    前記第1燃料及び前記第2燃料の各燃料のうち、少なくとも前記第1燃料が前記燃焼室に供給され、かつ、
    前記燃焼室に充填される、燃料量と空気量との比率である空燃比が14.5〜15.0の範囲内となるように、前記吸気弁の開弁期間における吸気下死点から閉時期までの閉じ側期間が、前記エンジン本体の高負荷領域よりも長くされる圧縮着火式エンジン。
  2. 請求項1に記載の圧縮着火式エンジンにおいて、
    前記第1燃料は前記第2燃料に対して沸点が低い燃料である圧縮着火式エンジン。
  3. 請求項1又は請求項2に記載の圧縮着火式エンジンにおいて、
    前記燃焼室の中で着火可能に構成されると共に、前記制御部によって制御される着火アシスト装置、を更に備え、
    前記着火アシスト装置が前記低負荷領域で作動する圧縮着火式エンジン。
  4. 請求項3に記載の圧縮着火式エンジンにおいて、
    前記着火アシスト装置が作動する時には、前記第1燃料が前記燃焼室に供給されるようになっており、当該第1燃料と共に前記第2燃料が供給される場合には、当該第2燃料よりも当該第1燃料の方が多く供給される圧縮着火式エンジン。
  5. 請求項1〜4のいずれか1つに記載の圧縮着火式エンジンにおいて、
    前記燃焼室から排出される排気ガスをEGRガスとして、当該燃焼室に還流するEGRガス還流部を更に備えると共に、前記エンジン本体の排気通路に三元触媒が配設され、
    前記制御部が、前記EGRガス還流部を制御して、排気空燃比が理論空燃比となるように前記エンジン本体に要求される負荷の増加に応じて、前記EGRガスの量を減少させる圧縮着火式エンジン。
  6. 請求項1〜5のいずれか1つに記載の圧縮着火式エンジンにおいて、
    前記制御部が、前記吸気動弁部を制御して、前記エンジン本体に要求される負荷の増加に応じて、前記吸気弁の開弁期間を前記吸気下死点の側に進角させる圧縮着火式エンジン。
  7. 請求項1〜6のいずれか1つに記載の圧縮着火式エンジンにおいて、
    前記第1燃料はナフサを含み、前記第2燃料はディーゼル燃料を含む圧縮着火式エンジン。
  8. 請求項1〜6のいずれか1つに記載の圧縮着火式エンジンにおいて、
    前記第1燃料はガソリンを含み、前記第2燃料はディーゼル燃料を含む圧縮着火式エンジン。
JP2017108788A 2017-05-31 2017-05-31 圧縮着火式エンジン Expired - Fee Related JP6648734B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017108788A JP6648734B2 (ja) 2017-05-31 2017-05-31 圧縮着火式エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017108788A JP6648734B2 (ja) 2017-05-31 2017-05-31 圧縮着火式エンジン

Publications (2)

Publication Number Publication Date
JP2018204477A true JP2018204477A (ja) 2018-12-27
JP6648734B2 JP6648734B2 (ja) 2020-02-14

Family

ID=64956671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017108788A Expired - Fee Related JP6648734B2 (ja) 2017-05-31 2017-05-31 圧縮着火式エンジン

Country Status (1)

Country Link
JP (1) JP6648734B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016407A (ja) * 2003-06-25 2005-01-20 Mazda Motor Corp 火花点火式エンジンの制御装置
JP2008082299A (ja) * 2006-09-28 2008-04-10 Toyota Motor Corp 多種燃料内燃機関
JP2010084599A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp 火花点火式エンジンの制御装置
JP2010138799A (ja) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp 内燃機関の燃料噴射制御装置
JP2010216275A (ja) * 2009-03-13 2010-09-30 Nissan Motor Co Ltd エンジン
US20130152898A1 (en) * 2011-12-15 2013-06-20 Hyundai Motor Company Variable ignition type diesel-gasoline dual fuel powered combustion engine, system, and method
JP2015148178A (ja) * 2014-02-06 2015-08-20 マツダ株式会社 圧縮自己着火エンジンの制御装置
WO2017017754A1 (ja) * 2015-07-27 2017-02-02 株式会社日立製作所 パワートレインシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016407A (ja) * 2003-06-25 2005-01-20 Mazda Motor Corp 火花点火式エンジンの制御装置
JP2008082299A (ja) * 2006-09-28 2008-04-10 Toyota Motor Corp 多種燃料内燃機関
JP2010084599A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp 火花点火式エンジンの制御装置
JP2010138799A (ja) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp 内燃機関の燃料噴射制御装置
JP2010216275A (ja) * 2009-03-13 2010-09-30 Nissan Motor Co Ltd エンジン
US20130152898A1 (en) * 2011-12-15 2013-06-20 Hyundai Motor Company Variable ignition type diesel-gasoline dual fuel powered combustion engine, system, and method
JP2015148178A (ja) * 2014-02-06 2015-08-20 マツダ株式会社 圧縮自己着火エンジンの制御装置
WO2017017754A1 (ja) * 2015-07-27 2017-02-02 株式会社日立製作所 パワートレインシステム

Also Published As

Publication number Publication date
JP6648734B2 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
US7240480B1 (en) Dual Combustion Mode Engine
CN108884766B (zh) 发动机的控制装置
US7343902B2 (en) Dual combustion mode engine
CN108884777B (zh) 发动机的控制装置
CN109072806B (zh) 发动机的控制装置
US7305955B2 (en) Dual combustion engine
CN109555615A (zh) 带有增压器的发动机
CN108884776B (zh) 发动机的控制装置
US7255095B1 (en) Dual combustion mode engine
JP6451782B2 (ja) 圧縮着火式エンジン
JP2019090378A (ja) 過給機付エンジン
JP6451780B2 (ja) 圧縮着火式エンジン
JP6451781B2 (ja) 圧縮着火式エンジン及び圧縮着火式エンジンの制御方法
JP6528818B2 (ja) 過給機付き圧縮自己着火式エンジン
JP6648734B2 (ja) 圧縮着火式エンジン
JP6589937B2 (ja) 圧縮着火式エンジン
CN111656003B (zh) 发动机的控制方法及发动机的控制装置
CN111630263B (zh) 发动机的控制方法及发动机的控制装置
JP3785870B2 (ja) 内燃機関の排気浄化装置
JP2018204471A (ja) 圧縮着火式エンジン及び圧縮着火式エンジンの制御方法
JP4075635B2 (ja) 予混合圧縮着火内燃機関
JP6528817B2 (ja) 圧縮自己着火式エンジン
JP2019039389A (ja) 過給機付き圧縮自己着火式エンジン
JP2004239238A (ja) 予混合圧縮着火内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R150 Certificate of patent or registration of utility model

Ref document number: 6648734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees